JCS&T Vol. 14 No. 1

April 2014

A Framework for Multi-criteria Argumentation-Based Decision Making
within a BDI Agent

Cecilia Sosa Toranzo, Marcelo Errecalde and Edgardo Ferretti
Laboratorio de Investigacion y Desarrollo en Inteligencia Computacional (LIDIC)
Universidad Nacional de San Luis
Ejército de los Andes 950 - (D5700HHW) San Luis - Argentina
e-mails:{ csosatoranzo, merreca, ferretti} @unsl.edu.ar

ABSTRACT

The BDI model, as a practical reasoning architecture
aims at making decisions about what to do based on
cognitives notions as beliefs, desires and intentions.
However, during the decision making process, BDI
agents also have to make background decisions like
choosing what intention to achieve next from a set
of possibly conflicting desires; which plan to execute
from among the plans that satisfy a given intention;
and whether is necessary or not to reconsider current
intentions. With this aim, in this work, we present
an abstract framework which integrates a Possibilistic
Defeasible Logic Programming approach to decision
making in the inner decision processes within BDI
agents

Keywords: Agreement Technologies, Multi-criteria
Decision Making, BDI, Argumentation, Possibilistic
Defeasible Logic Programming.

1. INTRODUCTION

The BDI model is a particular decision making model
based on cognitive notions, namely: Belief, Desires
and Intentions. This model is very relevant because
of its similarity with human reasoning which makes it
easy to understand it, the theoretical underpinning it
has [1, 2, 3], as well as its applicability to solve real-
world problems [4, 5, 6, 7].

BDI architecture is inspired from Bratman’s work
on practical reasoning [2]. Practical reasoning (PR)
aims at deciding what to do in a given situation and
thus is directed towards action. However, besides de-
ciding which action perform next, BDI agents also
have to decide: (a) which intention to achieve from
a set of possibly conflicting desires, (b) which plan to
execute from among the plans that satisfy the chosen
intention, and (c) whether is necessary or not to re-
consider current intentions. That is, BDI model also
implies making background decisions.

Some of the issues mentioned above have been
tackled in previous works. Casali ef al. [8] present
a general framework to define graded BDI agent ar-
chitectures, where degrees in BDI models are used
to set different levels of preferences or rejections on

46

desires and preferences at intentions level to model
the cost/benefit trade-off of reaching a goal. In [9],
ideas from argumentation are combined with desire
and planning rules, to give a formal account on how
consistent sets of intentions can be obtained from a
conflicting set of desires. In this work, the issue of
choosing one desire from among the conflicting ones
is not tackled and those conflict-free or which become
undefeated from their arguments, are chosen.

A general framework for practical reasoning
based on an abstract argumentative machinery is pre-
sented in [10], where it is argued that PR is a three-
step process involving two inference steps (generating
desires to be accomplished and plans to achieve them)
and one decision step. This last step uses a single de-
cision criterion for selecting the intention to be pur-
sued. To the best of our knowledge, at present, there
are no proposals which clearly formulate how these
choices are made in BDI agent’s inner decision pro-
cesses. In this way, the main goal of this paper aims at
incorporating in a generic way, multi-criteria decision
making in BDI agent’s inner decision processes. In
particular, an argumentation-based approach to multi-
criteria decision making is used [11]. In this respect,
some proposals exist [12, 13], aiming at incorporating
argumentation-based approaches within BDI agents.

In [12], a framework where defeasible argumen-
tation [14] is used for reasoning about beliefs, desires
and intentions, is defined. A dialectical filtering pro-
cess is introduced to obtain a subset of the agent’s
desires containing only those that are achievable in
the current situation. The agent is provided with a
set of intention rules that specifies under what con-
ditions an intention could be achieved. When more
than one intention is possible, a policy will be used to
choose among them. Moreover, [13] designs and im-
plements a travel assistant agent by using argumenta-
tion in the main process of a generic framework. This
framework integrates argumentation-based inference
and web services technologies into the design of a
BDI system.

The rest of the paper is organized as follows. Sec-
tion 2 briefly introduces the BDI model to provide

JCS&T Vol. 14 No. 1

the background concepts underlying the proposed ab-
stract framework (Section 3), which integrates multi-
criteria argumentation-based decision making (Sec-
tion 4) in the inner decision processes of the BDI ar-
chitecture. Then, this framework is exemplified in the
TILEWORLD domain (Section 5). Finally, Section 6
draws the conclusions and briefly describes possible
future work.

2. BDI MODEL

Belief-Desires-Intentions models (BDI) have been in-
spired from the philosophical tradition on understand-
ing practical reasoning. This kind of reasoning can
be conceived as the process of deciding what action
perform next to accomplish a certain goal. Practical
reasoning involves two important processes, namely:
deciding what states of the world to achieve and how
to do it. The first process is known as deliberation and
its result is a set of intentions. The second process,
so-called means-ends reasoning, involves generating
actions sequences to achieve intentions.

The mental attitudes of a BDI agent on its be-
liefs, desires and intentions, represent its informa-
tional state, motivational state and decision state, re-
spectively. The BDI architecture defines its cognitive
notions as follows:

BELIEFS: Partial knowledge the agent has about the
world.

DESIRES: The states of the world that the agent
would ideally like to achieve.

