
Evaluating tradeoff between recall and
performance of GPU Permutation Index

Mariela Lopresti, Natalia Miranda, Mercedes Barrionuevo,
Fabiana Piccoli, Nora Reyes

LIDIC. Universidad Nacional de San Luis,
Ejército de los Andes 950 - 5700 - San Luis - Argentina

{omlopres, ncmiran, mdbarrio,mpiccoli, nreyes}@ unsl.edu.ar

Abstract. Query-by-content, by means of similarity search, is a funda-
mental operation for applications that deal with multimedia data. For
this kind of query it is meaningless to look for elements exactly equal
to a given one as query. Instead, we need to measure the dissimilarity
between the query object and each database object. This search problem
can be formalized with the concept of metric space. In this scenario, the
search efficiency is understood as minimizing the number of distance cal-
culations required to answer them. Building an index can be a solution,
but with very large metric databases is not enough, it is also necessary
to speed up the queries by using high performance computing, as GPU,
and in some cases is reasonable to accept a fast answer although it was
inexact. In this work we evaluate the tradeoff between the answer quality
and time performance of our implementation of Permutation Index, on
a pure GPU architecture, used to solve in parallel multiple approximate
similarity searches on metric databases.

1 Introduction

Similarity search is a fundamental operation for applications that deal with mul-
timedia data. For a query in a multimedia database it is meaningless to look for
elements exactly equal to a given one as query. Instead, we need to measure
the similarity (or dissimilarity) between the query object and each object of the
database. The similarity search problem can be formally defined through the
concept of metric space. The metric space model is a paradigm that allows to
model all the similarity search problems. A metric space (X, d) is composed of a
universe of valid objects X and a distance function defined among them, that de-
termines the similarity (or dissimilarity) between two given objects and satisfies
properties which make it a metric. Given a dataset of n objects, a query can be
trivially answered by performing n distance evaluations, but sequential scan does
not scale for large problems. The reduction of number of distance evaluations is
important to achieve better results. Therefore, in many cases preprocessing the
dataset is a good option to solve queries with as few distance computations as
is possible. An index helps to retrieve the objects from the database that are
relevant to the query by making much less than n distance evaluations during
searches [1]. One of these indices is the Permutation Index [2].

The Permutation Index is a good representative of approximate similarity
search algorithms to solve inexact similarity searching [3]. In this kind of simi-
larity search, accuracy or determinism is traded for faster searches [1, 4]. Inexact
similarity searching is reasonable in many applications because the metric-space

194

modelizations already involve an approximation to reality; hence, a second ap-
proximation at search time is usually acceptable.

Moreover, for very large metric database is not enough to preprocess the
dataset by building an index, it is also necessary to speed up the queries by
using high performance computing (HPC). In order to employ HPC to speedup
the preprocess of the dataset to obtain an index, and to answer posed queries,
the Graphics Processing Unit (GPU) represents a good alternative. The GPU is
attractive in many application areas for its characteristics, especially because of
its parallel execution capabilities and fast memory access. They promise more
than an order of magnitude speedup over conventional processors for some non-
graphics computations.

In metric spaces, the indexing and query resolution are the most common
operations. They have several aspects that accept optimizations through the
application of HPC techniques. There are many parallel solutions for some metric
space operations implemented to GPU. Querying by k-Nearest Neighbors (k-NN)
has concentrated the greatest attention of researchers in this area, so there are
many solutions that consider GPU. In [5–9] differents proposal are made, all of
them are improvements to brute force algorithm (sequential scan) to find the
k-NN of a query object.

The goal of this work is to analyze the tradeoff betwen the quality of simi-
larity queries answer and time performance, using a parallel permutation index
implemented on GPU. In this analysis particularly we consider the known mea-
sures from information retrieval area for answer quality and we consider the
achieved performance of our parallel implementation of Pemutation Index.

The paper is organized as follows: the next sections describe all the previous
concepts. Sections 4 and 5 sketch the characteristics of our proposal and its
empirical performance. Finally, the conclusions and future works are exposed.

