
Addressing Aspect Interactions in an Industrial
Setting: Experiences, Problems and Solutions

Autor:
Arturo Zambrano

Director:
Dr. Johan Fabry, DCC, U. de Chile

Co-director:
Dra. Silvia Gordillo, Facultad de Informática, UNLP.

Tesis presentada para obtener el grado de Doctor en Ciencias Informáticas
Facultad de Informática - Universidad Nacional de La Plata

Marzo de 2013

ii

Abstract

Aspect oriented programming (AOP) introduces new and powerful modulariza-
tion constructs. The aspect module is used to encapsulate crosscutting concerns,
which otherwise would remain tangled and scattered. The idea of encapsulat-
ing crosscutting concerns rapidly expanded to earlier phases in the development
cycle, including requirement analysis (aspect oriented requirement engineering,
AORE) and design (aspect oriented modeling, AOM). The overall application
of aspect orientation concepts is known as aspect oriented software development
(AOSD).

AOP is not yet a mainstream practice. Particularly AOSD is still in its early
stages. This is reflected in the lack of reports of full development cycles using
aspect oriented approaches, especially using industrial case studies. Further-
more, the power of aspects comes at the price of new challenges, one of them is
that systems built using aspects are more difficult to understand. The crosscut-
ting nature of aspects allows them to alter the behavior of many other modules.
As a result, aspects may interact in unintended and unanticipated ways. This
problem is known as aspect interactions.

In this work we deal with the aspect interaction problem in the context of an
industrial domain: slots machines. We perform a complete development cycle
of the slot machine software. This is, to the best of our knowledge, the first
complete industrial case of study of aspect orientation. Through this experi-
ence we discovered the limitations with regard to aspect interactions, of some
emblematic aspect oriented approaches for requirement engineering, design and
implementation.

The contribution of this work is threefold. Firstly, we contribute with the
evaluation and extensions to some of AORE and AOM approaches, in order
to provide explicit support for aspect interactions in requirement analysis and
design phases. We also evaluate the implementation of interactions using a static
and a dynamic AOP language, and propose an AspectJ extension that copes
with aspect interactions. Secondly, this work is the first report of a complete
aspect oriented development cycle of an industrial case study. Thirdly, this work
provides a complex case study that presents several business logic crosscutting
concerns, which in turn exhibit numerous aspect interactions, that serves as a
challenging test bed for upcoming AOSD approaches.

iii

iv

Contents

Acknowledgments ix

1 Introduction 1

1.1 Unfinished Business I: Aspect Orientation in the Industry 2

1.2 Unfinished Business II: Aspect Interactions 3

1.3 The Slot Machine Domain . 3

1.4 Motivation . 4

1.5 Thesis Statement . 4

1.6 Objectives . 5

1.7 Methodology . 5

1.8 Contributions . 7

1.9 Outline of this Dissertation . 7

2 Aspect Oriented Software Development and Aspect Interac-
tions 9

2.1 From Objects to Aspects . 9

2.1.1 Modularization Issues in Current Software Engineering
Practices . 9

2.1.2 Advanced Separation of Concerns and Aspect Oriented
Programming . 10

2.1.3 Aspect Oriented Software Development 11

2.2 Interactions in Aspect Oriented Software Development 11

2.2.1 Interactions in the Requirements Analysis Phase 14

2.2.2 Interactions in the Design and Modeling Phase 15

2.2.3 Interactions in the Implementation Phase 17

2.3 Summary . 20

3 Slot Machine Domain 23

3.1 Requirement Sources . 24

3.2 Rudimentary Design of a Slot Machine 24

3.3 Specific hardware . 25

3.4 Meters, Persistence and Recall 28

3.5 Monitoring . 28

3.6 Certification and Demo mode . 30

3.7 Concerns in Slots Machines . 31

3.8 Interactions . 32

3.9 Summary . 35

v

vi CONTENTS

4 Interactions in Analysis 37
4.1 Requirements Engineering and Aspect Dependencies and Inter-

actions . 37
4.2 Requirements in the Slot Machines Domain 38

4.2.1 Selected Requirements . 39
4.3 Evaluation of AORE Approaches 40

4.3.1 Theme/Doc . 43
4.3.2 Use of Theme/Doc . 44
4.3.3 Limitations of Theme/Doc 45
4.3.4 MDSOCRE . 47
4.3.5 Use of MDSOCRE . 48
4.3.6 Limitations of MDSOCRE 50

4.4 Extensions of the Existing Approaches 52
4.4.1 Extensions to Theme/Doc: Theme/Doc-i 52
4.4.2 Extensions to MDSOCRE: MDSOCRE-i 55
4.4.3 Summary of Extensions 58

4.5 User Study: MDSOCRE, MDSOCRE* and MDSOCRE-i 59
4.5.1 Case Study 1: MDSOCRE vs. MDSOCRE* 60
4.5.2 Case Study 2: MDSOCRE* vs MDSOCRE-i 62

4.6 Conclusions . 65

5 Interactions in Design 67
5.1 Requirements for the Design . 68

5.1.1 What is Expected from the Design Document 68
5.1.2 Scalability is Key . 68

5.2 Design Overview . 69
5.2.1 Aspects in the Design . 69
5.2.2 Interactions Between Concerns 71

5.3 Evaluation of Theme/UML . 74
5.3.1 Conflict . 75
5.3.2 Mutex . 76
5.3.3 Reinforcement . 77
5.3.4 Dependency . 78
5.3.5 Scalability . 78
5.3.6 Conclusion: Theme/UML 79

5.4 Evaluation of WEAVR . 79
5.4.1 Conflicts . 80
5.4.2 Mutex . 81
5.4.3 Reinforcement . 81
5.4.4 Dependency . 82
5.4.5 Conclusion: WEAVR . 83

5.5 Conclusions . 83

6 Interactions in Implementation 85
6.1 Static and Dynamic AOP Languages 85
6.2 Implementing Interactions in PHANtom 87

6.2.1 Dependency . 89
6.2.2 Reinforcement . 90
6.2.3 Conflict . 92
6.2.4 Mutex . 95

CONTENTS vii

6.2.5 Summary . 96
6.3 Implementing Interactions in AspectJ 96

6.3.1 Dependency . 98
6.3.2 Reinforcement . 99
6.3.3 Mutex . 100
6.3.4 Conflicts . 102

6.4 On the Generic and Explicit Interaction Support 103
6.5 Implementation Results . 104
6.6 Interactions Extensions for AspectJ 106

