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Abstract

Human apolipoprotein A-I (apoA-I)-derived amyloidosis can present with either wild-type (Wt) protein deposits in
atherosclerotic plaques or as a hereditary form in which apoA-I variants deposit causing multiple organ failure. More than 15
single amino acid replacement amyloidogenic apoA-I variants have been described, but the molecular mechanisms involved
in amyloid-associated pathology remain largely unknown. Here, we have investigated by fluorescence and biochemical
approaches the stabilities and propensities to aggregate of two disease-associated apoA-I variants, apoA-IGly26Arg,
associated with polyneuropathy and kidney dysfunction, and apoA-ILys107-0, implicated in amyloidosis in severe
atherosclerosis. Results showed that both variants share common structural properties including decreased stability
compared to Wt apoA-I and a more flexible structure that gives rise to formation of partially folded states. Interestingly,
however, distinct features appear to determine their pathogenic mechanisms. ApoA-ILys107-0 has an increased propensity
to aggregate at physiological pH and in a pro-inflammatory microenvironment than Wt apoA-I, whereas apoA-IGly26Arg
elicited macrophage activation, thus stimulating local chronic inflammation. Our results strongly suggest that some natural
mutations in apoA-I variants elicit protein tendency to aggregate, but in addition the specific interaction of different
variants with macrophages may contribute to cellular stress and toxicity in hereditary amyloidosis.
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Introduction

Certain proteins require a high degree of conformational

flexibility in order to fulfill their biological functions. Those

proteins, however, are exposed to the risk of a shift in equilibrium

between the folded, native structure and a conformation prone to

undergo self-aggregation. Amyloidoses are characterized by

aggregation and deposition of insoluble protein fibrils, with

concomitant destruction of normal tissue functionality. Despite

the fact that such protein deposits are morphologically similar,

more than 25 unrelated proteins have been found to be associated

to amyloid diseases [1–3]. Different mechanisms appear to be

involved in the conversion of a protein from a soluble, native state

into an aggregated, misfolded form, including an intrinsic

propensity to assume a pathological conformation, which becomes

evident with aging [4], proteolytic processing of a precursor

protein, as is the case of the Ab peptide in Alzheimer’s disease [5]

or replacement of a single amino acid residue, as described for

different hereditary amyloidoses [4,6]. In addition, other factors

including local increases in protein concentration [7] and/or

changes in physicochemical properties of the medium [8] have

been shown to affect amyloid aggregation.

Human apolipoprotein A-I (apoA-I) is the major protein

component of high density lipoproteins (HDL) serving as

transporters for excess cellular cholesterol through the plasma

compartment to the liver. Even though many steps are involved in

this process, it has been suggested that the efficiency of apoA-I in

vivo is a direct function of its ability to dissociate from HDL

particles and remain stable as lipid-poor forms that can be rapidly

lipidated [9].

Hereditary apoA-I amyloidosis is a rare, late-onset, autosomal

dominant condition characterized by systemic deposition of

amyloid in tissues, the major clinical problems being related to

renal [10,11], hepatic [12], and cardiac involvement [13]. Other

tissues and organs less frequently involved include the skin, testes,

larynx and peripheral nerves [14,15]. Interestingly, amyloid

deposits of apoA-I in the aortic intima are often associated with

atherosclerotic plaques, notably in patients carrying the apoA-
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ILys107-0 deletion mutant [16]. More than 50 natural variants of

apoA-I have been described, and about one third of them is

associated with familial amyloidosis [6]. As the economy improves

in countries undergoing economic development, it seems likely

that genetic studies will identify additional protein variants

associated with this pathology. The reasons why each particular

mutation induces apoA-I aggregation and deposition are still

unclear. For example, some pro-amyloidogenic mutations involve

replacement of neutral residues (Gly26, Trp50, Leu60, Leu178) by

cationic amino acids, inducing a change in net charge of the

protein [17–19]. However, similar mutations in other domains of

the protein do not favor formation of insoluble aggregates [20,21].

Moreover, while mutations that do not involve gain of positive

charge induce amyloidosis [13], a variant in which two positive

charges are gained by the protein (Glu110Lys) has been shown to

be innocuous in terms of amyloid pathology [22].

In this study, we set out to investigate features involved in

induction of amyloid aggregation from two natural single point

mutants of apoA-I: the Iowa variant, in which a glycine amino

acid is replaced by an arginine residue at position 26 (apoA-

IGly26Arg), and the Helsinky variant, a deletion mutant lacking

a lysine residue at position 107 (apoA-ILys107-0). These two

variants are found in amyloid lesions and both were shown to be

rapidly catabolized compared with normal apoA-I, accounting, at

least in part, for low levels of HDL in patients carrying these

mutations [23,24]. Nevertheless, the organs affected in each case

are different, suggesting that different structural features or

different susceptibilities to micro environmental factors could

determine the pathogenicity of these and other apoA-I mutants.

Results presented here indicate that different conformational

stabilities and ability to trigger pro-inflammatory responses are

related to specific disease phenotypes associated with each variant.

