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ABSTRACT

This paper presents a collection of finite element
procedures to model seismic wave propagation
at the macroscale taking into account the ef-
fects caused by heterogeneities occuring at the
mesoscale. For this purpose we first apply a
set of compressibility and shear experiments to
representative samples of the heterogeneous fluid
saturated material. In turn these experiments
yield the effective coefficients of an anisotropic
macroscopic medium employed for numerical sim-
ulations at the macroscale. Numerical experi-
ments illustrate the implementation of the pro-
posed methodology to model wave propagation at
the macroscale in a patchy brine-CO2 saturated
porous medium containing a dense set of parallel
fractures.

Keywords: poroelasticity, anisotropy, fractures,
finite elements, numerical upscaling.

1. INTRODUCTION

Seismic wave propagation is a common technique
used in hydrocarbon exploration geophysics, min-
ing and reservoir characterization and produc-
tion. The subsurface rocks can be considered as
fluid-saturated poroviscoelastic media where local
variations in the fluid and solid matrix properties,
fine layering, fractures and craks at the mesoscale
(on the order of centimeters) cause attenuation,
dispersion and anisotropy of the seismic waves
observed at the macroscale. These effects take
place due to the balance of wave-induced fluid
pressure gradients via a slow-wave diffusion pro-
cess [1, 2, 3, 4].
To properly represent these type of mesoscopic-
scale heterogeneities it would be necessary to use

extremely fine meshes with the numerical simula-
tions becoming very expensive or even not feasi-
ble. As an approach to solve this problem we sug-
gest to perform numerical upscaling procedures
to determine the complex and frequency depen-
dent stiffness at the macroscale of an equivalent
viscoelastic medium including the mesoscopic-
scale effects. White et al. [5] and Saenger et
al. [6] introduced the mesoscopic-loss mechanism
in the framework of Biot theory. For fine lay-
ered poroelastic materials, the theories of Gelin-
sky and Shapiro [7] and Krzikalla and Müller [8]
allow to obtain the stiffnesses of the equivalent
anisotropic medium. In the case of determining
equivalent effective media for fractured rocks, the
works of Grechka and Kachanov [9, 10] can be
referenced among others.

In this paper we present a numerical procedure
to model mesoscopic effects in saturated porous
media affecting the seismic observations at the
macroscale.

First we employ a numerical upscaling procedure
to obtain the five complex stiffnesses of an ef-
fective transversely isotropic medium with ver-
tical axis of symmetry (VTI). The experiments
describe the case of a dense set of horizontal frac-
tures in a fluid-saturated poroelastic medium that
behaves as a VTI medium when the average frac-
ture distance is much smaller than the predom-
inant wavelength of the traveling waves. These
numerical experiments offer a alternative to lab-
oratory measurements with the advantages that
they are inexpensive, repeatable and essentially
free from experimental errors. In addition, they
may easily be run using alternative models of the
rock and fluid properties and the physical process
of wave propagation can be inspected during the
experiment.
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We use the Finite Element Method (FEM) to
solve Biot equation of motion in the space-
frequency domain with boundary conditions rep-
resenting compressibility and shear harmonic ex-
periments. A similar methodology had been ap-
plied in [11, 12, 13] to layered viscoelastic and
poroelastic materials. Second a parallelizable it-
erative domain decomposition FEM is employed
to describe wave propagation at the macroscale.
The organization of the paper is as follows. Sec-
tion 2 describes the suitable differential model to
represent mesoscopic effects using theory of Biot.
Section 3 presents the different harmonic experi-
ments to determine the stiffness coefficients, while
Section 4 shows numerical simulations that illus-
trate frequency and angular variations of veloc-
ity and attenuation of seismic waves in patchy
brine-CO2 saturated horizontally fractured sam-
ples. Section 5 presents the results of the seis-
mic modeling in the macroscale obtained using a
parallelizable procedure based in a nonconform-
ing FE space. Finally, Section 6 provides some
conclusions.

