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ABSTRACT 
Most robotic systems tend to be complex to maintain and 

reuse because existing frameworks are based mainly on 

code-driven approaches. This means the software 

development process is reduced to the implementation of 

systems using specific programming languages. During 

the constant evolution, the systems grow in size and in 

complexity. Even when these approaches address the 

needs of robotic focused markets, currently used 

methodologies and toolsets fail to cope with the needs of 

such complex software development process. The general 

objective of our work is the definition of a methodological 

framework supported by a set of tools to deal with the 

requirements of the robotic software development process. 

A major challenge is to make the step from code-driven to 

model-driven in the development of robotic software 

systems. Separating robotics knowledge from short-cycled 

implementation technologies is essential to foster reuse 

and maintenance.  

 
Keywords: robotic software system, software 

development process, software engineering, model driven 

development 

1. INTRODUCTION 

Robotics systems are essentially real-time, distributed 

embedded systems. They have special needs often related 

with their real time nature and environmental properties. 

Additionally, this special kind of systems needs more 

quality than a general purpose system and it has to be able 

to cope with the uncertain and dynamic physical 

environment where they are immerse. Attributes like 

reliability and safety are a strong requirement in this 

domain.  

Furthermore, robotic systems consist of different 

hardware components and different sensors which results 

in very complex and highly variable system architecture. 

Often, control and communication paths within the system 

are tightly coupled to the actual physical configuration of 

the robot. As a consequence, these robots can only be 

assembled, configured, and programmed by experts.  

Traditional approaches, based on mainly coding the 

applications without using modeling techniques, are used 

in the development process of these software systems. 

Even when the applications are running and being used in 

the different robotic systems, we identify several 

problems. Among them, it is worth mentioning that there 

is no clear documentation of design decisions taken during 

the coding phase, making the evolution and the 

maintenance of the systems difficult. When using specific 

programming languages, such Smalltalk in EToys (Gira, 

2013), or C in Microsoft RDS (Microsoft, 2009), we lose 

the possibility of generalizing concepts that could be 

extracted, reused and applied in different systems, 

avoiding to code them from scratch when they are needed. 

Thus, we observe that traditional development 

approaches are reaching their limits; currently used 

methodologies and toolsets fall short to address the needs 

of such complex systems. In this context, it is widely 

accepted that new approaches should be established to 

meet the needs of the development process of today’s 

complex Robotic systems. Component-based development 

(CBD) (Szyperski, 2002), Service Oriented Architecture 

(SOA) (Bell 2008 and 2010), as well as Model Driven 

software Engineering (MDE) (Stahl, 2006), (Pons et al., 

2010) and Domain-Specific Modeling (DSM) (Steven and 

Juha-Pekka, 2008) are among the key promising 

technologies in the Robotic systems domain.  

In our project, we investigate on the current use of 

those modern software engineering techniques to improve 

the development of robotic software systems and their 

actual automation level. Considering that existing systems 

are already coded, a major challenge is to make the step 

from code-driven to model-driven in the development of 

robotic software systems to extract the general and 

specific concepts of existing applications based on the 

different specific programming languages. Our objective 

is the definition of a methodological framework 

(composed of models and code) supported by a set of tools 

able to deal with the requirements of the robotic software 

development process and considering the existing 

implemented approaches. Robotic platforms must possess 

a highly dynamic adaptive capacity, accompanying the 

rate of development of such technologies and the specific 

features of each hardware platform. 

2. WORKING METHODOLOGY 

In this context, it is mandatory to work towards applying 

engineering principles to cope with the complexity of 

robotic software systems because we cannot expect 

significant growth with hand-crafted single-unit systems. 

On the other hand, interfaces and behavior of the robotic 

systems should be defined at a higher level of abstraction 
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so that they could be re-used with different technological 

platforms. Separating robotics knowledge from short-

cycled implementation technologies is essential to foster 

reuse and maintenance. Thus, applying existing software 

engineering technology, such as MDE, SOA and CBD, to 

building robotic software systems would save a great 

amount of time and effort while favor reusability of such 

systems.  Within this background, the specific outcomes of 

this project are: 

− Summarizing the existing evidence concerning the 
application of software engineering technologies such 

as SOA, MDE and CBD on the robotic systems 

development field;  

− Identifying gaps in current research in order to suggest 
areas for further investigation;  

− Providing a background in order to appropriately 
position new research activities; 

− Building on the application of modern techniques 
providing an advance in the field;  

− Defining an open methodology for the robotic 
development process. 

