
An Efficient Alternative for Deletions in Dynamic Spatial
Approximation Trees

Fernando Kasián
Verónica Ludueña

Nora Reyes
Patricia Roggero

Departamento de Informática, Universidad Nacional de San Luis,
Ejército de los Andes 950, San Luis, Argentina

Abstract
Metric space searching is an emerging technique to
address the problem of similarity searching in many
applications. In order to efficiently answer similarity
queries, the database must be indexed. In some inter-
esting real applications dynamism is an indispensable
property of the index.
There are very few actually dynamic indexes that

support not only searches, but also insertions and
deletions of elements. The dynamic spatial approx-
imation tree (DSAT) is a data structure specially de-
signed for searching in metric spaces, which com-
pares favorably against other data structures in high
dimensional spaces or queries with low selectivity.
Insertions are efficient and easily supported in

DSAT, but deletions degrade the structure over time.
Several methods are proposed to handle deletions
over the DSAT. One of them has shown to be supe-
rior to the others, in the sense that it permits control-
ling the expected deletion cost as a proportion of the
insertion cost and searches does not overly degrade
after several deletions.
In this paper we propose and study a new alter-

native deletion method, based on the better existing
strategy. The outcome is a fully dynamic data struc-
ture that can be managed through insertions and dele-
tions over arbitrarily long periods of time without any
significant reorganization.
Keywords: multimedia databases, metric spaces,
similarity search, indexing, algorithms.

1. Introduction
“Proximity” or “similarity” searching is the problem
of looking for objects in a set close enough to a query
under a certain (expensive to compute) distance. Sim-
ilarity search has become a very important opera-
tion in applications that deal with unstructured data
sources. For example, multimedia databases man-
age objects without any kind of structure, such as im-
ages, fingerprints or audio clips. This has applica-

tions in a vast number of fields. Some examples are
non–traditional databases, text searching, information
retrieval, machine learning and classification, image
quantization and compression, computational biol-
ogy, and function prediction. All those applications
can be formalized with the metric space model [3].
That is, there is an universe U of objects, and a posi-
tive real valued distance function d : U × U −→ R

+

defined among them. This distance may (and ideally
does) satisfy the three axioms that make the set a met-
ric space: strict positiveness, symmetry, and triangle
inequality. The smaller the distance between two ob-
jects, the more “similar” they are. We have a finite
database S ⊆ U , which is a subset of the universe and
can be preprocessed. Later, given a new object from
the universe (a query q), we must retrieve all similar
elements found in the database. There are two typical
queries of this kind:

Range query: retrieve all elements within distance r
to q in S.

Nearest neighbor query (k-NN): retrieve the k
closest elements to q in S.

Proximity search algorithms build an index of the
database and perform queries using this index, avoid-
ing the exhaustive search. For general metric spaces,
there exist a number of methods to preprocess the
database in order to reduce the number of distance
evaluations [3]. All those structures work on the ba-
sis of discarding elements using the triangle inequal-
ity, and most use the classical divide-and-conquer ap-
proach. (which is not specific of metric space search-
ing).
The Spatial Approximation Tree (SAT) is a pro-

posed data structure of this kind [7, 8], based on a con-
cept: approach the query spatially. It has been shown
that the SAT gives better space-time tradeoffs than the
other existing structures on metric spaces of high di-
mension or queries with low selectivity [8], which is
the case in many applications. The SAT, however, has
some important weaknesses: it is relatively costly to
build in low dimensions; in low dimensions or for

1

JCS&T Vol. 14 No. 1 April 2014

39

queries with high selectivity (small r or k), its search
performance is poor when compared to simpler alter-
natives; and it is a static data structure: once built, it is
hard to add/delete elements to/from it. These weak-
nesses make the SAT unsuitable for important appli-
cations such as multimedia databases.
The DSAT is a dynamic version of the SAT and

overcomes its drawbacks. The dynamic SAT can be
built incrementally (i.e., by successive insertions) at
the same cost of its static version, and the search per-
formance is unaffected. At first, the DSAT supports
insertion and deletions of elements. However, that
deletions degrade the structure over time, so in [9]
was presented a deletion algorithm that does not de-
grade the search performance over time. This algo-
rithm yielded better tradeoffs between search perfor-
mance and deletion cost. In this paper we present an-
other alternative method to delete an element of the
DSAT which obtains better costs than methods de-
scribed in [9].
Full dynamism is not so common in metric data

structures [3]. While permitting efficient insertions
is quite usual, deletions are rarely handled. In several
indexes one can delete some elements, but there are
selected elements that cannot be deleted at all. This is
particularly problematic in the metric space scenario,
where objects could be very large (e.g., images) and
deleting them physically may be mandatory. Our al-
gorithms permit deleting any element from a DSAT.
The distance is considered expensive to compute.