2. EQUATIONS OF BIOT AND

EQUIVALENT MEDIUM

We consider fine isotropic fluid-saturated poroe-
lastic layers. Let u = (us(x), uf (x)) be the time
Fourier transform of the displacement vector of
the solid and fluid relative to the solid frame,
respectively. Also let σkl(u), pf (u) denote the
Fourier transform of the total stress and the fluid
pressure, respectively.
On each plane layer n in a sequence of N layers,
the frequency-domain stress-strain relations are

σkl(u) = 2µ εkl(u
s) + δkl

(
λ

G
∇ · us + αM∇ · uf

)
,

pf (u) = −αM∇ · us −M∇ · uf .

being µ the shear modulus of the material and
εkl(u

s) the strain tensor of the solid. In addition,
λ

G
= KG − 2µ/3, where KG is the bulk modu-

lus of the saturated material, the effective stress
coefficient is α = 1 − Km/Ks with Km and Ks

denote the bulk modulus of the dry matrix and
the solid grains composing the solid matrix, re-
spectively. Also, the coefficient M is determined
from the relation

M =
KsKf

Kf (α− φ) +Ksφ
,

where Kf is the bulk modulus of the saturant
fluid and φ is the porosity. See [4].
In the diffusive range of frequencies the Biot’s
equations are

∇ · σ(u) = 0,

iω
η

κ
uf (x, ω) +∇pf (u) = 0,

where ω is the angular frequency, η the fluid vis-
cosity and κ the frame permeability.
As the considered medium behaves as a VTI
medium, let τij denotes the stress tensor of
this equivalent medium at the macroscale. The
corresponding stress-strain relations, stated in
the space-frequency domain, for a closed system
where the variation of fluid content is zero, i.e.
∇ · uf = 0, are:

τ11(u) = p11 ǫ11(u
s) + p12 ǫ22(u

s) + p13 ǫ33(u
s),

τ22(u) = p12 ǫ11(u
s) + p11 ǫ22(u

s) + p13 ǫ33(u
s),

τ33(u) = p13 ǫ11(u
s) + p13 ǫ22(u

s) + p33 ǫ33(u
s),

τ23(u) = 2 p55 ǫ23(u
s),

τ13(u) = 2 p55 ǫ13(u
s),

τ12(u) = 2 p66 ǫ12(u
s).

This approach provides the complex velocities of
the fast modes and takes into account interlayer
flow effects.

3. HARMONIC EXPERIMENTS

To determine the complex stiffness coefficients we
solve a set of boundary value problems (BVPs) for
the Biot’s equation in the frequency-domain us-
ing the FEM. This procedure was presented and
validated in [13].
For the 2D case, on a reference square Ω = (0, L)2

with boundary Γ in the (x1, x3)-plane. We stand
for Γ = ΓL ∪ ΓB ∪ ΓR ∪ ΓT , where

ΓL = {(x1, x3) ∈ Γ : x1 = 0},

ΓR = {(x1, x3) ∈ Γ : x1 = L},

ΓB = {(x1, x3) ∈ Γ : x3 = 0},

ΓT = {(x1, x3) ∈ Γ : x3 = L}.

The sample is subjected to harmonic compress-
ibility and shear tests described by the following
sets of boundary conditions (BCs).

p33(ω):

The BCs are:

σ(u)ν · ν = −∆P, (x1, x3) ∈ ΓT ,

σ(u)ν · χ = 0, (x1, x3) ∈ Γ,

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓR ∪ ΓB ,

uf · ν = 0, (x1, x3) ∈ Γ,

where ν is the unit outer normal on Γ and χ is a
unit tangent on Γ so that {ν, χ} is an orthonormal
system on Γ.
Denote by V the original volume of the sample
and by ∆V (ω) its (complex) oscillatory volume
change. In the quasistatic case,

∆V (ω)

V
= −

∆P

p33(ω)
.
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Then after computing the average us,T3 (ω) of the
vertical displacements on ΓT , we approximate