6.6.1 Conflict . 106
6.6.2 Dependency . 107
6.6.3 Reinforcement . 108
6.6.4 Mutex . 108

6.7 Conclusions . 109

7 Conclusions and Future Work 111
7.1 Towards a Full Aspect Oriented Development Cycle 113

7.1.1 AORE . 113
7.1.2 AOM . 113
7.1.3 AOP . 114
7.1.4 From the Lab to the Industry 114
7.1.5 The Missing Link: Traceability 115

7.2 Contributions and Related Publications 116
7.3 Future work . 116

7.3.1 General . 116
7.3.2 Requirements Analysis . 117
7.3.3 Design . 117
7.3.4 Implementation . 118

A Theme/Doc Diagrams 131

B MDSOCRE Code Listings 133

C Resumen en Español 141
C.1 Motivación . 141
C.2 Objetivos . 141
C.3 Detalle del Contenido de la Tesis 142

C.3.1 Interacciones entre Aspectos en el Análisis de Requerim-
ientos . 143

C.3.2 Interacciones entre Aspectos en el Diseño 143
C.3.3 Interacciones entre Aspectos en la Implementación 144

C.4 Contribuciones . 145
C.5 Análisis de las conclusiones . 146

C.5.1 Evaluación de la Orientación a Aspectos en un Dominio
Industrial . 147

C.6 Trabajo Futuro . 148

viii CONTENTS

Acknowledgments

First of all, I would like to thank my advisor, professor Johan Fabry, who
encouraged me in many ways to finish this work. I have learned a lot by working
with him and I honestly expect us to continue publishing together. Secondly, I
would like to thank both the professors and students at the DCC - University of
Chile. Even though my stays were short I’ve learned a lot during my time there.
I would especially like to thank Renato Cerro for helping with my English.

The travel allowance between La Plata and Santiago de Chile was mainly
obtained as part of the Pablo Neruda Program.

I also want to thank my co-advisor, professor Silvia Gordillo and the Li-
fia laboratory in general for providing me with great freedom to conduct my
research.

Part of the experiments reported in Chapter 4 and Chapter 6 were developed
in collaboration with Guillermo Jacobson and Alejandro Alvarez respectively.
Thanks Guille and Ale!

A big “thanks” to Paul Adamczyk for his useful and detailed comments. I
am deeply grateful to all the people who spent time reading this work, asking
insightful questions and suggesting improvements: Federico Balaguer, Andy
Kellens, Leandro Antonelli and Diego De Sogos. I have done my best to get
these comments addressed.

This work could not have been finished without the help and support of all
my coworkers at Lifia who covered my back during my trips and, especially this
writing.

Last but not least, this could not have been possible without the support
of my family: Ana, Lupe, Bruno and the upcoming baby, whose name has not
been decided yet :).

ix

x CONTENTS

Chapter 1

Introduction

Research in software engineering is a continuous quest for more effective and
efficient methods for constructing reliable software. Since the early days of
software engineering, the criteria and tools for modularization are at the core of
research in this field. The seminal work of Parnas [65] established that modules
should be considered in function of hiding difficult or changing design decisions.
Dijkstra [30] explained the need of dealing with one issue at a time in order to
scale the complexity of the system to be built. These ideas guided the evolution
of modularity in software engineering. However, the changeable and complex
nature of software makes its development, maintenance and evolution still hard.

A complex system is composed of a myriad of concerns. A concern is some
part of the problem that we want to treat as a single conceptual unit [86].
Following the modularization concept, software is therefore divided into mod-
ules which are supposed to encapsulate the behavior for the different concerns,
isolating them as much as possible. Different kinds of modules have been de-
veloped e.g. functions, procedures, objects. These modules are intended to
encapsulate the different concerns that form the system to be developed. The
modularization mechanism also includes ways to invoke the behavior defined in
the modules (message sends, function invocation, procedure calls) in order to
obtain the desired final behavior from a set of collaborating modules.

However, experience has shown that not all concerns can be isolated using
conventional modules [33]. These problematic concerns, called crosscutting con-
cerns are concerns that do not align with the chosen module structure of the sys-
tem. Typical examples of crosscutting concerns are derived from non-functional
requirements, such as persistence, logging, synchronization, etc. Depending on
the different domains, there also exist functional crosscutting concerns, as we
will illustrate in this work. Crosscutting concerns affect many different mod-
ules of the system. This results in scattered and tangled code, which leads to
serious maintainability problems. Because of the former, the code of a crosscut-
ting concern cannot be located easily i.e., it is spread along several units, and
therefore it is hard to modify it consistently. Because of the latter, source code
units not only contain the code of the intrinsic concern, but also the code of
the crosscutting concern. Therefore, evolving the code of the main concern of
a module is error prone, as the crosscutting concern code is also there and can
be accidentally modified.

In 1997, Kiczales et al. [53] presented aspect oriented programming (AOP),

1

2 CHAPTER 1. INTRODUCTION

which is intended as a solution to the problem of encapsulating crosscutting con-
cerns. AOP adds a new kind of module called aspect, to encapsulate crosscutting
concerns. Pieces of functionality that otherwise would be scattered and tangled
with other modules are now contained in one module. Aspects are comprised
of pointcuts and advices. A pointcut is a predicate on joinpoints: well defined
execution points in a program. An advice defines (part of) the functionality of
an aspect, in an similar manner as methods define object behavior. Advices are
associated with a pointcut, as a result, when a pointcut matches a joinpoint,
the associated advice is executed.

Aspect orientation rapidly gained notable attention of the scientific commu-
nity, being signaled by the MIT in 2001 as a one of the key technologies for
the next ten years [89]. Somewhat surprisingly, it has however not been widely
accepted by developers, and arguably did not become a widely used technology.
This is reflected in a low number of projects, particularly in the industry, using
aspect orientation. In this regard aspect orientation can be considered as still
being in its early stages and there are several problems that remain as imped-
iments for its adoption. In this work we treat what we consider an important
one: the aspect interactions problem. Aspect interactions are composition is-
sues that occur when the behavior or structure of two or more aspects interfere,
either in a possitive or negative way.

1.1 Unfinished Business I: Aspect Orientation
in the Industry

Even though aspect orientation offers new features for advanced modularity,
which still is a problem in software development, it has not been massively
adopted. That is, most of the software development being done does not use
aspect orientation. Muñoz et al. in [61] report that less than 0.5% of the projects
written in Java that were added to SourceForge between 2001 and 2008 use
aspects.