2 Metric Space Model

A metric space (X, d) is composed of a universe of valid objects X and a dis-
tance function d : X × X → R+ defined among them. The distance function
determines the similarity (or dissimilarity) between two given objects and sat-
isfies several properties such as strict positiveness (except d(x, x) = 0, which
must always hold), symmetry (d(x, y) = d(y, x)), and the triangle inequality
(d(x, z) ≤ d(x, y) + d(y, z)). The finite subset U ⊆ X with size n = |U |, is called
the database and represents the set of objects of the search space. The distance is
assumed to be expensive to compute, hence it is customary to define the search
complexity as the number of distance evaluations performed, disregarding other
components. There are two main queries of interest [1, 4]: Range Searching and
the k-NN. The goal of a range search (q, r)d is to retrieve all the objects x ∈ U
within the radius r of the query q (i.e. (q, r)d = {x ∈ U/d(q, x) ≤ r}). In k-NN
queries, the objective is to retrieve the set k-NN(q)⊆ U such that | k-NN(q) |= k
and ∀x ∈ k-NN(q), v ∈ U ∧ v /∈ k-NN(q), d(q, x) ≤ d(q, v).

When an index is defined, it helps to retrieve the objects from U that are
relevant to the query by making much less than n distance evaluations during
searches. The saved information in the index can vary, some indices store a subset
of distances between objects, others maintain just a range of distance values. In
general, there is a tradeoff between the quantity of information maintained in the
index and the query cost it achieves. As more information an index stores (more
memory it uses), lower query cost it obtains. However, there are some indices

195

that use memory better than others. Therefore in a database of n objects, the
most information an index could store is the n(n − 1)/2 distances among all
element pairs from the database. This is usually avoided because O(n2) space is
unacceptable for realistic applications [10].

Proximity searching in metric spaces usually are solved in two stages: prepro-
cessing and query time. During the preprocessing stage an index is built and it is
used during query time to avoid some distance computations. Basically the state
of the art in this area can be divided in two families [1]: pivot based algorithms
and compact partition based algorithms.

There is an alternative to “exact” similarity searching called approximate
similarity searching [3], where accuracy or determinism is traded for faster
searches [1, 4], and encompasses approximate and probabilistic algorithms. The
goal of approximate similarity search is to reduce significantly search times by
allowing some errors in the query output. In these algorithms one usually has
a threshold ε as parameter, so that the retrieved elements are guaranteed to
have a distance to the query q at most (1 + ε) times of what was asked for [11].
Probabilistic algorithms on the other hand state that the answer is correct with
high probability. In approximate algorithms one usually has a threshold ε as
parameter, so that the retrieved elements are guaranteed to have a distance to
the query q at most (1 + ε) times of what was asked for. This relaxation gives
faster algorithms as the threshold ε increases [11, 12]. Probabilistic algorithms
on the other hand state that the answer is correct with high probability [13, 14].

2.1 Quality Measures of Approximate Search

As it is aforementioned, an approximate similarity searching can obtain an inex-
act answer. That is, if a k-NN query of an element q ∈ X is posed to the index,
it answers with the k elements viewed as the k closest elements from U between
only the elements that are actually compared with q. However, as we want to save
as many distance calculations as we can, q will not be compared against many
potentially relevant elements. If the exact answer of k-NN(q) = {x1, x2, . . . , xk},
it determines the radius rk = max1≤i≤k{d(xi, q)} needed to enclose these k
closest elements to q. An approximate answer of k-NN(q) could obtain some
elements z whose d(q, z) > rk. For the other hand, an approximate range query
of (q, r)d can answer a subset of the exact answer, because it is possible that
the algorithm did not have reviewed all the relevant elements. However, all the
answered elements will be at distance less or equal to r, so they belong to the
exact answer to (q, r)d.

In most of information retrieval (IR) systems it is necessary to evaluate
retrieval effectiveness [15]. The judgements of document relevance used to eval-
uate effectiveness have some problems of subjectivity and unrealiableness. That
is, different judges will assign different relevance values to a document retrieved
in response to a given query. The seriousness of the problem is the subject of
debate, with many IR researchers arguing that the relevance judgment reliability
problem is not sufficient to invalidate the experiments that use relevance judg-
ments. Many measures of retrieval effectiveness have been proposed. The most
commonly used are recall and precision.

