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Abstract— Over the last decade, the computing clusters

have been updated in order to satisfy the increasing demand

of greater computational power for running applications.

However, this increasing is transformed in more system en-

ergy consumption, which results in financial, environmental

and in some cases with social consequences. Hence, the

ideal is to achieve an scenario that allows the system admin-

istrator to find a trade-off between time and energy-efficiency

for parallel algorithms on virtualized environments. The

main objective of this work is based on developing an

analytical model to predict the energy consumption and

energy delay product (EDP) for SPMD applications on

virtual environments. The SPMD applications selected are

designed through a message passing interface (MPI) library

with high communication volumes, which can generate im-

balance issues that affect seriously the execution time and

also the energy-efficiency. Our method is composed by four

phases (characterization, tile distribution model, mapping

and scheduling). This method has been validated using

scientific applications and we observe that the minimum

Energy and EDP values are located close to the values

calculated with our analytical model with an error rate

between 4% and 9%.
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1. Introduction

The cloud platforms are become increasingly popular

together with the virtualization technology, which often used

in cloud and they offer several advantages specially in

efficiently managing of resources [1]. However, when these

environments are used for executing parallel applications,

we have to consider a set of challenges that have to be

analyzed in order to improve the application efficiency (we

are considering the term efficiency in two directions: the

computing resources usage and the energy required for some

computation). However, a large-scale computing infrastruc-

ture consumes enormous amount of electrical power which

*This research has been supported by the MICINN Spain under contract
TIN2007-64974, the MINECO (MICINN) Spain under contract TIN2011-
24384

results in financial, environmental and in some cases with

social consequences [2].

The cloud computing systems have been updated in order

to satisfy the increasing demands of greater computational

power for running parallel applications. However, this in-

creasing is transformed in more system energy consumption.

For this reason, we have to deal with one of the most impor-

tant challenges, use cloud computing systems (normally with

virtualized instances) for running HPC (High Performance

Computing) applications, whose resource requirements are

very different from the original target applications (business

and web) for which the cloud was designed [3]. HPC ap-

plications typically require low latency and high bandwidth

inter-processor communication to achieve best performance

[4]. These two factors affect seriously the performance

especially for tightly coupled applications such as Single

Program Multiple Data (SPMD).

The parallel processes of SPMD applications have to ex-

change information between them, and these can be located

in different instances of the virtual machine, where the

network is the bottleneck resource to be managed [5]. These

instances can be located in different cores of the same node

or other nodes of the virtualized environment. In this sense,

communications are performed using diverse communication

paths, which are included in the hierarchical communication

architecture of the virtualized environments. So, communi-

cations exchange is one parameter to be considered in order

to improve performance and efficiency in both computation

resource usage and energy consumption.

Hence, the ideal target is to achieve an scenario that allows

the system administrator to find a trade-off between time

and energy-efficiency for SPMD applications and virtualized

environments. In this sense, in a previous work [6], we

have presented a method to manage the CPU inefficiency by

properly selecting the number of cores to be used and the

problem size needed in order to find the maximum speedup,

while the efficiency is maintained over a defined threshold,

for SPMD applications on a hierarchical communication

architecture. However, this work does not consider the

energy consumption and the use of virtual machines (and

their effects on performance and energy consumption).

The energy efficiency of computing systems depends not
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only on the hardware but also on the used CPU clock

frequencies, the application type and its implementation in

a specific programming model between other factors [7].

So, it is needed to consider the energy efficiency for each

application that is executed on certain hardware. Thus, the

main objective of this work is focused on developing an

analytical model to predict the energy consumption and the

energy delay product (EDP) of SPMD applications on virtual

environments. The EDP is a metric capable of coupling

both energy consumption and performance [8]. The novel

contribution of this work is to determine the ideal number

of processing element and frequency, in which the SPMD

application has to be executed in order to find the minimum

energy or EDP for the different frequencies of the parallel

machine.

Our method starts with a characterization phase in which

the application and the environment are evaluated in order

to obtain some parameters, which are later introduced in

the analytical model of the second phase. The tile dis-

tribution model phase predict the number of processing

elements, supertile size, application execution time, energy

consumtion and EDP. Mapping phase assign tiles to a set

of processing elements according to the values obtained

through the analytical model. Finally, the scheduling phase

manages the overlapping strategy between computation and

communication in order to avoid inefficiency.

This paper is structured as follows. Section 2 presents

the impact of virtual environment on SPMD applications.

Section 3 exposes the method for predicting the energy con-

sumption. Section 4 illustrates the experimental validation.

