
Migration of tools and methodologies for performance prediction

and efficient HPC on cloud environments: Results and conclusion *

Ronal Muresano, Alvaro Wong, Dolores Rexachs and Emilio Luque

Computer Architecture and Operating System Department (CAOS)

Universitat Autònoma de Barcelona, Barcelona, SPAIN

rmuresano@caos.uab.es, alvaro@caos.uab.es, dolores.rexachs@uab.es, emilio.luque@uab.es

Abstract— Progress in the parallel programming field has

allowed scientific applications to be developed with more

complexity and accuracy. However, such precision requires

greater computational power in order to be executed. How-

ever, updating the local systems could be considered an

expensive decision. For this reason, cloud computing is

emerging as a commercial infrastructure that allows us

to eliminate maintaining the computing hardware. For this

reason, cloud is promising to be a computing alternative

to clusters, grids and supercomputing for executing these

applications. In this sense, this work is focused on describing

the manner of migrating our prediction tool PAS2P (parallel

application signature for performance prediction), and how

we have to analyze our method for executing SPMD ap-

plications efficiently on these cloud environments. In both

cases, cloud could be considered a huge challenge due

to the environment virtualization and the communication

heterogeneities, which can seriously affect the application

performance. However, our experimental evaluations make

it clear that our prediction tool can predict with an error

rate lower than 6,46%, considering that the signature for

prediction represents a small portion of the execution time.

On the other hand, analyzing the application parameters

over the cloud computing allows us to find through an

analytical model, which is the ideal number of virtual cores

needed to obtain the maximum speedup under a defined

efficiency. In this case the error rate was lower that 9%

for the application tested.

Keywords: Performance, PAS2P, Prediction, SPMD, Cloud.

1. Introduction

The constant evolution of the parallel computing field has

permitted those scientific applications to be designed with

more complexity and precision. However, these applications

need to be executed with high computational power in order

to obtain an improvement of parallel performances. One

solution is to update our system by increasing the number of

processing element but we have to consider that this is an

expensive decision for both acquiring and maintaining the

* This research has been supported by the MEC-MICINN Spain under
contract TIN2007-64974

system. A second solution is to use a transparent architec-

ture, which integrates the computational resources needed to

execute the applications. In this sense, the cloud environment

is an architecture which is promising to be a computing

alternative to clusters, grids and supercomputing for exe-

cuting these scientific applications. Initially, this emerging

infrastructure-provider segment has been generally focused

on business users and hosting web applications and services,

but currently some researchers have begun to look at the

cloud as a viable solution for scientific computing, especially

in high performance computing [1] [2]. In this sense, cloud

computing allows the user to define their computational

resources according to the application characteristics.

However, executing a parallel application using these

cloud environments could present a huge challenge, espe-

cially if you are trying to predict the execution time and also

if you wish to execute faster and more efficiently [3]. These

challenges can be addressed or caused by the communication

heterogeneity or the different computational instances de-

fined in each cloud such as: EC2 amazon, smart cloud IBM,

bonfire, etc. Hence, this work is based on how to migrate

our prediction tool PAS2P (parallel application signature for

performance prediction), and how we have to analyze our

method for executing efficiently SPMD applications on these

cloud environments.

The first step is to evaluate the prediction quality obtained

using PAS2P, which is a toolset to automatically extract the

most significant behavior (phases) of parallel applications,

into a parallel application signature. By its execution on dif-

ferent parallel computers, the performance of the application

can be predicted. The accurate prediction of the performance

of parallel applications is becoming increasingly complex

and the time required to run it thoroughly is an onerous

requirement; especially if we want to predict for different

systems. Then, PAS2P is capable of instrumenting a binary

and collects a set of phases by using interposition of func-

tions. This process allows us to reduce the log trace size

instrumenting the communication and computation events

in order to be executed in a target machine, in this case

the cloud architecture. Then, this signature can be executed

on different target machines allowing for the signature to

measure the execution time of each phase. Finally, the

signature of the application allows us to predict the entire

JCS&T Vol. 13 No. 3 December 2013

123

application’s run time (with an average accuracy above

98%) in each of those cluster tested by extrapolation of

each phase’s execution time using the obtained weights.