Recall is the ratio of relevant documents retrieved for a given query over the
number of relevant documents for that query in the database. Precision is the
ratio of the number of relevant documents retrieved over the total number of
documents retrieved. Both recall and precision take on values between 0 and 1.

196

Since one often wishes to compare IR performance in terms of both recall and
precision, methods for evaluating them simultaneously have been developed

In general IR systems, only in small test collections, the denominator of both
ratios is generally unknown and must be estimated by sampling or some other
method. However, in our case we can obtain the exact answer for each query q,
as the set of relevant elements for this query in U .

By this way it is possible to evaluate both measures for an approximate sim-
ilarity search index. For each query element q the exact k-NN(q) = Rel(q) is de-
termined with some exact metric access method. The approximate-k-NN(q) =
Retr(q) is answered with an approximate similarity search index, let be the
set Retr(q) = {y1, y2, . . . , yk}. It can be noticed that the approximate search
will also return k elements, so |Retr(q)| = |Rel(q)| = k. Thus, we can de-
termine the number of the k elements obtained which are relevant to q by
verifying if d(q, yi) ≤ rk; that is |Rel(q) ∩ Retr(q)|. In this case both mea-
sures are coincident: recall = |Rel(q)∩Retr(q)|

|Rel(q)| = |Rel(q)∩Retr(q)|
k and precision =

|Rel(q)∩Retr(q)|
|Retr(q)| = |Rel(q)∩Retr(q)|

k , and will allow us to evaluate the effectiveness
of our proposal. In range queries the precision measure is always equal to 1.
Thus, we decide to use recall in order to analyze the retrieval effectiveness of our
proposal, both in k-NN and range queries.

2.2 GPGPU

Mapping general-purpose computation onto GPU implies to use the graphics
hardware to solve any applications, not necessarily of graphic nature. This is
called GPGPU (General-Purpose GPU), GPU computational power is used to
solve general-purpose problems [16]. The parallel programming over GPUs has
many differences from parallel programming in typical parallel computer, the
most relevant are: The number of processing units, CPU-GPU memory structure
and Number of parallel threads.

Every GPGPU program has many basic steps, first the input data transfers
to the graphics card. Once the data are in place on the card, many threads can
be started (with little overhead). Each thread works over its data and, at the end
of the computation, the results should be copied back to the host main memory.
Not all kind of problem can be solved in the GPU architecture, the most suitable
problems are those that can be implemented with stream processing and using
limited memory, i.e. applications with abundant parallelism.

The Compute Unified Device Architecture (CUDA), supported from the
NVIDIA Geforce 8 Series, enables to use GPU as a highly parallel computer
for non-graphics applications [16, 17]. CUDA provides an essential high-level de-
velopment environment with standard C/C++ language. It defines the GPU ar-
chitecture as a programmable graphic unit which acts as a coprocessor for CPU.
It has multiple streaming multiprocessors (SMs), each of them contains several
(eight, thirty-two or forty-eight, depending GPU architecture) scalar processors
(SPs). The CUDA programming model has two main characteristics: the parallel
work through concurrent threads and the memory hierarchy. The user supplies a
single source program encompassing both host (CPU) and kernel (GPU) code.
Each CUDA program consists of multiple phases that are executed on either
CPU or GPU. All phases that exhibit little or no data parallelism are imple-
mented in CPU. Contrary, if the phases present much data parallelism, they
are coded as kernel functions in GPU. A kernel function defines the code to be
executed by each thread launched in a parallel phase.

197

3 Sequential Permutation Index

Let P be a subset of the database U , P = {p1, p2, . . . , pm} ⊆ U , that is called
the permutants set. Every element x of the database sorts all the permutants
according to the distances to them, thus forming a permutation of P : Πx =
〈pi1 , pi2 , . . . pim〉. More formally, for an element x ∈ U , its permutation Πx of P
satisfies d(x,Π x(i)) ≤ d(x,Π x(i + 1)), where the elements at the same distance
are taken in arbitrary, but consistent, order. We use Π−1

x (pij) for the rank of an
element pij in the permutation Πx. If two elements are similar, they will have a
similar permutation [2].