Materials and Methods

Materials
Guanidine hydrochloride (GndHCl), thioflavin T (ThT), matrix

metalloproteinase-12 (MMP-12, Catalytic Domain), 12-O-tetra-

decanoylphorbol-13-acetate (TPA), lipopolysaccharide (LPS),

polymyxin B sulfate, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl

tetrazolium bromide (MTT) and Hystopaque were from Sigma-

Aldrich (St Louis, MO). His-purifying resin was from Novagen

(Darmstadt, Germany). 4,49-dianilino-1,19-binaphtyl-5,59-disulfo-

nic acid, dipotassium salt (bis-ANS) was purchased from Molecular

Probes (Invitrogen, Carlsbad, CA). All other reagents were of the

highest analytical grade available.

Methods
Cloning, expression and purification of wild-type apoA-

I. The cDNA for human apoA-I, kindly donated by Dr A. Jonas

(University of Illinois at Urbana-Champaign, IL), was further

modified to introduce an acid labile Asp–Pro peptide bond

between amino acid residues 2 and 3 of apoA-I, which allowed

specific chemical cleavage of an N-terminal His-Tag fusion

peptide [8,25]. This construct, inserted into a pET-30 plasmid

(Novagen, Madison, WI), was used to express wild type apoA-I,

used as a control throughout this study. In addition, this plasmid

worked as a template for construction of the single point

substitution mutant Gly26Arg by the Quickchange method

(Stratagene, La Jolla, CA). The deletion mutant Lys107-0 was

obtained from a plasmid used previously [26] by further

introduction of the acid-labile peptide bond [8]. Protein expression

and purification were performed as described [8], resulting in

a high yield of protein with a purity .95% (as determined by

SDS-PAGE).

Protein structure under native conditions. ApoA-I var-

iants were diluted to 0.1 mg/mL in citrate phosphate McIlvaines

buffer, pH 7.4. Intrinsic fluorescence was measured at 25uC on an

Olis upgraded SLM4800 spectrofluorometer (ISS Inc, Cham-

paign, IL), with excitation at 295 nm. Solvent exposure of Trp

residues was determined by fluorescence quenching induced by

increasing concentrations of acrylamide as described previously

[8,27]. The recovered parameter K is the quenching constant.

Presence of exposed hydrophobic domains in the native

structures of apoA-I variants was determined by binding of the

fluorescence probe bis-ANS [28,29]. Small aliquots of bis-ANS

(from a concentrated stock solution in methanol) were added to

apoA-I variants at 25uC and fluorescence emission spectra were

acquired between 450–550 nm with excitation at 395 nm. Re-

sidual methanol concentration was kept to a minimum in order to

avoid structural artifacts due to solvent effects.

Protein denaturation and stability. Chemical denatur-

ation was performed by incubation of 0.1 mg/mL apoA-I in the

presence of increasing concentrations of GndHCl at pH 7.4 and

25uC. Fluorescence emission spectra were acquired as described

above [8]. The free energy of unfolding in the absence of

denaturant (DG0) and the GndHCl concentration in which half of

the protein is unfolded [GndHCl]1/2 were obtained from the shift

in spectral center of mass of the fluorescence emission, assuming

a two-state process as previously described [30,31]. Alternatively,

denaturation was monitored by incubating 0.1 mg/mL apoA-I

variants with bis-ANS at a 1:5 molar ratio (probe:protein) and

measuring emission spectra after stepwise addition of GndHCl.

Morphology of apoA-I variants’ aggregates. Formation of

protein aggregates from Wt apoA-I or disease-associated variants

was monitored by Atomic Force Microscopy (AFM). Protein

variants were incubated at 0.6 mg/mL for 24 h at 37uC, and

spotted stepwise on freshly cleaved muscovite mica. The sample

was blotted off with pure water to remove salts and dried under

N2. All images were obtained in ambient conditions using

a Multimode-Nanoscope V (Veeco, Santa Barbara, CA) operating

in Tapping Mode with an etched silicon probe model Arrow-

NCR-50 Nano World (cantilever resonance frequency: 258 kHz,

force constant 42 N/m; tip radius 5–10 nm). Typical scan rates

were 1 Hz-1.5 Hz.

Pro-inflammatory processing of apoA-I variants. We

have previously reported that a pro-inflammatory microenviron-

ment induces processing of Wt apoA-I into pro-amyloidogenic

intermediate complexes [8]. In order to determine the relative

susceptibilities of apoA-I variants to such processing, we incubated

the proteins with activated neutrophils. Human polymorphonu-

clear neutrophils (PMNs) were isolated from venous blood of

healthy volunteers, purified and resuspended as previously de-

scribed [8]. ApoA-I variants (0.2 mg/mL) were added to 16105

cells in 500 mL and, after 5 min at 37uC, cells were stimulated with

TPA (200 nM), followed by 1 h incubation. Reaction was stopped

by spinning the cells at 1,000 6g for 5 min. Proteins in the

supernatant were then loaded onto a 12.5% SDS-PAGE gel and

developed by Western blotting using a polyclonal antibody against

apoA-I [32]. Aliquots of each apoA-I variant treated with PMNs

under identical conditions were further incubated at 37uC for 24 h

and used to analyze Thioflavin T (ThT) binding. ThT was added

at a 1:1 molar ratio and fluorescence intensities were measured on

a Beckman Coulter DTX 880 Microplate Reader (Beckman, CA),

using excitation and emission filters centered at 430 nm and

480 nm, respectively.