INTENTIONS: Desires (states of the world) that the
agent has committed (dedicated resources) to
achieve.

These cognitive notions are implemented as data
structures in the BDI architecture, which also has an
interpreter that manipulates them to select the most
appropriate actions to be performed by the agent. This
interpreter performs the deliberation and means-ends
reasoning processes aforementioned, and it is shown
in Algorithm 1 (as proposed in [15]). It assumes that
an explicit representation of desires (D), belief (B)
and intentions (/) exist, within the agent. Besides,
with Bel, Des and Int we will denote the sets of all
the beliefs, desires and intentions the agent will possi-
bly have, respectively. The agent’s perceptions will be
represented by p and similarly, Per will denote the set
of all possible perceptions. Regarding plans, they will
be referred as “recipes” to achieve intentions. There-
fore, m will be used to denote plans and Plan will
designate the set of all the plans (on some set of ac-
tions Ac).

Lines 1—3 in Algorithm 1 initialize beliefs, inten-
tions and the plan. The main control loop comprises
lines 4—19. In lines 5—6, the agent perceives and up-
dates its beliefs while in line 7 it decides whether to
reconsider or not. In lines 8—12 it deliberates and in

47

April 2014

line 11, it generates a plan to achieve its intentions.
Lines 14—17 show that an action of the current plan
is executed. Because the purpose of the functions in
this loop can be easily derived from their names, due
to space constraints we omit their formalizations but
the interested reader should refer to [15].

A usual problem in designing practical reasoning
agents lies in getting a good balance among delibera-
tion, means-ends reasoning and actions execution. It
is clear that, in some point of time, an agent should
drop some of its intentions, because they were already
achieved, they are impossible to be achieved or makes
no sense to do it, etc. Likewise, when opportunities
arise to achieve new desires, the agent should gen-
erate intentions to accomplish them. Thus, as men-
tioned above it is important for an agent to recon-
sider its intentions. However, intentions reconsider-
ation is costly in terms of time and computational re-
sources. It can happen that some of the actions from
the executing plan might fail in achieving the intended
results, hence replanning capabilities should be pro-
vided. Both replanning and intentions reconsideration
(if performed) must be carried out during the execu-
tion phase of the chosen actions.

Algorithm 1 BDI Agent control loop
1: B+ By
2: I+ I
30 w4 null
4: while true do
5: getnext percept p
6: update B on the basis of p
7.
8

if reconsider(B,I) then
: D « options(B,I)
9: I + filter(B,D,I)

10: if not sound(7,I,B) then
11: 7 < plan(B,I)

12: end if

13: end if

14: if 7w # 0 then

15: o < hd(m)

16: execute(q)

17: 7 <+ tail(m)

18: end if

19: end while

3. INTEGRATION FRAMEWORK

As mentioned above, the BDI model uses the cogni-
tive notions of beliefs, desires and intentions to de-
cide what to do, but also, inner decisions exist related
to these high-level decisions which, in our view, have
not been clearly detailed in previous works. That is
why, in this section we propose an abstract frame-
work which integrates multi-criteria decision making
to solve inner decision making in a BDI agent.

In Section 2 was referred that a BDI agent com-
prises two fundamental processes, namely, delibera-
tion and means-ends reasoning, which are followed

JCS&T Vol. 14 No. 1

by a plan execution stage. Within these processes (de-
liberation, means-ends reasoning and execution) the
following inner decisions can be made:

CHOICE AMONG CONFLICTING DESIRES: delibera-
tion requires to commit to an intention from
among conflicting desires.

CHOICE BETWEEN PLANS: during means-ends rea-
soning it might be necessary to choose from
among plans which achieve the same inten-
tion, that is, deciding which action perform to
achieve a particular intention.

INTENTIONS RECONSIDERATION: during the exe-
cution process (of only one plan or a mega-plan
involving all the plans the agent has commit-
ted to) decisions should be made with respect
to whether reconsider or not current intentions
based on the dynamics of the environment, and
if so, if new intentions should be adopted or
current intentions should be dropped.

All in all, our BDI architecture will incorporate
an Inner Decision Making Component (IDMC) which
will make inner decisions with respect to the different
alternatives and the multiple criteria provided to the
agent. In our proposal, to select the best alternative
from a given set of alternatives, the agent will have
the select(-, -,) function that will return the choice
made by IDMC. This function will be used (within
this framework) in all the inner decision processes a
BDI agent has. It will receive as input parameters: (1)
a set A of candidate alternatives, (2) the set C' con-
taining the criteria that will be used to compare alter-
natives among each other, and (3) the preferences P,
composed by a preference order among criteria and a
preference order among the possible values an alter-
native can take for each particular criterion.

In the following subsections, there will be de-
scribed in more detail those functions called in the
BDI interpreter, which use select(-, -, -) function, to
make the inner decisions mentioned at the beginning
of this section.

3.1. Deliberation
Based on Algorithm 1, deliberation process can
be considered as composed by two functions:

e options(-,-): which returns a set of acceptable
options (desires) considering the agent’s belief.

e filter(-,-,-): which returns the set of alterna-
tives the agent has committed to.

