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ABSTRACT 

DNS64 and NAT64 IPv6 transition mechanisms are ex-

pected to play an important role in the near future to solve 

the problem that some of the new clients will not be able to 

get public IPv4 addresses and thus having only IPv6 ad-

dresses they still should be able to reach servers that have 

only IPv4 addresses. In our earlier experiments, the TOTD 

DNS64 implementation showed significantly better aver-

age performance than BIND, however TOTD was not sta-

ble, therefore now it was carefully tested to find the reason 

for its experienced strange behavior. Besides the detailed 

description of the testing method, the bug and the correc-

tion, a security vulnerability is disclosed and a patch is 

provided. The performance and the stability of the modi-

fied versions of TOTD are analyzed and compared to that 

of the original TOTD and BIND.  

Keywords: IPv6 deployment, IPv6 transition solutions, 

performance analysis, DNS64, TOTD, security, cache poi-

soning attack, random permutation 

1. INTRODUCTION 

The depletion of the global IPv4 Address Pool1 will be a 

driving force for the deployment of IPv6 in the forthcom-

ing years. The internet service providers (ISPs) can still 

supply the relatively small number of new Internet servers 

with IPv4 addresses from their own pool but the huge 

number of new clients can get IPv6 addresses only. How-

ever, the vast majority of the Internet sites still uses IPv4 

only. Thus from the many issues of the co-existence of 

IPv4 and IPv6, the communication of an IPv6 only client 

with an IPv4 only server is the first practical task to solve 

in the upcoming phase of the IPv6 deployment. The au-

thors believe that DNS64 [1] and NAT64 [2] are the best 

available techniques that make it possible for an IPv6 only 

client to communicate with an IPv4 only server. (The oper-

ation of DNS64 and NAT64 will be introduced in section 

2.) There are a number of implementations for both DNS64 

and NAT64. When a network operator decides to support 

DNS64 and NAT64, it can be a difficult task to choose the 

right implementations because there can be security, relia-

bility and performance issues. Several papers were pub-

lished in the topic of performance analysis of different 

DNS64 and NAT64 implementations. We have given a 

short survey of them in our previous paper about the per-

formance analysis and comparison of different DNS64 

implementations for Linux, OpenBSD and FreeBSD [3]. 

There we have pointed out that the average performance of 

TOTD was better than that of BIND but TOTD was not 

stable. We also concluded that TOTD deserves a thorough 

code review and a bugfix. We give an account of this work 

and its results in this paper. 

                                                                 
1IANA delegated the last five “/8” IPv4 address blocks to the five 
Regional Internet Registries in 2011 [4], of which APNIC has 

already depleted its IPv4 address pool in 2011 and RIPE NCC did 

so in 2012 [5]. It means that APNIC and RIPE NCC must use a 
more strict allocation policy for their very last /8 block. 

The remainder of this paper is organized as follows: first, 

the operation of the DNS64+NAT64 solution is described, 

second, TOTD is introduced, third, our way of debugging 

is presented including the description of the test network 

and the testing method and also the way the bug was found 

and eliminated, fourth, our modification for security en-

hancement is detailed, fifth, the performance and stability 

of the following four DNS64 implementations are evaluat-

ed: original TOTD, TOTD with bugfix, TOTD with bugfix 

plus security enhancement and BIND as a forwarder, and 

finally, our conclusions are given. 

2. THE OPERATION OF DNS64 AND NAT64 

To enable an IPv6 only client to connect to an IPv4 only 

server, one can use a DNS64 server and a NAT64 gateway. 

The DNS64 server should be set as the DNS server of the 

IPv6 only client. When the IPv6 only client tries to connect 

to any server, it sends a recursive query to the DNS64 serv-

er to find the IPv6 address of the given server. The DNS64 

server uses the normal DNS system to find out the IPv6 

address of the server. 

 If the answer of the DNS system contains an IPv6 

address then the DNS64 server simply returns the 

IPv6 address as its answer to the recursive query. 

 If the answer of the DNS system contains no IPv6 

address then the DNS64 server finds the IPv4 address 

(using the normal DNS system) and it constructs and 

returns a special IPv6 address called IPv4-Embedded 

IPv6 Address [6] containing the IPv4 address of the 

given server in the last 32 bits. In the first 96 bits, it 

may contain the NAT64 Well-known Prefix or a net-

work specific prefix from the network of the client. 