The execution time of the application signature is a small

fraction (less than 2%) of the whole applications runtime

[4]. However, we have to evaluate if we obtain the signature

in a based machine and we execute that signature in a cloud,

we can predict with the same prediction relationship that we

have obtained in a cluster.

On the other hand, the second step is how we have to

analyze the application in order to predict the number of

virtual core with the aim of obtaining the maximum speedup

under a defined efficiency for a SPMD applications. In this

case, we start with the method defined in [5] and [6], where

we can predict the processing element using a communi-

cation heterogeneus environments such as multicore. The

SPMD paradigm was selected due to its behavior, which

is to execute the same program in all processes but with

a different set of tiles. These tiles have to exchange their

information in each iteration and these can become a huge

issue when we use a heterogeneus communication, such

as integrated, within the cloud environment. To solve these

inefficiencies, we have developed a method that manages the

communication latencies using some characteristics of each

SPMD application (e.g. computation and communication tile

ratio) and allows us to determine a relationship between

scalability and efficiency. To achieve this performance re-

lationship, our methodology is organized in four phases:

characterization, tiles distribution model, mapping strategy,

and scheduling policy, which allow us to distribute the

tile inside the environment. The main idea is to evaluate

the environment characteristics of the cloud, and how the

application behavior is within these architectures.

Finally, this article shows how we have to evaluate both

PAS2P and the method for efficient execution in order to

achieve the migration steps to be applied in this new trend

for high performance computing using cloud. In this sense,

the experimental evaluation performed has illustrated how

our methods can predict with a small error rate considering

the variation of these cloud environments.

This paper is structured as follows: section 2 illustrates

the impact of cloud over the HPC applications, then it is

followed by section 3 where the PAS2P methodology is

described. The section 4 explains the method for efficient

execution of SPMD applications on cloud. Then the experi-

mental evaluation is illustrated in section 5. Finally, the main

conclusions are described in section 6.

2. High performance application on

cloud environments

Currently, cloud computing is considered as an impor-

tant paradigm for managing resources distribution and its

infrastructure is now widely used in many domains, but

one area where there has been more limited adoption is

research computing, in particular for running scientific high-

performance computing [1]. This is due to the uncertain

scenarios in the communication and computation of the

architecture. For this reason, it is very important to develop

and to migrate tools and methods designed for HPC in

computer clusters in order to understand the behavior of this

complex architecture.

In this sense, the cloud computing has to deal with

different challenge that administrators and users have to

solve or manage with the aim of taking advantage of

this virtualized architecture. Under this focus, we have to

analyze system performance when an HPC application is

used. One of the complex problems on cloud is the poor

network performance, which can degrade the metrics such

as efficiency and execution time of the scientific applica-

tions. These communication problems are increased by the

virtualization overhead and the networking setup itself. Also,

the problem increases when we execute scientific applica-

tions under the SPMD paradigm, which have to exchange

information between neighbors. Another element is the real

heterogeneity of the system because the cloud instances are

set up using generic values for the architecture. This can

result in instances reserve, which are not using identical

configuration as can be presented in a homogeneous cluster.

These issues can create imbalance problems which the users

have to consider.

Moreover, we have to consider the noise of other process

which can affect the performance of HPC applications. One

example can be described, when an HPC application is

executed over a real machine of 8 cores and we reserve

instances with 4. The others cores can be accessed by other

applications which can use resources like a communication

network card, memory bandwidth, etc.