Once desires have been obtained by using
options(-,-) function, the agent may find conflict-
ing options since desires set might not be consistent.
Hence, the agent must choose one alternative among
the competing ones to commit to. Then, filter(-,,-)
function will accept those non-conflicting options and

48

April 2014

from among the conflicting ones, only one will be se-
lected. Next, the agent will commit to the surviving
options (intentions) of the filtering process. In (1) the
formal definition of filter(-,-,-) function is given. To
select one of the conflicting desires, the agent will
call select(,-,-) within filter(,-,-) function, whose
generic algorithm is shown in Algorithm 2. It is worth
noting that in simplest cases, where all the alternatives
are conflicting among each other (see example in Sec-
tion 5), filter(-,-,-) function is directly conceived as
the select(-, -, -) function.

filter : p(Bel) x p(Des) x p(Int) — p(Int) (1)

Algorithm 2 Filtering of alternatives
function: filter(beliefs B, desires D, intentions I) re-
turn |

1: C <« selection criteria

2: P < user’s preferences
32 D'« D

4: while D’ # () do

5: d < remove-any(D")
6. if feasible(d,B) then
7: for all d € D do

8: if competing(d,d’) then
9: add(d’,A)

10: remove(d’, D)
11: end if

12: end for

13: if A = () then

14: add(d,I)

15: else

16: add(d,A)

17: ay <+ select(A,C,P)
18: add(ay,I)

19: end if
20: end if
21: end while
22: return |

3.2. Means-ends Reasoning

Means-ends reasoning is the process aiming to
decide how to achieve an end (i.e., an intention) by
means of the available actions the agent has. In Arti-
ficial Intelligence community, means-ends reasoning
is best known as planning. A planning algorithm out-
puts a “plan”, that is, the sequence of actions to be
performed and which was previously referred in this
paper as a “recipe”.

In the BDI interpreter depicted in Algo-
rithm 1, means-ends reasoning is achieved by calling
plan(-,-) function. This function, based on beliefs
and current intentions together with the actions avail-
able to the agent, determines a plan to achieve the in-
tentions. On the grounds that several plans may exist
to achieve a certain intention, a choice among them

JCS&T Vol. 14 No. 1

should be made considering issues like: cost execu-
tion (physical resources needed), time execution, sen-
sitivity to changes in the environment, etc. The imple-
mentation of plan(-, -) function based on select(, -, -)
function, is presented in Algorithm 3.

Algorithm 3 Planning

function:
II

plan(beliefs B, intentions 1) return

1: C < selection criteria

2: B < user’s preferences
3. C' « criteria for sort plans
4: fori € I do

5: P « find-plans(B,i)
6 if singleton(P) then

7 add(m € P.II)

8 else

9: 7w + select(P,C,P)
10: add(m,IT)

11: endif

122 sort(II,C")

13: end for

14: return II

3.3. Execution

One design issue in BDI agents concerns defin-
ing the intention reconsideration policy [15, 16, 17].
This policy will define under which circumstances the
BDI agent will use computational resources to delib-
erate about its intentions. At present there is no con-
sensus on when or how an agent should reconsider
its intentions. Current proposals consider the agents’
commitment levels, which range from cautious agents
(which reconsider their intentions after each action
execution) to bold agents (that perform no reconsid-
eration until the current plan has been completely ex-
ecuted).

Kinny and Georgeff investigated the efficiency of
these policies in different kind of environments [16]
but the intention reconsideration policy is defined in
the design stage of the agent, which makes impos-
sible to modify this policy in execution time. It is
evident that this is not a practical solution for agents
operating in dynamic and changing environments. In
this respect, Schut and Wooldridge [17] proposed a
framework that allows the agent choosing by itself
what policy to follow based on the current state of
the world. The main idea underlying this work is that
an intention reconsideration policy can be conceived
as a meta-level control process which selects whether
to deliberate or act. This proposal is based on the dis-
crete deliberation scheduling framework [18], where
deliberations are treated as if they were actions.

In [17], the proposed model incorporates decision
making in the intention reconsideration process of a
BDI agent. To determine the best possible action, the

April 2014

maximum expected utility is considered which means
considering only one criterion to solve the decision
problem. In this way, our work extends [17] to ap-
ply multi-criteria decision making when choosing be-
tween acting or deliberating.!

Integrating the BDI model with the discrete
deliberation scheduling framework, from a multi-
criteria point of view, involves implementing
reconsider(-,-) function. In this way, a distinction
should be made between external actions and inner
actions. External actions, Ac.y:, change the envi-
ronment where the agent is located, whereas inner
actions, Ac;y;, affect the agent’s internal state. It
holds that Ac = Acept U Acipns and it is assumed that
Acegr N Acine = (0. As it can be observed in Algo-
rithm 4, in this model, the agent must choose between
a default action agey € Acesy (acting) or an inner ac-
tion aqe; € Acint (deliberating). Let 1 € Plan be a
plan composed by actions 7[0],...,n[n — 1], where
m[i] € Aezt and n denotes the plan length; in any ex-
ecution time it holds that ag. s is 7[0].

The use of the BDI model makes the treatment
of deliberation at a very abstract level, since delib-
eration is considered as a way of changing the in-
tentions set and is referred as a simple inner ac-
tion. When reconsider(-, -) function returns true, this
means that deliberating was decided, while if returned
false, this means that acting was chosen. To decide
between both meta-actions, the agent should be pro-
vided well-established comparison criteria, then it has
to compute the actions values considering their con-
sequences and it also has to estimate the benefit of
deliberating for age;.