Hence, it is customary to define the complexity of
search as the number of distance evaluations per-
formed. We consider the number of distance evalua-
tions instead of the CPU time because the CPU over-
head over the number of distance evaluations is neg-
ligible in the DSAT. In this paper we are devoted to
range queries. In [5] is shown how to build an near-
est neighbors algorithm range-optimal using a range
algorithm, so we can restrict our attention to range
queries.
A preliminar version of this article appears in [6].
This paper is organized as follows: In Section 2. we

give a description of theDSAT. Section 3. presents our
new improved deletion method, and Section 4. con-
tains the empirical evaluation of our proposal. Finally,
in Section 5. we conclude and discuss about possible
extensions for our work.

2. Dynamic Spatial Approximation
Trees

In this section we briefly describe dynamic SAT
(DSAT for short), in particular the version called
timestamp with bounded arity presented in [9] as the
better option to build incrementally the index, without
any reconstruction after each insertion. To construct
DSAT [9] incrementally a maximum tree arity is fixed,

Algorithm 1 Insertion of a new element x into a
DSAT with root a.
Insert(Node a, Element x)
1. R(a)← max(R(a), d(a, x))
2. c← argminb∈N(a)d(b, x)

3. If d(a, x) < d(c, x) ∧ |N(a)| < MaxArity Then
4. N(a)← N(a) ∪ {x}
5. N(x)← ∅, R(x)← 0
6. time(x)← CurrentT ime
7. CurrentT ime← CurrentT ime + 1
8. Else Insert(c,x)

and also a timestamp of the insertion time of each el-
ement is kept. Each node a in the tree is connected
to its children, which form a set of elements called
N(a), the neighbors of a. When inserting a new el-
ement x, its point of insertion is found by beginning
from the tree root a and performing the following pro-
cedure. The element x is added to N(a) (as a new
leaf node) if (1) x is closer to a than to any element
b ∈ N(a), and (2) the arity of node a, |N(a)|, is not
already maximal. Otherwise x is forced to choose the
closest neighbor in N(a) and keep walking down the
tree in a recursive manner, until we reach a node a
such that x is closer to a than any b ∈ N(a) and the
arity of node a is not maximal (this eventually occurs
at a tree leaf). At this point x is added at the end of
the list N(a), the current timestamp is put to x and
the current timestamp is incremented. The following
information is kept in each node a of the tree: the set
of neighborsN(a), the timestamp time(a) of the in-
sertion time of the node, and the covering radiusR(a)
with the distance between a and the farthest element
in the subtree of a.
Note that by reading neighbors from left to right

timestamps increase. It also holds that the parent is
always older than its children. The DSAT can be built
by starting with a first single node a where N(a) = ∅
and R(a) = 0, and then performing successive inser-
tions. Algorithm 1 gives the insertion process.

2.1. Searching
The idea for range searching is to replicate the inser-
tion process of relevant elements. That is, the process
act as if it wanted to insert q but keep in mind that
relevant elements may be at distance up to r from q,
so in each decision for simulating the insertion of q
a tolerance of ±r is permitted, so that it may be that
relevant elements were inserted in different children
of the current node, and backtracking is necessary.
Two facts have to be considered. The first is that,

when an element x was inserted, a node a in its path
may not have been chosen as its parent because its ar-
ity was already maximal. So, at query time, instead of
choosing the closest to x among {a} ∪ N(a), it may
have chosen only amongN(a). Hence, the minimiza-
tion is performed only among elements in N(a). The

JCS&T Vol. 14 No. 1 April 2014

40

Algorithm 2 Searching for q with radius r in a DSAT
rooted at a.
RangeSearch(Node a, Query q, Radius r,