Despite all these challenges, cloud computing is certainly

attractive to HPC users. Indeed, in many cases, users cannot

get enough cycles on existing systems and Cloud HPC

would be a viable economic alternative to purchasing more

hardware in order to execute more complex scientific ap-

plications. Also, HPC facilities may not grow at the same

pace as ever-growing computational demands, or they could

be limited by local power supply. Instead of rejecting users’

applications on their own private clusters, cloud is an alter-

native to execute application considering that this solution

is not only economically feasible but it can also reduce

the time to solution for scientific application programmers

[7]. Moreover, cloud offers the benefits of virtualization,

elasticity of resources and cluster setup for HPC

Therefore, cloud is an infrastructure, which has been

designed under the concept of on paying for the resources

used. This is an important advantage for the user and even

more so when they can determine the ideal number of

resources needed for executing the application. Under this

focus, it is very important to migrate the prediction tools

JCS&T Vol. 13 No. 3 December 2013

124

in order to define the time for renting the resources. In

this sense, our PAS2P tool extracts a signature of the real

application and it allows us to predict the execution time

with a very small error rate. One of the important aspects is

that the signature can be extracted in a private machine and

then it can be executed on the cloud architecture in order

to predict the execution time of the scientific application for

a determined number of MPI processes (message passing

processes) and workload. This signature can predict the

execution time of the application in order to considerably

reduce the renting time.

On the other hand, one of the challenges is to take

advantage of the resources on cloud. This allows us to

evaluate our method for efficient execution of one paradigm

with high communication volume how is presented on

SPMD applications. This method permits us to determine

the ideal workload and number of virtual cores needed to

execute considering the cloud characteristics (computation

and communication evaluation). This orientation will help us

to migrate our method for a heterogeneous communication

architecture where the communication links can present huge

delays. The migration of both tools is a considerable advance

for the trend of HPC on cloud.

3. Parallel Application Signature for per-

formance Prediction PAS2P

Applications typically possess highly repetitive behav-

ior and parallel applications are no exception. PAS2P

makes an analysis to characterize the computational and

communications-related behavior of parallel applications by

identifying these repetitive portions. It is important to notice

that this is a methodology with two main steps. 1.

The first step is to analyze the application, build the appli-

cation model to extract its phases and weights, and use that

information to build the signature, which is an executable

that contains the relevant phases with instrumentation, in

order to have information about their behavior and their

weights to predict the application performance on the target

machines (Fig 1, Instrumentation, analyzer and signature

generation modules).

The second step is to execute the signature in a target

system, to measure the execution time of each phase and

predict the execution time of the application (Fig 1, Perfor-

mance prediction module).

3.1 Application analysis and signature con-

struction

In order to obtain the behavior of computation and

communication, the application is instrumented on a base

machine in order to intercept and collect communication

events of the parallel application. With this collected data an

application trace log is generated. The communication events

are ordered by means of a logical global clock according

Fig. 1: Modules of PAS2P tool

to causality relations between communication events. The

machine-independent application model can be obtained

from this trace. Once we have the application model, the

methodology strives to identify the application patterns in

order to find a representative behavior of the application.

It is processed using a technique that searches for similar-

ity to identify and extract the most relevant event sequences

(phases) and assign them a weight based on the number of

times the phases occur. Afterwards, in order to construct

the signature, the last step is to re-run the application

to create the coordinated checkpoints before each relevant

phase happens. Therefore, the executable signature will be

defined by a set of relevant phases and their weights.

3.2 Performance prediction model

Once we have constructed the application signature, we

can run it on real target machines to analyze the application

behavior and predict the application execution time. In

order to execute the phases, we restart the checkpoints

of the application before the phase begins and measure

its execution time until the phase ends. To predict the

application execution time equation 1 is used, where PET is

the Predicted application Execution Time, n is the number

of phases, TEPhasei is the Phase i Execution Time and Wi

is the weight of the phase i.

Due to the complexity of the process and the huge quantity

of information obtained during the analysis, we decided

to automatize the methodology, allowing users to apply

the whole methodology in an automatic and transparent

way. The next section explains how the methodology was

automated.