Algorithm 4 Intention Reconsideration

function: reconsider(beliefs B, intentions I) return
bool
C + selection criteria
P < user’s preferences
get current plan 7 from [
if 7 = () then
return true
end if
Qdef < T [0]
A {agef,ager}
selec < select(A, C, P)
if Uselec = Qdel then
return true
end if
13: return false

R A A ol S

_ =
N e 2

In the following section, a concrete
argumentation-based approach is proposed to instan-
tiate the abstract framework presented in this section.
The argumentation-based mechanism will be imple-
mented by the IDMC, which will return to the BDI

!In this case, “deliberating” refers to the deliberative and planning stages comprised in the BDI interpreter.

49

JCS&T Vol. 14 No. 1

interpreter the choice made, as result of the inner
decision making process.

4. THE ARGUMENTATION-BASED
INSTANTIATION

The argumentation-based decision framework de-
scribed in this section is formally related to the
choice-based approach (CBA) to decision making, as
stated in [11]. The CBA takes as primitive object the
choice behaviour of the individual, which is repre-
sented by means of a choice structure (B, C(-)).
B is a set of subsets of X (the set containing all the
available alternatives to the decision maker). Each set
B € B, represents a set of alternatives (or choice ex-
periment) that can be conceivably posed to the deci-
sion maker. C(-) is a choice rule which basically as-
signs to each set of alternatives B € 3 a non-empty
set that represents the alternatives that the decision
maker might choose when presented the alternatives
in B (C(B) C B for every B € B). When C(B)
contains a single element, this element represents the
individual’s choice among the alternatives in B. The
set C(B) might, however, contain more than one ele-
ment and in this case they would represent the accepz-
able alternatives in B for the decision maker.

This decision framework is conceptually com-
posed by three components. The first component is
set X. The second component, the epistemic com-
ponent, represents the agent’s knowledge and prefer-
ences, and the third one is the decision component.
Formally, the argumentation-based decision frame-
work is a triple (X, IC, T') where:

X 1is the set of all the possible alternatives that can
be presented to the decision maker.

K is the epistemic component of the decision maker
(see Definition 4.5 from [11]). Formally, K is a
5-tuple, K = (C, >¢, ACC,II, A) where:

e C is a set of comparison literals repre-
senting the preference criteria that the de-
cision maker will use to compare the el-
ements in X. Let C={Cy,...,Cy}
(n > 0) be the set of preference crite-
ria that will be used to compare the el-
ements in X, each criterion C; has as-
sociated a comparision literal c;(-,-) that
states the preference between two alterna-
tives of X, based on their attribute values.
Then, C= {c1(,), ..., en()}

e > is a strict total order over the elements
of C. (Definition 4.2 from [11]).

o ACC is a user-specified aggregation
function that aggregate necessity degrees.
ACC must satisfy specific properties
(see [11)).

April 2014

e Il is a set of certain clauses.

e A is a set of uncertain clauses.
P(II,A) is a conformant P-DeLP pro-
gram (see Definition 4.3 from [11]).

T is the decision component. 1t is a set with two de-
cision rules:?

DR1:{W} £ {bt(W,Y)}, not{bt(Z, W)})
DR2: {W,Y} £ {sp(W,Y)}, not{bt(Z, W)})
with B C X.

Rule DRI states that an alternative W € B will
be chosen, if W is better than another alterna-
tive Y and there is not a better alternative 2
than W. Besides, rule DR2 says that two al-
ternatives W, Y € B with the same properties
will be chosen if there is not a better alternative
Z than W and Y.

Let B € B be a set of alternatives posed to the
agent and (X, /C,T') be the agent’s decision frame-

work. Let {D; £ P, not Ti}ie1., C T be the
set of applicable decision rules with respect to K.
The set of acceptable alternatives of the agent will
be Qp = JI-, D;. The set Qp is a subset of B and
if 2p contains a single element, that element is the
decision maker’s individual choice from among the
alternatives in B. However, if) g contains more than
one element, then they represent acceptable alterna-
tives that the agent might choose.

In Algorithm 5, a general algorithm which imple-
ments a choice rule C(-) is presented. As it can be
observed function p has as input parameter a choice
experiment (B). A choice experiment is a set contain-
ing at least one element, hence, this function returns
failure if receives as argument an empty set (step 1).
If the choice experiment has one element, then it is
thus returned as solution since there is only one trivial
choice to be made (step 2). Then, if a non-empty set
was received as parameter, the resulting set sol is ini-
tialized (step 3) and a local copy (ch) of the original
choice experiment is made (step 4). The computing
process to determine the set of acceptable alternatives
ends when ch becomes empty (step 6), thus exiting
the main loop (step 5) returning the computed set of
acceptable alternatives sol (step 13). While there are
alternatives in ch, an alternative is removed from this
set and is assigned to h (step 7). If there is not a bet-
ter alternative than h in the choice experiment (step 9)
and h is better than any other alternative in the choice
experiment (step 8), then h is added to the resulting
set sol (step 10), otherwise is discarded (step 9). Be-
sides, if h is not better than any other alternative in
the choice experiment (step 8), but there is no other
alternative (let us denoted it as A') in the choice ex-
periment better than A (step 11), then it holds that h
and A’ have the same properties, and they are the best,
therefore h is added to the resulting set sol (step 12).