∆V (ω) ≈ Lus,T3 (ω)

which enable us to compute p33(ω).

p11(ω):

To determine p11(ω) we solve an identical bound-
ary value problem than for p33 but for a 90o ro-
tated sample.

p55(ω):

The BCs are:

−σ(u)ν = g, (x1, x3) ∈ ΓT ∪ ΓL ∪ ΓR,

us = 0, (x1, x3) ∈ ΓB ,

uf · ν = 0, (x1, x3) ∈ Γ,

where

g =






(0,∆G), (x1, x3) ∈ ΓL,

(0,−∆G), (x1, x3) ∈ ΓR,

(−∆G, 0), (x1, x3) ∈ ΓT .

The change in shape suffered by the sample is

tan[θ(ω)] =
∆G

p55(ω)
,

where θ(ω) is the angle between the original posi-
tions of the lateral boundaries and the location af-
ter applying the shear stresses. Since tan[θ(ω)] ≈

us,T1 (ω)/L, where us,T1 (ω) is the average horizon-
tal displacement at ΓT , p55(ω) can be determined.

p66(ω):

To determine p66(ω) (shear waves traveling in the
(x1, x2)-plane), we rotate the layered sample 90o

and apply the shear test as indicated for p55(ω).

p13(ω):

The BCs are:

σ(u)ν · ν = −∆P, (x1, x3) ∈ ΓR ∪ ΓT ,

σ(u)ν · χ = 0, (x1, x3) ∈ Γ,

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓB ,

uf · ν = 0, (x1, x3) ∈ Γ.

In this experiment ǫ22 = ∇ · uf = 0, so that

τ11 = p11ǫ11 + p13ǫ33, τ33 = p13ǫ11 + p33ǫ33,

where ǫ11, ǫ33 are the strain components at the
right lateral side and top side of the sample, re-
spectively. Then, since in this experiment

τ11 = τ33 = −∆P,

p13(ω) = (p11ǫ11 − p33ǫ33) / (ǫ11 − ǫ33) .

4. NUMERICAL RESULTS AT THE

MESOSCALE

In order to illustrate the procedure we consider
a brine-CO2 patchy saturated material with frac-
tures. We choose our representative sample at
the mesoscale as a square of 160 cm side length
with 10 periods of 1 cm fracture, 15 cm back-
ground. This sample is characterized by a poros-
ity φ = 0.25 in the background and φ = 0.5 in the
fractures. The grain density is ρs = 2650 kg/m3,
while Ks = 37 GPa and µs =44 GPa are the
bulk and shear moduli, respectively. Using the
Krief model [14] we obtain Km = 1.17 GPa and
µ = 1.4 GPa for the dry bulk and shear modu-
lus of the background and Km = 0.58 GPa and
µ = 0.68 GPa for the fractures. Permeability
is obtained as κ = r2

g
φ3/(45 − 45φ)2 [15], where

rg=20 µm is the average radius of the grains. The
discrete boundary value problems to determine
the complex stiffnesses pIJ(ω) at the macroscale
are solved for 30 frequencies using a public do-
main sparse matrix solver package.
Using relations given in [4] it is possible to deter-
mine the energy velocities and dissipation coeffi-
cients from the pIJ(ω). The complex velocities of
the equivalent VTI anisotropic medium are [4]

vqP = (2ρ̄)−1/2

√
p11l21 + p33l23 + p55 +A,

vqSV = (2ρ̄)−1/2

√
p11l21 + p33l23 + p55 −A,

A =
√

[(p11 − p55)l21 + (p55 − p33)l23]
2 + 4[(p13 + p55)l1l3]2,

where ρ̄ = 〈ρ〉 is the thickness weighted average
of the bulk density, l1 = sin θ and l3 = cos θ are
the directions cosines, θ is the propagation an-
gle between the wavenumber vector and the x3-
symmetry axis and the two velocities correspond
to the qP and qSV waves, respectively. The seis-
mic phase velocity and quality factors are given
by

vp =

[
Re

(
1

v

)]
−1

and Q =
Re(v2)