Basically, the permutation based algorithm is an example of probabilistic
algorithm, it is used to predict proximity between elements, by using their per-
mutations. The algorithm is very simple: In the offline preprocessing stage it is
computed the permutation for each element in the database. All these permuta-
tions are stored and they form the index. When a query q arrives, its permutation
Πq is computed. Then, the elements in the database are sorted in increasing order
of a similarity measurement between permutations, and next they are compared
against the query q following this order, until some stopping criterion is achieved.
The similarity between two permutations can be measured, for example, by
Kendall Tau, Spearman Rho, or Spearman Footrule metrics [18]. All of them are
metrics, because they satisfy the aforementioned properties. We use the Spear-
man Footrule metric because it is not expensive to compute and according to the
authors in [2] it has a good performance to predict proximity between elements.
The Spearman Footrule distance is the Manhattan distance L1, that belongs to
the Minkowsky’s distances family, between two permutations. Formally, Spear-
man Footrule metric F is defined as: F (Πx,Πq) =

∑m
i=1 |Π−1

x (pi) −Π−1
q (pi)|.

At query time we first compute the real distances d(q, pi) for every pi ∈ P ,
then we obtain the permutation Πq, and next we sort the elements x ∈ U into
increasing order according to F (Πx,Πq) (the sorting can be done incrementally,
because only some of the first elements are actually needed). Then U is traversed
in that sorted order, evaluating the distance d(q, x) for each x ∈ U . For range
queries, with radius r, each x that satisfies d(q, x) ≤ r is reported, and for k-NN
queries the set of the k smallest distances so far, and the corresponding elements,
are maintained. The database traversal is stopped at some point f , and the rest
of the database elements are just ignored. This makes the algorithm probabilistic,
as even if F (Πq,Πx) < F (Πq,Πv) it does not guarantee that d(q, x) < d(q, v),
and the stopping criterion may halt the search prematurely. On the other hand, if
the order induced by F (Πq,Πx) is close to the order induced by the real distances
d(q, u), the algorithm performs very well. The efficiency and the quality of the
answer obviously depend on f . In [2], the authors discuss a way to obtain good
values for f for sequential processing.

4 GPU-Permutation Index

The Figure 1 shows the GPU-CUDA system to work with a permutation index:
the processes of indexing and querying. The Indexing process has two stages and
the Querying process four steps. In this last process, we pay special attention to
one step: the sorting.

Building a permutation index in GPU involves at least two steps. The first
step (Distance(O,P)) calculates the distance among every object in database and

198

Permutations Calculus

Approximate Query

database

Query

Approximate
Answer

Distances(O, P)

Distances(Query, P)

Footrule Distances

GPU-Qsort

Local-QS

Reducction(Merge)
KNN Query

Permutation Index(O)

 Where:
 O is dataset

 P is permutants set

Range Query

GPU

Fig. 1. Indexing and Querying in GPU-CUDA permutation index.

the permutants. The second one (Permutation Index(O)) sets up the signatures
of all objects in database, i.e. all object permutations. The process input is the
database and the permutants. At process end, the index is ready to be queried.
The idea is to divide the work in threads blocks, each thread calculates the object
permutation according to a global permutants set.

In Distances(O, P), the number of blocks will be defined according of the
size of the database and the number of threads per block which depends of the
quantity of resources required by each block. At the end, each threads block save
in device memory its calculated distances. This stage requires a structure of size
m × n (m: permutants number and n: database size) and an auxiliar structure
in the shared memory of block (It stores the permutants, if the permutants size
is greater than auxiliar structure size, the process is repeated). The second step
(Permutation Index(O)) takes all calculated distances in the previous step and
determines the permutations of each object in database: its signature. To stablish
the object permutation, each thread considers an object in database and sorts
the permutants according to their distance. The output of second step is the
Permutation Index, which is saved in device memory. Its size is n × m.