2Due to space constraints, the literals better(-, -) and same_prop(-,-) in [11], will be referred as bt (-, -) and sp(-, -), respectively.

50

JCS&T Vol. 14 No. 1

It is worth mentioning, that in turn (when selected in
step 7) h’ will also be added to sol.

Based on the above-mentioned framework, func-
tion select(-, -, -) executes the steps shown in Algo-
rithm 6 to choose from among the alternatives in .

Algorithm 5 Compute Acceptable Alternatives

function pi(choice-experiment) returns non-empty-set-of-
alternatives, or failure

1: if EMPTY ?(choice-experiment) then return failure

2: if SINGLETON?(choice-experiment) then return
choice-experiment

3: s0l + 0

4: ch < choice-experiment

5: loop do

6: if EMPTY?(ch) then exit

7: h < REMOVE-ELEMENT(ch)

8: if IS-A-BETTER-THAN-ANY-OTHER?(choice-
experiment) then

9: if ANY-BETTER-THAN-h?(choice-experiment) then
discard h

10: else ADD-ELEMENT(sol,h)

else

11: if ANY-BETTER-THAN-A?(choice-experiment) then
discard h

12: else ADD-ELEMENT(sol,h)

13: return sol

Algorithm 6 Computation for alternatives selection

function select(alternatives B, criteria C, prefer-
ences P) returns non-empty-set-of-alternatives, or
failure
1: Define the comparison literal for each C; € C
2: Define >¢ according to the preferences of each
criterion in P
3. Build a conformant program P(II, A) (as defined
in [11])
4: return Evaluation of function p(B)

5. EXAMPLE: THE TILEWORLD
The TILEWORLD experimental domain [19] is a grid
environment containing agents, tiles, holes and ob-
stacles. The agent’s objective consists of scoring as
many points as possible by pushing the tiles into the
holes to fill them in. The agent is able to move up,
down, left, or right, one cell at a time, having as only
restriction that obstacles must be avoided. This envi-
ronment is dynamic, so that holes and tiles may ran-
domly appear and disappear in accordance to a series
of world parameters, which can be varied by the ex-
perimenter.

A BDI agent for the TILEWORLD can be imple-
mented as follows: the agent’s beliefs consist of its
perceptions about the objects locations, as well as the
score and time-out time for all the holes. Desires are
the holes to be filled in, and the current intention (IH)

51

April 2014

aims at filling a particular hole right now. The means-
end reasoner basically is a special-purpose route plan-
ner, which guides the agent to a particular tile that
must be pushed into the hole to be filled in. Figure 1
shows a hypothetical scene in which the framework
proposed in Section 3 will be used.

The agent gets its perception and updates its be-
liefs, in order to deliberate about what intention to
achieve next. During deliberation it gets its reachable
holes (options), i.e., those which are not surrounded
by obstacles and their time-out times are higher or
equal to the distances from the agent to the holes.
Then, as described in Section 5.1, filtering stage takes
place where one of the reachable holes is selected and
becomes the intention to be achieved (I H).

LOO
P...‘ P
s pos(6,6)
score(9)
timeout(7)
distbgent(a)
(AN stz ey -
istegen
00 X i
A YN

hs

pos(6,3)
score(6)
timeout(15)
distagent(S)

h2
pos(1,2)
sconei2)
timeout(1)
distagent(3)

) 'l 'S
pos(1,1) he

score(5) post6,1)
timeout(1) seare(4)
distagent(4) timeout(12)
UNACHIEWABLE

Figure 1: Tileworld scene

5.1. Filtering

In this case, all options are conflicting each
other, since it is not possible to fill in more than
one hole at a time. Hence, all reachable holes will
serve as input to selec(-,-,-) function. In this way,
B = {h37h47h5}, C = {01,02,03,04} where:
(1 = score, (5 = timeout, Cs = distAgent,
Cy = tileAvail (distance to the nearest tile) and

>c = {(distAgent, timeout), (dist Agent, tile Avail),
(timeout, tile Avail), (score, dist Agent),

(score, timeout), (score, tile Avail) }

Table 1 presents preferences for each criterion.
Table 2 shows the alternatives and their respective
values for each criterion, while Table 3 shows the
alternatives and their respective values normalized
to interval [0,1]. Likewise, following the approach

JCS&T Vol. 14 No. 1

from [11], a conformant P-DeL.P program would be:

(score(hg, hs),0.92)
(score(hg, hs), 0.83)
(score(hs, hs),0.83)
(distAgent(hg, hs),0.62)
(distAgent(hg, ha),0.67)
(distAgent(hs, ha),0.54)
(timeout(hs, hs),0.37)
(timeout(hs, ha),0.38)

(timeout(hg, h4),0.26)

(tileAvail(hs, hs), 0.08)
(tileAvail(ha, hs), 0.08)

(bt(W,Y') + score(W,Y),0.99)

(~ bt(W,Y) « score(Y,W),0.99)
(bt(W,Y) + dist Agent(W,Y"),0.74)

(~ bt(W,Y) « distAgent(Y,W),0.74)
(bt(W,Y) <= timeout(W,Y"), 0.49)

(~ bt(W,Y) + timeout(Y, W), 0.49)
(bt(W,Y) + tileAvail(W,Y),0.24)
(~ bt(W,Y) « tileAvail(Y, W), .24)

2

bt(W,Y) < s
bt (W, Y) <

={

P(W7 Y)’ 1) }
sp(Y, W), 1)

In the particular program presented above, the ne-
cessity degrees of the clauses belonging to (II, A)
were calculated as follows:

1. Normalize the alternatives’ attribute values (Ta-

ble 2) to interval [0, 1] for all of the preference
criteria (see Table 3).

