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1 Introduction

Even though the result recently referred to as the `Frisch-Waugh-Lovell theo-
rem' (FWL theorem, henceforth) has been around for a long time, it is relatively
recently that it has been widely used by econometricians as a powerful peda-
gogical tool to express in a simple and intuitive way many results that often
rely on tedious and seldom intuitive algebraic steps, which are also notationally
cumbersome.

Even though a proof of the FWL theorem can be based entirely on stan-
dard algebraic results, the main reason of its increasing popularity is its strong
geometric appeal. Recent texts and articles provide a mix between algebraic
proofs and geometrical illustrations of the theorem, but none of them presents
a fully geometrical proof of the result. The goal of this note is very modest:
it extends the standard geometrical representations of the theorem to actually
prove it based on geometrical arguments, which should, hopefully, provide a
richer understanding of the scope of the theorem.

2 The Frisch-Waugh-Lovell Theorem

This note can be seen as an addendum to the presentation in recent texts in
advanced econometrics like Davidson and MacKinnon (1993) or Ruud (2000),
which provide extensive coverage of the theorem. For simplicity, we will follow
the former. The setup of the theorem is the standard linear model in matrix
form:

¤I thank Alvaro Mezza for a careful reading of a previous version, and the participants of
the Econometrics I Seminar, where this note originated. The usual disclaimer applies.
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Y = X¯ + u

where Y is an n vector of observations of the dependent variable, X is a n £ k
non-stochastic matrix of observations of k explanatory variables, and u is a
vector of error terms. Let's partition X so the model is expressed as follows:

Y = X1¯1 +X2¯2 + u (1)

where X1 and X2 are matrices of observations of k1 and k2 explanatory variables,
and ¯1 and ¯2 are the corresponding coe±cients vectors. Consequently, X =
[X1 X2], ¯0 = (¯01 ¯02)0 and k = k1 + k2.

Let M1 = I¡X1(X 01X1)¡1X 01, that is, M1 is an orthogonal projection matrix
that projects any vector in Rn onto the orthogonal complement of the linear
space spanned by the columns of X1. Let Y ¤ = M1Y and X ¤2 = M1X2. Y ¤ and
X¤2 are, respectively, OLS residuals of regressing Y and all the columns of X2

on X1.
Suppose that we are interested in estimating ¯2 in (1), and consider the

following alternative methods:

² Method 1 : Proceed as usual and regress Y on X obtaining the OLS esti-
mator ^̄ = ( ^̄0

1
^̄0
2)0 = (X 0X)¡1X 0Y . ^̄

2 would be the desired estimate.

² Method 2 : Regress Y ¤ onX¤2 and obtain as estimate ~̄
2 = (X¤02 X

¤
2 )¡1X¤02 Y ¤

Let e1 and e2 be the residuals vectors of the regressions in Method 1 and 2,
respectively. Now we can state the theorem.

Theorem (Frisch and Waugh, 1933, Lovell, 1963): ^̄
2 = ~̄

2 (¯rst part)
and e1 = e2 (second part).

The theorem says that both methods yield exactly the same estimates of ¯2

and that residuals of both regressions are the same. That is, an estimate of ¯2

can be obtained by directly regressing Y on X1 and X2 or in a two-step fashion.
In the ¯rst step, we `get rid' of the e®ect of X1 by substracting to Y and X2

the part of them that can be linearly explained by X1, and in the second part
we run a simple regression using this `cleaned' variables (Y ¤ and X¤2 ).

Technically, Method 1 projects Y on the space spanned by the columns
of X , and its residuals are projections of Y on the orthogonal complement of
such space. Method 2 decomposes this procedure in two steps. The ¯rst step
`eliminates' the e®ect of X1 by ¯rst projecting Y and X2 on the orthogonal
complement of the space spanned by the columns of X1, that is, it creates new
variables Y ¤ and X¤2 which are OLS residuals of regressing Y and X2 on X1.
The second step simply runs OLS on these transformed variables, that is, Y ¤ is
projected orthogonally on the space spanned by X¤2 , which, by construction, is
orthogonal to the space spanned by X1.

2



Simple as it looks, the FWW theorem is a very powerful tool to understand
the mechanics of OLS estimation. Even though there are several algebraic ways
to prove the theorem (one of them is presented in the Appendix) a geometrical
representation helps notoriusly to understand how the OLS method works.

3 A geometrical representation

The geometrical representation presented in this note extends that in Davidson
and MacKinnon (1993, pp. 22). For simplicity, let us consider the case where
k1 = k2 = 1, that is, there are only two explanatory variables1. Figure 1
shows the three main vectors involved in the OLS estimation of (1). Y , X1

and X2 are vectors in a three-dimensional euclidean vector space. Data vectors
are represented with arrows and labeled with bold letters. Lowercase letters
represent points. OLS projects Y on the space spanned by X1 and X2, which,
in this case has dimension two. The OLS projection is represented by the vector
ob = P Y where P = X(X 0X)¡1X 0 is the matrix that projects Y orthogonally
on the span of X . The residual vector is ab = MY where M = I ¡ P is the
matrix that projects Y on the orthogonal complement of the span of X . Given
that PY = X1

^̄
1 +X2

^̄
2, the coordinates of vectors oe = X1

^̄
1 and od = X2

^̄
2

can be easily found using the parallelogram's law. This provides the geometrical
representation of all the elements involved in Method 1.