Im(v2)
,

where v represents either vqP or vqSV.
The energy-velocity vector ve of the qP and qSV
waves is

ve

vp
= (l1 + l3 cotψ)

−1ê1 + (l1 tanψ + l3)
−1ê3,

with ψ being the angle between the energy-
velocity vector and the x3-axis.
Figures 1, 2 display polar representations of
the qP and qSV energy velocity vectors at 50
Hz, respectively, where it can be observed the
anisotropy induced by fractures. Figure 3 shows
the dissipation factor of the qP waves at 50 Hz,
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Figure 1: Polar representation of the qP energy
velocity vector at 50 Hz

where it is seen that energy losses are much higher
for angles between 60 and 90 degrees, i.e., for
waves traveling in the direction incident normal
to the fracture layering. Notice that for qP waves
dissipation anisotropy is much important than ve-
locity anisotropy.
Figure 4 shows the fluid pressure distribution at
50 Hz for compressions normal to the fracture lay-
ering (p33 experiment), where it can be observed
that pressure gradients take their highest values
at the fractures.

5. NUMERICAL RESULTS AT THE

MACROSCALE

We solve the following boundary value problem at
the macroscale (in the domain Ω and boundary
∂Ω):

−ω2ρu−∇ · τ(u) = F, Ω

−τ(u)ν = iωDu, ∂Ω,

(absorbing bounday condition, D > 0)

where u = (ux, uz) represents the displacement
vector, ρ denotes the average density and τ(u)
is the stress-tensor of our equivalent viscoelas-
tic material, defined in terms of the calculated
p′
IJ
s in the previous section using the upscaling

procedure. Instead of solving the global prob-
lem associated with the above model, we ob-
tain the solution using an iterative paralleliz-
able hybridized domain decomposition procedure
employing a nonconforming FE space. One of
the main advantages of using nonconforming el-
ements to solve wave propagation phenomena is
that the amount of information exchanged among
processors in a domain decomposition iterative

  1.0

  2.0

  3.0

  4.0

30

60

90

0

qSV Waves

Vex (km/s)

V
e

z
 (

k
m

/s
)

Patchy saturated medium with fractures

1.0 2.0 3.0 4.0

Figure 2: Polar representation of the qSV energy
velocity vector at 50 Hz
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factor for qP waves at 50 Hz
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Figure 4: Fluid pressure distribution at 50 Hz for
the compressibility test for p33 with compression
normal to the fracture layering.

procedure is considerable reduced as compared
to the case when conforming elements are em-
ployed [16]. Another property of the nonconform-
ing elements is that it is possible to obtain an
estimate on the speed of convergence of the iter-
ative domain decomposition procedure as a func-
tion of the mesh size h [17]. Moreover, it was
shown in [18] that employing this nonconforming
FE space allows to almost halves the number of
points per wavelength necessary to reach a given
accuracy as compared with conforming elements
of the same degree of accuracy. The scalability of
the algorithm was verified in [19]. Therefore, the
algorithm is specially suited to solve large scale
geophysical problems.
The computational model consists of a VTI ho-
mogeneous square medium and the source is a
dilatational perturbation of central frequency at
30 Hz, located at the center of the domain. The
mesh consists of 280 square cells having side
length 3.57 m.
Figure 5 shows a snapshot of the vertical com-
ponent of the displacement at 100 ms where the
wavefront associated with the qP wave (fastest
wavefront) and qSV wave (slowest wavefront) are
clearly observed. The curvature of the wavefronts
are a measure of the degree of the anisotropy of
the medium.