Timestamp t)
1. If time(a) < t ∧ d(a, q) ≤ R(a) + r Then
2. If d(a, q) ≤ r Then Report a
3. dmin ←∞

/* in ascending timestamp order */
4. For bi ∈ N(a) Do
5. If d(bi, q) ≤ dmin + 2r Then
6. t′ ← min{t}∪

{time(bj), j > i ∧ d(bi, q) > d(bj , q) + 2r}
7. RangeSearch(bi,q,r,t′)
8. dmin ← min{dmin, d(bi, q)}

second fact is that, at the time x was inserted, ele-
ments with higher timestamp were not yet present in
the tree, so x could choose its closest neighbor only
among elements older than itself.
A better use of the timestamp information is made

in order to reduce the work done inside older neigh-
bors. Say that d(q, bi) > d(q, bi+j) + 2r. The pro-
cess enters into the subtree of bi anyway because bi

is older. However, only the elements with timestamp
smaller than that of bi+j should be considered when
searching inside bi; younger elements have seen bi+j

and they cannot be interesting for the search if they
are inside bi. As parent nodes are older than their de-
scendants, as soon as a node inside the subtree of bi

with timestamp larger than that of bi+j is found the
search in that branch can stop, because all its subtree
is even younger.
Algorithm 2 shows the process to perform range

searching. Note that, except in the first invocation,
d(a, q) is already known from the invoking process.

2.2. Deletions
To delete an element x, the first step is to find it in the
tree. Unlike most classical data structures, doing this
is not equivalent to simulating the insertion of x and
seeing where it leads us to in the tree. The reason is
that the tree was different at the time x was inserted.
If x were inserted again, it could choose to enter a
different path in the tree, which did not exist at the
time of its first insertion.
An elegant solution to this problem is to perform a

range search with radius zero, that is, a query of the
form (x, 0). This is reasonably cheap and will lead us
to all the places in the tree where x could have been
inserted.
On the other hand, whether this search is neces-

sary is application dependent. The application could
return a handle when an object was inserted into the
database, and therefore this search would not be nec-
essary. This handle can contain a pointer to the cor-
responding tree node. Adding pointers to the parent
in the tree would permit to locate the path for free

(in terms of distance computations). Hence, in which
follows, the location of the object is not considered
as part of the deletion problem, although it has shown
how to proceed if necessary.
Several alternatives to delete elements from DSAT

were studied in [9]. From the beginning they dis-
carded the trivial option of marking the element as
deleted without actually deleting it. As explained, this
is likely to be unacceptable in most applications. It is
assumed that the element has to be physically deleted.
It may, if desired, keep its node in the tree, but not the
object itself. It should be clear that a tree leaf can
always be deleted without any complication, so the
focus is on how to remove internal tree nodes.
There are several proposed methods to delete an el-

ement from a DSAT, but in [9] the authors showed
that the best option is based in ghost hyperplanes.
This technique is inspired on an idea presented in [11]
for dynamic gna–trees [2], called ghost hyperplanes.
This method replaces the element being deleted by
a leaf, which is easy to delete. This way rebuild-
ing is not necessary, but in exchange some tolerance
must be considered when entering the replaced node
at search time.
Remind that the neighbors of a node b in the DSAT

partition the space in a Voronoi-like fashion, with hy-
perplanes. If element y replaces a neighbor x of b,
the hyperplanes will be shifted (slightly, if y is close
to x). We can think of a “ghost” hyperplane, corre-
sponding to the deleted element x, and a real one,
corresponding to the new element y. The data in the
tree is initially organized according to the ghost hy-
perplane, but incoming insertions will follow the real
hyperplane. A search must be able to find all ele-
ments, inserted before or after the deletion of x.
For this sake, we have to maintain a tolerance dg(x)

at each node x. This is set to dg(x) = 0when x is first
inserted. When x is deleted and the content of its node
is replaced by y, we will set dg(x) = dg(x) + d(x, y)
(the node is still called x although its object is that
of y). Note that successive replacements may shift
the hyperplanes in all directions so the new tolerance
must be added to previous ones.
At search time, we have to consider that each node

x can actually be offset by dg(x) when determining
whether or not we must enter a subtree. Therefore, we
wish to keep dg() values as small as possible, that is,
we want to find replacements that are as close as pos-
sible to the deleted object. When node x is deleted,
we have to look for a substitute in its subtree to en-
sure that we reduce the problem size.