Finally, section 5 draw the main conclusions.

2. SPMD applications over virtualized

environments

The SPMD applications used have to accomplish the

following characteristics: static, where the communication

pattern is known prior to the execution of the algorithm,

local, where applications do not have collective communi-

cations, grid application, and regular, that is, that commu-

nications are repeated for several iterations. In this sense,

there are some benchmarks that have these characteristics,

for example the NAS parallel benchmarks in the CG and

BT algorithms [9], and some real applications such as: heat

transfer simulation, Laplace equation, applications focus on

fluid dynamics, application of finite differences, etc.

When these SPMD applications are executed on a hierar-

chical communication architecture, they are strongly affected

by the latency and bandwidth of different communication

links [10]. This problem exacerbated when the applications

are executed on virtualized environments because the com-

munications need to go through other protocol stacks that

penalize the latency and bandwidth [11]. So, the analysis

of the communication delay, for these applications and

Fig. 1: SPMD application on different environments

execution environment, is a critical issue.

An example of the communication delays can be evi-

denced in figure 1, where the computation and commu-

nication are affected due to virtualization. However, these

idle times allows us to establish strategies in order to

organize how SPMD tiles could be distributed on different

environment configuration with the aim of managing these

communications inefficiency. These variations are a limiting

factor to improve application performance, due to the latency

of the slower link, which determines when iteration has been

completed (Fig. 1).

To manage this communication issues, the tiles compris-

ing the problem of the analyzed SPMD application are

grouped in a number of SuperTile (ST). Each ST will be

assigned to one processing element, and each processing

element will only process one ST (in each iteration). The

problem of finding the optimal ST size is formulated as an

analytical problem, in which the ratio between computation

and communication of the tile has to be founded with the

objective of searching the relationship between efficiency

and speedup [10]. The improvement in the execution time

can allow us to minimize one of the influencing factor in

energy (time). Then, the ST has been defined as a group of

tiles in the form of a grid of KxK tiles, which have to be

assigned to each core with the aim of maintaining an ideal

Fig. 2: Supertile creation for improving the efficiency
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Fig. 3: Impact of CPU frequency changes in the execution

time of tiles

relationship between efficiency and speedup.

The ST is composed by two type of tiles: internal and

edge tiles. This is done with the objective of creating

an overlapping strategy that minimize the communication

effects in the execution time, an example can be evidenced in

figure 2, where the ST is composed of a set of tiles that hide

all the communication effects by overlapping computation

and communication. However, the computation time of the

ST can present alterations at different CPU frequencies. In

this sense, the figure 3 shows evidence of how tiles have a

huge variation when we modify the CPU frequency in all

scenarios with real and virtualized machine. Thus, the tile

computation is another variable that we have to consider

inside the analitical model.

3. Methodology for predicting energy

consumption
This methodology is focused on managing the different

communication latencies and bandwidths with the objective

of finding a trade-offs between time and energy-efficiency

for SPMD applications on virtualized environments. This

process is realized through four phases: a characterization, a

tile distribution model, a mapping strategy and a scheduling

policy. These phases allow us to handle the latencies and

the imbalances created due to the different communication

paths. Also, these phases permit us to predict the execution

time, energy consumption and the ideal processing elements

used to execute the appplication with minimum EDP on a

real or virtualized machine. The method works by managing

the hierarchical communication architecture of both real and

virtualized environments.

To begin the analysis we have to consider that energy

depends on two main factors: power and time. For this

reason, our method analyzes diverse characteristics of the

application and environment in both power and time. Then, a

set of variables are collected to our analytical model in order

to obtain the prediction for both execution time and energy

consumption in the tile distribution phase. Next, the mapping

phase allocates the set of tiles (ST) among the cores, which

are calculated with the model defined in the tile distribution

Fig. 4: Power Analysis of ST execution

phase. Finally, the scheduling phase has two functions, one

of them is to assign tile priorities and the other is to control

the overlapping process. Later, once the methodology is

shown, we evaluate the obtained performance results.

3.1 Characterization Phase

The objective of this phase is to gather the necessary pa-

rameters of both SPMD application and environment. These

characterization parameters are classified in two groups:

power and application analysis.

Power Analysis: To characterize the power, we have to

divide the SPMD application in phases with the aim of

obtaining a precise measure of the events that are included

in the execution.