The route towards the network with the given IPv6 prefix 

should be set in the IPv6 only client (and in all of the rout-

ers along the route from the client to the NAT64 gateway) 

so that the packets go through the NAT64 gateway. 

The IPv6 only client uses the received IPv6 address to 

communicate with the desired (IPv4 only) server. The traf-

fic between the IPv6 only client and the IPv4 only server 

travels through the NAT64 gateway in both directions. The 

NAT64 gateway makes their communication possible by 

constructing and forwarding the appropriate version IP 

packets. For constructing IPv4 packets from IPv6 packets, 

the NAT64 gateway takes the IPv4 address of the server 

from the last 32 bits of the destination IPv6 address, which 

is actually an IPv4 embedded IPv6 address. In the opposite 

direction, the NAT64 gateway is able to determine the IPv4 

address of the client by using stateful NAT. 

For a more detailed but still easy to follow introduction, see 

[7] and for the most accurate and detailed information, see 

the relating RFCs: [1] and [2]. 

3. TOTD IN A NUTSHELL 

TOTD is a lightweight DNS64 implementation that was 

written by Feike W. Dillema as a part of the 6net project 

[8]. TOTD is available in source code from GitHub [9]. 

Section 5.3.7 of [8] writes that: 
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“The ‘Trick or Treat’ DNS-ALG called ‘totd’ is a light-

weight DNS proxy (not a full DNS server); it does not re-

cursively resolve queries itself. It is lightweight in that it 

consists of less than 5000 lines of C code. […] The ‘totd’ 

DNS-ALG is a proxy that forwards queries to one or more 

real nameservers that will recursively resolve queries. Such 

nameservers are called forwarders in totd terminology. If 

there are multiple forwarders specified, it will try them in 

the order listed. As a proxy, totd sits between client resolv-

ers and real forwarder nameservers and as such receives 

requests from clients which totd normally forwards to a 

real nameserver to resolve. When it subsequently receives 

a response from the nameserver it simply forwards it back 

to the client. […] If the nameserver that totd forwards the 

AAAA query to, does not return an IPv6 address for the 

AAAA query, totd will make a second query but this time 

for an A record of the hostname of the original query. The 

resulting IPv4 address is then used to construct a fake IPv6 

address, by replacing the lower 32 bits of the specified 

prefix with this IPv4 address. The resulting IPv6 address is 

sent as response to the original AAAA record query.” 

As for its licence, different parts of the code has slightly 

different licences but all licenses are of BSD style except 

for the optional built in tiny web server called SWILL, 

which has a GPL 2.1 licence.  

Due to the free software [10] also called open source [11] 

nature of TOTD, it was possible for us to look into the 

source code and also to add some more lines that enrich the 

debug info sent to syslog. 

4. DEBUGGING TOTD 

During our measurement for our previous paper [3], TOTD 

1.5 was tested in high load situations. TOTD occasionally 

stopped responding for about a minute and continued the 

operation afterwards. It produced similar behavior under all 

the three operating systems (Linux, OpenBSD and Free-

BSD). 

Before starting our work, we contacted the author of 

TOTD, who was very helpful and gave us advices but he 

did not have enough free time to set up a testbed and debug 

the software himself. Thus we did so. We used nearly the 

same test network as in paper [3] with the addition of the 

parts necessary for monitoring the traffic of the DNS64 

server (and the CPU and memory parameters of the client 

computers were somewhat different) and the description is 

taken from there, too. 

The Structure and Operation of the Test Network 

The test network was set up in the Infocommunications 

Laboratory of the Department of Telecommunications, 

Széchenyi István University. The topology of the network 

is shown in Fig. 1. The central element of the test network 

is the DNS64 server. For the measurements, we needed a 

namespace that: 

 can be described systematically 

 can be resolved to IPv4 only 

 can be resolved without delay 

The 10-{0..10}-{0..255}-{0..255}.zonat.tilb.sze.hu name 

space was used for this purpose. This namespace was 

mapped to the 10.0.0.0 – 10.10.255.255 IPv4 addresses by 

the teacherb authoritative name server. 

