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Abstract.  
Evacuation simulations allow to consider preventive measures against possible 

emergency scenarios. We have developed a simulation model that takes into 

account not only the characteristics of the environments but also is able to 

represent social behaviours that would render our models more accurate and 

realistic.  The proposed model has a hybrid structure where the dynamics of fire 

and smoke propagation are modelled by mean of Cellular Automata and for 

simulating people's behaviour we use Intelligent Agents.  In this paper, a 

behaviour in panic situation is added to the existing ones. Moreover, as main 

contribution, this paper explains the implementation of the model in which we 

apply a functional decomposition in order to accelerate the simulation and take 

advantage of current computer architectures.   

 

Keywords: Evacuation Simulation, Social Behaviours, Cellular Automata, 

Intelligent Agents. Multithreading. 

1 Introduction 

In the last years, several modelling approaches have been proposed to deal with the 

emergency evacuations because the prediction of the people’s behaviour is of great 

public interest. Models used for evaluating the evacuation processes can broadly be 

categorised in microscopic and macroscopic approaches. The macroscopic approaches 

are based on differential equations that take into account the similarities with systems 

previously studied like dynamics of fluids. On the other hand, the microscopic 

approaches allow to investigate how the system state evolves during the model runs. 

References to different models may be obtained from [2].  

We developed a hybrid model where the environmental  dynamics  are modelled 

by means of Cellular Automata (CA), because it are suitable for modelling process of 

diffusion like  fire and smoke and for simulating people’s behaviour we are using the 

intelligent agent (IA) concept. We used a behaviour-based agent architecture because 

it allows us to work with behaviours beyond than those purely reactive[10,11]. This 
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type of system provides solutions in dynamic and uncertain environments, where the 

agent has only a partial view of the problem. 

The proposed simulation system allows to specify different scenes with a large 

number of people and environmental features, making easier the study of the complex 

behaviours that arise when the people interact. Our proposal could be used by 

architects, government agencies, foundations, etc. in order to know the security 

threats of a possible disaster, help with appropriate actions of prevention for a quick 

and efficient way to evacuate a building through the design of active policies that 

minimize the evacuation time when circumstances require it. 

Our model is a process that consumes a significant amount of time to simulate a 

complete evacuation when the environment size and / or the number of people is 

considerable. The emergence of multi core processors introduces a real challenge for 

parallel applications, that is to exploit such architectures at their maximum potential. 

This leads us to develop a model to achieve a competitive performance. 

Section 2 describes the Hybrid Model for the Evacuation Simulation, by explaining 

briefly the environmental and the pedestrian sub models.  Section 3 explains the 

implementation of three behaviours commonly observed in emergency evacuation.  In 

Sub-section 3.1 we explain how to perform the association of an agent with a specific 

behaviour during the execution of the model. In section 4 we present the 

Multithreading Model for Evacuation simulation. In section 5 we describe our work 

with different instances of the problem at hand and report the performance analysis of 

each case and in section 6 discuss  the conclusions and future works. 

2 Simulation Model 

The model consists of two sub-models, called environmental (EsM) and pedestrian 

(PsM). This model along with the computational methodology allow us  building an 

artificial environment populated with autonomous agents, which are capable of 

interacting with each other. The Fig. 1 shows the hybrid model.  

 

Fig. 1. Hybrid model consisting of environmental and pedestrian sub models 
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The details of the hybrid model have been reported in [1, 3], and for reasons of 

space they will not be reproduced in this paper. We briefly mention only those aspects 

that are necessary to understand the proposal. 

The EsM describes the spatial configuration of the environment (geometry of 

space, exit doors, internal barriers, etc.) and models the processes of diffusion of 

smoke and fire.  The EsM is based on CA, which are discrete dynamic systems that 

have the capacity to develop complex behaviours from a simple set of rules [9]. 

Basically, these rules will allow to specify the new state of a cell based on the state of 

the neighbouring cells.  

The PsM uses the concept of intelligent agents to describe the cognitive processes 

of individual agents and interactions among multiple agents in a specific environment. 