PET =
n∑

i=1

(TEPhasei)(Wi) (1)

4. Methodology for efficient execution of

SPMD applications

Our methodology is focused on managing the communi-

cations heterogeneities presented on hierarchical communi-

cation architecture, such as multicore clusters, multiclusters,

cloud environments, etc. This process is realized through

four phases which allow us to handle the latencies and

the communication imbalances created due to the different

JCS&T Vol. 13 No. 3 December 2013

125

Fig. 2: Methodology phases and tool modules

communication paths. The phases defined in our method-

ology permit us to accomplish our objective of finding the

maximum speedup while the efficiency is maintained over

a defined threshold. These phases are integrated in five

modules of a framework with the aim of improving the

performance (Figure 2).

The latencies and the imbalance factors also have to be

handled with the objective of removing the inefficiencies

generated by communication links. These latencies generate

idle time for different reasons, such as: tasks communi-

cation when processes are located in different processor

chips or nodes, communication message size, bottlenecks

in the communication paths, SPMD data synchronization,

adaptation of an MPI application designed to be executed

in single core nodes for multicore nodes, etc. The idle time

generated decreases the performance, particularly efficiency

and speedup. Our methodology, through its phases, can solve

the inefficiencies generated in these communications links as

was described in [5].

This method has been migrated to the cloud environment.

To achieve this, we have considered two main aspects. The

first one is that all instances have to be computationally equal

in order to maintain homogeneity in the virtual cores and the

second one is that we have to consider that communication

cannot be controlled. These communication issues can be

a part of the main problem of migrating our framework to

cloud environment. Therefore, we will give a brief descrip-

tion of the method migrated to cloud environment by phases:

4.1 Characterization

This phase is focused on performing an application and

environment analysis with the aim of obtaining the applica-

tion parameters which are used to calculate the analytical

model. The main idea is to find the nearest relationship

between the cloud environment and the SPMD application.

The parameters are classified in two groups: the application

parameters and parallel environment.

The parameters determined allow us to establish the

communication and computational ratio time of a tile inside

of the hierarchical communication architecture. This rela-

tionship will be defined as λ(p)(w), where p determines

the link where the communication of one tile to another

Fig. 3: Communication characterization on IBM smart cloud

Fig. 4: Computation analysis on diverse virtual cores

neighboring tile has been performed and w describes the

direction of the communication processes (e.g. Up, right,

left or down in a four communications pattern). This ratio

is calculated with equation Eq. 2, where Commt(p)(w)
determines the time of communicating a tile for a specific

p link and the Cpt is the value of computing one tile on a

virtual core. This characterization process has to be done in

a controlled and monitored manner.

λ(p)(w) = CommT (p)(w)/Cpt (2)

An example of this characterization can be found in

figures 3 and 4. This characterization has been done using

the IBM smart cloud using the silver instances 1. As can

be seen in figure 3, communications have a considerable

increment where from 8 bytes to 2 KB in regular and

then the time present a considerable increment around one

order of magnitude in differences. These variances have

to be considerered, when we analyse the tile size and its

communication value.

On the other hand, the computation parameters illustrated

in figure 4 allows us to conclude that if we choose the

same instances, we can obtain a homogeneous environment

although we are using an uncertain one. As can be detailed

in figure 4, the computation times in different virtual cores

are the same. Both results allow us to apply our analytical

model.

1Silver instances are composed by 4 virtual core and 8 Gb virtual memory

JCS&T Vol. 13 No. 3 December 2013

126

4.2 Tile distribution Model

Once the parameters in the characterization are obtained,

the next step is to calculate the ideal number of virtual

cores and problem size in order to maintain the relationship

between efficiency and speedup. To achieve this, we have

introduced the concept of supertile (ST). An ST is a unit

which integrates a set of tiles where these tiles are divided

in two types; internal and edge. The problem of finding the

optimal ST size is formulated as an analytical problem, in

which the ratio between computation and communication of

the tile has to be found with the objective of improving the

relationship between efficiency and speedup.

The main idea of these STs is to create a structure which

is assigned one per virtual core. These STs manage the com-

munication heterogeneity of the cloud environment and also

eliminate communication wasting time of parallel execution.