(a) Real Machine

(b) One virtual machine per core

Fig. 5: Power Analysis

An example of this division is shown in figure 4, where

the application has been divided in three parts. The firsts

one represent the edge computation, follow the phase 2

include the overlapping area where is executed the internal
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computation and the communications, and the last phase 3

is responsible of measure when communication is longer

than internal computation. The knowledge of per phase

power rather than an average application power allows us

to improve the model accuracy.

Two examples of this characterization are illustrated in

figures 5(a) and 5(b), where has been analyzed a heat transfer

application for both real and virtualized environment. As can

be evidenced, the phases have variations depending on the

environment used. For example, the phase 2 of the virtual-

ized environment has an power increment of around 10%

over the other phases (Fig. 5(b)) while in real environment

(Fig. 5(a)) this effect does not occur. This could be motivated

by the virtualized communication effects.

(a) Real Machine

(b) One virtual machine per core

Fig. 6: Power Regression Analysis

Also, we can observe how is the increment in power

(and execution time) when we increase the CPU frequencies.

Power variations can modify the energy consumption for a

specific scenario. So, we have to find the power equation for

an specific application in function of frequency. Then, once

the phases are characterized, we have to apply a regression

analysis with the objective of finding the equation that

represents the power in function of CPU frequency.

The figures 6(a) and 6(b) illustrate the power behavior

for the different frequencies. Also, we apply an polynomial

regression and we obtain a polynomial of degree 2 where the

error is less than 0,01% for the worst case. All these equation

obtain using the regression will be used in the model for

predicting the energy consumption.

Application analysis: The main idea of this analysis is

to find a nearest relationship between the machine and the

SPMD application. The parameters determined allow us to

establish the communication and computational ratio time of

a tile inside of the hierarchical communication architecture

of real and virtualized environment. This relationship will

be defined as λ(p)(w), where p determine the link where

the communication of one tile to another neighboring tile

has been performed and w describes the direction of the

communication processes (e.g. up, right, left or down in

a four communications pattern). This ratio is calculated

with equation 1, where CommT (p)(w) determines the time

of communicating a tile for a specific p link and the

Cptint(freq) is the value of computing one tile on a

processing element using a determined CPU frequency.

λ(p)(w) = CommT (p)(w)/Cptint(freq) (1)

However, as was observed in figure 3, the tile computation

time is affected due to CPU frequencies. So, if we decrease

the CPU frequency, the tiles can need more time to be com-

puted and this affect the value of the ratio communication–

computation of all scenarios (real and virtualized).

(a) Real Machine

(b) One virtual machine per core

Fig. 7: Tile computation characterization
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Hence similarly to the power analysis, the internal and

edge tile computation time depend of CPU frequencies

(Cptint and Cptedge respectively). Thus, we have to apply

a regression analysis in order to find the equation in function

of the frequencies for both internal and edge tile behavior.

Figures 7(a) and 7(b) show the behavior of tiles computation

for both real and virtualized environments. In this case, the

potential regressions present the best fit to the tiles compu-

tation time (for each CPU frequency), whose equations are

shown inside the figures.

3.2 Tile Distribution Model Phase

The analytical model for predicting the energy delay

product (EDP) starts using the equation 2 with the objective

of determining the ideal scenario which finds the trade-off

between execution time Time(freq) and energy consump-

tion E(freq) under a frequency freq.

EDP = Time(freq) ∗ E(freq) (2)

The equation 3 defines Time(freq) that represents the

execution time of a SPMD application using the overlapping

strategy for a specific frequency freq. This equation first cal-

culate the edge tile computation time EdgeCpT and then we

add the maximum value between internal tile computation

time IntCpT and edge tile communication time CommT .

This process obtain the time used to compute each iteration

of the SPMD algorithm, and these values are added to get

the execution time for all iterations ite. A first approach of

this model can be found in [10].

Time(freq) =
∑

ite

i=1
(EdgCpT +Max

(
IntCpT

CommT

)
)

(3)

EdgCpT = (Kn
− (K − 2)n) ∗ Cptedge(freq) (4)

IntCpT = (K − 2)n ∗ Cptint(freq) (5)

CommT = K(n−1)
∗Max(CommT(p)(w)) (6)

From the foregoing, the next step is to find the value of K
that determines the ideal size of ST with Kn tiles, where n is

the application dimension (e.g 1, 2, 3, etc.). K is defined by

considering the overlapping strategy between internal com-

putation and edge communication such that CPU efficiency

will be maintained over a threshold effic. The equation

7 shows how both values, internal computation time and

edge communication time, can be equalized with the aim of

finding the value of K. Using the equation 1 we can equalize

the equation 7 in function of Cptint(freq). Having both

internal computation time and edge communication time in

function of Cptint(freq), the next step is to find the value

of K by replacing all the values in equation 7. Depending

on the dimension of the SPMD application, we can obtain

an cuadratic equation, cubic equation, etc.