The tested TOTD DNS64 server program running on the 

Intel PIII test computer mapped these IPv4 addresses to the 

IPv6 address range: 2001:738:2c01:8001:ffff::0a00:0000 – 

2001:738:2c01:8001:ffff::0a0a:ffff. 

The DELL IPv6 only workstations at the bottom of the 

figure played the role of the clients for the DNS64 meas-

urements.  

Dell Precision 490

TL-SG5426
1000Base-TX switch

client1010x Dell Precision 490 

192.168.100.105/24

192.168.100.101/24

2001:738:2c01:8001::1/64

2001:738:2c01:8001::111/64 2001:738:2c01:8001::118/64

Intel PIII 800MHz

client1

. . .

DNS64 
server

client computers 
for all the tests

RB2011UAS-2HnD-IN with
port mirroring enabled

traffic monitoring
station

authoritative DNS server
teacherb.tilb.sze.hu

 

Figure 1.  Topology of the DNS64 test network. 

The switch between the PIII test computer executing 

TOTD and the teacherb authoritative name server was 

added to mirror the traffic to the monitoring station. 

The Configuration of the Computers 

A test computer with special configuration was put together 

for the purpose of the DNS64 server in order that the cli-

ents will be able to produce high enough load for overload-

ing it. The CPU and memory parameters were chosen to be 

as little as possible from our available hardware base in 

order to be able to create an overload situation with a finite 

number of clients, and only the network cards were chosen 

to be fast enough. The configuration of the test computer 

was: Intel D815EE2U motherboard, 800MHz Intel Pentium 

III (Coppermine) processor, 128MB, 100MHz SDRAM, 

Two 3Com 3c940 Gigabit Ethernet NICs. For the 10 client 

computers and for the IPv4 DNS server, standard DELL 

Precision Workstation 490 computers were used. 

Debian Squeeze 6.0.3 GNU/Linux operating system was 

installed on all the computers with the exception of the 

authoritative DNS server (teacherb.tilb.sze.hu), which 

had Debian Wheezy 7.1 GNU/Linux. All the computers 

had 64 bit operating systems with the exception of the PIII 

test computer that had a 32 bit one. 

IPv4 DNS Server Settings 

The DNS server was a standard DELL Linux workstation 

using the 192.168.100.105 IP address and the symbolic 

name teacherb.tilb.sze.hu. BIND was used for authori-

tative name server purposes in all the DNS64 experiments. 

The version of BIND was 9.8.4-rpz2+rl005.12-P1 as this 

one can be found in the Debian Wheezy distribution. 

The 10.0.0.0/16-10.10.0.0/16 IP address range was regis-

tered into the zonat.tilb.sze.hu zone with the appropri-

ate symbolic names. 

DNS64 Server Settings 

The network interfaces of the freshly installed Debian 

Squeeze Linux operating system on the Pentium III com-

puter were set according to Fig. 1. 
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In order to facilitate the IPv6 SLAAC (Stateless Address 

Autoconfiguration) of the clients, radvd (Router Advertise-

ment Daemon) was installed on the test computer. 

As TOTD is just a DNS forwarder and not a DNS recursor 

it was set to forward the queries to the BIND running on 

the teacherb computer. 

The content of the /etc/totd.conf file was set as follows:  
forwarder 192.168.100.105 port 53 
prefix 2001:738:2c01:8001:ffff:: 
retry 300 

Client Settings 

Debian Squeeze was installed on the DELL computers 

used for client purposes, too. On these computers, the 

DNS64 server was set as the name server in the following 

way: 
echo "nameserver 2001:738:2c01:8001::1" > \ 
      /etc/resolv.conf 

DNS64 Performance Measurements 

The CPU and memory consumption of the DNS64 server 

was measured in the function of the number of requests 

served. The measure of the load was set by starting test 

scripts on different number of client computers (1-10). In 

order to avoid the overlapping of the namespaces of the 

client requests (to eliminate the effect of the DNS caching), 

the requests from the number i client used target addresses 

from the 10.$i.0.0/16 network. In this way, every client 

could request 216 different address resolutions. For the 

appropriate measurement of the execution time, 256 exper-

iments were done and in every single experiment, 256 ad-

dress resolutions were performed using the standard host 

Linux command. The execution time of the experiments 

was measured by the GNU time command. (Note that this 

command is different from the time command of the bash 

shell.)  