GH1: Choosing a leaf substitute We descend in
the subtree of x by the children closest to x all the
time. When it reach a leaf y, it disconnect y from
the tree and put y into the node of x, retaining the
original timestamp of x. Then, the dg value of the
node is updated.

JCS&T Vol. 14 No. 1 April 2014

41

Algorithm 3 Deleting x from a DSAT, finding a sub-
stitute in the leaves of its subtree.
DeleteGH1(Node x)
1. b← parent(x)
2. If N(x) 	= ∅ Then
3. y ← FindSubstituteLeaf (x)
4. dg(x)← dg(x) + d(x, y)
5. Copy object of y into node x
6. Else N(b)← N(b) − {x}
FindSubstituteLeaf(Node x): Node
1. y ← x
2. While N(y) 	= ∅ Do
3. x← y
4. y ← argminc∈N(b)d(c, x)

5. N(x)← N(x)− {y}
6. Return y

Algorithm 4 Deleting x from a DSAT, choosing its
replacement among its neighbors.

DeleteGH2(Node x)
1. b← parent(x)
2. If N(x) 	= ∅ Then
3. y ← argminc∈N(x)d(c, x)

4. dg(x)← dg(x) + d(x, y)
5. Copy object of y into node x
6. DeleteGH2 (y)
7. Else N(b)← N(b)− {x}

GH2: Choosing a neighbor substitute We select y
as the closest to x amongN(x) and copy object y into
the node of x as above. If the former node of y was
a leaf it delete it and finish. Otherwise we recursively
continue the process at that node. So, we turn to ghost
all the nodes in the path from x to a leaf of its subtree,
following the closest neighbors. In exchange, the dg()
values should be smaller.

GH3: Choosing the nearest-element substitute
We select y as the closest element to x among all the
elements in the subtree of x and copy object y into
the node of x as above. If the former node of y was a
leaf we delete it and finish. Otherwise, we recursively
continue the process at that node. Therefore, we turn
to ghost some nodes in the path from x to a leaf of its
subtree, following the nearest elements. The dg() val-
ues should be smaller than with the other alternatives.
Algoritms 3, 4, and 5 detail these three deletion

methods.
Thus, for a permanent regime that includes dele-

tions, we must periodically get rid of ghost hyper-
planes and reconstruct the tree to delete them. Just as
with fake nodes [9], when we rebuild the subtree we
get rid of all the ghost hyperplanes that are inside it.
We set a maximum allowable proportion α of ghost
hyperplanes, and rebuild the tree when this limit is
exceeded.

Algorithm 5 Deleting x from a DSAT, choosing its
replacement as its nearest element.

DeleteGH3(Node x)
1. b← parent(x)
2. If N(x) 	= ∅ Then
3. y ← NNsearch(x,x,1)
4. dg(x)← dg(x) + d(x, y)
5. Copy object of y into node x
6. DeleteGH3 (y)
7. Else N(b)← N(b) − {x}

3. An Alternative Deletion Method

In [9] it is concluded that the methods with the best
performance during deletions use ghosts hyperplanes.
Moreover, these methods have the possibility of using
the parameter α to control the deletion average cost.
Our new proposal to delete an element x is based on
the best strategies presented in [9]. Therefore, this
new proposed method is also based on the idea pre-
sented in [11], which use ghost hyperplanes.
We believe that the way to achieve a good trade-

off between the number of hyperplanes and the dis-
placement of each df can be obtained by replacing the
deleted element x with the leaf of his subtree whose
distance is minimal; i. e. the closest leaf in the com-
plete subtree of x. Therefore, with each deletion only
one new ghost hyperplane appears and the displace-
ment of this ghost hyperplane, although it is not nec-
essarily the smallest one possible, is expected to be
fairly close to it.
It is possible to notice, considering the pre-

