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Abstract. Keystroke dynamics is a biometric technique to identify users
based on analyzing habitual rhythm patterns in the way they type. In
order to implement this technique different algorithms to differentiate an
impostor from an authorized user were suggested. One of the most pre-
cise method is the Mahalanobis distance which requires to calculate the
covariance matrix with all that this implies: time processing and track
each individual keystroke event. The hypothesis of this research was to
find an algorithm as good as Mahalanobis which does not require track
every single keystroke event and improve, where possible, the process-
ing time. To make an experimental comparison between Mahalanobis
distance and euclidean normalized, a distance which only requires calcu-
late the variance, an already studied dataset was used. The results were
that use normalized euclidean distance is almost as good as Mahalanobis
distance even in some cases could work better.
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1 Introduction

The variables that help make a handwritten signature a unique human identifier
also provide a unique digital signature in the form of a stream of latency periods
between keystrokes. The handwritten signature has a parallel on the keyboard.
The same neurophysiological factors that make a written signature unique are
also exhibited in a user’s typing pattern[1].

Password typing is the most widely used identity verification method in
World Wide Web based electronic commerce. Due to its simplicity, however,
it is vulnerable to impostor attacks. Keystroke dynamics and password checking
can be combined to result in a more secure verification system[2].

This authentication is fragile when there is a careless user and/or a weak
password. Biometric characteristics are unique to each person and have advan-
tages as they could not be stolen, lost, or forgotten|3, 4].

* This paper was done with Cloodie R&D Support

1465



2 Improving versatility in keystroke dynamic systems

The biometric technology employed in this paper is the typing biometrics,
also known as keystroke dynamics. Typing biometrics is a process that analyzes
the way a user types at a terminal by monitoring the keyboard inputs in attempt
to identify users based on their habitual typing rhythm patterns[5,4].

Even though WWW keystroke dynamic systems may run locally on the web
browser, due to security measures it should be ran on the webserver layer. This
paper discusses an approach to reduce data transmission size.

Using a know dataset[6] we designed an experiment to compare three methods
to compute the keystroke dynamics of users and compare them with impostors.

Our hypothesis is that one of the most used and precise method —the Maha-
lanobis distance— is as successful as the second method —normalized euclidean
distance—. Ignoring the success rates, there are some advantages that the normal-
ized euclidean distance has over the Mahalanobis distance, so if the hypothesis
is confirmed using this method should prove to be a more useful way to calculate
keystroke dynamics.

Some advantages of the normalized euclidean distance ar the lesser trans-
ferred information, processing time and the bigger versatility when changing
passwords.

2 Current implementations

There are different methods to compare keystrokes, all based on measuring the
distances between two strokes, a negative result is found when both differ more
than a threshold. One of the best methods is the Mahalanobis distance[2, 6].

Three methods are shown below, each method is a generalization of the
previous one.

2.1 Euclidean distance

The time a user press a key or the time between one key and the other may
result in a vector of events (I'). Each event represent a key hold time or the
elapsed time between two keys. Since in the training phase an event may occur
several times, the vector is a list of the expected values of every event time.

Calculating the euclidean distance between two vectors works as a compari-
son algorithm, with relatively high success rates[6].

N

A, L) = |1y — Lo|)* = (1 — I2,)° (1)
i=1

Where I is the vector of training event times and I» is the vector of testing
event times.
To optimize calculation timings the squared norm is actually used.

1466



Improving versatility in keystroke dynamic systems 3

2.2 Normalized euclidean distance

A disadvantage of the former method is that important information is ignored.
The variance of each event time should be taken into consideration, and that is
exactly what the normalized euclidean distance does: adding the variance (s?)
of each event time.

Using the inverted variance of the training set (I'y) as a weight factor, the
normalized euclidean distance is defined as

N
(I F
1—,171—,2 :Z 1,2 — 22 (2)

i=1

where 5 is the variance of each element of I7.

2.3 Mahalanobis distance

Again, the former method is skipping information, this time is the covariance
between events.
Mahalanobis distance is defined as

A, ) = (I — [)TS™ (I — Iy) (3)

Where S! is the inverted covariance matrix corresponding to all events in
the training set I7[7].

3 Problems of Mahalanobis distance in keystroke
dynamics

Translating each method to a kernel matrix it turns out that in equation 3 the
matrix S is the identity in the euclidean distance, a diagonal with the variances in
the normalized euclidean distance and the covariance matrix in the Mahalanobis
distance.