Molecular Mechanisms in Apo A-I Amyloidosis
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In a different experiment, apoA-I variants were incubated at

37uC for 3 h with matrix metalloproteinase-12 (MMP-12) (molar

ratio 1:3,000 MMP-12:apoA-I) and aliquots from the reaction

mixture were analyzed by SDS-PAGE (as described above) for

determination of released peptides. In additional aliquots, MMP-

12 was inhibited by addition of EDTA (final concentration 5 mM),

followed by 24 h incubation at 37uC to determine ThT binding as

described above.

Assays with RAW 264.7 murine macrophages. RAW

264.7 murine macrophages (ECACC, Salisbury, UK) were

maintained in DMEM supplemented with 10% fetal bovine

serum (FBS), 100 U/mL penicillin, and 100 mg/mL streptomycin

at 37uC in a humidified incubator containing 5% CO2. For all

experiments, cells were subjected to no more than 20 passages.

a) 3-(4,5-dimethylthiazolyl)-2,5-diphenyl-tetrazolium

bromide (MTT) cell viability assay. RAW 264.7 macro-

phages were seeded in 96-well plates at 66104 cells/well. After

24 h at 37uC medium was removed and DMEM supplemented

with 0.5% FBS, 100 U/mL penicillin, and 100 mg/mL strepto-

mycin was added in the absence or presence of 50 mg/mL

polymyxin B. ApoA-I variants (1 mg/mL) or LPS were added and

cellular redox activity, an indicator of cell viability, was quantified

24 h later by measuring the conversion of the tetrazolium salt

MTT into its formazan product [33]. Briefly, after changing the

medium, MTT was added to a final concentration of 0.5 mg/mL

and cells were incubated for 20 min at 37uC. The medium was

then removed and the formazan precipitate was solubilized in

DMSO, and the absorbance measured at 490 nm on a microplate

reader.

b) Effect on reactive oxigen species (ROS) production:

DCFH-DA assay. Production of intracellular ROS from RAW

264.7 macrophage cells was evaluated by using the non-polar dye,

dichlorofluorescein diacetate (DCFH-DA). The dye diffuses into

cells, gets trapped by deacetylation, and in the presence of

hydrogen peroxide becomes oxidized to yield 29,79-dichlorofluor-

escein (DCF). RAW 264.7 macrophages were plated as described

above. After 24 h at 37uC, medium was removed and DMEM

supplemented with 0.5% FBS, 100 U/mL penicillin, 100 mg/mL

streptomycin and 50 mg/mL polymyxin B was added. ApoA-I (0.1

or 1.0 mg/mL) was added after one hour of incubation. LPS was

used as a control. Six hours later, cells were washed with DMEM

and incubated in presence of 20 mM DCFH-DA for 30 min at

37uC. After an extra wash with warm PBS, 100 mL passive lysis

buffer (Promega, WI) were added to each well and fluorescence

was measured on a microplate reader with excitation and emission

filters centered at 485 and 525 nm, respectively.

c) Determination of tumor necrosis factor alpha (TNF-a)
and interleukin-1b (IL-1b) production. RAW 264.7 macro-

phages were plated as described above. Cells were incubated in

DMEM supplemented with 0.5% FBS, 100 U/mL penicillin,

100 mg/mL streptomycin and 50 mg/mL polymyxin B in the

presence of apoA-I variants (0.1 or 1.0 mg/mL) at 37uC for 24 h.

LPS was used as a control. The supernatants were then collected

and assayed for TNF-a and IL-1b production using a specific

enzyme immunoassay from eBioscience (San Diego, CA) used

according to manufacturer’s instructions.

Other analytical methods. Protein content was quantified

by optical density in a Helios b spectrophotometer (Thermo

Scientific, Waltham, MA), using an extinction coefficient of

32,430 M21cm21 at 280 nm.

Transmission electron microscopy was carried out on a JEOL-

1200 EX microscope (School of Veterinary Medicine, National

University of La Plata) operating at 100 kV. Samples (0.4 mg/mL)

were incubated for 24 h at 37uC, applied onto Formvar-coated

grids for 5 min and negatively stained with 2% uranyl acetate.

Unless otherwise stated, results are representative of three

independent experiments. Results are means 6 S.E of at least 3

samples. Statistically significant differences between experimental

conditions were evaluated by ANOVA followed by Tukey’s test

(p,0.05).