. Compare the alternatives among each other

with respect to the normalized preference cri-
teria. The alternative which appears as first ar-
gument of the comparison literal has a better at-
tribute value (with respect to its associated pref-
erence criterion) than the one that appears as
second argument. The necessity degree of the
clause is calculated as the absolute value of the
remainder of their normalized attribute values.

. Divide the necessity degrees obtained in previ-

ous step by the number of preference criteria
provided to the decision maker, i.e., by 4 in this
case.

. Map the necessity degrees obtained in previous

step to the subinterval assigned to the compari-
son literal in the clause (see Table 4).

. For each clause (p,«) such that ¢ is a

rule of the kind bt(W)Y) < ¢;(W,Y) or
~b(W)Y) < ¢;(Y, W), set a to the upper
bound value of the subinterval assigned to

Ci(',').

April 2014
Criteria Comparison literal ~ Subinterval
4 score(-,-) [0.75,1)
Cy timeout(-, -) [0.250.5)
Cs distAgent(-,-) [0.500.75)
Cy tileAvail (-, -) [00.25)

Table 1: Preferences per criterion

Alternatives C; Cy C3 (C4
h3 3 8 2 2
h4 9 7 6 2
h5 6 15 5 3

Table 2: Alternatives values for each criterion

Alternatives C} [0,1] Cs [0,1] 03[071] C4[071]
h3 0.33 0.53 0.33 0.67
h4 1 0.47 1 0.67
h5 0.67 1 0.83 1

Table 3: Alternatives values for each criterion nor-
malized to [0, 1]

(score(ha, hs),0.67) (timeout(hg, ha),0.26)
(score(ha, hs),0.17) (distAgent(hg, hs),0.5)
(score(hy, hs),0.92) (distAgent(hs, hs),0.12)
(score(hg, hs),0.33) (distAgent(hg, hs),0.62)
(score(hg, hs),0.08) (distAgent(hs, hyg),0.67)
(score(ha, hs),0.83) (distAgent(hg, hq),0.17)
(score(hs, hs),0.34) (distAgent(hg, ha),0.67)
(score(hs, hs), 0.08) (distAgent(hs, hy),0.17)
(score(hs, hs), 0.83) (distAgent(hs, hy),0.04)
(timeout(hs, h3),0.47) (distAgent(hs, hs),0.54)
(timeout(hs, h3),0.12) (tileAvail(hs, hs),0.33)
(timeout(hs, h3),0.37) (tileAvail(hs, hs),0.08)
(timeout(hs, ha),0.53) (tileAvail(hs, hs),0.08)
(timeout(hs, hg),0.13) (tileAvail(hg, hs),0.33)
(timeout(hs, ha),0.38) (tileAvail(hg, hs),0.08)
(timeout(hg, hy),0.06) (tileAvail(hy, hs),0.08)
(timeout(hg, ha),0.01)

Table 4: Alternatives comparison

The arguments of the form (A, h,a)® presented in
Figure 2(a), are built from the above P-DeL.P confor-
mant program. To calculate the accrued structures for
these arguments, it will be used the AC'C' function
defined below, with K = 0.1:*

ACC(ar,...,0p) =1 =TT (1 —a;)] +
K max(ay,...,a,) [, (1 — o)

As it can be observed in Figure 2(b), twelve a-
structures can be built to support the reasons by which
an alternative should be deemed better than another

3Given an argument (A, h,), A is the set of uncertain clauses, A is the conclusion it supports and « its necessity degree.

4This function is a variant of the One-Complement accrual function used in [20] where K aims at weighting the importance given to the
highest priority preference criterion, and in [11] has been proven to satisfy the desired properties to be used in multicriteria aggregation.