Besides the deficiency in the number or proportion of applications, aspect ori-
entation is usually associated with the implementation of non-functional cross-
cutting concerns, such as validation, authorization, security, persistence and
logging, as reported in [68], which is a survey of industrial projects covering 8
developments in different 3 domains. Furthermore, in that report it is argued
that AOP is used initially to address development concerns such as the en-
forcement of architectural restrictions. Only later the relatively basic concerns
mentioned above are considered. In this way, the scope of applications for as-
pect orientation can be considered somewhat restricted. Notably, core (business
logic) concerns are not considered for their implementation as aspects. Since as-
pect orientation is still evolving, the application of its concepts to a broader set
of domains and especially to core functional crosscutting concerns is desirable,
in order to obtain more general and practical solutions.

From the projects listed in [68] only the Toll system [73] has been developed
using aspect orientation concepts starting from the requirement analysis phase.
However, we found no complete and detailed report of this experience, as the
authors focused mainly in requirements analysis for this work. To the best of our
knowledge there is no report of a complete development cycle of an industrial

1.2. UNFINISHED BUSINESS II: ASPECT INTERACTIONS 3

complex system using aspects. We consider this absence a significant deficit in
aspect orientation research. This work is a step in that direction, presenting
a case where all the concerns, their behavior and interactions are derived from
industrial requirement sources.

1.2 Unfinished Business II: Aspect Interactions

Aspect orientation presents an inherent trade-off between simplicity and ex-
pressiveness. The powerful features of aspect orientation come at the price of
complexity in understanding the behavior of the whole system. That is, the
crosscutting nature of aspects makes it difficult to reason about their impact.
Besides this, due to the fact that aspects potentially affect several elements in
the base program, chances are that they interfere in some way.

Aspects introduce their behavior at certain execution points (joinpoints).
Aspects may interact by applying their behavior at the same joinpoint, resulting
in such interference at joinpoint level. As we show in Sect. 2.2, most of the
research we have encountered is fundamentally devoted to the detection and, to
a lesser extent, the treatment of joinpoint interactions. In addition to joinpoint
interactions however, semantic interactions can also occur. In these interactions,
an aspect may depend on the actions performed by other aspects, that are not
necessarily present at the same joinpoints. For example, an aspect can collect
information regarding user preferences. Other aspects can use such information
to improve or personalize the user experience. Alternatively, this may be
because an aspect uses structure or behavior installed by another aspect. There
could be also incompatible behavior interference of aspects, leading to semantic
conflicts, for example due to concerns that present a trade-off.

In some cases, interactions are desirable, and their occurrence must be en-
sured. For example, the case of dependencies, where an aspect requires another
aspect. Consider a distribution aspect that needs data to be encrypted by
another aspect. In other cases, where aspects provide incompatible behavior,
interactions must be avoided. For example a caching aspect that directly re-
turns a method’s result can bypass an authorization aspect, resulting in a system
where users access information they should not get [39]. In this case it is said
that there is a conflict between these aspects.

To the best of our knowledge, the aspect interaction problem is still largely
unsolved, and remains a matter of investigation, as mentioned in recent re-
search work [58, 68]. Besides focusing on joinpoint interactions and specifically
on the detection of unexpected interactions, existing research work on aspect
interactions however treats them in only one phase of the development cycle.

We have found development approaches that support interactions at require-
ments analysis, design and implementation but none that cover interactions
along the whole development cycle.

1.3 The Slot Machine Domain

For this work we have chosen the slot machine (SM) domain. A SM is a gam-
bling device typically found in casinos. It usually has five reels which spin when
the play button is pressed. The SM has pre-configured prizes, which are paid

4 CHAPTER 1. INTRODUCTION

according to the symbols shown at the end of the spin. We have 5 years of expe-
rience in this domain, working full-time in programming both the management
applications (accounting) and the SM games. We therefore can claim to have
acquired deep knowledge of this domain.

Beyond our knowledge of it, the case study chosen for this work has inter-
esting characteristics regarding the issues mentioned above:

• It is derived from an industrial domain, with publicly available require-
ments documentation.

• The sources of these documents are many organizations or institutions
with different (legal, technical, business) backgrounds. As they are in-
dependent sources, they release the documentation at different speeds,
leading to a nontrivial example of evolution of requirements.

• Our experience with this domain has taught us that there is a significant
amount of crosscutting concerns in these applications. Furthermore, these
concerns depend on, and interact with each other as well as with the
modularized concerns.

• Following the taxonomy of aspect interactions of Sanen et al. [74], we
have found that it has several examples of each interaction type (as will
be shown in Sect. 3.8).

• The interactions have considerable impact on the game behavior. In our
experience, not having proper mechanisms for handling them has been the
source of costly bugs.

1.4 Motivation

The full potential of aspect orientation will not be unleashed until the problems
of applicability to real world cases and aspect interactions mentioned before, are
addressed. Case studies that explore the capabilities and limitations of existing
approaches need to be carried out. Aspect interactions must be studied in the
context of real world problems. This understanding is a prerequisite to develop
aspect interaction traceability support.

We therefore decided to perform a complete development cycle of a nontrivial
system: the slot machine software. This serves as a vehicle that allows us to
study aspect interactions modeling and implementation during development,
and to contribute to their explicit support.

1.5 Thesis Statement

Complex systems, such as slot machines, are composed of several functional and
non-functional concerns. These systems, when developed using aspect orienta-
tion, can present semantic interactions between the aspects. These interactions
need to be controlled in order to provide the desired behavior. Hence a complete
aspect oriented development cycle of such systems requires aspect interaction
support. Unfortunately, this support is not currently available. We claim that
tracking aspect interactions from the requirements to the implementation phase

1.6. OBJECTIVES 5

should improve our understanding of their nature, allowing us to develop new
tools and more effective strategies for coping with them.

1.6 Objectives

To address the need for case studies of complete development cycles of nontrivial
aspect software with dependencies and interactions, this dissertation undertakes
the development of an industrial case. We use aspect orientation with a focus
on aspect interactions from the onset, in order to improve the understanding of
interactions, identify where current aspect oriented approaches are lacking, and
contribute extensions to enable interaction support.

We can summarize the derived objectives as follows:

• Study an industrial case featuring several interacting crosscutting con-
cerns.

• Understand the interactions between these concerns.

• Assess the expressive capabilities of existing aspect oriented requirement
analysis tools for interactions and extend them as necessary.

• Judge the support provided by aspect oriented modeling approaches.

• Evaluate how the designed interactions can be implemented in different
aspect oriented programming languages.