Results

Subtle Conformational Differences between Wt and
Variant Forms of apoA-I in the Native State

We initially asked whether the two apoA-I variants investigated

(Gly26Arg and Lys107-0 variants) exhibited any differences in

native structure compared to Wt apoA-I. The intrinsic fluores-

cence emission of apoA-I corresponds to an average signal from

four naturally occurring Trp residues (at positions 8, 50, 72 and

108 from the N-terminus), which are preserved in both

amyloidogenic variants. The intrinsic fluorescence emission

spectra of the two variants showed small but significant shifts of

about 2 nm to longer wavelengths relative to Wt apoA-I (Table 1)

and large increases in fluorescence quantum yields (Fig. 1A). Using

site-directed mutagenesis and fluorescence energy transfer studies,

Davidson et al [34] demonstrated that at least two of the Trp

residues of apoA-I undergo fluorescence homotransfer, which

leads to a decrease in quantum yield of the donor residues [34].

Because energy transfer is a distance-dependent process, the

increase in intrinsic fluorescence quantum yield observed in the

mutants could indicate a more relaxed structure, with the Trp

residues on average more separated from each other that in the Wt

protein.

In order to obtain additional information on the structural

compactness of native apoA-I, we performed acrylamide quench-

ing of the intrinsic fluorescence of both Wt and mutant forms of

apoA-I. The quenching constant (K = 5.26 M21; Table 1)

measured for Wt apoA-I is in good agreement with our previous

report [8]. Interestingly, higher quenching constants were

measured for both apoA-I variants (Table 1), indicating that the

Trp residues in the variants are on average more exposed to the

solvent than in Wt apoA-I.

We next compared bis-ANS binding to Wt and variant forms of

apoA-I. Bis-ANS is an environment-sensitive fluorescent probe

that binds to exposed hydrophobic surfaces in partially folded

states more tightly than to native or fully unfolded proteins

[28,29,31,35,36]. The quantum yield of bis-ANS is very low in

aqueous solution, but increases sharply when bound to exposed

hydrophobic areas in proteins. Titration of the native protein

(3.6 mM) with bis-ANS showed non-cooperative binding (Fig. 1B).

Significantly, bis-ANS fluorescence was higher in the presence of

both mutants than in the presence of Wt apoA-I. Only minor

spectral shifts were observed for bis-ANS bound to Wt or mutant

forms of apoA-I (Fig. 1B, inset). Thus, the observed increase in

fluorescence (Fig. 1B) is likely due to a higher number of bis-ANS

molecules bound per protein [35]. Together, these results suggest

that a single amino acid substitution (Gly26Arg) or deletion

(Lys107-0) causes subtle changes in conformation of the N-

terminal domain of apoA-I (where the Trp residues are located)

that result in higher exposure of the Trp residues and of

hydrophobic protein surface to the aqueous medium.

Folding and Stability of Wt and Variant Forms of apoA-I
The equilibrium unfolding of Wt apoA-I by GndHCl has been

well characterized [8,37] and provides a useful tool to compare the

stabilities of variants that are less known. As expected, the

Molecular Mechanisms in Apo A-I Amyloidosis
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dependence of the shift in intrinsic fluorescence of Wt apoA-I on

GndHCl concentration is described, at physiological pH (7.4), by

a cooperative unfolding pattern that is well fit to a two-state model

(black circles in Fig. 2A) [8,38]. The calculated free energy of

unfolding was 2.53 kcal/mol (Table 1), which suggests that native

apoA-I exhibits a flexible structure likely resembling a molten

globule state [39]. The denaturation profiles of both variants

indicated lower stabilities, reflected in substantially lower

[GndHCl]1/2 values (Table 1) and DG0 (1.91 and 1.54 kcal/mol

for Gly26Arg and Lys107-0 variants, respectively). In addition, the

less pronounced sigmoidal profiles of the curves suggests loss of

folding cooperativity for both apoA-I variants (Fig. 2A).

The stabilities of Wt and variant forms of apoA-I were

further investigated by measuring bis-ANS fluorescence in the

presence of increasing concentrations of GndHCl. To this end,

we incubated apoA-I with bis-ANS at a low molar ratio

(protein:probe 5:1), in order to avoid any shift in equilibrium

from the native state due to excess binding of the probe [35].

As shown in Figure 2B, bis-ANS fluorescence decreased sharply

in a continuous trend with increasing GndHCl concentrations,

indicating that hydrophobic patches at the protein surface were

maximally exposed in the native state and underwent pro-

gressive disorganization even at low GndHCl concentrations.

This behavior was similar for Wt apoA-I and the two variants

investigated, and showed an apparent [GndHCl]K lower than

0.5 M GndHCl. Results demonstrated that the spatial arrange-

ment of the proteins (as monitored by bis-ANS fluorescence)

was disorganized at lower GndHCl concentrations than those

needed to produce more global unfolding (revealed by the shift

in intrinsic fluorescence emission). This fact is clear from the

overlap of the GndHCl-dependent denaturation profiles re-

vealed by both observables (Figs. 2A, B), and similar behavior

was shared by Wt apoA-I and the two variants investigated. To

illustrate this point, Figure 2C shows the overlap of de-

naturation curves monitored by bis-ANS and intrinsic fluores-

cence for Wt apoA-I. These data indicate the existence of

different partially folded intermediates along the equilibrium

unfolding of apoA-I.