The clients used the following script to execute the 256 

experiments: 
#!/bin/bash 
i=`cat /etc/hostname|grep -o .$` 
rm dns64-$i.txt 
do 
    for b in {0..255} 
    do 
        /usr/bin/time -f "%E" -o dns64-$i.txt \ 
           –a ./dns-st-c.sh $i $b 
    done 
done 

The synchronized start of the client scripts was done by 

using the “Send Input to All Sessions” function of the ter-

minal program of KDE (called Konsole). 

The dns-st-c.sh script (taking two parameters) was re-

sponsible for executing a single experiment with the resolu-

tion of 256 symbolic names: 
#!/bin/bash 
for c in {0..252..4} # that is 64 iterations 
do 
    host –t AAAA 10-$1-$2-$c.zonat.tilb.sze.hu & 
    host –t AAAA \ 
        10-$1-$2-$((c+1)).zonat.tilb.sze.hu & 
    host –t AAAA \ 
        10-$1-$2-$((c+2)).zonat.tilb.sze.hu & 
    host –t AAAA \ 
        10-$1-$2-$((c+3)).zonat.tilb.sze.hu 
done 

In every iteration of the for cycle, four host commands 

were started, from which the first three were started asyn-

chronously (“in the background”) that is, the four com-

mands were running in (quasi) parallel; and the core of the 

cycle was executed 64 times, so altogether 256 host com-

mands were executed. (The client computers had two dual 

core CPUs that is why four commands were executed in 

parallel to generate higher load.) 

In the series of measurements, the number of clients was 

increased from one to ten and the time of the DNS resolu-

tion was measured. The CPU and memory utilization were 

also measured on the test computer running DNS64. The 

following command line was used: 
nice -n -10 dstat -t -T -c -m -n -N eth1,eth2 \ 
  -i -I 21,22 -p --unix --output load.csv 

Experiments and Observations 

First, we expected to face with some resource exhaustion 

problem thus we performed several runs of the experi-

ments. We checked that the teacherb authoritative name 

server was always responsive and sometimes TOTD 

stopped responding. However we could not find any regu-

larity in its behavior. 

When we specified two forwarders, we found that TOTD 

stopped responding only for a few seconds (instead of a 

minute or so) and it did so if the same forwarder was speci-

fied twice. 

Thinking of resource exhaustion, various limits were raised 

as follows: 
echo "512000">/proc/sys/net/core/rmem_max 
echo "512000">/proc/sys/net/core/wmem_max 
echo "512000">/proc/sys/net/core/rmem_default 
echo "512000">/proc/sys/net/core/wmem_default 
echo "512000 800000 1000000" \ 
    > /proc/sys/net/ipv4/udp_mem 
echo "65536">/proc/sys/net/ipv4/udp_rmem_min 
echo "65536">/proc/sys/net/ipv4/udp_wmem_min 
echo "128000" \ 
    > /proc/sys/net/core/netdev_max_backlog 

We also checked the number of open sockets (still thinking 

of resource exhaustion) but this was also not the problem. 

Using the command line below, we monitored everything 

that seemed to be reasonable: 
dstat -t -c -m -l -i -p -d -g -r -s -y --aio \ 
  --fs --ipc --lock --socket --tcp --udp \ 
  --unix --vm -n --unix --output test.csv 

We still did not find the reason of the strange “stopping” 

phenomenon, but having more and more experiences with 

TOTD, we felt that sometimes the DNS messages “just 

disappear” probably between the PIII test computer and the 

teacherb authoritative DNS server. Therefore, we decided 

to trace them very accurately. The switch between the PIII 

test computer and the authoritative DNS server was set to 

mirror the traffic to the monitoring station, where it was 

captured and recorded by tshark. We also added some 

more detailed logging of the important events (e.g. the 

arrival of the clients’ requests, the sending of the query to 

the authoritative name server and the arrival of its answer, 

etc.) to the source code of TOTD with nanosecond accura-

cy timestamps using the clock_gettime() C library func-

tion and the clocks of all the computers (the clients, the PIII 

test computer, teacherb and the monitoring station) were 

synchronized by NTP. 