[INSERT FIGURE 1 HERE]

In order to explore the geometry of the second method, ¯rst let us project
Y orthogonally on the span of X1, which is represented by oc = P1Y and the
corresponding residual vector ac = Y ¤ = M1Y . Now do the same with X2. The
projection of X2 on X1 is represented by og = P1X2 and the residuals vector is
fg = X¤2 = M1X2. The second methods regresses Y ¤ on the span of X¤2 , which
is represented by the line containing segment cg, which is simply fg translated
so as it has origin in c. This projection gives the vector cb and the corresponding
residuals vector is, trivially, the vector ab. This illustrates the second part of
the theorem: OLS residuals of both methods are exactly the same.

[INSERT FIGURE 2 HERE]

1Perhaps one of the most interesting corollaries of the FTW theorem is that one can reduce
all the relevant aspects of the multivariable case to the two variable case.
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Even though the ¯rst part of the theorem can also be easily explored in
the same picture, in order to avoid cluttering Figure 1 too much, let's look
at Figure 2, which is simply Figure 1 seen `from above'. From Method 1,
X2

^̄
2 = od = of ^̄

2, and from Method 2, X2
~̄

2 = cb = cj ~̄
2. Now by Thales'

Theorem od=of = cb=cj, and replacing we get the ¯rst part of the theorem:
^̄

2 = ~̄
2

4 Historic coda

The result behind the FWL theorem has been known in the econometrics lit-
erature for a long time. In fact, if everything contained in the ¯rst volume of
Econometrica can be regarded as `seminal' of `foundational', this is surely the
case of the FWL theorem. Moreover, almost every intermediate to advanced
econometrics text refer to it either explicitely or indirectly, exploiting its geo-
metrical structure in varying degrees. Davidson and MacKinnon's (1993) text
labelled it as the `Frisch-Waugh-Lovell' Theorem in honour of the Frisch and
Waugh (1933) paper where the result is proved for the ¯rst time in economet-
rics, and the paper by Lovell (1963), which presents a nice application of the
result. The name seems to attempt to do justice with the originality of the result
(Frisch and Waugh) and its applicability (Lovell), much more ambitious than
a casual look would suggest. Davidson and MacKinnon devote an entire chap-
ter (and many subsequent references) in their book to the FWL theorem. The
WWW based `Dictionary of Economics' has an entry labelled `Frisch-Waugh-
Lovell Theorem'. In spite of DM's e®ort in giving credit to the three authors,
there is still no agreement in the profession regarding how to refer to these re-
sults. For example, Fiebig, et al. call it the `Frisch-Waugh' theorem, dropping
Lovell's name, and a very recent text by Paul Ruud (2000), though devoting
extensive coverage to the subject (even more than Davidson and MacKinnon),
still refer to it as the `partitioned regression' theorem. Goldberger's classic text
also gives detailed treatment, refering to it as the `residual regression' approach.
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Appendix: Algebraic proof of the theorem

For completeness, we give a standard algebraic proof of the theorem. The
starting point is the orthogonal decomposition:

Y = PY +MY = X1
^̄

1 +X2
^̄

2 +MY

To prove the ¯rst part, multiply both sides by X 02M1 and get:

X 02M1Y = X 02M1X1
^̄

1 +X 02M1X2
^̄
2 + X 02M1MY

The ¯rst term of the right hand side vanishes since, by de¯nition, M1 projects
X1 on its orthogonal complement, so M1X1 = 0. The third term vanishes too
since X 02M1M = X 02M ¡ P1X 02M and X 02M = 0 for the same reasons as before.

Then, we are left only with the second term. Solving for ^̄
2 proves the ¯rst part

of the theorem.
To prove the second part multiply the orthogonal decomposition by M1 and

obtain:

M1Y = M1X1
^̄

1 +M1X2
^̄

2 + M1MY

Again the ¯rst term of the right hand side vanishes. Now for the third term,
MY belongs to the orthogonal complement of [X1X2], so further projecting
it on the orthogonal complement of X1 (which is what premultiplying by M1

would do) has no e®ect, hence M1MY = MY . This leaves:

M1Y ¡M1X2
^̄

2 = MY

From the ¯rst part of the theorem, the left hand side are the errors of projecting
Y ¤ on X¤2 and, by de¯nition, the right hand side are the errors of proyecting Y
on [X1; X2] proving the second part of the theorem.
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