6. CONCLUSIONS

This paper presents a methodology to model seis-
mic wave propagation in highly heterogeneous
fluid saturated porous materials. The examples
demonstrate the capability of the upscaling finite
element experiments performed at the mesoscale
to determine the anisotropic coefficients in the
constitutive relations of an equivalent viscoelas-
tic medium at the macroscale. In particular we
have shown that the presence of fractures in-

0 50 100 150 200 250

0

50

100

150

200

250

Figure 5: Snapshot of the vertical displacement
at 100 ms.

duces strong velocity and attenuation anisotropy
that can be observed at the macroscale. Finally,
we stand out the techniques presented here to
model acoustics of porous media can be extended
to other fields, like ultrasound testing of qual-
ity of foods, groundwater flow and contamination
among others.
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Schamalholz, B. Gurevich, S.A. Shapiro
“Finite-difference modeling of wave propaga-
tion on microscale: A snapshot of the work

JCS&T Vol. 13 No. 3                                                                                                                                December 2013

141



in progress”, Geophysics, Vol. 72, 2007, pp.
SM293-SM300.

[7] S. Gelinsky, S.A. Shapiro “Poroelastic
Backus-averaging for anisotropic, layered
fluid and gas saturated sediments”, Geo-

physics, Vol. 62, 1997, pp. 1867-1878.

[8] F. Krzikalla, T. Müller “Anisotropic P-SV-
wave dispersion and attenuation due to in-
terlayer flow in thinly layered porous rocks”,
Geophysics, Vol. 76, 2011, pp. W-135.

[9] V. Grechka, M. Kachanov “Effective elastic-
ity of rocks with closely spaced and inter-
secting cracks”, Geophysics, Vol. 71, 2006,
pp. D85-D91.

[10] V. Grechka, M. Kachanov “Effective elastic-
ity of fractured rocks: A snapshot of the
work in progress”, Geophysics, Vol. 71, 2006,
pp. W45-W58.

[11] S. Picotti, J.M. Carcione, J. Santos, D. Gei
“Q-anisotropy in finely-layered media”, Geo-

phys. Res. Lett., Vol. 37, 2010, pp. L06302.

[12] J. Santos, J.M. Carcione, S. Picotti
“Viscoelastic-stiffness tensor of anisotropic
media from oscillatory numerical experi-
ments”, Comput. Methods Appl. Mech. En-

grg., Vol. 200, 2011, pp. 896-904.

[13] J.M. Carcione, J. Santos, S. Picotti
“Anisotropic poroelasticity and wave-
induced fluid flow. Harmonic finite-element
simulations”, Geophysics Journal Interna-

tional , Vol. 186, 2011, pp. 1245-1254.

[14] M. Krief, J. Garat, J. Stellingwerff, J. Ven-
tre “A petrophysical interpretation using the
velocities of P and S waves (full waveform
sonic)”, The Log Analyst , Vol. 31, 1990, pp.
355-369.

[15] J.M. Carcione, B. Gurevich, F. Cavallini
“A generalized Biot-Gassmann model for the
acoustic properties of shaley sandstones”,
Geophys. Prosp., Vol. 48, 2000, pp. 539-557.

[16] P. Gauzellino, J. Santos “Frequency do-
main wave propagation modeling in explo-
ration seismology”, Journal of Computa-

tional Acoustics, Vol. 9, 2001, pp. 941-955.

[17] T. Ha, J. Santos, D. Sheen “Nonconforming
finite element methods for the simulation of
waves in viscoelastic solids”, Comput. Meth-

ods Appl. Mech. Engrg , Vol. 191, 2002, pp.
5647-5670.

[18] F. Zyserman, P. Gauzellino, J. Santos “Dis-
persion analysis of a nonconforming finite el-
ement method for the Hemholtz and elasto-
dynamic equations”, International Journal

for Numerical Methods in Engineering , Vol.
58, 2003, pp. 1381-1395.

[19] P. Gauzellino, F. Zyserman, J. Santos “Non-
conforming finite element methods for the
three-dimensional Helmholtz equation: iter-
ative domain decomposition or global solu-
tion ?”, Journal of Computational Acoustics,
Vol. 17, 2009, pp. 159-174.

JCS&T Vol. 13 No. 3                                                                                                                                December 2013

142