1.7 Methodology

The SM software exhibits numerous interacting crosscutting concerns and the
requirements change at different speeds. If a requirement corresponds to a sin-
gle concern that was neatly encapsulated in a single module, the effect may
be controlled and more easily followable using conventional software engineer-
ing approaches. On the other hand, if a requirement belongs to a crosscutting
concern that interferes with other crosscutting concerns, dedicated interaction
support is needed to trace it across several stages in the development cycle.
We therefore have opted to use Aspect-Oriented Software Development, taking
special care of dependencies and interactions between the different aspects and
modules. Being aware of the critical importance of interactions in this domain,
we have focused on interaction modeling and implementation. In the require-
ment analysis and design phases several approaches have been tried out in order
to express the interactions as part of our models. During the implementation
phase two programming languages have been tested to implement these inter-
actions. We now discuss this in more detail.

We focused on interactions early in the development cycle, at the requirement
analysis phase. This was motivated by the argument of Liu et al. [57] that most
feature interactions can be detected in early stages of the software development
cycle by reasoning on the causes of interactions and building models of them.
The objective of this detection is to document as many interactions as possible
so that this information can be used later in the design and implementation
phases.

6 CHAPTER 1. INTRODUCTION

The result of the modeling process should therefore be a model of the re-
quirements that is as consistent as possible. As complete consistency is not
possible in the presence of certain conflicts, we want to document them to defer
their resolution to later development phases in these cases. Hence, to accom-
plish this objective, it is necessary to be able to rely on expressive mechanisms
in the selected modeling technique for this phase.

To the best of our knowledge there is no previous work detailing experiences
with AORE approaches and their interaction support in a large-scale industrial
case. We therefore opted to perform an in-depth study of two approaches to
evaluate their applicability in the slot machine domain: Theme/Doc [9] and
MDSOCRE [60]. The results revealed deficiencies that were tackled by extend-
ing them. One of the extensions was tested with engineers showing that it was
both more accurate for representing interactions and more efficient in terms of
time.

The next step was modeling the software using an adequate approach for
Aspect Oriented Modeling (AOM). However, to the best of our knowledge there
has been no work published that evaluates AOM approaches in an industrial
setting with a focus on interactions between the different concerns. We there-
fore undertook an evaluation of two mature AOM approaches to establish their
applicability in our context: Theme/UML [26] and WEAVR [28].

In the design phase, our goal was to refine the requirement specification
documents into a model of the software artifacts that will form the final system.
This model, written down in a design document, would then be passed to the
developers for implementation. Hence, it should be sufficiently complete to allow
for the implementation to be produced relatively independently. We expected
to be able to produce the complete design documents, i.e., not having to resort
to a significant amount of additional documents with an ad-hoc notation to
complement for omissions in the methodology. In the latter case, the advantages
of using a standard AOM are small and we would consider rolling our own. We
furthermore have two related expectations of the design document: maintenance
support and explicit interactions.

In subsequent maintenance or evolution phases, the changes made in the
requirements will trigger subsequent changes in the design, and the developers
will modify the implementation accordingly. Such later modifications must not
break the system because they violate constraints of the original design or go
against the original design decisions. It is known that the presence of aspects in
a software system that is evolving can be problematic [51]. Such issues should be
mitigated by the information that is explicitly available in the design document.

Aspect interactions may hinder the understanding of the expected behavior,
information that is crucial for the correct implementation and evolution of the
system. Documented design decisions should therefore include not only which
modules will be aspects and where they crosscut, but also how they interact
with each other. This information must be made explicit so that critical infor-
mation is correctly passed to the implementation phase, and is present when
maintaining or evolving the software.

Once the design decisions regarding the interactions have been somehow
established during the design phase, an implementation must be performed fol-
lowing the design directives. In this stage it is desirable to rely on language
constructs that allow the programmer to explicitly code the interactions. We
therefore reviewed the existing support for interactions and decided to undertake

1.8. CONTRIBUTIONS 7

the implementation of interactions using general purpose aspect languages, in
order to evaluate the impact they have on such implementation. First we chose
AspectJ [52], which is arguably the most mature and influential aspect lan-
guage. As AspectJ is a static language, we decided to contrast the results with
the implementation of the interactions using a dynamic aspect language, in this
case we chose PHANtom [34].

Implementing interactions in such languages is an important task in order to
assess the convenience offered by their features when developing ad-hoc logic for
interaction resolution. This stage also provided some interesting insights, such as
how some interactions benefit from the static (compiler) checks of AspectJ, while
others take advantage of the dynamic weaving of PHANtom. Furthermore, this
experiment helps to determine the weak points of these languages and possible
extensions.

1.8 Contributions

We can summarize the contributions of this work grouping them as follows:

• Aspect Interactions:

– Evaluation of two AORE approaches.

– The extension of these two approaches providing explicit support for
aspect interactions.

– Evaluation of two AOM approaches.

– The implementation of the four types of interactions (conflict, mu-
tex, dependency and reinforcement [74]) using both a dynamic and
a static aspect oriented language.

– Based on our experience, the proposal of extensions to the AspectJ
language in order to furnish it with explicit interaction support, cov-
ering our interactions and also other typical interactions reported in
the literature.

• Industrial Case Study:

– The first report of the development cycle using aspect orientation in
requirements analysis, design and implementation in the context of
an industrial test case.

– The identification and documentation of examples for the four types
of interactions (conflict, mutex, dependency and reinforcement) in
the context of an industrial test case, that serves as a challenging
test bed for upcoming AOSD approaches.

1.9 Outline of this Dissertation

Following the ideas presented previously, this dissertation is organized in the
following way:

• Chapter 2 presents the necessary background on aspect orientation and
the related work on aspect interactions for the three treated phases of the
development cycle (requirements analysis, design, and implementation).

8 CHAPTER 1. INTRODUCTION

• Chapter 3 describes our domain and some peculiarities that makes it an
worthwhile case study. At the end of this chapter we describe the concern
decomposition used along this work, and the interactions found between
concerns.

• Chapter 4 presents the evaluation and results of applying two aspect
oriented requirement analysis approaches: Theme/Doc and MDSOCRE.
This chapter also presents extensions for the approaches and the evalua-
tion of the modified approaches compared with original ones.

• Chapter 5 shows the study of two recognized aspect oriented modeling
approaches and how the interactions have been expressed using their ca-
pabilities: Theme/UML and WEAVR.

• Chapter 6 presents the results of the implementation of the four interac-
tion types for both a static (AspectJ) and a dynamic (PHANtom) aspect
language. The effect of the nature of these languages is discussed and
compared, and an extension for AspectJ is presented.