Morphology of the apoA-I Variants’ Aggregates
In order to characterize the morphology of aggregates formed

under our experimental conditions, samples were loaded onto

a mica surface and observed under AFM. A pattern of small

oligomers predominated for both Wt and variant forms of

apoA-I. In order to estimate the dimensions of the oligomers,

their height was measured using the Nanoscope 7.30 software.

Figure 3 shows height distributions of aggregates formed from

each mutant. Wt apoA-I preparations were characterized by

oligomers exhibiting a homogeneous distribution centered at

about 10 nm height on average (Fig 3A). A similar height

distribution (slightly shifted to lower heights) was verified for the

apoA-IGly26Arg variant (Fig 3B). In contrast, apoA-ILys107-

Figure 1. Characterization of apoA-I variants’ conformation. A) Intrinsic Trp fluorescence emission spectra of apoA-I variants. Proteins at
a final concentration of 0.1 mg/mL in citrate phosphate Mc Ilvaines buffer pH 7.4. Excitation was set at 295 nm and emission was recorded between
310 and 370 nm. Continuous line represents Wt protein; Dashed and dotted lines are fluorescence spectra corresponding to Gly26Arg and Lys107-
0 respectively. B) Fluorescence analysis of bis-ANS binding to apoA-I. ApoA-I variants, at a final concentration of 0.1 mg/mL were titrated with bis-ANS
to a final concentration of 16 mM. The probe was excited at 360 nm, and emission registered as the Wavelength of Maximum Fluorescence for this
probe. Dark circles represent the experimental data for Wt. Gray and white symbols correspond to Lys107-0 and Gly26Arg respectively. Inset:
normalized fluorescence spectra of bis-ANS at a molar ratio 1:1 probe to protein. Continuous line corresponds to Wt spectrum; Dashed and dotted
lines correspond to Lys107-0 and Gly26Arg respectively.
doi:10.1371/journal.pone.0043755.g001

Table 1. Spectral Properties and Stabilities of Wt apoA-I and
the Gly26Arg and Lys107-0 mutants at 0.1 mg/mL, pH 7.4.

pH Wt Gly26Arg Lys107-0

l max Trp (nm)(a) 338.062.0 340.062.0 340.562.0

DGo denat
(kcal/mol)(b)

2.5360.07 1.5460.07 1.9160.19

K [GndHCl] (M)(c) 1.460.2 1.060.3 1.260.3

K (M21)(d) 5.2660.30 7.9060.41 6.5460.32

aWavelength of maximum fluorescence of Trp residues, determined from the
from the intrinsic fluorescence spectra as shown in Figure 1.
band c Free energy change of unfolding and GndHCl concentration at which
half of the protein is unfolded, respectively, calculated from equilibrium
unfolding curves as described previously [8] and shown in Figure 2 (see
‘‘Methods’’).
dStern-Volmer quenching constant (see ‘‘Methods’’).
doi:10.1371/journal.pone.0043755.t001
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0 aggregates were more heterogeneous with an average height

around 10–14 nm and some of them exhibiting higher

dimensions in the z-direction (Fig 3C). Lagerstedt et al. (2007)

have shown small ring-shaped aggregates of apoA-IGly26Arg

using transmission electron microscopy (TEM) [40]. Exhaus-

tively exploring the grids of samples prepared for TEM, we

barely detected the presence of other types of aggregates, such

as disorganized protofibers in each sample (insets in Histogram

images in Figure 3). However, the predominant species in our

conditions, as revealed by both AFM and TEM, are oligomers.

It is possible that the use of longer incubation times (up to one

week) and higher protein concentrations (2 mg/mL) may have

favored the formation and deposition of the larger aggregates

detected in Lagerstedt’s study.