This method takes advantage of the communication time

assigning more computation tiles and hiding the communi-

cation effects of the cloud environment. The division of STs

among internal and edge allow us to apply an overlapping

technique, where the internal computation time is overlapped

while the edge communication is performed. The ST size

is calculated considering the slowest communication path,

allowing us to manage the communication between all links

in the hierarchical communication architecture.

4.3 Mapping phase

The main purpose of this phase is to apply a distribution of

ST in the execution virtual core. In cloud the ST assignations

are made applying a cartesian map of processes with the aim

of minimizing the communications latencies. This map will

determine where the processes has to be allocated and how

the ST have to be assigned to each virtual core. However,

the ST assignations should maintain the initial considered

allocation used in the characterization phase.

This phase is divided in three key points. The first point

performs a logical processes distribution of the MPI pro-

cesses. The second function is to apply the core assignation,

and the last one is the division and distribution of the STs.

The mapping has to divide the tiles in order to create the ST

considering the value of K obtained by the analytical model.

It’s important to understand that an incorrect distribution of

the tiles can generate different application behaviors.

4.4 Scheduling phase

The main function is to assign an execution priority

assignment to each tile with the aim of applying the overlap-

ping strategy. This process establishes the highest priorities

for tiles which have communications through slower paths

and slower priority to internal tiles. This phase performs an

overlapping strategy, which allows us to hide the communi-

cations effects as can be detailed in figure 5.

Fig. 5: Scheduling for hiding the communication effects

5. Experimental Validation
In order to test the migration of the PAS2P tool and the

efficient framework for executing SPMD applications, we

have tested using two cloud environments; Amazon EC2

[8] and IBM smart cloud [9]. The signatures of PAS2P

have been extracted using the NOVA cluster with 4 Intel

Xeon quad-core E7350 2.66Ghz, Tigerton Processors L2

cache 2x4 MB, 48 GB DDR2 SDRAM, ConnectX IB

Mellanoxcard, and the execution was in the Amazon EC2

cloud with 8 instances EC2 of 4 virtual cores with 15 Gb of

memory and 690 GB of storage. The network also was 1000

Mbps. For the framework we have used the IBM smart cloud

using 4 instances silver with a 4 virtual core and 8 Gb of

RAM memory. The applications used were the NAS parallel

benchmark suite and the heat transfer application.

5.1 PAS2P validation

This section validates that the prediction methodology

using the signature works in system like cloud. We can

obtain the application prediction at a high level of precision

in a short time (Signature Execution Time). We show the

signature execution for each application on Nova cluster and

Amazon cloud cluster. We predict their execution times and

demonstrate the prediction quality of each signature.

The methodology used to obtain the results involves exe-

cuting the applications on Nova cluster in order to analyze

and extract the phases of the application. With the phases,

we construct the signature in order to predict the AET

(Application Execution Time) using the Nova cluster as

the target machine. We applied the PAS2P methodology

to the above applications to extract phases and obtain the

application signatures. After running the signatures from all

applications, we now know the execution time for each phase

and the Signature Execution Time (SET), which is the sum

of the execution times of all constituent phases. However,

to obtain the Predicted Execution Time (PET), we multiply

the execution time of each phase by the weight vector given

by the PAS2P and add the times obtained.

In Table 1 shows the results from Nova cluster. We

execute CG, LU, SP from NAS Parallel Benchmarks with a

different number of processes. As this table indicates, when

we compare columns 2 (SET) and 4 (AET), it can be seen

that the SET is notably shortened compared with the AET.

Column 3 shows the Predicted Execution Time (PET) given

by the signature being executed. Column 5 presents the

Prediction Execution Time Error (PETE) lower than 4.4%.