− Building tool support to the robotic software 

development process. Examples of these tools are: a 

domain specific modeling language equipped with 

graphical editors, code generation facilities, integration 

with web services, component definition editors, etc. 

− Providing technological and methodological tools with 
highly dynamic adaptive capacity to cope with the rate 

of development of robotics and the local differences of 

each hardware platform.  

− Performing a series of experiments to assess the 
effectiveness and feasibility of the proposal in the 

construction of complex robotic systems. 

3. EXISTING APPROACHES 

Although the complexity of robotic software is high, in 

most cases reuse is still restricted to the level of libraries. 

At the lowest level, a multitude of libraries have been 

created for robot systems to perform tasks like 

mathematical computations for kinematics, dynamics and 

machine vision, such as (Bruyninckx, 2001). Instead of 

composing systems out of building blocks with assured 

services, the overall software integration process for 

another robotic system often is still reimplementation of 

the glue logic to bring together the various libraries. Often, 

the kind of overall integration is completely driven by a 

certain middleware system and its capabilities. Obviously, 

this is not only expensive and wastes tremendous 

resources of highly skilled roboticists, but this also does 

not take advantage from a maturing process to enhance 

overall robustness.  We have faced this problem in our 

own practice. We have been programming educational 

robots for more than 10 years (GIRA, 2013) (CAETI, 

2013) and we have observed in the last years the 

emergence of robotic kits oriented to non-expert users that 

gave rise to the development of a significant number of 

educational projects using robots. Those projects apply 

robots at different education levels, from kindergarten 

through higher education, especially in areas of physics 

and technology. In this context, one of the problems we 

encountered is that the hardware of the robotic kits is 

constantly changing; in addition its use is not uniform 

across different regions and even education levels. 

Therefore, the technical interfaces of these robots should 

hide these differences so that teachers are not required to 

change their educational material over and over again. An 

example of these interfaces is “Physical EToys” (GIRA, 

2013) that proposes a standard teaching platform for 

programming robots, regardless of whether they are based 

on Arduino, Lego, or other technologies. 

From this perspective, it is widely accepted that new 

approaches should be established to meet the needs of the 

development process of today’s complex Robotic systems. 

Component-based development (CBD) (Szyperski, 2002), 

Service Oriented Architecture (SOA) (Bell 2008 and 

2010), as well as Model Driven software Engineering 

(MDE) (Stahl, 2006), (Pons et al., 2010)  and Domain-

Specific Modeling  (DSM) (Steven and Juha-Pekka, 2008) 

are among the key promising technologies in the Robotic 

systems  domain.  

In first place, the CBD paradigm states that application 

development should be achieved by linking independent 

parts, the components. Strict component interfaces based 

on predefined interaction patterns decouple the sphere of 

influence and thus partition the overall complexity. This 

results in loosely coupled components that interact via 

services with contracts. Components such as architectural 

units allow specifying very precisely, using the concept of 

port, both the services provided and the services required 

by a given component and defining a composition theory 

based on the notion of a connector.  Component 

technology offer high rates of reusability and ease of use, 

but little flexibility with regard to the implementation 

platform: most existing component are linked to C/ C++ 

and Linux (e.g. Microsoft robotics developer studio 

(Microsoft, 2009), EasyLab (Barner et al., 2008), 

Player/Stage project (Gerkey et al., 2001) ), although some 

achieve more independence, thanks to the use of some 

middleware (e.g. Smart Software Component model 

(smartSoft, 2013), Orocos (Bruyninckx, 2001) Orca 

(Brooks et al., 2005), CLARAty (Nesnas et al., 2003)).  