• Finally, Chapter 7 presents our conclusions from the overall experience
and several lines of future work for the treatment of aspect interactions
during the different stages in the development cycle.

Chapter 2

Aspect Oriented Software
Development and Aspect
Interactions

In this chapter, we provide the necessary context and background on research
that motivates this thesis. We briefly discuss the modularity problem that gives
rise to advanced modularization approaches, particularly aspect orientation.
We also present the aspectual interactions problem and review the research on
aspect interactions throughout the software development cycle.

2.1 From Objects to Aspects

2.1.1 Modularization Issues in Current Software Engineer-
ing Practices

Concerns are sets of information that have some impact on the system. Typical
examples of concerns are business logic, synchronization, real-time constraints,
error detection and correction, data validation and persistence. Software sys-
tems are therefore composed of a myriad of concerns. All these concerns need to
be considered during the development process. Early on, it was observed that
different concerns need to be treated one at a time.

As Dijkstra stated in [30]:

“ ... one is willing to study in depth an aspect of one’s subject matter
in isolation for the sake of its own consistency, all the time knowing
that one is occupying oneself only with one of the aspects.”

Software engeering follows this idea, breaking a big problem into smaller
problems, solving them and assembling the results. In order to reduce the
complexity of software being developed, different modularization paradigms are
applied to obtain loosely coupled software artifacts, each addressing a separate
concern. These paradigms provide mechanisms to assemble resulting modules
functionality. For example, object oriented programming breaks solutions down
into object or classes, while functional programming breaks them down into

9

10 CHAPTER 2. AOSD AND INTERACTIONS

functions. Functionality is then assembled by message sends in object orienta-
tion, and function invocation respectively.

In spite of its prevalence, object orientation is not the silver bullet of software
engineering. There are concerns that cannot be cleanly encapsulated into one
class. On the contrary, their functionality cuts across many classes in the sys-
tem, making their implementation difficult to track and maintain. This problem
is known as scattered code. Furthermore, the code of these concerns obscures
the code of the classes where they are applied. This problem is known as tangled
code. The concerns that not cleanly fit into the underlying paradigm constructs
and cut across other modules are called crosscutting concerns. Typical exam-
ples of this kind of concern are: caching, logging, monitoring, etc. Usually
crosscutting concerns are related to non-functional concerns, but this is not a
rule. As we will see in Sect. 3.7, in our case study there are also many examples
of functional (business logic) crosscutting concerns.

2.1.2 Advanced Separation of Concerns and Aspect Ori-
ented Programming

During the ninties, the modularization problem posed by crosscutting concerns
causes the birth of several approaches, which are collectively known as avanced
separation of concerns techniques. They include: Composition Filters [12],
Multidemenstional Separation of Concerns [87], and Aspect Oriented Program-
ming [53] among others.

The term “aspect-oriented” was coined by the team of Gregor Kiczales at
Palo Alto Research Center, where the first and most influential aspect language:
AspectJ [52] as been developed.

Aspect Oriented Programming (AOP) introduces a new module called an
aspect, which defines behavior (advice) that is added to the system at specific
execution points, called joinpoints. Examples of joinpoints are a method call,
a variable assginment. To allow referencing multiple joinpoints at the same
time, aspects also define predicates on joinpoints, called pointcuts. Aspectual
behavior is executed when a pointcut captures a part of the behavior of the
program. According to Filman et al. [37]:

“AOP can be understood as the desire to make quantified statements
about the behavior of programs, and to have these quantifications
hold over programs written by oblivious programmers.”

Aspects allow the modularization of crosscutting concerns since they are
able to define both the crosscutting behavior (advice) and where it needs to be
applied (pointcuts).

In AOP, a program can be seen as a flow of joinpoints that represents steps
in the execution of the program. Pointcuts can refer to several joinpoints. and
advices are associated with pointcuts. In this way, whenever a pointcut matches
a joinpoint, the associated advice is executed. Aspects (in most AOP languages)
are also able to augment the structure of the base, for example declaring new
instance variables in a class. This feature is known as intertype declarations or
introductions.

The code where aspects are applied is called the base program. Aspect code
is woven into the code of the base program by the aspect weaver. At a more

2.2. INTERACTIONS IN ASPECT ORIENTED SOFTWARE DEVELOPMENT11

abstract level, it is said that aspects are composed with the base program. Note
that aspects are usually are also able to cut across other aspects.

2.1.3 Aspect Oriented Software Development

AOP concepts gained acceptance during the early 2000’s and were extended to
other phases of the software development cycle. The set of these techniques are
collectively known as aspect oriented software development (AOSD).

In the early stages of software development, requirement analysis is done
through Aspect Oriented Requirement Engineering (AORE), which is also known
as Early Aspects. AORE is aimed at identification, specification and represen-
tation of crosscutting concerns at requirements level.

Aspect Oriented Modeling (AOM) is the part of AOSD concerned with the
design of software. Its objective is to specify the structure and behavior of aspect
oriented software at an abstract level. These models should be independent from
language specific features.

AOSD has arguably not mature enough to become a mainstream paradigm
for software development. We believe that one of the causes for this is the
inherent difficulty in understanding the behavior of the composed system. This
is due to the fact that when analyzing the behavior of a given module it must be
considered that aspects may alter it. Furthermore, may aspects may introduce
these alterations, causing potentiality harmful (unintended) interferences.

2.2 Interactions in Aspect Oriented Software De-
velopment

Aspect interactions are a well know problem [3, 31, 59, 74, 82]. Since the in-
ception of AOP, it has been recognized that the application of multiple aspects
at the same joinpoint can yield to undesired effects during program execution.
This is also known as shared joinpoint interaction [58]. This differs from seman-
tic interactions where it is not necessary to have several aspects applied to the
same joinpoint in order to observe interferences [13, 62].

One typical example of an interaction is related to weaving ordering. Con-
sider the example in Listing 2.1 taken from [88], where the Counter aspect counts
the accesses to attributes. This aspect captures execution of setters (line 3) and
increments a counter it introduces as new variable in Point class (line 2). The
Counter aspect can be applied to the class Point (lines 8 to 13). Now consider
the aspects ThreeD (lines 15 to 18) and Color (lines 20 to 23). These two as-
pects also introduce new variables in the the Point class and the corresponding
setter. The order in which this three aspects are applied (weaved) into the code
of the Point class is indeterminate. As a result, different weaving orders lead
to programs with different behavior, since the new members introduced by the
aspects ThreeD and Color may or may not be counted.

Listing 2.1: Aspect interaction example: weaving order.