In TOTD, we also decoded and logged the content of the 

DNS messages. This led us finally to the bug. Both DNS 

queries and responses begin by a 16 bit Transaction ID 

field set by the client and returned by the server. It lets the 

client match responses to requests. (See page 521 of [12].) 

As TOTD acts as a proxy, after receiving a query from a 

client it must behave as a client itself: it has to send a query 

to the DNS server that resolves recursive queries (called 

forwarder in the TOTD terminology).  TOTD must gener-

ate a transaction ID for the query. We have checked the C 

code for transaction ID generation in file ne_mesg.c. It was 
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done by a function named mesg_id() containing a static 

variable “id”: 
uint16_t mesg_id (void) { 
    static uint16_t id = 0; 
 
    if (!id) { 
        srandom (time (NULL)); 
        id = random (); 
    } 
    id++; 
 
    if (T.debug > 4) 
        syslog (LOG_DEBUG,"mesg_id() = %d",id); 
    return id; 
} 

The intention of the programmer seems to be clear: the 

value of the static variable is chosen randomly at the time 

of the first execution of the function and it is incremented 

by one at any later execution.  

However the actual behavior of the C code above is slightly 

different. When the value of id is 0xffff and it is incre-

mented then its value will be 0 and it is returned normally 

but at the next execution of the function the value of id 

will not be incremented to 1 rather it will be randomized 

again. Its value may be close to 0xffff with a small but 

positive probability. It means that the transaction ID of a 

new query may be equal to that of another recently sent 

query that is still waiting for the response. And it will cause 

problem when matching the responses to the queries. We 

have provided a quick bugfix by checking if the value of id 

became 0 and if it was so then promptly increasing it to 1 

in order to avoid the hazardous re-randomization: 
uint16_t mesg_id (void) { 
    static uint16_t id = 0; 
 
    if (!id) { 
        srandom (time (NULL)); 
        id = random (); 
    } 
    if ( !++id ) ++id; /*correction for id==0*/ 
 
    if (T.debug > 4) 
        syslog (LOG_DEBUG,"mesg_id() = %d",id); 
    return id; 
} 

After this modification, TOTD remained responsive even 

during a whole night testing. 

5. OUR SECURITY ENHANCEMENT FOR TOTD 

The Problem of Sequential Transaction IDs 

TOTD uses sequential transaction IDs, which are trivial to 

predict thus TOTD is vulnerable to cache poisoning using 

the transaction ID prediction attack. (The attacker per-

suades the victim DNS server to send a query for a given 

domain name and sends a response before the response of 

the authoritative name server by predicting the transaction 

ID and the victim DNS server will accept its answer, see 

section 4 of [13] for more details.) This is a serious security 

threat for all the DNS servers. The most widely used BIND 

[14] used also sequential transaction IDs prior to version 

8.2, pseudorandom transaction IDs were introduced in v8.2 

and further enhancements were made in v9, but it still has 

certain vulnerabilities according to [15]. 

Our Solution 

As for TOTD, we also chose the randomization of the 

transaction IDs. However, the naive use of individually 

generated random IDs would require keeping a record of 

them if they are still in use, which would make necessary 

the modification of the source code of TOTD at multiple 

places (e.g. to register them when a query is made and to 

delete them when an answer is received or the time-out 

value expired). Therefore, the method of pre-generated 

random permutations was chosen to be able to keep the 

modifications within a single file. Two further considera-

tions were made: 

 Using up all the 65536 elements of a random permuta-

tion would result in predictability when we are ap-

proaching to the exhaustion of the pool. 

 The lastly used elements of a given permutation may 

still be in use when some of them may appear between 

the first elements of a new permutation (resulting in 

the same bug that was fixed recently). 

Therefore, our solution uses two alternating pools for the 

transaction IDs, 0-0x7fff and 0x8000-0xffff and only the 

first half of the elements of the permutations are used as 

transaction IDs. This design gives a reasonable security 

enhancement over the original situation for the price of a 

small amount of programming work (actually two func-

tions in a single source file) and also a little waste of CPU 

power (50% of the elements of every permutation are not 

used). 