In second place, we need a way to define interfaces and 

behavior at a higher level of abstraction so that they could 

be used in systems with different platforms. This is what 

prompted the idea of abstract components, which would 

be independent of the implementation platform but could 

be translated into an executable software or hardware 

component. Thus, the migration from code-driven designs 

to a model-driven development is mandatory in robotic 

components to overcome the current problems.  A model-

based description is a suitable mean to express contracts at 

component interfaces and to apply tools to verify the 

overall behavior of composed systems and to 

automatically derive the executable software.  Instead of 

building tool support for each framework from scratch, 

one should now try to either express the needed models in 

standardized modeling languages like UML or any DSL, 

separating components from the underlying computer 

hardware. In the context of software engineering, the 

MDE and DSM approaches have emerged as a paradigm 

shift from code-centric software development to model-

based development. Such approaches promote the 

systematization and automation of the construction of 

software artifacts. Models are considered as first-class 

constructs in software development, and developers’ 

knowledge is encapsulated by means of model 
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transformations. The essential characteristic of MDE and 

DSM is that software development’s primary focus and 

work products are models. Its major advantage is that 

models can be expressed at different levels of abstraction 

and hence they are less bound to any underlying 

supporting technology.  This is especially relevant for 

software systems within the ubiquitous computing 

domain, which consist of dynamic, distributed applications 

and heterogeneous hardware platforms, such as robotic 

systems. 

Finally, SOA is a flexible set of design principles used 

during the phases of systems development and integration 

in computing. A system based on a SOA will package 

functionality as a suite of interoperable services that can 

be used within multiple, separate systems from several 

business domains. SOA also generally provides a way for 

consumers of services, such as web-based applications, to 

be aware of available SOA-based services. SOA defines 

how to integrate widely disparate applications for a Web-

based environment and uses multiple implementation 

platforms. Rather than defining an API, SOA defines the 

interface in terms of protocols and functionality.  Service-

orientation requires loose coupling of services with 

operating systems, and other technologies that underlie 

applications. SOA separates functions into distinct units, 

or services (Bell, 2008) which developers make accessible 

over a network in order to allow users to combine and 

reuse them in the production of applications. These 

services and their corresponding consumers communicate 

with each other by passing data in a well-defined, shared 

format (Bell, 2010). 

Summarizing, a growing tendency was identified 

regarding applying component-based development as well 

as service-based architecture and model-driven software 

development, although such techniques have mostly been 

applied in isolation. Some work (Basu et al., 2011; Biggs, 

2010; Brooks et al., 2005; Jawawi et al., 2008; Min Yang 

Jung et al., 2010) has taken advantage of CBD for 

developing robotic systems whilst other proposals 

(Amoretti et al., 2007; Cesetti et al., 2010; Ebenhofer et al, 

2013; Yang et al, 2013) have applied SOA to building 

robotic systems. Only preliminary proposals were found 

for applying model-driven development to robotics (Arney 

et al., 2010; Baer et al., 2007; Baumgartl et al, 2013; 

Brugali and Scandurra,2009; Brugali and 

Shakhimardanov, 2010; Dhouib et al., 2012; Hyun Seung 

Son et al., 2008; Iborra et al., 2009; Jorges et al., 2007; 

Jung et al., 2005; Poppa et al, 2012; Sanchez et al., 2010; 

Schlegel, 2012; Thomas et al, 2013; Wei et al., 2009) 

while only one work combined all three technologies (Tsai 

et al., 2008). 

4. MODELING AND AUTOMATIC 

CODE DERIVATION 

The MDD approach represents a paradigm where models 

of the system, at different levels of abstraction, are used to 

guide the entire development process. Models are 

implementation-independent and they are automatically 

transformed to executable code. The MDD process can be 

divided into three phases: the first phase builds a platform 

independent model (PIM), which is a high-level 

technology-independent model; then, the previous model 

is transformed into one or more platform specific models 

(PSM); these models are lower level and describe the 

system in accordance with a given deployment 

technology; finally, the source code is generated from 

each PSM. As said in section 1, most systems are coded 

without documentation or designed models. In this section 

we show how we could have MDD process for 

automatically deriving code from models expressed in a 

standard modeling language. 

For using the MDD approach we take advantage of 

standards defined by the Robotics Domain Task Force 

(RTF) (OMG, 2013) which promotes the integration of 

modular robotic systems components through the adoption 

of OMG standards. Currently, the OMG has released four 

specifications: Robotic Interaction Service (ROIs), 

Robotic Localization Service (RLS), Robotic Technology 

Component (RTC) and Dynamic Deployment and 

Configuration for Robotic Technology Component 

(DDC4RTC). Other specifications like Unified 

Component Model for Distributed, Real-time and 

Embedded Systems (UCM), Finite State Machine 

Component for RTC (FSM4RTC), Hardware Abstraction 

Layer for Robots, among others,  are in progress. 