The pemutation index allows to answer to all kinds of queries in approximated
manner. Queries can be “by range” or “k-NN”. This process implies four steps.
In the first, the permutation of query object is computed. This task is carried
out by so many threads as permutants exist. The next step is to contrast all
permutations in the index with query permutation. Comparison is done through
the Footrule distance, one thread by object in database. In the third step, it
sorts the calculated Footrule distances. Finally, depending of query kind, the
selected objects have to be evaluated. In this evaluation, the Euclidean distance
between query object and each candidate element is calculated again. Only a
database percentage is considered for this step, for example the 10% (it can be
a parameter). If the query is by range, the elements in the answer will be those
that their distances are less than reference range. If it is k-NN query, once each
thread computes the Euclidean distance, all distances are sorted and the results
are the first k elements of sorted list.

As sorting methodology, we implement the Quick-sort in the GPU, GPU-
Qsort. The designed algorithm takes into account the highly parallel nature of
graphics processors (GPUs) and the CUDA capabilities 1.2 or higher. Its main
characteristics are: iterative algorithm and heavy use of shared memory of each
block, you can find an detailed description in[19].

In large-scale systems such as Web Search Engines indexing multimedia con-
tent, it is critical to deal efficiently with streams of queries rather than with

199

single queries. Therefore, it is not enough to speed up the time to answer only
one query, but it is necessary to leverage the capabilities of the GPU to par-
allely answer several queries. So we have to show how to achieve efficient and
scalable performance in this context. We need to devise algorithms and optimiza-
tions specially tailored to support high-performance parallel query processing in
GPU. GPU has characteristics of software and hardware which allow us to think
in to solve many approximated queries in parallel. The represented system in
Figure 1 is modified and it is shown in Figure 2. In this, it can be observed that
the permutation index is built once and then is used to answer many queries.

Permutations Calculus

Approximate Query

database

Approximate
Answers

GPU

Queries Distances(Query, P)

Footrule Distances

GPU-Qsort

KNN Q Range Q

Query 0

Distances(Query, P)

Footrule Distances

GPU-Qsort

KNN Q Range Q

Query (n-1)

. . .

Fig. 2. Solving many queries in GPU-CUDA permutation index.

In order to answer parallely many approximate queries, GPU receives the
queries set and it has to solve all of them. Each query, in parallel, applies the
process explained in 1, therefore the number of needed resources for this is
equal to the resources amount to compute one query multiplied the number of
queries solved in parallel. The number of queries to solve in parallel is determined
according to the GPU resources mainly its memory. If Q are parallel queries, m
the needed memory quantity per query and i the needed memory by permutation
index, Q∗m+ i is the total required memory to solve Q queries in parallel. Once
the Q parallel queries are solved, the results are sent from the GPU to the CPU
through a single transfer via PCI-Express.

Solving many queries in parallel involves carefully manage the blocks and
their threads. At the same time, blocks of different queries are accessed in par-
allel. Hence it is important a good administration of threads: which query it
is solved and which database element it is responsible. The task is possible by
establishing a relationship among Thread Id, Block Id, Query Id, and Database
Element.

5 Experimental Results

Our experiments considered a metric database of 86,016 English words and using
the Levenshtein distance, also called edit distance [20]. The analysis was made for
a GeForce GPU GTX520MX whose characteristics (Global Memory: 1024MB,
SM:1, SP:48, Clock rate:1.8GHz, Compute Capability: 2.1). The CPU is an Intel
core i3, 2.13 GHz and 3 GB of memory.

The experiments consider for k-NN searches the values of k: 2, 4, and 16; and
for range the radii: 1, 2, and 3. For the parameter f of the Permutation Index,

200

that indicates the fraction of database revised during searches, we consider 10%,
20%, and 30% of the database size. The number of permutants used for the index
are 64 and 128. In each case the results shown are the average over 1000 different
queries and 80 solved queries in parallel. In this paper, we do not display the
speed up of construction of Permutation Index. These results are illustrated in
[21].