sented algorithms in Section 2.2., that it is
only needed to change the process invoked as
FindSubstituteLeaf(x). This new algorithm has to
choose the closest element to x between all the leaves
in the subtree of x. Therefore, DeleteGH1(Node
x) is similar to DeleteGH4(Node x) because only
one ghost hyperplane appears after deletion. The Al-
gorithm 6 shows this situation completely. In the
function FindSubstituteNNLeaf all the leaves of the
subtree of x are recovered in the set L of pairs (z, t),
where z is a leaf of the subtree of x and t is his fa-
ther. Q is a queue of elements to be used as an auxil-
iary data structure in a traversal in level-order. Fi-
nally, when the full set of leaves of the subtree of
x is determined, we select the leaf y that satisfies:
d(x, y) < d(x, z), ∀(z, t) ∈ L − {(y, v)}, then y is
returned after it is disconnected from its father.
This new method is based on the idea to obtain a

better deletion strategy by considering the best char-
acteristics of GH1 and GH3: only one ghost hyper-
plane appears after each deletion, and its displace-
ment is nearby to the possible best one. Clearly, we
can also set a maximum allowable proportion α of
ghost hyperplanes, and rebuild the tree when this limit
is exceeded.

JCS&T Vol. 14 No. 1 April 2014

42

Algorithm 6 Deleting x from a DSAT, finding a sub-
stitute as the closest leaf.
DeleteGH4(Node x)
1. b← parent(x)
2. If N(x) 	= ∅ Then
3. y ← FindSubstituteNNLeaf(x)
4. df (x)← df (x) + d(x, y)
5. Copy object of y into node x
6. Else N(b)← N(b) − {x}

FindSubstituteNNLeaf(Node x): Node
1. Q← ∅, L← ∅
2. For v ∈ N(x)
3. If N(v) = 0 Then L← {(v, x)}
4. Else Q← {v}
5. While Q not empty
6. b ← first element of Q
7. Q ← Q− {b}
8. For v ∈ N(b)
9. If N(v) = 0 Then L← L ∪ {(v, b)}

10. Else Q ← Q ∪ {v}
11. (y, v)← argmin(z,t)∈Ld(x, z)

12. N(v)← N(v)− {y}
13. Return y

4. Experimental Evaluation
As it is aforementioned, we do not consider the cost
to locate the element as part of the deletion problem,
then the deletion costs obtained represent only the
necessary work to effectively delete the element from
the DSAT. Thus, we can directly compare our experi-
mental results with those presented in [9]. To study
the behavior and performance of this new deletion
algorithm for DSAT, we need to evaluate the proper
deletion costs and the search performance after that.
In order to make a fairly comparison between the

previous deletion methods and the new one, we use
the same metric spaces considered in [9] to evaluate
the performance of DSAT, available from [4]. We use
the best arity for each space, as it is described in [9].
They are four real-life metric spaces with widely dif-
ferent histograms of distances:
Strings: a dictionary of 69,069 English words. The
distance is the edit distance, that is, the minimum
number of character insertions, deletions and substi-
tutions needed to make two strings equal.
NASA images: a set of 40,700 20-dimensional fea-
ture vectors, generated from images downloaded from
NASA. 1 The Euclidean distance is used.
Color histograms: a set of 112,682 8-D color his-
tograms (112-dimensional vectors) from an image
database. 2 Any quadratic form can be used as a dis-
tance, so we chose Euclidean distance.
Documents: a set of 1,265 documents under the Co-
sine similarity, heavily used in Information Retrieval

1At http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html
2At http://www.dbs.informatik.uni-muenchen.de/˜seidl/DATA/histo112.112682.gz

[1]. In this model the space has one coordinate per
term and documents are seen as vectors in this high
dimensional space. The distance we use is the angle
among the vectors. The documents are the files of the
TREC-3 collection.3
There are two types of experiments:
1. We build the index with the 90% of the database
elements, the other 10% is used as queries for
range searches. After the index is built, we delete
a 10% of elements randomly selected.

2. We use the 60%, 70%, 80%, and 90% of the
database elements to build the index. Then we
delete the 10%, 20%, 30%, and 40% respec-
tively, in order to leave 50% of the elements into
the tree in each index. It can be noticed that in
each case the 50% of the database, that remains
after deletions into the tree, is not necessarily the
same set of elements, as the elements deleted are
randomly selected. Then, we perform queries
with the non-inserted 10% of database elements.