52

JCS&T Vol. 14 No. 1 April 2014
A = {(bt(ha, h3) < score(hq, h3),0.99), (score(hyg, hs),0.92)}, bt(ha, hs) ,0.92)
Ay ={ {(~ bt(hg, ha) < score(hq, h3),0.99), (score(hy, h3),0.92)}, ~ bt(hs, hq) ,0.92)
Az = { {(bt(ha, hs) < score(hq, hs),0.99), (score(ha, hs),0.83)}, bt(ha, hs) ,0.83)
Ay = {(~ bt(hs, ha) < score(ha, hs),0.99), (score(hy, hs),0.83)}, ~ bt(hs, h4) ,0.83)
As = {(bt(hs, h3) « score(hs, h3),0.99), (score(hs, hs),0.83)}, bt(hs, h3) ,0.83)
As = ({(~ bt(hg, hs) < score(hs, h3),0.99), (score(hs, h3),0.83)}, ~ bt(hg, hs) ,0.83)
./47 = < { bt(hg, h5) — dZ'StAge’l’Lt(h:;, h5), 074), (distAgent(hg, h5)) 0. 62)} (hg, h5) ,062>
Ag = < {(N bt(h5, hg) — distAgent(hg, h5), 074), (distAgent(hg, h5)) 0. 62)} ~ bt(h5, hg) ,062>
Ag = {(bt(hs, hq) < distAgent(hs, hq),0.74), (distAgent(hs, hq),0.67)}, bt(hs, ha) ,0.67)
AIO = < {(N bt(h4, hg) — distAgent(h37 h4), 074) (dZStAge’l’Lt(hg, h4) 0. 67)} ~ bt(h4, h3) ,O.67>
-All = < {(bt(h5, h4) — dzstAgent(hg), h4) 074), (dzstAgent(hg,, h4) 0. 54)} (h5, h4) ,0.54>
./412 = < {(N bt (h4, h5) — dZStAge’l’Lt(h5, h4), 074) (dzstAgent(h5, h4) 0. 54)} ~ bt(h4, h5) ,O54>
A1z =({(bt(hs, h3) < timeout(hs, hs3),0.49), (timeout(hs, h3),0.37)}, bt(hs, h3),0.37)
A1a=({(~ bt(hs, hs) < timeout(hs, h3),0.49), (timeout(hs, h3),0.37)}, ~ bt(hg, hs) ,0.37)
A5 =({(bt(hs, ha) < timeout(hs, ha),0.49), (timeout(hs, h4),0.38)}, bt(hs, ha) ,0.38)
Al(; == < {(bt(h4, h5) — tzmeout(hs, h4), 0.49), (timeout(h5, h4), 038)}, ~ bt(h4, h5) ,0.38>
./417 = < {(bt(h3, h4) — timeout(hg, h4), 049), (timeout(hg, h4), 026)}, (h3, h4) ,026>
-/418 = < {(N bt(h4, hg) — timeout(hg, h4), 049), (timeout(hg, h4), 026)}, ~ bt(h4, hg) ,O26>
Alg = < {(bt(hg, h5) «— tileAvail(hg, h5), 024), (tileAvail(hg, h5), 008)}, bt(hg, h5) ,008>
Aso={ {(~ bt(hs, hs) « tileAvail(hs, hs),0.24), (tile Avail (hs, hs),0.08)}, ~ bt(h5, hs3) ,0.08)
.A21 = < {(bt(h4, h5) — tileAvail(h4, h5) 0. 24) (tileAvail(h4, h5), 008)}, (h4,) ,0.08>
./422 = < {(N bt(h5, h4) — tzleAvazl(h4, hs) 0. 24) (tileAvail(h4, h5), 008)}, ~ bt(h5, h4) ,0.08>

(a)

[q)l, bt(h3, hs), 0.67], [(I)/l, ~ bt(h3, hs), 0.90}, D1 = A7 U Aqo, q)/l = Ag U A14;
[(I)g, ~ bt(h5, hg), 0.67], ['13/2, bt(h5, h3)7 0.90], = Ag U Ay, (13/2 = A5 U A;s;
[(I)g, bt(hg, h4), 078], [q):o’, ~ bt(h3, h4), 093], @3 = ./49 U A17, (I):a’ = .AQ;

[y, ~ bt(hag, hs3),0.78], [‘I)il, bt(hg, h3),0.93], &, = 40U A;s, q)ﬁl = Ay;

[®5, bt(hs, hy),0.73], [®F,~ bt(hs,hy),0.85], &5 = A3 U A5, OL = Ay U Asg;
[[

Pg, ~ bt(h4, h5), 073], ‘I’%,bt(h4,h5),0.85}, Pg = Ao U Aqg, (I)é = A3 U Ayy;
(b)

Figure 2: Arguments and a-structures built from the P-DeLP conformant program

one. Those a-structures warranted from the dialecti-
cal process (shown in bold), will be used by Algo-
rithm 5 to compute the set of acceptable alternatives.
In this particular case, only decision rule DR1 can be
applied. For alternative h,4, precondition of DR1 can
be warranted and like there is no warranted a-structure
supporting a conclusion of the kind bt(Z, hy) to war-
rant DR1’s restriction, hy becomes the acceptable al-
ternative. Finally, hole h4 becomes I H.

5.2. Means-ends Reasoning and Intention Recon-
sideration

Once a hole has been selected to fill in, plans
to achieve this intention are selected. The cri-
teria set provided for plan selection could be
C = {C4,Cy,C5}, where Cy = length, Co = cost,
C3 = timeoutT'ile. Criterion C7 is the number of
action within the plan. C5 represents the plan cost
which is calculated as the sum of its actions costs,
which depend on the agent’s orientation. Finally, Cs
is the time-out time of the tile selected in the plan to
fill in the hole.

53

On the other hand, the fact that holes appear
and disappear causes the agent to change its inten-
tions. For example, when the set of holes dot not
change while the agent is executing a plan, then there
is no need to deliberate; but if the set of holes do
change, this might mean that /H has disappeared
or that a closer hole has appeared; thus, intentions
reconsideration is necessary. To achieve this be-
haviour, it is important to consider appropriate criteria
to determine whether these changes have occurred or
not. Means-ends reasoning and intention reconsidera-
tion also use the argumentation-based decision frame-
work (as in the filtering stage), in order to choose
a plan to execute or to reconsider intentions, while
the plan is under execution. Due to space constraints,
how this framework is applied in these stages, will not
be developed in this paper.