Our focus is to evaluate the tradeoff between the answer quality and time
performance of our parallel index with respect to the sequential index. For each
k-NN or range query we have previously obtained the exact answer, that is Rel(),
and we obtain the approximate answer Retr(). Figure 3 illustrates the average
quality answer obtained for both kinds of queries, considering the Permutation
Index respectively with 64 (Figure 3(a)) and 128 (Figure 3(b)) permutants. As
it can be noticed, the Permutation Index retrieves a high percentage of exact
answer only reviewing a little fraction of the database. For example, the 10%
retrieves 85% for 2-NN queries both with 64 and 128 permutants. It needs to
review the 20% to retrieve almost 80% of exact answer for k = 4 and k = 16
with 64 and 128 permutants. The effectiveness in range queries decreases as the
radius grows. For r = 1 the index retrieves almost 80% of the relevant objects.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30

R
ec

al
l

Revised fraction of database

Answer quality for n = 86,016 words, 64 permutants

2-NN
4-NN

16-NN
r = 1
r = 2
r = 3

(a) 64 permutants

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30

R
ec

al
l

Revised fraction of database

Answer quality for n = 86,016 words, 128 permutants

2-NN
4-NN

16-NN
r = 1
r = 2
r = 3

(b) 128 permutants

Fig. 3. Recall of approximate-k-NN and range queries obtained with Permutation In-
dex.

Figures 4 and 5 show the obtained times by k-NN and range queries for
three f values and all the number of permutants considered. In these results,
80 queries are solved in parallel on GPU. As it can be noticed, the parallel
times are so smaller than the corresponding sequential times. In both types of
queries the achieved speed up is very good, it can be observed the same behavior
for all options of our parallel solution, they are independent of the number of
permutants and fraction f of database to be revised.

For lack of space, despite of we have tested another database sizes, we show
only the results for 86,016 elements, but the other sizes have yielded similar
results.

201

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

10 20 30

Ti
m

e
(m

s)

Revised fraction of database

Time for n = 86,016 words, 2-NN

Seq-128
GPU-128

Seq-64
GPU-64

(a) 2-NN

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

10 20 30

Ti
m

e(
m

s)

Revised fraction of database

Time for n = 86,016 words, 16-NN

Seq-128
GPU-128

Seq-64
GPU-64

(b) 16-NN

Fig. 4. Time of k-NN queries obtained with Sequential and Parallel Permutation Index.

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

10 20 30

Ti
m

e
(m

s)

Revised fraction of database

Time for n = 86,016 words, r = 1

Seq-128
GPU-128

Seq-64
GPU-64

(a) Range query r = 1

-500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

10 20 30

Ti
m

e(
m

s)

Revised fraction of database

Time for n = 86,016 words, r = 3

Seq-128
GPU-128

Seq-64
GPU-64

(b) Range query, r = 3

Fig. 5. Time of Range queries obtained with Sequential and Parallel Permutation In-
dex.

6 Conclusions

When we work with databases, there are different realities where it is not enough
to speed up the time to answer only one query, but it is necessary to solve several
queries at the same time. In this work we present a solution to solve many
queries in parallel taking advantage of GPU architecture: it is a massively parallel
architecture, it has a high throughput because its capacity of parallel processing
for thousands of threads, and verify the correctness of obtained results.

The implemented GPU-Pemutation Index showed a good performance, al-
lowing us to increase the fraction f of database that will be examined to obtain
better and accurate approximate results. This affirmation is made in function
of an extensive validation process carried out to guarantee the quality of the
solution provided by the GPU.

As future task, we need to validate every performance parameters: recall,
speed up and throughput, with other kinds of database, comparing with other
solutions that apply GPU in the scenario of metric space approximate searches.

References

1. E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroqúın, “Searching in metric
spaces,” ACM Comput. Surv., vol. 33, no. 3, pp. 273–321, 2001.

202

2. E. Chavez, K. Figueroa, and G. Navarro, “Effective proximity retrieval by ordering
permutations,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 30, pp. 1647–1658, 2008.

3. P. Ciaccia and M. Patella, “Approximate and probabilistic methods,” SIGSPA-
TIAL Special, vol. 2, no. 2, pp. 16–19, Jul. 2010.