Through interaction and coordinated evolution of these two sub-models it is possible 

to obtain a model capable of simulating indoor environments with a finite number of 

exits that must be evacuated by a group of people due to the threat of fire and the 

effect of the smoke. 

In the proposed model an agent is placed on an environment described by a bi-

dimensional grid where they can find different elements such as walls, obstacles, 

exits, presence of smoke, fire and other agents. The agent architecture is illustrated in 

Fig. 2 (left).  

 

Fig. 2. Agent Architecture and Behaviour Engine 

In our model, agents respond to a behaviour-based architecture  because one of the 

major drawbacks of this type of system is that multiple behaviours with different 

objectives may be attempting to take control of the agent at the same time. To solve 

this problem, known as the action selection problem [7], it is necessary to develop a 

mechanism that allows us to select the appropriate behaviour in a given situation. In 

our model each agent has an associated behaviour engine, shown in Fig. 2 (right) that 

manages decision-making processes. This engine is a nondeterministic finite 

automaton, where each node represents the implementation of behaviour while the 

transitions represent the event for which the agent can change the state.  

This arbitration state-based mechanism [8], selects an appropriate behaviour to 

deal with the current situation from a determinate event detected in the environment 
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[7]. In this way, an agent can change its behaviour during execution of the model 

according to a predetermined set of rules that serve as triggers for this change. 

3 Primitive behaviours 

In the current state of development, the simulator has the capability to implement 

three behavioural categories.  

In the Nearest Exit behaviour (NEB), the agent will try to get out the exit closest to 

its current position. In this behaviour the decision process will take into account the 

position of the agent, the direction toward the nearest exit, the state of its environment 

in relation to the progress of fire and smoke, but it ignores information from other 

alternative solutions, the behaviour of other agents and it will not take unexpected or 

altruistic decisions.  

In the Best Predicted Exit behaviour (BPEB), the agent will analyse different exits 

and choose one that it predicts the fastest exit to evacuate. The decision process will 

take into account the position of the agent, the state of its environment in relation to 

the progress of fire and smoke, the distance to alternative exits, the density of crowd 

trying to evacuate for each exit (only if the agent can see the exit) and the stress level 

in relation to its tolerance to it. As the evacuation progresses, the agent is predicting 

the cost (in time) to evacuate by each of the exits that are available in the 

environment. The inferred lower cost will indicate the best exit. For that, the decision-

making process evaluates a cost function that indicates which is best exit.  

The resulting procedure instructs the agent to which exit to go. In addition, the 

procedure involves two dynamic factor used to adjust the number of times the agent 

executes the action to evaluate the exits[1]. This is done to limit the effect of 

indecision of the agents. This factor depends of a environment size and it is 

dynamically adjusted according the time elapsed since the start of the evacuation. 

Finally, in the Panic behaviour (PB), unlike the previous behaviours, the agent does 

not realize any type of analysis over the exits. An agent assumes this behaviour in a 

situation of extreme danger, when the agent's current position has been achieved by 

the spread of fire. In such situation, the agent only analyzes their position and the state 

of their environment in relation to the progress of the fire and smoke. The decision-

making process of the agent evaluates the condition of the cells in its proximity 

searching  cells that remove it from the fire, without mattering if these cells offer it or 

not a better position respect of the exit chosen, that is to say, the agent tries to escape 

and to reach a sure position without presence of the danger.  

3.1 How does the behaviour engine work? 

So far we have only defined the behaviours implemented in the model, but we have 

said nothing yet about how these are related through the behaviour engine, giving 

origin to agents who can change its behaviour along the simulation. Before, it should 

be noted that the agents at the beginning of the simulation have an assigned 

behaviour, but as the simulation progresses, could arise different situations in which it 

is suitable or even imperative change the behaviour of the agent. Next, we will 

discuss the Events that can lead to an agent to change their behaviour: 
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Agent Reached by Fire and Agent in Safety Zone: Any agent reached by the spread 

of the fire along the simulation (agent reached by fire event), regardless its behaviour, 

detects the situation and changes its current behaviour by the PB with the purpose of 

going out of the situation of danger of in an immediate way.  Once the agent has 

reached a safe area, the same resumes its original behaviour (safety zone event) with 

the objective of continuing the evacuation by the selected exit. 