Influence of Pro-inflammatory Conditions on apoA-I
Folding and Function

We have previously shown that incubation of Wt apoA-I with

activated PMNs, associated with inflammatory response, resulted

in partial protein degradation and formation of pro-amyloidogenic

proteolytic products as determined by ThT binding [8]. We have

now compared the behavior of apoA-I variants with that of Wt

protein under the same conditions. Wt or variant forms of apoA-I

were exposed to activated PMNs for 1 h (see ‘‘Methods’’). As

expected, proteins were partially degraded by exposure to PMNs,

resulting in proteolytic products (Fig. 4A). In some experiments,

degradation was considerably more drastic, with complete

disappearance of the band corresponding to the intact proteins

and appearance of high-molecular weight cross-linked products

(not shown). Following, we analyzed ThT binding of these

products. The fluorescence quantum yield of ThT is very low in

Figure 2. Chemical unfolding of apoA-I variants. Dark circles represent the experimental data for Wt. Gray and white symbols correspond to
Lys107-0 and Gly26Arg respectively. A) Equilibrium unfolding of apoA-I variants as followed by intrinsic Trp fluorescence. Spectral centers of mass are
plotted as a function of [GndHCl]. Final protein concentration was 0.1 mg/mL; excitation was set at 295 nm and emission recorded between 310 and
420 nm. Continuous lines are fits to the data, in the same order using a sigmoidal model. B) Dependence of bis-ANS fluorescence as a function of
[GndHCl]. Proteins were diluted to 0.1 mg/mL and incubated with bis-ANS at a molar ration probe: protein 1:5. GndHCl was added stepwise.
Fluorescence was registered as the Wavelength of Maximum Fluorescence at each [GndHCl]. C) Overlap of GndHCl-mediated denaturation curves for
Wt apoA-I as followed by Trp (panel A) and bis-ANS fluorescence (panel B).
doi:10.1371/journal.pone.0043755.g002
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Figure 3. Morphology characterization of apoA-I mutants’ aggregates. Analysis of images observed under AFM. ApoA-I Wt (A), Gly26Arg (B)
and Lys107-0 (C) respectively, were incubated for 24 h at 0.6 mg/mL and loaded onto mica. Small size oligomers covering the surface of the mica
were predominant in each sample. The distribution of the oligomers’ height is shown as Histograms obtained from the measurement in the z-plane
of 100 oligomers. Insets in the histograms’ plot represent isolated aggregates occasionally observed by negative stain under Transmission Electron
Microscopy. Bars in each image show the scale used in each case.
doi:10.1371/journal.pone.0043755.g003
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aqueous buffer and is markedly increased upon binding to protein

amyloids [41–43]. In order to better compare the different apoA-I

variants, we expressed the results as the ratio of ThT fluorescence

of the PMN-treated protein versus the same protein incubated in

the absence of PMNs. Interestingly, while the Gly26Arg variant

behaved similar to Wt apoA-I, significantly higher relative ThT

binding products were obtained from the Lys107-0 variant

(Fig. 4B).

A hallmark of hereditary apoA-I-induced amyloidosis is the

detection of N-terminal fragments of the protein in the amyloid

deposits [44]. As metalloproteinases are usually highly active at

atherosclerosis plaques [45], we checked the possibility that

natural mutations in apoA-I could result in the generation of

a recognition site for such enzymes, and the further release of

peptides with higher propensity to aggregate. To test this, we

incubated proteins with metalloproteinase 12 (MMP-12) and

analyzed the amyloidogenicity of the products. Interestingly, both

Wt and variant forms of apoA-I were degraded by MMP-12 to

similar extents, and a fragment of ,11 kDa molecular mass could

be detected (Fig. 4C). To determine whether this fragment was

more prone to amyloid aggregation, we analyzed its ThT binding

as described above. As observed for Wt apoA-I [8], similar ThT

fluorescence intensities were measured for each apoA-I variant

before and after MMP-12 proteolysis, indicating that this

treatment did not significantly increase the tendency of each

variant to form amyloid aggregates (Fig. 4D).

Macrophage Activation Induced by apoA-I Variants
To determine whether disease-associated apoA-I variants could

induce macrophage activation, we tested their ability to stimulate

Figure 4. Effect of TPA-activated neutrophils and MMP-12 on apoA-I variants processing and amyloidogenicity. ApoA-I mutants
(0.2 mg/mL) were incubated in the presence of TPA stimulated neutrophils at 37uC for 1 h. A) Western blotting of aliquots of the supernatant
developed with rabbit polyclonal anti-apoA-I. Lanes 1, 3 and 5 show samples incubated in the absence of neutrophils, while lanes 2, 4 and 6 represent
the same amount of protein applied to each lane after neutrophil treatment. B) Following the treatment with or without neutrophils samples were
incubated at 37uC for 24 h. One ml of ThT (1 mM) was added to each well and ThT fluorescence was measured in a microplate reader at 480 nm
(excitation at 430 nm). Each bar shows the ratio of the ThT fluorescence binding to each protein variant incubated in the presence versus the absence
of activated PMNs and corresponds to means 6 SE. In a different experiment apoA-I was incubated in the presence of MMP-12. C) Western blotting
was developed as in A). Numbers at the bottom of each lane represent the same as in A) but in the absence or presence of MMP-12. D) After 3 h at
37uC, MMP-12 was inhibited and apoA-I incubated as in B) to determine ThT binding.
doi:10.1371/journal.pone.0043755.g004
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production of reactive oxygen species (ROS), TNF-a and IL-1b by

RAW 264.7 murine macrophages. We routinely used polymyxin B

in our experiments to avoid any undesired effect of possible

contaminating endotoxin in the solutions of recombinant proteins.

When cells were incubated with 50 mg/mL polymyxin B, LPS-

induced ROS production was completed inhibited (Fig. 5A), while,

as expected, significant ROS production was detected when cells

were incubated with LPS in the absence of the antibiotic.