JCS&T Vol. 13 No. 3 December 2013

127

Table 1: Predictions on cluster NOVA

Program SET PET AET PETE

(Sec.) (Sec.) (Sec.) (%)

CG.B.8 0.43 37.71 38.99 3.27

LU.B.8 3.00 71.01 67.96 4.49

BT.B.9 4.73 95.31 95.87 0.58

SP.B.9 5.70 235.40 234.39 0.43

BT.C.64 3.59 72.32 72.68 0.49

SP.C.64 3.09 121.58 118.06 2.97

CG.C.8 2.04 242.40 245.59 1.30

BT.C.9 23.87 492.49 494.76 0.46

SP.C.9 25.81 1065.18 1067.8 0.25

Table 2: Predictions on Amazon EC2 cloud

Program SET PET AET PETE

(Sec.) (Sec.) (Sec.) (%)

CG.B.8 1.0233 81.79 84.49 3.20

LU.B.8 4.4379 97.08 98.52 1.45

BT.B.9 10.2806 150.53 155.24 3.03

SP.B.9 10.4252 419.83 419.86 0.01

BT.C.64 6.4208 151.94 156.34 2.80

SP.C.64 5.9997 287.18 277.40 3.52

CG.C.8 2.6945 262.49 260.39 0.80

BT.C.9 39.1058 792.68 791.77 0.11

SP.C.9 42.0293 1706.69 1701.40 0.31

Therefore, we can transfer the signatures from the cluster

Nova to the cloud cluster. Table 2 shows the execution of

the signature in the cloud. We execute the signature in order

to get the PET. In order to validate the PET in the cloud, we

execute the whole application to compare with the PET and

discover the PETE where the maximum error is 3.5%. We

can notice that the signature constructed in a base machine

(Nova cluster) can be used to predict the performance in

cloud systems.

In Figures 6 and 7, we show a comparison between the

Signature Execution Time vs. the Application Execution

Time, where we demonstrate that signature represents a

small fraction of the whole application execution.

Fig. 6: SET vs. AET on Nova cluster.

Finally in Table 3 we show that the signature can predict

the performance using different mapping policies. In this

case we execute the signatures created with 64 processes

with 16, 32 and 64 cores. The column SET shows how

the signature execution increased when the mapping police

Fig. 7: SET vs AET on Cloud.

changes and AET increased due to the process of mapping

the signature when the number of cores is reduced. Scientists

can use the signature to provided performance estimations

for their applications on cloud systems, they could more

efficiently choose resources for their applications.

Table 3: Signature exec. with different mapping on Cloud

Program Cores SET PET AET PETE

(Sec.) (Sec.) (Sec.) (%)

16 25.0469 472.26 492.63 4.14

BT.C.64 32 10.8577 236.51 252.84 6.46

64 6.4208 151.94 156,34 2.80

16 18.7724 890.63 883.48 0.80

SP.C.64 32 9.8615 461.43 460.35 0.23

64 5.9997 287.18 277.40 3.52

16 70.9388 239.48 235.83 1.54

FT.C.64 32 46.3466 159.51 157.34 1.37

64 29.9754 101.09 111.88 9.65

5.2 Methodology for efficient execution valida-

tion

In order to probe the effectiveness of our method pre-

dicting the ideal ST which maintains the relationship of

efficiency and speedup, we have used the heat transfer appli-

cation. This is a finite difference problem that is solved using

the SPMD paradigm. As a first experiment, we have defined

the problem size as 5160 using 10000 iterations and we

have tested in two different instances time (Scenario A and

B Table (4)). As can be seen in table 4, the characterization

values obtained are different. These results could be due the

system in some moments being shared with another process.

However, for our method it is transparent. An important

aspect is to characterize every time before executing your

SPMD applications. In this case, a summary of the data

obtained in the characterization step for both scenarios A

and B are illustrated in table 4.

Table 4: Heat transfer application analysis

Scenario Problem Effic TileComp TileComm λ

&hline A 5160 100% 4,10E-08 5.27E-05 1285

B 5160 100% 2,6E-08 5.27E-05 2026

JCS&T Vol. 13 No. 3 December 2013

128

Once obtained these values, we have to find the ideal

values applying the model defined in [6]. Our model allows

us to find the ideal ST size which maintains the overlapping

strategy between internal computation and edge communi-

cations. Table 5 illustrates the theoretical values obtained

using our model and also it defines the ST size and the

ideal number of virtual cores needed. The model also give

us the approximate execution time, which in cloud is a very

important key for defining the time to rent the computing

instances.