 Blocked Exit: An agent whose behaviour is BPEB, uses two parameters to 

determine the amount of inferences that the agent can perform and how often these 

inferences can be done [1]. It is possible that along the evolution of the model, an 

agent has made all possible inferences and taken its last decision, therefore, the exit to 

which it is addressed cannot change, but it can happen that after taken the final 

decision, the exit will be blocked due to the spread of the fire, then the agent already 

cannot evacuate for this exit. When this situation is detected an agent changes its 

behaviour by NEB, because it must select a new exit to evacuate but has already 

exhausted all the instances that allowed it choose an exit. 

 Select New Exit: An agent whose behaviour is NEB, along the evolution of the 

model may be in a situation where it cannot move towards the selected exit because 

this exit is too congested. When the agent detects this situation and according to its 

stress level may or may not change their behaviour in a probabilistic way by BPEB, 

with the purpose of find a new exit that allow it evacuate more quickly. 

Although, currently in our implementation only we have defined a few events of 

change of behaviour, it is necessary to emphasize that our model allows easily add 

new events and new behaviours that will allow describe better the reality and 

therefore improve the model in a progressive way.  

4 The Multithreading Model 

The model proposes  the execution of so many time steps as necessary until the last 

alive individual in the environment has been evacuated.  The model evolves to 

discrete steps of time, which leads to discretize the progress of an individual 

pedestrian, however the movement of a crowd should appear as a continuous 

phenomenon.  

To solve the problem caused by the discretization, our model introduces the 

execution of sub-time steps between two consecutive time steps [2,3].  As can be seen 

in Fig. 3, in every sub time step, five phases are executed (Environmental phase, 

Phase of Intentions, Phase of conflicts resolutions, Phase of propagation of responses 

and Phase of updating of the agents). In the following, we give a short description of 

each phase.  

Environmental phase: Is responsible to evolve the environmental sub model. In 

this phase, the evolution rules of the CA for the spread of fire and smoke are applied. 

After that, this phase should also re calculate the distances from each cell to each exit, 

due to the spread of fire modifies the environment in which agents must find the way 

to the exits.   

Phase of intentions: this is the first phase in the  pedestrian sub model evolution. 

During this phase, each agent writes a intention of movement in the cell to which one 

wants to move (target cell). The decision of which is the target cell is determined by 
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current behaviour of the agent. It should be noted that a target cell can be empty or 

occupied by another agent and can also receive more than one intention since more 

than one agent may intend to move to it.  

 

 

Fig. 3. Main structure of the model. 

Phase of conflicts resolutions: This stage is responsible for resolving existing 

conflicts in the cells with more than one intention of movement. During this phase the 

agents  will  receive a first response to its request for movement. The response that 

each agent will obtain can be {accepted movement, denied movement, uncertain 

movement}.   

If cell in conflict is empty: the conflict resolution process selects an agent between 

all candidates to occupy the cell in conflict in the next sub time step[1], therefore this 

agent will obtain a  accepted movement response, while the rest of the candidates will 

obtain a denied movement response. The process gives priority to the selection of 

agents with greater speed and fewer points of damage (agent parameter). If the 

conflict persists, the selection will be random.   

If cell in conflict is currently occupied by another agent:  the process will check if 

the cell could be free in the next sub time step. If it will be free, the same procedure of 

the empty cell is executed. If there is no possibility of the cell to be unoccupied, all 

agents candidates will receive the response of movement denied.  

Finally, in the case that it is no possible determine if the target cell will be free in 

the next sub time step, due to the fact that the movement of the agent depends on the 

response of another cell currently occupied by another agent and so on, the agent 

receives as response to its request uncertain movement.  As the simulation progresses, 

the possibility of occurrence of this case  increases, since the agents tend to gather in 

crown in the vicinity of the exit  and  therefore their movements depends on people 

who are several positions later. This type of conflict is solved by the following phase.  