Interestingly, while neither Wt apoA-I nor the Lys107-0 variant

induced ROS production by macrophages, incubation of 1 mg/

mL of the Gly26Arg variant induced significant cell activation.

Similarly, macrophages incubated with the Gly26Arg variant (but

not with Wt apoA-I or the Lys107-0 variant) exhibited significant

increases in TNF-a and IL-1b production and release (Fig. 5B, C).

MTT reduction measurements indicated that cell viability was

preserved under the different conditions tested (data no shown).

Discussion

The potential to interact with a wide variety of targets

constitutes the hallmark of proteins showing unstructured func-

tional conformations. The flexible conformation required to fulfill

biological functions represents, however, a potential risk of self-

aggregating unfolded states. Amyloidoses are heterogeneous

diseases induced by protein misfolding, in which not only protein

chemical natures and propensities to self-aggregate are very

different, but in addition the local environment that triggers their

cytotoxicity is many times difficult to predict. We have previously

proposed that wild type human apoA-I is susceptible to become

pro-amyloidogenic under a local environment surrounding

chronic inflammation [8]. Nevertheless, the fact that natural

apoA-I variants induce amyloidosis in different organs and with

different severities suggests the occurrence of other events that shift

the pattern of weaker bonding modifying not only protein

Figure 5. Effect of apoA-I variants in the release of pro-inflammatory species from macrophages. One mg/mL of Wt, Gly26Arg or Lys107-
0 were added to RAW 264.7 macrophages previously incubated for 1 h with 50 mg/mL of polymyxin B. Lane labeled as B, as a negative control,
represents the medium untreated with proteins. LPS, as a test of positive response, represents cells treated with 1 mg/mL LPS, plus (+P) or without (-
P) the addition of polymyxin B. A) ROS production was measured after 6 h incubation and cell lysis by fluorescence detection of DCF formation in
a microplate reader (excitation and emission filters centered at 485 and 525 nm, respectively). TNF-a (B) and IL-b (C) production is quantified as
described in Methods. Bars correspond to means 6 SE. Symbol # represents significant difference respect to control (in the absence of LPS) at
p,0.05. * represents significant difference respect to cells incubated with the same amount of Wt protein at p,0.05.
doi:10.1371/journal.pone.0043755.g005
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solubility but also inter or intra molecular interactions. Along this

line, it was shown that single point mutations in transthyretin

could alter both protein binding to its natural ligand T4 and the

stability of the oligomeric conformation [4]. In order to get insight

into the structural features that favor apoA-I amyloidogenicity, we

compared the folding of the Gly26Arg and Lys107-0 variants with

the folding of the Wt protein. We have worked at pH 7.4 and at

low protein concentrations in order to better approximate

physiological conditions. Both variants showed different confor-

mations in the native state with respect to the Wt protein: they are

less stable, showing a conformational arrangement that binds more

bis-ANS and having their Trp residues more separated from each

other and more exposed to the aqueous solvent than Wt apoA-I.

These data suggest a more flexible structure, with increased water

penetration that weakens hydrophobic interactions inducing

hydrophobic domains to become exposed. Interestingly, we have

noted that, when Wt apoA-I is incubated at lower pH, the bis-

ANS binding sites decrease [8] and this effect is also valid for the

tested mutants (not shown). As, in our hands, the secondary

structures of Wt and variant forms of apoA-I are preserved during

the incubation times in which experiments are performed (not

shown), this suggests that, at physiological pH and after 24 h

incubation at 37uC at low concentration, the mutants show

a molten globule-like structure, more flexible than the Wt protein.

The comparison between the unfolding profiles revealed by bis-

ANS and intrinsic fluorescence measurements (Fig 2C) indicates

the presence of unfolding intermediate states. These partially

folded conformers can acquire an alternative and relatively stable

‘‘misfolded state,’’ which is prone to aggregation. Partially folded

intermediates have been implicated in the amyloid formation by

other proteins [31,46–49].

The presence of an N-terminal fragment of the protein in

amyloid deposits of most apoA-I variants suggests a proteolytic

processing of the precursor proteins by specific proteases, leading

to formation of a peptide with higher tendency to aggregate.

Indeed, a higher susceptibility of the N-terminus of apoA-

IGly26Arg to chymotrypsin and V8 proteases has been reported

[40]. In order to determine the influence of a pro-inflammatory

environment on apoA-I aggregation, we compared the different

variants as treated with MMP-12, a metalloproteinase that is

highly active in inflammation. Although proteolysis was detected,

this treatment did not yield a particularly pro-amyloidogenic

product. Thus, although proteolytic processing is likely to occur in

vivo, the specific enzyme involved in this event needs to be further

investigated.