6. CONCLUSIONS

In this work, we presented an abstract framework that
integrates argumentation-based decision making from
a multi-criteria approach, within the inner decision

JCS&T Vol. 14 No. 1

processes of a BDI agent. Likewise, it was specified
how to perform a concrete implementation of the in-
ner decision making processes within a BDI agent.
In order to get a better understanding and provide
feedback to the abstraction process carried out to pro-
pose this present framework, as future work, follow-
ing the idea proposed in [21], new instantiations of the
framework will be done with other methods belong-
ing to the research field of Agreement Technologies.

7. ACKNOWLEDGMENTS

This work was supported by Universidad Nacional de
San Luis (PROICO 30312).

8. REFERENCES

[1] M. Bratman, Intentions, Plans and Practical
Reason. Cambridge, MA: Harvard University
Press, 1987.

[2] M. Bratman, D. Israel, and M. Pollack, ‘“Plans
and resource bounded reasoning,” Computa-
tional Intelligence, vol. 4, no. 4, pp. 349-355,
1988.

[3] D. C. Dennett, “Intentional systems,” Journal of
Philosophy, vol. 68, pp. 87-106, 1971.

[4] M. Ljungberg and A. Lucas, “The oasis air traf-
fic management system,” Tech. Rep. 28, Civil
Aviation of Australia, August 1992.

[5] A. S. Rao, A. Lucas, D. Morley, M. Selvestrel,

and G. Murray, “Agent-oriented architecture for

air-combat simulation,” Tech. Rep. 43, Aus-

tralian Artificial Intelligence Institute, 1993.

[6] R. Evertsz, M. Fletcher, R. Jones, J. Jarvis,

J. Brusey, and S. Dance, Programming Multi-

Agent Systems, ch. Implementing Industrial

Multi-agent Systems Using JACK. Springer,

2004.

S. S. Benfield, J. Hendrickson, and D. Galanti,
“Making a strong business case for multiagent
technology,” in 5th AAMAS, 2006.

A. Casali, L. Godo, and C. Sierra, “A graded
BDI agent model to represent and reason about
preferences,” Artifical Intelligence, vol. 175,
no. 7-8, pp. 1468-1478, 2011.

L. Amgoud, “A formal framework for han-
dling conflicting desires,” in ECSQARU (T. D.
Nielsen and N. L. Zhang, eds.), vol. 2711 of Lec-
ture Notes in Computer Science, pp. 552-563,
Springer, 2003.

54

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

April 2014

L. Amgoud and H. Prade,
practical reasoning under uncertainty: An
argumentation-based approach,” in JAT,
pp. 189-195, IEEE Computer Society, 2007.

“Formalizing

E. Ferretti, M. Errecalde, A. Garcia, and
G. Simari, “A possibilistic defeasible logic
programming approach to argumentation-
based decision making,” Journal of Ex-
perimental & Theoretical Artificial Intel-
ligence, 2014. In press. Draft version at
https://sites.google.com/site/
edgardoferretti/TETA-2012-0093.
Rl.pdf?attredirects=0&d=1.

N. D. Rotstein, A. J. Garcia, and G. R. Simari,
“Reasoning from desires to intentions: A dialec-
tical framework,” in AAAIL pp. 136-141, AAAI
Press, 2007.

F. Schlesinger, E. Ferretti, M. Errecalde, and
G. Aguirre, “An argumentation-based BDI per-
sonal assistant,” in /EA/AIE, vol. 6069 of LNAI,
Springer, 2010.

A. Garcia and G. Simari, “Defeasible logic pro-
gramming: an argumentative approach,” The-
ory and Practice of Logic Programming, vol. 4,
no. 2, pp. 95-138, 2004.

M. Wooldridge, Reasoning about Rational
Agents. The MIT Press, 2000.

D. N. Kinny, “Commitment and effectiveness of
situated agents,” in In Proceedings of the Twelfth
International Joint Conference on Artificial In-
telligence (IJCAI-91, pp. 82-88, 1991.

M. Schut and M. Wooldridge, “Intention recon-
sideration in complex environments,” in 4th In-

ternational Conference on Autonomous Agents,
2000.

S. Russell, E. Wefald, M. Karnaugh, R. Karp,
D. Mcallester, D. Subramanian, and M. Well-
man, “Principles of metareasoning,” Artificial
Intelligence, 1991.

M. E. Pollack and M. Ringuette, “Introducing
the tileworld: Experimentally evaluating agent
architectures,” in 8th AAAI pp. 183—-189, 1990.

M. G6émez, C. Chesievar, and G. Simari, “Mod-
elling argument accrual in possibilistic defeasi-
ble logic programming,” in ECSQARU, LNCS,
pp. 131-143, Springer, 2009.

C. Sosa-Toranzo, F. Schlesinger, E. Ferretti,
and M. Errecalde, “Integrating a voting protocol
within an argumentation-based BDI system,” in
XVI CACIC, 2010.

Received: December 2013. Accepted: February 2014.

	Text6: Received: December 2013. Accepted: February 2014.