Phase of propagation of responses: The responsibility of this phase is the 

propagation of received responses by agents in the previous phase. In this way if an 

agent has received as response uncertain movement, at this stage its movement is 

accepted or denied.  
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During subsequent sub steps, all agents with uncertain movement will remain in 

this state. Once one of them receives an accepted or denied movement in some sub 

step, then it will start a backward propagation of novelty, resolving several conflicts 

in the process. With the purpose to make it clear the operation of this phase we will 

exemplify different situations that can occur. Suppose that we will call A to an agent 

that attempting to move into a cell occupied by an agent B, which in turn wants to 

move to a cell occupied by an agent C. Clearly the agent A cannot move because it is 

not possible to determine if the agent B will move. In a similar way the same thing 

happens with the agent B. But once the agent C receives its response of movement 

accepted or denied, this will spread its response to agent B which can propagate its 

response to the agent A. In this way the conflict can be solved. Now, suppose the 

same previous situation, but with the difference that the agent C wants to move to the 

position of the agent A. In this situation we are in the presence of a cycle and 

therefore a deadlock situation since the agents will not move because they are waiting 

for a response that will never come. To solve this deadlock situation, this phase can 

detect the cycles and all the agents in a cycle receive a denied movement  response.  

At first sight the answer given to the agents may seem arbitrary, why the agents did 

not get a accepted movement response?. This is so, because there can be agents who 

try to move to a position occupied by other agent which is in a cycle, but these agents 

do not belong to the cycle. This situation can have a large number of variants when 

working with thousands of agents, therefore it seems reasonable to give an  movement 

denied response, since in the next sub times steps the conflicts will be solved.  

Phase of updating of the agents: Finally once all agents have its answer, the 

position of the agents is updated. 

It is important to emphasize, that there is a clear division of tasks between the 

phases mentioned above. While the environmental phase is responsible to carry out 

the evolution of the environmental sub model, the four remaining phases are 

responsible for evolving the pedestrian sub model.  

Our proposal is aimed at carrying out a parallel shared memory model where it is 

possible to perform task-level parallelism, since a set of threads con solve the 

environmental sub model while another set of threads solve the pedestrian  sub model. 

The multiple threads assigned of the same task assist in the resolution of disjoint areas 

of the grid in a data parallelism way. 

 To do this then we will see how to perform the update of the cells in each sub time 

step. 

 As mentioned above, our model uses a CA (sub environmental model), where 

agents are positioned. At the time to evolve a CA, it is necessary to have an auxiliary 

structure which saved the next states of all cells of the automaton solved by means of 

the application of the rules of evolution. In this way, will we have then two CA, the 

first will represent the state at time T of the CA, while the second (in built) represents 

the condition of the CA at time T+1. Once completed the process, the new 

representation becomes the new current state of the automaton and the process 

repeats. In the case of the sequential implementation of our model, there are no 

problems at the moment of updating of the cells. This is because when the pedestrian 

sub model begins with the execution of its phases, the environmental sub model has 

been fully resolved. It is important to emphasize this point, because rarely it is 

expected that an individual try to perform a move to a position occupied by the fire. 
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This is achieved because the  environmental model has been solved and therefore it is 

possible for the agent to be able to determine its next position by looking at the state 

of the automaton at the next time step to avoid cells with fire.  This present a problem 

in the Multithreading Model since, both spread of fire as the agent evolution are been 

executed in parallel.   

To solve this situation, our proposal is to advance in a time step the resolution of 

the environmental sub model. That is, while the threads of the pedestrian sub model 

use the structure of the time T to obtain the pedestrian configuration of the time T+1, 

the threads entrusted to solve the  environmental sub model will be using the structure 

of the time T+1 to obtain the environmental configuration of the time T+2. In this 

way, is possible that the agents can have a forward vision of the environment already 

resolved as the case of the sequential implementation of  the model, as can be seen in 

Fig. 5. 

 

 

Fig. 4.  The agent (circle) in T sees the fire (triangle) in T+1  and then it rules out  those cells as 

next move. 

 

Fig. 5. Threads of pedestrian and environmental sub models. 