In addition to the pathological aggregation of the mutants, the

loss-of-function of apoA-I caused by a particular mutation should

also be considered. Gonzalez et al. (2008) have demonstrated that

apoA-ILys107-0 looses its ability to induce intracellular cholesterol

mobilization from Chinese hamster ovary cells and exhibits

impaired esterification of intracellular pools [26]. The deletion

of residue Lys 107 changes by about 100u the helix 4 registry and

the orientation of the hydrophilic and hydrophobic faces of this

amphipathic helix at both sides of the deletion point. Thus, it is

possible that deletion of this residue disrupts protein conformation

in a way that affects the interaction with lipids as well as with cell

membrane proteins involved in triggering the signaling pathways

leading to the mobilization of intracellular cholesterol pools.

As apoA-ILys107-0–derived amyloid occurs associated to severe

atherosclerotic plaques in the intima [50] a close connection

between these two chronic diseases could be predicted. Our results

demonstrated a clear tendency of this mutant to aggregate even at

low protein concentration and, in addition, a higher sensitivity to

yield pro-amyloidogenic products by inflammation-induced oxi-

dation/proteolysis. Another well-recognized general mechanism of

in vivo amyloidogenesis is the generation of a critical concentration

of the amyloidogenic precursor [7]. Thus, it is possible that the

decreased efficiency of apoA-ILys107-0 to acquire lipids, together

with a local concentration of macrophages in the atherosclerotic

lesion, could render a higher amount of lipid-free protein [9] that,

due to its inherent tendency to misfold, could deposit in the intima

in close association to the atherosclerotic plaque. In this regard,

the concentration of lipid-free apoA-I in the aortic intima has been

shown to increase during the progression of atherosclerosis [51].

Interestingly, in spite of the lower levels in total plasma HDL

and apoA-I, no relevant atherosclerosis or cardiovascular disease

have been reported for apoA-IGly26Arg carrying patients. In-

stead, the Gly26Arg variant has been associated to renal disease,

polyneuropathy [52,53] and hepatic dysfunction [54]. It has been

suggested that introduction of a positive charge by this mutation

induces repulsive interactions with Lys23, increasing solvent

exposure of this region of apoA-I [55]. In spite of the observed

structural differences, destabilization is necessary but probably not

sufficient to confer an amyloidogenic propensity on a protein [56].

As shown here, despite being less stable, under our mild

incubation conditions apoA-IGly26Arg does not show a higher

tendency to aggregate or been processed by neutrophils than Wt

apoA-I.

In addition to a higher rate of catabolism, it has been suggested

that lower plasma levels of apoA-I are due to the fact that protein

is sequestered in extravascular tissues [24]. Any local factors that

perturb the three dimensional structure of the protein, such as pH,

temperature, osmolytes, or urea in the inner renal medulla could

enhance the formation of partially folded states that either deposit

or increase the retention time in the capillaries [56]. Binding to

plasma membranes enriched in negative phospholipids, such as

those of apoptotic cells, or to components of the extracellular

matrix, as the glomerullar basal membrane in the kidneys, could

be increased by the presence of an extra positive charge in the N-

terminus. Along this line, we have suggested that protonation of

histidine residues in Wt apoA-I results in formation of a heparin

binding site [8]. Impaired interactions with less-known partners

could be also envisaged, as it was proposed that the N-terminal

domain of apoA-I is involved in the in vitro blockade of the

neurotoxicity of the Ab peptide [57].

An additional mechanism that should be considered in order to

understand a hallmark of apoA-I-associated amyloidosis is that

misfolded proteins could induce activation of cellular responses

that trigger chronic inflammation in an attempt to clear up the

anomalous protein conformer. Indeed, it has been shown that

extracellular aggregated human a-synuclein activates microglia,

inducing the release of pro-inflammatory mediators that elicit the

progression of Parkinson disease [58]. In order to examine this

possibility, we investigated the effects of the apoA-I variants on

RAW 264.7 murine macrophages. Interestingly, under our

conditions apoA-IGly26Arg, but not Wt apoA-I or apoA-

ILys107-0, induced ROS, TNF-a and IL-1b production by the

macrophages, raising the possibility that the subtle changes in

protein conformation and/or the change in amino acid sequence

of the Gly26Arg variant could initiate and/or perpetuate a local

inflammatory condition associated to organ dysfunction.

In conclusion, we have analyzed and compared structural

features that could favor amyloid aggregation of two known

natural variants of apoA-I. Some structural features appear to be

shared by both variants, such as the presence of a more flexible

and unstable structure than in the Wt protein. Nevertheless, this

fact do not seem to be sufficient to explain the increased

pathogenicity they show with respect to Wt apoA-I, as the
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Gly26Arg variant behaves similar to Wt as far as yielding amyloid

aggregates, indicating that other local factors likely determine the

shift in equilibrium between fully folded and partially folded pro-

amyloidogenic forms. In addition to the effect that the local

microenvironment could exert on apoA-I conformation, it should

be considered that misfolded proteins could indeed mediate other

cell signaling events, determining an intricate cross-talk between

function and pathogenicity. Induction of macrophage activation

could be an attractive hypothesis to explain why certain variants

contribute more than others to apoA-I-induced pathogenesis.

Further studies should focus on the complex landscape mediating

the roles of apoA-I in the delicate balance between health and

pathology.
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