The RTC defines a component model and certain 

important infrastructure services applicable to the domain 

of robotics software development. It includes a Platform-

Independent Model (PIM) expressed in UML and 

Platform-Specific Models (PSMs) expressed in OMG 

IDL. A RTC is a logical representation of a hardware 

and/or software entity that provides well-known 

functionality and services. By extending the general-

purpose component functionality of UML with direct 

support for domain-specific structural and behavioral 

design patterns, RTCs can serve as powerful building 

blocks in an RT system. Developers can combine RTCs 

from multiple vendors into a single application, allowing 

them to create more flexible designs more quickly than 

before.  Its goal is a greater compatibility and reusability 

amongst vendors of robot software, not just the software 

itself but also the tools.  It provides rich component 

lifecycle to enforce state coherency among components 

and defines data structures for describing components and 

other elements. It supports fundamental design patterns, 

such as Collaboration of fine-grained components tightly 

coupled in time, Stimulus- response with finite state 

machines, and Dynamic composition of components 

collaborating synchronously or asynchronously, among 

others.  

The Robotic Interaction Service (RoIS) Framework 

abstracts the hardware in the service robot (sensors and 

actuators) and the Human-Robot Interaction (HRI) 

functions provided by the robot. It provides a uniform 

interface between the service robot and the application. 

Using the RoIS Framework as a go-between, a service 

application selects and uses only necessary functions and 

leaves hardware-related matters, such as which sensor to 

use, to the HRI engine. 

Finally the DDC4RTC specification defines data 

models and service interfaces of deployment and 

configuration for RTC based dynamic applications as an 

extension to DEPL (OMG Deployment and Configuration 

of Component-based Distributed Applications 

Specification) specification. Generally speaking, since 

system structure and configuration are frequently affected 

by robot movement and application or scenario state, it is 

important to be able to represent and realize dynamic 
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component deployment and run-time re-configuration 

requirements.  

To illustrate our approach, we use a small example of a 

3-wheel robot to fight fires. This robot must move and 

navigate itself around an enclosed platform with random 

obstacles and must find fires (ie. lit candles). Once a flame 

is detected on one of the robots photo sensors, the robot 

begins navigating towards the flame to extinguish it. The 

robot is composed of two motors A and B, 3 ultrasonic 

ranging HC-SR04 modules (to enable the robot to 

determine its distance from any obstacle), 3 

phototransistors (phototransistors are most sensitive to 

infrared light, making them an appropriate choice for 

detecting a flame) and a fan (to extinguish the flame). 

To improve the efficiency of the robot in the fire 

extinction, the robot will interact with pre-existing 

systems. These systems are not part of the robot, but 

cooperate with it to fulfill its purpose. On one side we 

have fire detectors placed physically in the environment at 

strategic locations. These devices are available as external 

services and are accessed over the network. All of these 

services will be pooled to determine if there is a fire in 

progress. If so, the robot should navigate towards the 

flame and turn it off.   Each of these devices covers a 

monitoring zone. When the device indicates fire, the robot 

should ask the service map how to get to that area.  For 

this, the robot must provide the service map its own 

position, which it knows through the GPS. The map 

service will then return a path that the robot must follow to 

reach the destination. 

Thus, in our example we identify the following inner 

components: Robot, DistanceSensor,  MotionController, 

FireSensor, FunController and GPS; and the outer 

components: FireDetector and MapService. So it is worth 

distinguishing two models: the Component Model 

showing the internal components, and the Service Model 

describing the external components. Figure 1 shows the 

Component and the Service Models together. In our 

specific case, our service model is reduced to two 

components. In more complex platforms, we can have 

several services that can be modeled with their respective 

glue code to be connected to the implemented robots. 

Figure 2 presents a UML state machine describing the 

behavior of the robot. 

There are different ways we implement this Robot 

firefighter. Figure 3 shows the design of the system 

complying with the RT-Component specification. The 

interface LightweightRTObject defines a lifecycle 

standart. It defines the states and transitions through which 

all RTCs will pass from the time they are created until the 

time they are destroyed. The ComponentAction interface 

provides callbacks corresponding to the execution of the 

lifecycle operations of LightweightRTObject. An RTC 

developer may implement these callback operations in 

order to execute application-specific logic pointing 

response to those transitions. Figure 4 shows the behavior 

implementation of the robot. 