We have tested several options in our experiments.
For the parameter α we consider: 0% (without any
ghost hyperplane), 1%, 3%, 10%, 30%, and 100%
(without any rebuilding). In all cases, if α = 0%, as is
pure rebuilding, costs are higher. Then, as the propor-
tion α of allowed ghost hyperplanes grows, deletion
costs decrease. For range search we consider three
radii for the spaces with continuous distance, and
four radii for Strings space (with discrete distance).
For lack of space we only show some examples: for
the first type of experiment, the comparison of dele-
tion costs for α = 1% when the 10% of elements is
deleted; for the second one, the comparison of search
costs obtained after 40% of elements is deleted with
α = 1%, considering the 10% of reserved elements
as queries. Figure 1 shows, for the first type of ex-
periment, the average deletion costs obtained per ele-
ment when 10% of the elements is deleted. Figures 2
and 3 illustrate, for the second type of experiment,
the average search costs per element, after 40% of
the database is deleted using α = 1% and α = 3%,
when we search with the reserved 10% of elements
as queries. As it can be noticed, our deletion method
(GH4) obtains very good performance, both in dele-
tion and search costs, for all metric spaces considered.

5. Conclusions
We have designed a new algorithm for efficient dele-
tion in DSAT. This new algorithm has a low cost of
deletion and allows that subsequent searches have a
performance similar to the best algorithm proposed
in [9]. On the other hand, efficient searches are still
maintained: it is possible to apply the same algo-
rithms of DSAT for range search and k closest neigh-
bors. Our deletion algorithm kept, as a parameter, the

3At http://trec.nist.gov

JCS&T Vol. 14 No. 1 April 2014

43

proportion of allowed nodes with ghost hyperplanes
in the tree, which permits us to tune search cost ver-
sus deletion cost.
The outcome is a much more practical data struc-

ture that can be useful in a wide range of applications.
We expect theDSAT, with the new deletion algorithm,
to replace the static version in developments to come.
As future work we plan to add our new deletion al-

gorithm to the existing version ofDSAT for secondary
memory [10], since it has the advantage that only one
ghost hyperplane is created, so only two nodes have to
be changed, for each deletion. In this case will be rele-
vant both number of distance evaluations and number
of I/O operations.

References
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern

Information Retrieval. Addison-Wesley, 1999.
[2] S. Brin. Near neighbor search in large metric

spaces. In Proc. 21st Conference on Very Large
Databases (VLDB’95), pages 574–584, 1995.

[3] E. Chávez, G. Navarro, R. Baeza-Yates, and
J. Marroquı́n. Searching in metric spaces. ACM
Computing Surveys, 33(3):273–321, Sept.2001.

[4] K. Figueroa, G. Navarro, and E. Chávez.
Metric spaces library, 2007. Available at
http://www.sisap.org/Metric Space Library.html.

[5] G. Hjaltason and H. Samet. Incremental sim-
ilarity search in multimedia databases. Tech-
nical Report CS-TR-4199, University of Mary-
land, Computer Science Department, 2000.

[6] F. Kasián and V. Ludueña and N. Reyes and
P. Roggero. New Deletion Method for Dy-
namic Spatial Approximation Trees. Proc. XIX
Congreso Argentino de Cs. de la Computación.
Págs. 1023–1032, 2013.

[7] G. Navarro. Searching in metric spaces by spa-
tial approximation. In Proc. String Processing
and Information Retrieval (SPIRE’99), pages
141–148. IEEE CS Press, 1999.

[8] G. Navarro. Searching in metric spaces by spa-
tial approximation. The Very Large Databases
Journal (VLDBJ), 11(1):28–46, 2002.

[9] G. Navarro and N. Reyes. Dynamic spatial ap-
proximation trees. ACM Journal of Experimen-
tal Algorithmics, 12:article 1.5, 2008. 68 pages.

[10] G. Navarro and N. Reyes. Dynamic spatial ap-
proximation trees for massive data. In T. Skopal
and P. Zezula, editors, SISAP, pages 81–88.
IEEE Computer Society, 2009.

[11] R. Uribe and G. Navarro. Una estructura
dinámica para búsqueda en espacios métricos.
In Actas del XI Encuentro Chileno de Com-
putación, Jornadas Chilenas de Computación,
Chillán, Chile, 2003. In Spanish. In CD-ROM.