Our Implementation 

For preparing random permutation, the so-called “inside 

out” version of [16] was used. While the original version 

makes a random shuffle of the elements of an array in place 

and thus it requires the pre-initialization of the array, the 

modified version does both in a single cycle. The com-

plexities of both the original and the modified algorithm 

are O(N) where N denotes the size of the array, but the 

“inside out” version spares the work of the initialization 

and the exchange of the elements. Our commented C code 

can be seen in Fig. 2. Comments and recommendations for 

further improvements are especially welcome! 

6. PERFORMANCE MEASUREMENTS AND 

COMPARISON 

Even though the performance measurement results of the 

original TOTD and BIND can be found in [3] the meas-

urements were repeated for the following reasons: 

 Our previous paper is not open access therefore some 

readers of this paper may not have access to the re-

sults provided in that. 

 The configuration of the client computers were slight-

ly changed, which made the new results incomparable 

(or at least not fully comparable) with the old ones. 

 The old measurement script did not use the -t AAAA 

option of the host command, thus then some other 

identifiers (e.g. MX records) were also requested but 

now we wanted to focus solely on the performance 

providing the AAAA records. 

The measurements were taken the same way as they were 

done for bug hunting but the monitoring elements of the 

test network were removed. See the appropriate subsections 

of section 4 for the details. As now BIND was also includ-

ed as DNS64 server, now we give its settings before the 

results of the different tested implementations. 

The Set up of the BIND DNS64 Server 

BIND version 9.9.1-P1 was compiled from source. The 

2001:738:2c01:8001:ffff::/96 (network specific) prefix was 

set to BIND for the DNS64 function using the dns64 op-

tion in the file /etc/bind/named.conf.options. 
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#define ARRAY_SIZE 0x8000 /* Size of the static array storing permutations */ 
#define NUM_USE 0x4000 /* Number of elements used up from the array of permutations */ 
#define LOW_START 0x0000 /* Starting value of the lower range */ 
#define HIGH_START 0x8000 /* Starting value of the higher range */ 
 
static uint16_t permutation[ARRAY_SIZE]; /* The static array for storing random permutations */ 
 
/* Prepare a random pemutation of the integers [start, start+ARRAY_SIZE-1] into the static array */ 
/* Algorithm: http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_.22inside-out.22_algorithm*/ 
void make_random_permutation(int start) { 
        int i,j; 
 
        permutation[0]=start;  
        for (i=1; i<ARRAY_SIZE; i++) { 
                j=random()*(double)(i+1)/RAND_MAX; /* random number from the range [0, i] */ 
                if ( j != i ) 
                        permutation[i]=permutation[j]; 
                permutation[j]=start+i; 
        } 
} 
 
/* Provide hard to predict unique random DNS Transaction IDs */ 
/* by using random permutations and alternating ranges */ 
uint16_t mesg_id (void) { 
        static int range=0; /* indicates that no permutation is generated yet */ 
        static int index; 
 
        if ( !range ) { 
                srandom(time(0));  /* initialize random number generator seed */ 
                range=1;  /* choose the lower range first */ 
                make_random_permutation(LOW_START); 
                index=0;  /* start from the first element */ 
        } 
        if ( index == NUM_USE ) { /* if the pool is exhasuted */ 
                if ( range == 1 ) { 
                        range=2; /* choose the higher range */ 
                        make_random_permutation(HIGH_START); 
                } 
                else { 
                        range=1; /* choose the lower range */ 
                        make_random_permutation(LOW_START); 
                } 
                index=0; 
        } 
 if (T.debug > 4) 
  syslog (LOG_DEBUG, "mesg_id() = %d", permutation[index]); 
        return permutation[index++]; 
} 

Figure 2.  The modifications made to the ne_mesg.c source file. 

BIND is able to operate as a recursor, but to make the per-

formance of BIND and TOTD comparable, BIND was set 

as a forwarder. It was done by the following additional 

settings in the named.conf file: 
forwarders { 192.168.100.105; }; 
forward only; 

The Interpretation of the Tables with the Results 

Even though the graphical representation may ease the 

comparison of the results in many cases, now we preferred 

the table format because of the following reasons: 

 The maximum value of the response time of the un-

modified TOTD was more than one order of magni-

tude higher than that of the others thus a comparison 

chart would be ill looking. 

 There were many types of characteristics measured 

thus tables were found more efficient than using dif-

ferent diagrams for every types of values. 