3.1 Distance kernel matrix size

To generate the covariance matrix for the Mahalanobis distance all key-press
events and their respective timings should be transmitted to the server while
training —or at least the covariance matrix and the expected event timings—.
But to generate the diagonal matrix for the normalized euclidean method is it
possible to send only three integer numbers per event or two floats.

Using the property Var[X] = E[X?] — E[X)? it is possible to generate the
variance using only the sum of squares SS = Y7 ( I'?;, the sum S = Y1 I ;
and the total n since E[X?] = 55 and E[X] = 2. All three numbers are natural
and may be combined in an N° vector which supports commutative addition
properties. This method allows parallelized variance calculus|[9].
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Table 1. Different parameters to be sent to the server

Distance Method Variables
Euclidean (S,n) € N**" or I' = E[X] € R"
Normalized euclidean (S,88,n) € N**n

Mahalanobis I' = E[X] € R" and Cov[X] € R"*"

There are several ways to send the data depending on the algorithm to be
used. Table 1 compares them.

For example, when 20 events are used, the covariance matrix has 20x20 = 400
values and the I' = E[X] vector has 20 values. Normally a R™*" matrix can be
encoded with n? numbers, but as Cov[a,b] = Cov[b,a], covariance matrix is

n(n+1)

symmetric and therefore it can be encoded with —=— numbers. Assuming a

real number and an integer has the same size, the transmission would be of
% + 20 = 230 numbers while the normalized euclidean only transmits 3 x
20 = 60 numbers. Generalizing, the data transmission of Mahalanobis distance
is % + n reals, that is O(n?), normalized euclidean is 3n integers, that is

O(n) and euclidean is 2n integers or n reals, that is also O(n).

3.2 One password algorithm

Another problem is that training is done with only one password. A new pass-
word should require the user to re-train all the covariance matrix with Maha-
lanobis.

Normalized euclidean distance may reuse the variances of the common keys
between two different passwords while Mahalanobis distance may not.

3.3 Backspace eliminating digraphs

When the user trains it is possible that mistakes a character and use backspace
to correct it, in this case one event will be missing. For example the word “train”
has 5 characters so the events will be t.hold, t.up-r.down, r.hold, etc. The
problem occurs when “te [backspace]rain” is typed, the event t.up-r.down was
not recorded because there were two keys in the middle “e” and [backspace].

Having a variable number of events per key is a problem to calculate the
covariance matrix, but allows to process backspaces in passwords (sacrificing
the success rate due to lesser information available) and free text.

Table 2 shows an example of Mahalanobis method with three pairs of events
and normalized euclidean with three and two times per event respectively.

3.4 Processing times

Calculating the covariance matrix and inverting it should take a considerable
amount of time for the Mahalanobis method, the time here is expected to be
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Table 2. Example of how timing counts are dependent on the event in Mahalanobis
distance

Method Key Times Matrix S Inverse S~ !
67 175 556 350
e FAREAREANESAIE ¥ o
Mahalanobis = *P7°" L6 3 1L 2209 2209
., A.hold {90}, {99}, {97} & OJ = oJ
Normalized ! ’ 3 67
cuclidean A.up-B.down {161}, {171} | 0 50 1 0 =5

O(n?). Normalized euclidean should also take time to compute the variances,
but this procedure is O(n). Inverting the matrix lacks of relevant costs due to
the properties of the diagonal matrices. Euclidean distance should be the fastest
algorithm because of its simplicity.

It is important to remark that due to parallelized calculation of the vari-
ance, part of the calculating time in training mode for the normalized euclidean
distance may be done while reading the keyboard by the user machine.

The experiment also intends to measure algorithms processing time.

4 Experimental comparison

We use an already studied dataset for two main reasons, one is because it was
collected in a controlled laboratory environment, the second reason is because
14 detection algorithms were tested using this dataset[6] and that give us a
big framework to start our research. The data was collected from 50 different
users along 8 days or sessions —totalizing 400 cases per user—, in each session the
users typed always the same string: “.tieb5Roanl” which represents a reasonable
secure password. When any error in the sequence was detected, the subject had
been prompted to retype the password. To make this a laptop was set up with
an external keyboard to collect data and a Windows application was developed
to prompt the subjects to type the password. The application displays it in a
screen with a text-entry field. In order to advance to the next screen, the subject
must type the 10 characters of the password correctly in sequence and then press
Enter. The data set contains the hold time of each key, the time between two
consecutive keys were pressed and the time since one key was released and the
next was pressed. One of the three values depends linearly of the other two. Due
to preconditions of covariance one value was dropped away leaving two values
per key.