1 aspect Counter {
2 int Point.counter = 0;
3 after(Point p) : (execution(* Point.set*(..)) && target(p)
4 { p.counter++; }

12 CHAPTER 2. AOSD AND INTERACTIONS

5 }
6

7 class Point {
8 int x;
9 void setX(int v) { x = v; }

10 int y;
11 void setY(int v) { y = v; }
12 }
13

14 aspect ThreeD {
15 int Point.z;
16 void Point.setZ(int v) { z = v; }
17 }
18

19 aspect Color {
20 int Point.color;
21 void Point.setColor(int c) { color = c; }
22 }

The programmer thus needs tools for controlling the weaving order and
consequently select the desired behavior. As a result, it comes at no surprise
that most AOP languages and frameworks allow for some kind of control in the
order of application of aspects.

As an illustration of shared joinpoint interaction, consider the following two
aspects: encryption and validation. Lets suppose that these two aspects are
applied on the call to the setPassword(String) method. The encryption
aspect takes the parameter and encrypt it. The validation aspect checks that the
parameter is equal to the expected password. If the encryption aspect is applied
before the validation the system will misbehave, as the comparison will not be
performed between the actual value of the parameter and the expected password.
Instead, it will be done between the encrypted version of the parameter and the
expect string.

Besides joinpoint level interactions (more than one aspect applying on the
same joinpoint), there are more abstract or high level ones. These interactions
are known as semantic interactions [58], and they arise when the presence of an
aspect invalidates some assumption of other aspects for example.

The detection, understanding and resolution of interactions is a complex
task. Since aspects apply across the whole system (including other aspects),
there can be many of them, they can alter the system’s state and chances are
that an aspect influences other aspects. That is, aspects can interact by affecting
directly one another, or indirectly by affecting the (shared) base program.

Bakre et al. classify interactions among aspects and base program into three
cases: spectative, regulative and invasive [7]. Spectative aspects observe the
state of the system at joinpoints, but they do not control the execution flow.
Regulative aspects observe the state at joinpoints and control the flow at join-
points based on the state. Invasive aspects, in addition to being regulative
modify the system state at joinpoints. This classification may serve to under-
stand how aspects behaves regarding the base but it is not rich enough to model
aspect to aspect interactions.

Marot enumerates four categories for interactions: (1) shared joinpoint inter-
actions, (2) scope interactions, (3) dependency interactions and (4) implemen-

2.2. INTERACTIONS IN AOSD 13

tation semantic interactions [58].

Shared joinpoint interactions are subdivided into data-flow and control-flow
interactions. In the former an aspect modifies data that is accessed in the same
joinpoint by others aspects. In the latter the execution of an aspect either
bypasses the execution of other aspects by not calling proceed or adds more
applications by repeatedly calling proceed.

Scope interactions include the cases when (1) aspects produces new join-
points, (2) aspects remove potential joinpoints and (3) aspects having mutually
exclusive scopes.

Dependency interactions include (1) structural dependencies: when an as-
pect uses structural elements introduced by other aspect, (2) control flow de-
pendencies: when an aspect needs to be applied in the control flow of another
aspect in order to work correctly and (3) inter-dependent introductions: when
an aspect tests the existence of elements introduced by other aspects, in order
to add its own structural elements [44].

An implementation semantic interaction occurs when an aspect refers to
part of the base system (or another aspect) whose semantics is affected by other
aspects, which in turn invalidate some implicit assumption. This may result in
harmful interferences.

Sanen et al. introduce another taxonomy [74]. In this work, the following
types of interactions are defined:

Conflict This denotes semantic interference between aspects. If there is a
conflict between aspect A and aspect B, each one can work correctly on
the base system, but both cannot not be deployed at the same time. The
combination of aspect A and aspect B results in undesirable behavior of
the system.

Mutex In this case, two aspects provide similar functionality but they can not
be deployed or work on the system at the same time. It is similar to the
previously mentioned conflict, in the sense that if there is a mutex between
A and B, both cannot work at the same time.

Dependency There is a dependency of aspect A on aspect B if aspect A ex-
plicitly needs aspect B to be deployed. If aspect B is not present, aspect
A cannot behave correctly.

Reinforcement There is a reinforcement of aspect B on aspect A if the pres-
ence of aspect B benefits the behavior of aspect A. Aspect A can provide
the expected behavior even in the absence of aspect B but, if aspect B is
present aspect A is able to provide extra functionality.

This taxonomy is the one that better describes the relationships between
concerns in our domain, as we will show in Sect. 3.8.

In the following sections, we review the related work on aspect interactions
for three software development phases: requirements analysis, design and im-
plementation.

14 CHAPTER 2. AOSD AND INTERACTIONS

2.2.1 Interactions in the Requirements Analysis Phase

Aspect-Oriented Requirements Engineering (AORE) addresses the requirements
engineering problem that some requirements are difficult, if not impossible, to
isolate into separate modules. AORE performs first-class modeling of these
crosscutting concerns as aspects, identifying and characterizing their influence
on other requirements in the system [60, 69]. These models enable better iden-
tification and management of requirements conflicts, irrespective of the cross-
cutting nature of the requirement. Ideally, the result of this phase is to have
a consistent as possible model of the system early in the software development
life-cycle. As a result, the system may be designed and built correctly when
considering the needs of the various stakeholders.

Surveys We have encountered two comparative studies for AORE approaches
but these however do not consider aspectual interactions. Sampaio et al. [72]
analyze the speed of the requirements analysis process and the quality of the
output. Their real world example: 19 pages of requirements specification, is
considered almost 10 times smaller than the requirement documents we face,
and whose summary is presented in Sect. 4.2. Chitchyan et. al. [21] use several
comparison criteria: identification of concerns, composability, decision support,
traceability, evolvability and scalability. This work is more conceptual, as it
compares the approaches without applying them to a concrete example and
instead it considers the mechanisms provided by each approach in light of the
criteria mentioned before.

AORE approaches that consider conflict resolution as part of their method-
ology [16, 70] help stakeholders decide on which concern to implement. They
however do not consider cases where all conflicting concerns must be imple-
mented. In these cases, conflicts need to be documented so that interactions are
considered at design time.

In [93] Whittle et al. present an approach called MATA, based on model
transformation where weaving is viewed as a special case of graph transforma-
tion. MATA provides support for conflict and dependency detection, based on
critical pair analysis. The objective of this detection phase is to order compo-
sition. More recent work by Chitchyan et al. [19] moves the focus towards a
semantic analysis of requirements. Here, requirements are annotated and then
composition rules can be expressed using semantic queries. This approach en-
ables automatic detection of certain conflicts, with the aim of removing them.