4. P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity Search: The Metric
Space Approach, ser. Advances in Database Systems, vol.32. Springer, 2006.

5. R. J. Barrientos, J. Gomez, C. Tenllado, M. Prieto, and M. Marin, “knn query
processing in metric spaces using gpus,” in 17th International European Conference
on Parallel and Distributed Computing, L. N. i. C. S. Springer, Ed., vol. 6852, 2011,
pp. 380–392.

6. V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud, “k-nearest neighbor search:
fast GPU-based implementations and application to high-dimensional feature
matching,” in IEEE Intern. Conf. on Image Processing, Hong Kong, Sept. 2010.

7. K. Kato and T. Hosino, “Solving k-nearest neighbor problem on multiple graphics
processors,” in 2010 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, CCGRID, ACM, Ed., 2010, pp. 769–773.

8. S. Liang, Y. Liu, C. Wang, and L. Jian, “Design and evaluation of a parallel k-
nearest neighbor algorithm on CUDA-enabled GPU,” in IEEE 2nd Symposium on
Web Society (SWS), 2010, pp. 53 – 60.

9. R. Uribe, P. Valero, E. Arias, J. L. Sánchez, and D. Cazorla, “A GPU-Based
Implementation for Range Queries on Spaghettis Data Structure,” in ICCSA (1),
ser. Lecture Notes in Computer Science, vol. 6782. Springer, 2011, pp. 615–629.

10. K. Figueroa, E. Chávez, G. Navarro, and R. Paredes, “Speeding up spatial ap-
proximation search in metric spaces,” ACM Journal of Experimental Algorithmics,
vol. 14, p. article 3.6, 2009.

11. B. Benjamin and G. Navarro, “Probabilistic proximity searching algorithms based
on compact partitions,” Discrete Algorithms, vol. 2, no. 1, pp. 115–134, Mar. 2004.

12. K. Tokoro, K. Yamaguchi, and S. Masuda, “Improvements of tlaesa nearest neigh-
bour search algorithm and extension to approximation search,” in Proceedings of
the 29th Australasian Computer Science Conference - Volume 48, ser. ACSC ’06.
Darlinghurst, Australia, Australia: Australian Computer Society, Inc., 2006, pp.
77–83.

13. A. Singh, H. Ferhatosmanoglu, and A. Tosun, “High dimensional reverse nearest
neighbor queries,” in The 12th intern. conf. on Information and knowledge man-
agement, ser. CIKM ’03. New York, NY, USA: ACM, 2003, pp. 91–98.

14. F. Moreno, L. Mic, and J. Oncina, “A modification of the laesa algorithm for
approximated k-nn classification,” Pattern Recognition Letters, vol. 24, no. 13, pp.
47 – 53, 2003.

15. R. A. Baeza-Yates and B. A. Ribeiro-Neto, Modern Information Retrieval - the
concepts and technology behind search, Second edition. Pearson Education Ltd.,
Harlow, England, 2011.

16. D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors, A Hands
on Approach. Elsevier, Morgan Kaufmann, 2010.

17. NVIDIA, “Nvidia cuda compute unified device architecture, programming guide
version 4.2.” in NVIDIA, 2012.

18. R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” in Proc. of the
40th annual ACM-SIAM symposium on Discrete algorithms, SODA ’03. Philadel-
phia, USA: Society for Industrial and Applied Mathematics, 2003, pp. 28–36.

19. M. Lopresti, N. Miranda, F. Piccoli, and N. Reyes, “Permutation index and gpu
to solve efficiently many queries,” in VI Latin American Symposium on High Per-
formance Computing, HPCLatAm 2013, 2013, pp. 101–112.

20. V. I. Levenshtein, “Binary codes capable of correcting spurious insertions and
deletions of ones,” Problems of Information Transmission, vol. 1, pp. 8–17, 1965.

21. M. Lopresti, N. Miranda, F. Piccoli, and N. Reyes, “Efficient similarity search
on multimedia databases,” in XVIII Congreso Argentino de Ciencias de la Com-
putacin, CACIC 2012, 2012, pp. 1079–1088.

203