From the 400 cases per user, the first 200 cases were used to train the detec-
tion algorithm and the second 200 cases were used to validate it, also the first 5
cases of all the other users were taken to generate an impostor dataset in order
to validate negative cases. This data set and schema was taken from Killourhy
and Maxion[6].

We performed 19 tests, the first using two events (the first two values of the
I" vector) and increasing the number of events until the last one, using all twenty.
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6 Improving versatility in keystroke dynamic systems

We expected to have a best success rate in the last test because it counts with
more information. We ran the three mentioned algorithms in each test.

Finally we calculated the area under the receiver operating characteristics
(ROC) curve —a performance measure for machine learning algorithms com-
monly used in systems that learns by being shown labeled examples[8]-. This
method, known as AUC, was chosen because it is a classifier performance eval-
uator independent of the decision threshold chosen on the keystroke distances.

5 Results

With the one key test case we obtained in one sample user I' = [98.98,166.905],
where first value corresponds to the expected key-hold time and the second to the
expected elapsed time until the next key was pressed. Both times are expressed
in milliseconds.

1 1 341.29 282.197 " 0.0031 —0.00016
=Cou|I™" = =
Mahalanobis 282.19 5464.9 —0.00016 0.0002

o 34129 0 17" [0.0029 0
normalizedEuclidean ~— 0 5464.9 - 0 0.00018

-1 10
Seuclidean = SEUClidean = |:0 1

Note that Sasanatanobis and Spormalized Euclidean have the same diagonal val-
ues but this is not the case with their inverses.

Table 3. Experimental results

N Method Total Errors ROC Zero-miss False-Alarm Time
2 Mahalanobis 0.01887 80.43% 7461 of 12750 769 of 10200 1.3565s
2 Normalized euclidean 0.01899 80.17% 7451 of 12750 788 of 10200 1.300s
2 Euclidean 0.02240 70.61% 9030 of 12750 649 of 10200 0.872s
20 Mahalanobis 0.00970 94.60% 5576 of 12750 464 of 10200 1.896s
20 Normalized euclidean 0.00919 94.84% 5581 of 12750 428 of 10200 1.764s
20 Euclidean 0.01440 88.27% 6853 of 12750 844 of 10200 1.704s

Table 3 shows the results of the 3 methods with 2 and 20 timing events
respectively. Each method shows the area under ROC curve in percentage among
with zero-miss and false-alarm rates. It is also shown the total processing time
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Improving versatility in keystroke dynamic systems 7

of training, testing all the 12750 positive and 10200 negative sets and calculating
the results.

In the last test —with 20 events—, normalized euclidean distance method per-
formed even better than Mahalanobis.

As expected, our hypothesis that in the test with 20 timing events is better
than the test with 2 was confirmed and that Mahalanobis and normalized eu-
clidean distance are both superior than euclidean distance was confirmed too.
Processing is, as expected, bigger for Mahalanobis and decreasing for normalized
euclidean and finally, the fastest method, euclidean distance.
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Fig. 1. Distance methods compared in success versus amount of information

In Figure 1 it is possible to appreciate how similar are the normalized eu-
clidean and Mahalanobis distances compared to the euclidean.

6 Conclusions

Normalized euclidean distance and Mahalanobis distance are almost the same
in all ran tests. In the case of 20 events the results varied 0.24%. Normalized
euclidean was faster than Mahalanobis distance for 132ms but slower than eu-
clidean for only 60ms. Versatility in normalized euclidean is also an advantage,
passwords may be changed and the already-trained keys be kept in the new train-
ing. Those results lead to the conclusion that normalized euclidean distance is
strong enough to be used and its advantages in data sizes and versatility are con-
siderably important to be chosen against Mahalanobis distance and its success
rate suggests that it should be employed against euclidean distance.
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8 Improving versatility in keystroke dynamic systems

6.1 Future lines of research

We are exploring the way users may vary keystroke dynamics over the time.
Using variance parallelization principle[9] there is a way to “forget” the train-
ing, making it autoadaptive with this time-wise learning technique. We are also
exploring new fields on keystroke dynamics that include user emotional state

detection.
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