For the analysis phase (explained in Chapter 4), our focus will lie in inter-
actions between aspects, and capturing them at requirement level. Multiple
approaches for capturing requirements using aspects exist that do not provide
support for interactions [43, 48, 92] we therefore do not include them here. Some
other approaches, such as AORA [15] provide documentation of dependencies,
but nothing is said regarding mutex or reinforcement interactions.

The EA-Miner tool from Sampaio et al. [73] uses natural language processing
techniques for partial automation of the identification of elements in the require-
ments, which leads to early aspect identification. EA-Miner is worth mentioning
as it deals with the ambiguity problem which is a relevant problem in our case.
This tool is intended to be of use for any AORE approach and it produces an
output that can be consumed by other tools, for example ARCADE [70], which

2.2. INTERACTIONS IN AOSD 15

assists in the detection and resolution of conflicts. EA-Miner uses semantic tags
to avoid the ambiguity problem. Nonetheless, it requires some interaction with
the requirements engineer, especially in the presence of (noun-)phrases.

MDSOCRE is an AORE approach based on XML syntax. It allows for
the organization of requirements into concerns. Concerns can be connected by
means of compositions rules. Composition rules express crosscutting relation-
ships among concerns, with requirement level granularity. These rules can be
parameterized in order to specify the semantic of the relationship.

Theme/Doc [9] is a part of a more encompassing approach called Theme [26].
Departing from a set of requirements, Theme/Doc provides heuristics for defin-
ing concerns and their responsibilities. Requirements are then attached to con-
cerns. Requirements attached to more than one concern may indicate the pres-
ence of a crosscutting concern. Theme/Doc prescribes how to find crosscutting
concerns in this situation. It includes a graphical notation at different levels
(called “views”), for denoting requirements, concerns and crosscutting concerns.
It also provides steps for evolving from requirement analysis to the design phase,
called Theme/UML, which we briefly describe in the following section.

Goal oriented requirement engineering e.g. [64, 90, 96] deals with con-
flicts between goals (especially soft goals). A goal captures, at different levels of
abstractions, the objective of the system [91], for example: provide ubiquitous
access to the system. Goals are usually optative. Yu et al. [96], propose a sys-
tematic process to discover aspects from a goal model containing functional and
non functional goals. In this case, conflicts arise during the iterative process of
refining a goal graph, and they are solved by removing relationships that lead to
a conflict. Related to this is the research on non-functional requirements (NFR).
NFRs cannot be fully satisfied, instead they can be “sufficiently” satisfied [23].
That is, non-functional goals can only be satisfied within acceptable limits [22].
The NFR framework establishes different types of contributions between goals.
Goals and contributions are associated with labels indicating the degree of satis-
faction or denial. These labels are propagated to determine the effect of different
design decisions [24]. The engineer can then use this information to make design
decisions reflecting the best trade-off for a NFR.

2.2.2 Interactions in the Design and Modeling Phase

The objective of Aspect Oriented Modeling (AOM) is to provide developers with
general means to express aspects and their crosscutting relationships onto other
software artifacts at design level.

AOM approaches support the specification of base and crosscutting concerns,
intertype declarations and other distinctive concepts of aspect orientation. One
of the research topics of the AOM community is model based aspect interference
and composition management, as stated in the AOM Workshop Series site [27].

There are several AOM approaches, but few of them claim to support con-
flicts and other types of interactions. When supported, interactions are generally
treated at joinpoint level. That is, two or more aspects working on the same
joinpoint.

Wimmer et al. authored a survey of AOM approaches [94] where concern
interactions are part of the evaluation framework. It shows that most of the
surveyed approaches do not provide for interaction support. Of those that do,

16 CHAPTER 2. AOSD AND INTERACTIONS

most focus on detection of syntactic and semantic interactions. A representative
approach is to transform UML models into graphs which are then analyzed to
look for interactions. This approach is also advocated by Ciraci et al. [25] and
Mehner et al. [59].

Another example of detection of semantic aspect interactions is presented
by Mussbacher et al. in [62]. This approach works on top of any kind of model
with a well defined meta-model. In this approach the model elements are tagged
with domain specific labels, called semantic markers. These markers are used
to calculate the effect of aspects on the base and between them. The markers
are backed by a goal model which can evaluate the contribution between the
different markers. The model is composed using the underlying modeling lan-
guage. After composition, the elements of the goal model are instantiated, and
goal model analyzed looking for potential conflicts.

Similarly, detection of interactions in the design phase has been considered
in the feature oriented programming community, e.g. the work of Apel et al. on
FeatureAlloy [3] detects structural (syntactic) and semantic dependencies as
well.

The basic assumption in all the above is that interactions are unintended
and arise during aspect composition. This however does not hold in our case
as interactions may be planned and moreover, already will have been detected
during the requirements phase. Instead of detection, we need the design to
effectively document the decisions made to manage them.

Other authors purely focus on avoiding interactions. For example, Katz and
Katz describe how to build an interference-free aspect library [50]. In our case
however, some interactions are required to obtain the desired behavior, and
other interactions cannot be removed, but should be controlled instead.

Theme/UML [26] is the second part of the Theme approach. It provides
support for separately designing the different concerns (called themes) identi-
fied during the analysis phase. Each theme defines its own class diagram and
its behavior is represented using sequence diagrams. For providing crosscutting
support, sequence diagrams are parameterized in order to define where crosscut-
ting behavior needs to be attached. This parameters can be bound to the actual
objects and method calls, so that crosscutting behavior is added. Theme/UML
claims to handle conflicts between themes.

WEAVR [28, 29] is a modeling language for MDE, which supports aspect
orientation. WEAVR is an extension for other MDE tools used by Motorola
to develop telecommunications software. It uses state machines written in the
Specification and Description Language (SDL) [47], for expressing the behav-
ior of the system. It supports aspect orientation, as it allows weaving together
different state machines. Crosscutting state machines define action and trans-
action pointcuts, which are used to express where the aspectual behavior must
be added. Furthermore, WEAVR supports conflict resolution and dependency
management.

It is important to note that the vast majority of AOM work on interactions
refer to dependencies and conflicts, but neglect or minimize reinforcement or
mutex. This may indicate that these types of interactions are considered less
frequent. However, they nonetheless occur in the context of our work, and we
see no reason why it would be an exceptional case.