For the synoptic view and easy comparison of the results, 

the four tables were put on the same page. 

Each table is to be interpreted as follows. The first row 

shows the number of the clients. (The offered load was 

proportional with the number of the clients.) Rows 2, 3 and 

4 show the maximum value, the average and the standard 

deviation of the execution time of one experiment, respec-

tively. An experiment is an execution of the dns-st-c.sh 

script, which one executes the “host –t AAAA” command 

256 times using different DNS names to eliminate the ef-

fect of caching. And this script was also executed 256 

times by each client that took part in the measurement. 

Rows 5 and 6 show the average and the standard deviation 

of the CPU utilization of the PIII test computer running the 

DNS64 service. Row 7 shows the memory consumption of 

the DNS64 service. Note that this value could be measured 

with high uncertainty because it was measured by the 

change of the free memory on the test computer. Row 8 

shows the number of requests processed per seconds.  
 

JCS&T Vol. 14 No. 1                                                                                                                              April 2014

13



TABLE I.  PERFORMANCE OF THE UNMODIFIED TOTD 1.5 

Number of clients 1 2 3 4 5 6 7 8 9 10 

Exec. time of 256 

host –t AAAA 

commands (s) 

max 0.540 0.640 0.840 117.800 17.070 83.370 25.630 62.740 50.080 31.480 

average 0.524 0.588 0.770 1.879 1.296 1.862 1.857 2.290 2.474 2.673 

std. dev. 0.007 0.021 0.041 9.096 0.932 4.689 1.419 3.594 2.818 1.634 

CPU utilization (%) 
average 22.33 57.89 92.02 50.94 95.29 83.49 94.87 87.97 92.18 96.06 

std. dev. 4.24 3.25 2.43 48.27 20.33 36.69 21.50 32.00 26.38 19.06 

Memory consumption (kB) 892 852 964 1624 1372 1624 1156 1724 1780 1992 

Performance (request/s) 488 870 997 545 988 825 965 894 931 958 
 

TABLE II.  PERFORMANCE OF TOTD 1.5 WITH SEQUENTIAL TRANSACTION IDS 

Number of clients 1 2 3 4 5 6 7 8 9 10 

Exec. time of 256 

host –t AAAA 

commands (s) 

max 0.530 0.630 0.830 1.060 1.330 1.600 1.830 7.000 7.180 7.460 

average 0.518 0.595 0.759 1.002 1.239 1.498 1.762 2.055 2.268 2.535 

std. dev. 0.007 0.015 0.039 0.042 0.060 0.075 0.068 0.160 0.152 0.142 

CPU utilization (%) 
average 18.94 59.29 90.99 99.22 99.91 99.99 99.99 99.99 100.00 100.00 

std. dev. 4.14 3.96 2.32 0.76 0.30 0.13 0.10 0.13 0.04 0.00 

Memory consumption (kB) 808 944 1076 1188 1232 1484 1556 1752 1780 1768 

Performance (request/s) 494 860 1011 1022 1033 1026 1017 997 1016 1010 
 

TABLE III.  PERFORMANCE OF THE TOTD 1.5 WITH PSEUDORANDOM TRANSACTION IDS 

Number of clients 1 2 3 4 5 6 7 8 9 10 

Exec. time of 256 

host –t AAAA 

commands (s) 

max 0.540 0.660 0.900 1.090 1.340 1.640 1.890 2.090 7.230 2.710 

average 0.520 0.594 0.760 1.017 1.253 1.536 1.812 2.029 2.279 2.574 

std. dev. 0.007 0.021 0.041 0.041 0.060 0.078 0.087 0.053 0.178 0.081 

CPU utilization (%) 
average 20.81 59.49 91.25 98.86 99.89 99.98 100.00 100.00 99.95 100.00 

std. dev. 3.81 2.47 2.20 1.00 0.32 0.14 0.05 0.00 0.72 0.00 

Memory consumption (kB) 808 1004 1116 1300 1232 1540 1724 1788 1892 1992 

Performance (request/s) 492 862 1009 1007 1022 1000 989 1009 1011 995 
 

TABLE IV.  PERFORMANCE OF BIND AS A FORWARDER 

Number of clients 1 2 3 4 5 6 7 8 9 10 

Exec. time of 256 

host –t AAAA 

commands (s) 

max 2.820 1.070 1.690 2.360 2.880 3.480 3.960 4.690 5.220 5.830 

average 0.831 1.041 1.588 2.246 2.785 3.390 3.839 4.550 5.086 5.719 

std. dev. 0.125 0.010 0.047 0.060 0.065 0.049 0.101 0.097 0.095 0.086 

CPU utilization (%) 
average 58.27 98.85 99.94 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

std. dev. 5.30 0.81 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Memory consumption (kB) 24348 48528 53624 51312 53132 51336 52876 50888 51420 50384 