5 Test-Case Scenario and Results 

In this section, we present the simulation results of the explained research. The 

experiments were carried out with EVACOMP, a hybrid simulation system based on 

cellular automata and intelligent agent. EVACOMP is a system developed in C and 

OpenMP and uses the graphical interface (off line) of EVAC Simulator [1,2]. The 

experiments consider two environment configurations of the buildings to be 

evacuated (A, B):  
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• A, 60 × 30 m2
, three exits of 4 m. each and 2500 pedestrians distributed evenly 

(50% NEB and 50% BPEB). 

• B, 80 × 60 m2
, three exits of 6 m. each and 4500 pedestrians distributed evenly 

(50% NEB and 50% BPEB). 

The experiments are designed to test the performance of the EVACOMP vs. the 

sequential implementation of the model. With the purpose of obtaining acceptable 

statistical data, the results shown below correspond to the average of 50 independent 

replications of each experiment. All execution times values are expressed in seconds 

and we always set up a thread by core. From the results showed in Table 1, for the 

Experiment A is possible to visualize, that the best execution times were obtained 

using 4 threads, and therefore it is where the major speedup is obtained. In this case, 

while it is possible to see a reduction in execution times, the speedup obtained seems 

relatively mild. We develop the second experiment, where we increase the size of the 

environment and the quantity of individuals with the purpose of increasing the 

quantity of work necessary to solve the model. 

Table 1. Execution Times, Speeup and Efficiency values for experiments A and B. 

 
Sequential Threads 2 Threads 4 Threads 8 Threads 16 

Execution Time 
Experiment A 

27,37 19,29 17,16 17,75 22,74 

Execution Time 

Experiment B 
439,85 268,12 170,55 134,19 206,41 

Speedup 

Experiment A 
X 1,41 1,59 1,54 1,20 

Speedup 
Experiment B 

X 1,64 2,57 3,27 2,13 

Efficiency 

Experiment A 
X 70,91 % 39,86 % 19,26 % 7,52 % 

Efficiency 
Experiment B 

X 82,02 % 64,47 % 40,97 % 13,31 % 

 

As we see in Table 1, the execution times for Experiment B increased significantly 

compared to the first experiment. Here, the best execution times were obtained using 

8 threads, and therefore it is where the major speedup is obtained. It is important to 

highlight for this case, that the obtained speedup is acceptable and in addition it is 

better than the speedup obtained for the best case of the first experiment. By making 

this comparison, it is possible to appreciate, that both the speedup and the efficiency 

obtained improve for the second experiment, which is a good indication of which on 

having increased the load of work in the system the performance of the parallel model 

improves. Because to the orientation of this work and for reasons of space, we do not 

report the information about times of evacuation and travelled distances by the 

individuals. A wide series of experiments can be consulted in [1,2,3,4], where the 

empirical values obtained for the evacuation time are comparable to other 

implementations, which have validated their results against real evacuation exercises 

[5] [6]. For the experiments, we used a multicore equipment with 4 processors AMD 
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Opteron 6128, 2.0GHz (8C), and RAM memory of 64GB Memory (16x4GB), 

1333MHz.  

6 Conclusions and Future Works 

We presented a model capable of simulating indoor environments with a finite 

number of exits that must be evacuated by a group of people due to the threat of fire 

and the effect of the smoke. The proposed model consists of two sub-models, the 

Environmental Model (EsM) and Pedestrian Model (PsM). The EsM, based on CA, 

manages the spatial configuration of the environment and models the processes of 

diffusion of smoke and fire. The PsM is the part of the hybrid model focuses on 

representing the human behaviours.  

The proposed model to perform both task-level and data-level parallelism, where a 

group of threads will be responsible to evolve the pedestrian sub model pedestrian and 

another group of threads will be responsible to evolve the environmental sub model. 

While our development is not yet complete, the results of our Multi Threading 

implementation presented here are encouraging.  

As future works,  it is important to decide the optimal size of each set of threads to 

solve each sub model. Our model is going to use some strategy that will enable us to 

achieve an optimal balance in the allocation of threads to the resolution of each sub 

model.  
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