K(freq)(n−1)
∗max(λ(p)(w) ∗ Cptint(freq)) =

((K(freq)− 2)n/effic) ∗ Cptint(freq)
(7)

At this point we have calculated the ideal value of

K(freq) that allow us to obtain the minimum execution time

Time(freq) while the CPU efficiency is maintained over

the threshold effic. The next step is to predict the energy

consumption of whole system E(freq), defined in equation

8. E(freq) is the sum of the energy consumption produced

by the execution of each iteration iter of the application. The

energy consumption of an iteration is calculated from the

energy consumption produced by a core when executes (part

of) the application EC(freq), multiplied by the number of

cores Ncores(freq) used to the execution.

E(freq) =
∑

ite

i=1
(EC(freq) ∗Ncores(freq)) (8)

Equation 9 represents a simple manner to calculate the

ideal number of cores Ncores(freq), where the problem

size (Mn) is divided by the size of the ideal ST (Kn).

Ncores(freq) = Mn/Kn (9)

The energy consumption by core can be calculated using

the equation 11, considering the average power of each phase

(1 to 3 in our case of study) and the time that the application

spent in the phases. As the average power of each phase

was obtained (in the characterization phase) for the entire

computing node, we define Pw(i)(freq) in equation 10 (i
identifies the phase) to calculate the power demanded by

only one core. So, this new equation divide the power of the

entire node between the number of cores CoresByNode.

Pw(i)(freq) = Phase(i)(freq)/CoresByNode (10)

EC(freq) = Pw(1)(freq) ∗ EdgCpT +

if(IntCpT <= CommT )

Pw(2) ∗ IntCpT + Pw(3) ∗ (CommT − IntCpT )

else

Pw(2) ∗ CommT + Pw(1) ∗ (IntCpT − CommT )
(11)

The energy consumption by core (eq. 11) considers all the

power phases analyzed in the characterization phase, where

the first step is evaluate the energy consumed by the edge

computation (phase 1) and then next step is analyze the

overlapping strategy between internal computation (eq. 4)

and edge communication (eq. 6). However, the overlapping

can present two scenarios. The first is when the internal

computation is lower than or equal to edge communication.

In this case, we add to the edge computation the energy

consumpion of the part where the communication is over-

lapped with computation of internal tiles (phase 2), and then

we add the energy consumption of the remaining commu-

nication that occur without internal computation (phase 3).
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The second scenario is when the internal computation is

longer than edge communication. In this case, the energy

consumption correspond to the part where computation of

internal tiles overlaps with edge communication (phase 2)

and the part with computation of internal tiles and without

communication (equivalent to phase 1).

3.3 Mapping phase

The main purpose of this phase is to apply a distribution

of STs in cores. The ST assignations are made applying a

core affinity which allocates the set of tiles according to the

policy of minimizing the communications delays. This core

affinity permits us to identify where the processes have to be

allocated and how STs are assigned to each core. However,

the ST assignations should maintain the initial considered

allocation used in the characterization phase.

This phase is divided in three key points. The first

point performs a logical processes distribution of the MPI

processes. The second function is to apply the core affinity,

and the last one is the division and distribution of the STs.

The mapping has to divide the tiles in order to create the ST

considering the value of K obtained by the analytical model.

It is important to understand that an incorrect distribution of

the tiles can generate different application behaviors.

3.4 Scheduling phase

The main function of the scheduling phase is to assign

a execution priority assignment to each tile with the aim of

applying the overlapping strategy. The scheduling establishes

the highest priority to the computation of tiles which have

communications through slower paths, and slower priority

to internal tile computation. This phase performs an over-

lapping strategy, which is the main key of our method.

4. Experimental Validation
To validate our method we have used a DELL node

with a Intel Xeon Processor W3670 3.2 GHz, 24 GB of

main memory and 12 MB of cache memory. This machine

has 13 frequencies available from 3.19 Ghz to 1.59 GHZ.