Performance (request/s) 308 492 484 456 460 453 467 450 453 448 
 

 

Performance Results of the Original TOTD 

The results of the unmodified TOTD 1.5 are shown in table 

I. The maximum values of the execution time fluctuate in a 

huge range and show randomness. The average execution 

time grows with the load, except for the experiments with 

four clients, which was an “unlucky” case – see the maxi-

mum value of the execution time (117.8s), the low average 

CPU utilization (50.94%) and low performance (545 re-

quests per seconds). This is why it was so important to find 

the bug in TOTD. 

Performance Results of TOTD with a Bugfix 

Table II shows the performance of TOTD with the quick 

bugfix that made the transaction IDs truly sequential by 

eliminating the hazardous re-randomization. Even though 

TOTD was put under very serious overload, it proved to be 

stable. The CPU was practically fully utilized at four cli-

ents (99.22%) and as the load was increased, TOTD did not 

collapse but the average response time increased only pro-

portionally with the load. The memory consumption was 

also very low and showed only a very little growth in the 

function of the load. The number of requests processed per 

second approximated its maximum value at 3 clients and 

could not significantly increase because of the lack of free 

CPU capacity but it did not show significant decrease even 

in very serious overload situations thus TOTD complied 

with the graceful degradation principles [17]. 

Performance Results of TOTD with Enhanced Security 

Table III shows the performance of TOTD with pseu-

dorandom transaction IDs. The results are really good 

news: TOTD shows no visible decrease of the performance 

compared to the previous case: the graph displaying the 

average response time of this version of TOTD is hiding 

the graph of the previous version in Fig. 3. Therefore we 

recommend the application of this version of TOTD be-

cause the performance price of the increased security is 

marginal. 

Performance Results of BIND as a Forwarder 

Table IV shows the performance of BIND which was set 

up as a forwarder too (for fair comparison). We can lay 

down that BIND is also stable. Its memory consumption is 

significantly higher than that of TOTD. It is probably 

caused by caching. The bad news for BIND is its higher 

CPU time consumption. It uses much more computing 

power (58.27%) than TOTD with pseudorandom transac-

tion IDs (20.81%) even under the load of one client. BIND 

reaches its maximum performance (492 requests per se-

cond) at two clients.  Under serious overload (three or more 

clients), TOTD with pseudorandom transaction ID could 
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process twice as many requests as BIND providing the half 

of the average response time of BIND. Thus TOTD with 

pseudorandom transaction IDs proved to be a good alterna-

tive of BIND. 

Modification of the source code of TOTD 

Our security enhancement patch for the ne_mesg.c file has 

been included into the source code of TOTD 1.5.3 [9]. 

7. CONCLUSIONS 

A testbed was set up and the promising TOTD DNS64 

server was tested extensively. The bug was found in its 

sequential transaction ID generation function and it was 

eliminated.  

Because of its use of sequential transaction IDs, TOTD was 

found to be vulnerable to cache poisoning using the trans-

action ID prediction attack. This vulnerability was patched 

by a very computation efficient solution using random 

permutations and alternating ranges. The performance price 

of the increased security was found to be practically invisi-

ble. Therefore we recommend the application of this ver-

sion of TOTD. 

Under serious overload conditions, TOTD with our pseu-

dorandom transaction ID generation could process twice as 

many requests than BIND providing 50% less average 

response time than BIND. 

We conclude that TOTD with our pseudorandom transac-

tion ID generation patch is a good candidate to be a number 

one DNS64 server solution for the transition period of the 

upcoming IPv6 deployment. 

Our pseudorandom transaction ID generation patch has 

been included into the 1.5.3 version of the source code of 

TOTD on GitHub. 
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