 If we need to represent our example in another 

platform, we must provide some code transformation from 

one platform to another one, or even build the application 

from scratch. But this process is expensive. Our proposal 

consists in building a PIM that allows abstracting the 

domain concepts and their functionalities using MDD and 

CBD. With the models we can then derive the code in any 

specific robotic language.  

 

 

 cmp components

MotionController
FunController

DistanceSensor
FireSensor

Robot

GPS

FireDetector Map

 

Figure 1. PIM of the robot firefighter: Component Model. 
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 stm state

Start

walk around & 
searching for fire

reaching fire 
position

nav igating towards 
the flame

fire extinguish

object av oidance

[fire detector alarm]

[fire detected]

[fire detected]

[fire detected]
[object detected]

[no object detected]

 

Figure 2. PIM of the robot firefighter: Behavioral Model. 

 

 

 class componentRTC

«lightweightRTComponent»
DistanceSensor

«lightweightRTComponent»
GPS

«lightweightRTComponent»
FireSensor

«lightweightRTComponent»
MotionController

«lightweightRTComponent»
FunController

«lightweightRTComponent»
Robot

«interface»
Lightweight RTC::ComponentAct ion

+ on_initialize() : ReturnCode_t
+ on_finalize() : ReturnCode_t
+ on_startup(ExecutionContextHandle_t) : ReturnCode_t
+ on_shutdown(ExecutionContextHandle_t) : ReturnCode_t
+ on_activate(ExecutionContextHandle_t) : ReturnCode_t
+ on_deactivate(ExecutionContextHandle_t) : ReturnCode_t
+ on_aborting(ExecutionContextHandle_t) : ReturnCode_t
+ on_error(ExecutionContextHandle_t) : ReturnCode_t
+ on_reset(ExecutionContextHandle_t) : ReturnCode_t

«interface»
Lightweight RTC::LightweightRTObject

+ initialize() : ReturnCode_t
+ finalize() : ReturnCode_t
+ is_alive(ExecutionContext) : boolean
+ exit() : ReturnCode_t
+ attach_context(ExecutionContext) : ExecutionContextHandle_t
+ detach_context(ExecutionContextHandle_t) : ReturnCode_t
+ get_context(ExecutionContextHandle_t) : ExecutionContext
+ get_context_handle(ExecutionContextHandle_t) : ExecutionContext

 

Figure 3. PSM of the Robot firefighter: Component´s implementation. 
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 class classDiagram

WalkAround

+ execute() : void

ReachingFirePosition

+ execute() : void

Nav igatingTowardsTheFlame

+ execute() : void

ObjectAvoidance

+ execute() : void

FireExtinguish

+ execute() : void

State

+ execute() : void

«lightweightRTComponent»
Robot

+ fireDetected() : boolean
+ fireDetectorAlarm() : boolean
+ objectDetected() : boolean
+ noObjectDetected() : boolean

 

Figure 4. PSM of the Robot firefighter: Behavior´s implementation. 

 

5. CONCLUSIONS 

Programming robots is a complicated and time-consuming 

task. Often, control and communication paths within the 

system are tightly coupled to the actual physical 

configuration of the robot. Traditional approaches, based 

on mainly coding the applications without using modeling 

techniques, are used in the development process of these 

software systems. Even when the applications are running 

and being used in the different robotic systems, we 

identify several problems. 

 Model-driven approaches further simplify the reuse of 

already implemented and tested modules by enabling 

developers to model their applications on a higher 

abstraction level incorporating existing modules, 

managing the complexity and facilitating the reusability of 

robot code. The contribution of our work consists in the 

development of the basis for a methodological framework 

supported with different tools for the construction of 

robotic software systems using mainly MDD. We 

observed that the CBD and SOA paradigms provide a 

starting point for a MDE approach in robotics where the 

differences between various software platforms and 

middleware systems can be completely hidden from the 

user due to the definition of intermediate abstraction level. 

We capture the fundamental concepts of the robotic 

software development process, its relationships and 

properties. This modeling approach includes concepts to 

represent services and components as primary elements in 

the robotic system in a higher level abstraction than the 

code itself. 

The proposed methodology has been prototyped and 

evaluated, and the results show that it can be used to build 

robotic systems successfully. At the moment, there is no 

proposal taking advantage of the combined application of 

CBD, SOA and MDE to robotic software system 

development as reviewed in (Pons et al., 2012). 
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