 1100

 1150

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 1550

 1600

 1650

 1 2 3 4 5 6 7 8 9 10

D
is

ta
n
c
e
 e

v
a
lu

a
ti
o
n
s

Deleted percentage of the dataabase

Deletion cost for n = 69,069 words, Arity 32, alpha = 1%

GH1
GH2
GH3
GH4

(a) Strings.

 160

 170

 180

 190

 200

 210

 220

 230

 240

 250

 260

 1 2 3 4 5 6 7 8 9 10

D
is

ta
n
c
e
 e

v
a
lu

a
ti
o
n
s

Deleted percentage of the database

Deletion cost for n = 40,700 vectors, Arity 4, alpha = 1%

GH1
GH2
GH3
GH4

(b) NASA.

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7 8 9 10

D
is

ta
n
c
e
 e

v
a
lu

a
ti
o
n
s

Deleted percentage of the database

Deletion cost for n = 112,682 histograms, Arity 4, alfa = 1%

GH1
GH2
GH3
GH4

(c) Color Histograms.

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7 8 9 10

D
is

ta
n
c
e
 e

v
a
lu

a
ti
o
n
s

Deleted percentage of the database

Deletion cost for n = 1,265 documents, Arity 4, alpha = 1%

GH1
GH2
GH3
GH4

(d) Documents.

Figure 1: Comparison of deletion costs, for all dele-
tion algorithms using α = 1%.

JCS&T Vol. 14 No. 1 April 2014

44

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 1 2 3 4

D
is

ta
n
c
e
 e

v
a
lu

a
ti
o
n
s

Radius

Search cost for n = 69,069 words, Arity 32, 40% deleted, alpha = 1%

GH1
GH2
GH3
GH4

(a) Strings.

 4000

 4200

 4400

 4600

 4800

 5000

 5200

 5400

 5600

 5800

 0.01 0.1 1

D
is

ta
n

c
e
 e

v
a
lu

a
ti
o
n
s

Retrieved percentage of the database

Search cost for n = 40,700 vectors, Arity 4, 40% deleted, alpha = 1%

GH1
GH2
GH3
GH4

(b) NASA.

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0.01 0.1 1

D
is

ta
n
c
e
 e

v
a
lu

a
ti
o
n
s

Retrieved percentage of the database

Search cost for n = 112,682 histograms, Arity 4, 40% deleted, alpha = 1%

GH1
GH2
GH3
GH4

(c) Color Histograms.

 190

 195

 200

 205

 210

 215

 220

 225

 0.01 0.1 1

D
is

ta
n

c
e

 e
v
a

lu
a

ti
o

n
s

Retrieved percentage of the database

Search cost for n = 1,265 documents, Arity 4, 40% deleted, alpha = 1%

GH1
GH2
GH3
GH4

(d) Documents.

Figure 2: Comparison of search costs, after 40% of
elements are deleted using α = 1%.

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 1 2 3 4

D
is

ta
n
c
e
 e

v
a
lu

a
ti
o
n
s

Radius

Search cost for n = 69,069 words, Arity 32, 40% deleted, alpha = 3%

GH1
GH2
GH3
GH4

(a) Strings.

 4200

 4400

 4600

 4800

 5000

 5200

 5400

 5600

 5800

 6000

 0.01 0.1 1

D
is

ta
n

c
e
 e

v
a
lu

a
ti
o
n
s

Retrieved percentage of the database

Search cost for n = 40,700 vectors, Arity 4, 40% deleted, alpha = 3%

GH1
GH2
GH3
GH4

(b) NASA.

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0.01 0.1 1

D
is

ta
n
c
e
 e

v
a
lu

a
ti
o
n
s

Retrieved percentage of the database

Search cost for n = 112,682 histograms, Arity 4, 40% deleted, alpha = 3%

GH1
GH2
GH3
GH4

(c) Color Histograms.

 190

 195

 200

 205

 210

 215

 220

 225

 0.01 0.1 1

D
is

ta
n

c
e

 e
v
a

lu
a

ti
o

n
s

Retrieved percentage of the database

Search cost for n = 1,265 documents, Arity 4, 40% deleted, alpha = 3%

GH1
GH2
GH3
GH4

(d) Documents.

Figure 3: Comparison of search costs, after 40% of
elements are deleted using α = 3%.

JCS&T Vol. 14 No. 1 April 2014

45

	Text5: Received: December 2013. Accepted: February 2014.