Table 5: Execution Model Heat transfer app.(Time in Sec)

Scen. ST Comp(Iter) Comm(Iter) Exec T Cores

A 1289 0,067 0,067 681 16

B 2030 0,106 0,106 1071 8

Then, the next step is to execute the application using the

number of virtual cores obtained in table 5. As can be shown

in figure 8, we can obtain an execution with an efficiency of

around 100% for the scenario A. In this case, the error rate

obtained is lower than 9%. Similarly, figure 9 for scenario B

shows that the ideal value for efficiency is around the ideal

value obtained using the model. The error rate in this case is

lower than 8,5 % for the ideal case and then the efficiency

is going down considerably.

Fig. 8: Heat transfer application (Scenario A)

Fig. 9: Heat transfer application (Scenario B)

As has been demonstrated, our method can be migrated

to the cloud. Only, we have to consider that characterization

must be done every time that we turn off the instances. The

issue is that cloud cannot guarantee the same machine. They

try to maintain some default characteristics in their virtual

environments.

6. Conclusions and future works
This work addresses how we can migrate our tools and

frameworks developed to be used in a cluster to cloud enviro-

ments. In this sense, we have started with PAS2P, where we

have observed how the prediction maintains the same quality

level when these cloud environments are used to execute

parallel applications. Experimental validation has also shown

that PAS2P can predict with an error rate below 6,5% using

these virtualized environments. Similarly, our framework for

executing SPMD applications has been adapted to predict

and execute efficiently on a cloud environment. In this case,

the error rate is below 9% without making any change to

the original method developed for multicore clusters.

As was observed, both methodologies can be used to

predict and execute efficiently on cloud environments. The

migration of our tools to cloud will allow us to use these

virtualized environments using HPC in an efficient manner

and with high presicion, when we will rent the resources for

executing parallel applications.

References
[1] Z. Hill and M. Humphrey, “A quantitative analysis of high performance

computing with amazon’s ec2 infrastructure: The death of the local
cluster?” in Grid Computing, 2009 10th IEEE/ACM International

Conference on, 2009, pp. 26–33.
[2] R. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and

D. Epema, “An early performance analysis of cloud computing services
for scientific computing,” Tech. Rep., 2008.

[3] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf,
H. J. Wasserman, and N. Wright, “Performance analysis of high per-
formance computing applications on the amazon web services cloud,”
in Cloud Computing Technology and Science (CloudCom), 2010 IEEE

Second International Conference on, 2010, pp. 159–168.
[4] A. Wong, D. Rexachs, and E. Luque, “Pas2p tool, parallel application

signature for performance prediction,” in Proceedings of the 10th

international conference on Applied Parallel and Scientific Computing

- Volume Part I, ser. PARA’10. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 293–302.

[5] R. Muresano, D. Rexachs, and E. Luque, “Methodology for efficient
execution of spmd applications on multicore environments,” 10th

IEEE/ACM Int Conf on Cluster, Cloud and Grid Comp, CCGrid 2010,

Australia, pp. 185–195, 2010.
[6] ——, “A method for scaling spmd applications on multicore clusters,”

in In proceeding of: 2012 International Conference on Parallel and

Distributed Processing Techniques and Applications. PDPTA, Las

Vegas, 2012.
[7] A. Gupta and D. Milojicic, “Evaluation of hpc applications on cloud,”

in Proceedings of the 2011 Sixth Open Cirrus Summit, ser. OCS ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 22–26.

[8] A. EC2. (2013, May) Amazon ec2 instances. [Online]. Available:
http://aws.amazon.com/es/ec2/instance-types

[9] IBM. (2013, April) Ibm smart cloud. [Online]. Available:
http://www.ibm.com/cloud-computing/us/en/

JCS&T Vol. 13 No. 3 December 2013

129

