Thermal Decomposition Reaction of cis-6-Phenyl-5,6-(2-phenyl-propilydene)-3,3-tetramethylene-1,2,4-trioxacyclohexane in Different Solvents

L. F. R. Cafferata¹, G. N. Eyler², A. I. Cañizo², C. M. Mateo² and R. S. Rimada¹

¹Laboratorio LADECOR, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina ²Laboratorio de Química, Facultad de Ingeniería, UNCPBA, Olavarría, Argentina E-mail: acanizo@fio.unicen.edu.ar

Abstract: The kinetics of the thermal decomposition reaction of cis-6-phenyl-5,6-(2-phenyl-propilydene)-3,3-tetramethylene-1,2,4-trioxacyclohexane (**I**) was investigated in the temperature range of 100-130°C in selected solvents of different physicochemical properties to evaluate a solvent effect on the reaction.

Introduction

It is interesting to mention that the antimalarial activity of the plant extract Qinghaosu is associated with the presence of the 1,2,4-trioxane ring in molecules of compounds (Artemisinin) found in its composition [1].

Here, available kinetic data on the thermal decomposition reaction of **I** in solvents with different physicochemical properties are presented to learn about the solvent effect on its thermolysis.

Experimental

Materials

The trioxane I was prepared by methods described elsewhere [2]. The organic solvents were com-

Molecules **2000**, *5*

mercial analytical reagents purified by standard techniques.

Kinetic methods

Glass ampoules half filled with the appropriate **I** solution were thoroughly degassed under vaccum and immersed in a thermostatic bath at selected temperatures. The remaining concentration of **I** in the reaction solution was quantitatively determined by RP-HPLC (UV detection). In benzene solvent, kinetic data were obtained by GC analysis (FID detection). The reaction products were identified by GC-MS and RP-HPLC.

The first order rate constant values were obtained by least mean squares treatment of the data plotting the values of the [I] vs. time. The activation parameters were calculated according to the Eyring equation [3].

Results and Discussion

Rate measurements on the thermal decomposition of **I**, up to at least c.a. 60% of **I** conversion in each solvent, show an evident effect of the solvent in the temperature and initial concentration ranges of 100-130°C and 0.36-1,70 x 10⁻³ M, respectively, (Table 1). The rate constant values increase as the solvent polarity increases.

SOLVENT	10 ³ x [I], mol/L	$10^6 \text{ x k}_{\text{exp}}, \text{ s}^{-1}$
n-hexane	0.60	4.00
benzene	0.50	93.3
acetonitrile	0.65	173
metanol	0.36	390

Table 1. First-order rate constant values at 120°C in solution.

The temperature effect was evaluated by the Arrhenius equation and the corresponding activation parameters for the O-O bond unimolecular homolysis of **I** were calculated. The first step of the reaction mechanism is the formation of a biradical which later decomposes.

A stepwise mechanism was confirmed by analysis of the reaction products.

Acknowledgements: This research project was financially supported by CONICET, PROGRAMA LADECOM, Facultad de Ingeniería-SECyT de la UNCPBA y CIC de la Provincia de Buenos Aires.

References and Notes

1. (a) Jefford, C. W.; Rossier, J. C., Boukouvalas, J. J. Chem. Soc., Chem. Commun. 1987, 713; (b)

Molecules **2000**, *5*

Jefford, C. W.; Rossier, J. C., Boukouvalas, J. J. Chem. Soc., Chem. Commun 1987, 1593 and references cited therein.

- 2. Jefford, C. W.; Cafferata, L. F. R.; Mateo, C. M. Unpublished.
- 3. Huyberechts, S.; Halleux, A.; Kruys, P. Bull. Soc. Chim. Belg. 1955, 64, 203.