We use the KVM virtualization environment and the MPI

library Open MPI version 1.6.4. The scenarios defined to

test our method are: (A) real machine in which we execute

the application without using any virtualization, (B) one

virtual machine that uses all computing cores (e.g. X-large

instance in Amazon EC2 or BonFIRE cloud) and (C) a

virtual machine per core (e.g. an small instance in Amazon

EC2 or BonFIRE cloud). Furthermore, we have tested with

different SPMD application that accomplish the characteris-

tics defined before of (regular, local and static). Specifically

for this work, we have evaluated a heat transfer simulation

with the aim of showing the efficacy of our method for both

time and energy prediction.

The first step is to characterize the application in order

to obtain the ratio computation–communication (eq. 1),

where the regression analysis is used for the tile compu-

tation characterization as was observed in figures 7(a) and

7(b). Similarly the power is characterized using regression

analysis. Part of this characterization is illustrated in table

1, where we can observe the characterization values for

a frequency of 3,19 GHz. This process was done for all

frequencies and scenarios. Then, we proceed to apply the

analytical model. Table 2 summarize the analytical results

obtained using our model for a defined problem size of

500x500 tiles.

(a) Real Machine

(b) One virtual machine per core

Fig. 8: Energy and time prediction

These results show that lower energy consumption is

located for the scenarios (A) and (B) using a frequency

of 2.79 GHz. However, for scenario (C) the lower energy

consumption is at 3,19 GHz. These results are also evidenced

in figures 8(a) and 8(b), where we compare practical and

analytical results. The error rate is around 4% for first (A)

scenario (fig. 8(a)) and 9% for the worst case using one

virtual machine per core (fig. 8(b)). The results evidence

that using the same program with the same workload, the fre-

quency must be changed depending on the scenario executed

(real or virtualized). Also, the results show the effectiveness

of the prediction for different available frequencies.

Table 1: Characterization at a frequency of 3,19 GHz

Scenario Cptint CommT ratio Power Av

A 1.5E − 8Sec 3.18E − 6Sec 211 235.20 W

B 2.05E − 8Sec 3.6E − 6Sec 243 235.29 W

C 2.22E − 8Sec 6.75E − 6Sec 304 238.03 W
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Table 2: Analytical values for different frequencies

Scenario Freq Time(Sec) Energy(Joules) EDP

A 3.19Ghz 38.8 9145.9 3.56E+5

A 2.79Ghz 42.1 8954.3 3.77E+5

A 1.59Ghz 73.5 12338.3 9.08E+5

B 3.19Ghz 42.8 10086.0 4.32E+5

B 2.79Ghz 44.8 9488.3 4.33E+5

B 1.59Ghz 74.1 12460.6 9.24E+5

C 3.19Ghz 45.2 10775.7 4.88E+5

C 2.79Ghz 51.8 11139.3 5.77E+5

C 1.59Ghz 91.4 15217.9 1.39E+6

Fig. 9: EDP analysis

To analyze the EDP metric, we have to consider that time

has more influence than energy (eq. 2). In this sense, we have

evaluated the three scenarios and the results are illustrated

in figure 9. As can be shown in figure 9, the minimum

EDP value for the three scenarios and available frequencies

are located in the highest frequency of 3.19 GHz. These

values can vary depending on the machine architecture and

the values obtained in the characterization phase.

Finally, figure 10 shows the overhead added by the virtu-

alization. As can be detailed, the overhead added depends on

the environment configuration. For example, when we set up

a virtual machine using a set of cores, the overhead is lower

than 2%, and when we use one virtual machine per core the

overhead is around 30% for all available frequencies.

5. Conclusion

This paper has presented a novel methodology based

on characterization, tile distribution model, mapping and

scheduling. These phases allow us to find through an an-

alytical model the optimal size of the SuperTile (group of

tiles asigned to each cores) and the number of processing

elements needed in order to find the minimum energy

delay product. Also, our model allows us to predict the

energy consumption and the minimum execution time for

an SPMD application. This model is focused on managing

the hierarchical communication architecture in order to hide

the communication effects as was evidenced.

Experimental evaluation makes clear that to achieve the

best scenario for reducing the energy consumption in SPMD

applications, we have to manage properly the inefficiencies

generated by communications. Thus, our method evaluates

the environment through the characterization phase in order

Fig. 10: Overhead of the virtualization

to apply with real values of the architecture. The model can

predict with a good level of accuracy the energy consumption

and execution time as was shown by the experimental

results (less than 9% for a virtualized environment and

lower than 4% for real machine). The mapping distribute

the set of tiles for each core according to the different

communication delays present in the machine architecture,

and the scheduling allows us to perform the overlapping

method. Finally, finding a trade-off between execution time

and energy consumption allow us to improve the manner of

administering the virtualized environments.
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