2.2. INTERACTIONS IN AOSD 17

2.2.3 Interactions in the Implementation Phase

Ideally, aspects are programmed independently, and later composed with the
base. As aspects implement different views of the system, it should be possible
to select which aspect must be woven for a given build of a system, enabling only
the desired functionality. However, once they are composed, aspects interact in
different ways, making it difficult to understand of how the final system will
actually work.

Aspect interactions have been treated in different aspect oriented program-
ming languages and frameworks [88]. Unfortunately, this has been done mostly
considering interactions only at joint point level.

Two tendencies can be identified in research regarding the treatment of as-
pect interactions and programming languages. Firstly, most of the research
work on interactions has been devoted to the detection of them. The purpose of
this work is to raise programmer awareness regarding unexpected interactions,
so that he can introduce changes in the system to obtain the desired behavior.
That is, he can consciously confirm or avoid them. Secondly, some work deals
with the resolution of the interactions. That is, how to control multiple advice
execution when more than one aspect applies on a single joinpoint. These con-
trol mechanisms include precedence, reordering of advice execution, conditional
execution of certain advices, etc.

In the context of this work we have particular interest in those approaches
or tools that provide some kind of built-in support for the resolution of aspect
interactions.

Douence et al. proposes A Framework for the Detection and Resolution of
Aspect Interactions [32] which is based on the notion of separating the aspect
interaction treatment from the aspect definition. The model proposes three
phases:

1. Programming: aspects are written independently.

2. Conflict Analysis: automatic detection of interactions among aspects.

3. Conflict Resolution: the programmer must resolve the interaction using
dedicated language constructs for detailed composition. The result can be
analyzed for conflicts detection once again going back to 2.

The approach is based on a runtime infrastructure that observes the execu-
tion and inserts behavior as needed, based on the execution state of the base
application.

A formal aspect language is defined that allows for crosscuts definitions,
and a very specific semantic for weaving aspectual behavior. In this approach
two aspects are considered independent if they do not share a joinpoint (their
crosscuts do not match the same joinpoint). If the aspects are independent, it
is sufficient to say that the resulting program is not affected by the order of
aspect weaving. If the aspects are not independent, the programmer is required
to resolve the interactions. Two kinds of “independence” are considered in this
approach:

Strong independence which means that aspect independence is held for ev-
ery program. On the positive side this property does not need to be re-

18 CHAPTER 2. AOSD AND INTERACTIONS

checked after a program modification. On the negative side it is a strong
condition.

Independence w.r.t. a program this independence takes into account the
possible execution traces of a program. This property is a weaker condition
to enforce, compared against strong independence.

Once a conflict (a shared joinpoint) has been detected it needs to be resolved
by the programmer. The language proposed by Douence et al. allows for the
composition specification of each insert, in each conflicting joinpoint, but this is
admitted to be a tedious task. For convenience, the language offers constructs
allowing to specify composition at aspect level that can be used automatically
whenever a conflict arises. For example, if aspects A1 and A2 conflict, it is
possible to express that only aspect A1 inserts will be applied, or specify the
order of weaving of the insert (using the seq function) to indicate that A1 inserts
come before those of A2.

Re-ordering of advice weaving for a given joinpoint is the principal mecha-
nism offered by this approach in order to cope with interactions. The formalism
and overhead of work for this approach can be however considered an impedi-
ment in an industrial context.

Reflex [84] started as a library providing partial behavioral reflection, and
evolved into an AOP kernel capable of supporting different aspect oriented lan-
guages. Its architecture features three main layers:

• Transformation layer: based on a reflective core extending Java with new
structural and behavioral reflective capabilities.

• Composition layer: responsible for the automatic detection of aspect in-
teractions. This layer provides explicit means for resolution of such inter-
actions.

• Language layer: allowing for the embedding of different (domain specific)
aspect languages.

The central notions behind the Reflex architecture [35] are:

Links Behavioral transformation is done through the use of Links, which are
responsible for binding a set of program points (joinpoints in AOP) to a
meta-object. There are structural and behavioral links. A behavioral link
is characterized by the meta-object in control, the activation condition
and other attributes. On the other hand, structural links bind structural
or behavioral actions to structural cuts (joinpoints), therefore they can be
used, for example, to implement the inter-type declaration of AspectJ. As
links bind joinpoints with a single action in a meta-object, they can be
seen as a primitive aspect (containing just one advice).

Hooksets A hookset corresponds to a set of program points, or static cuts.
They are specified as predicates matching reified program elements. Hooks
are inserted, according to a hookset definition, as part of the behavioral
links installation process, which occurs at load time.

2.2. INTERACTIONS IN AOSD 19

Meta-objects Meta-objects implement the aspectual behavior, that is, they
are the equivalent to an advice in AOP terms. Any Java class can be used
as meta-object in Reflex, as their protocol can be adapted and called from
the corresponding link.

A link binds a hookset to a meta-object. According to the specification
of the link, program information is reified. Behavioral links are setup at load
time, while structural links are applied at load time. Note that structural links
application is performed before behavioral links setup, as structural changes
can be subject to behavioral cuts (an structural dependency in the context of
Marot’s taxonomy [58]) .

Reflex supports the detection, resolution and composition proposed by
Dounce et al. in [32]. The AOP kernel detects the interactions, which are then
notified to the interaction listener. The default interaction listener warns the
programmer of unintended interactions.

Other listeners can be defined, so that they handle the interaction appropri-
ately. Interactions may occur for behavioral and structural links. For behavioral
links, there is an interaction if a joinpoint is captured for more than one hook
set. For structural links, there is an interaction if a class is loaded by more than
one class set.

Reflex supports mutual exclusion between links, thanks to the link interac-
tion selectors. When a link is involved in an interaction, the selector is queried
in order to determine if the link actually applies or not (the result of this cal-
culation also depends on the other links present in the interaction).

The resolution process consist then into two steps. Firstly, links that should
be applied are selected. Secondly, links are ordered or nested.

The mutex support of Reflex seems to be appropriate for mutex interactions
at joinpoint level. The kernel low level operators might be used to implement
new constructs to provide certain support for the conflicts in SM. Reinforcement
and dependency, as they occur in our case study domain, are more high level
interactions and therefore cannot be supported by Reflex. Unfortunately, Reflex
is not being actively maintained anymore.

Phase [58] is an aspect oriented programming language built on top of Pharo
Smalltalk, whose main characteristic is its reflective architecture and meta join-
point model. Phase supports aspects reflecting upon reflective aspects, which
is a fundamental characteristic of reflection. Phase has been built to prove the
hypothesis that empowering aspects so that they can observe, augment and
modify (part of) the execution of other aspects is relevant. In order to do this,
Phase provides a powerful and expressive meta joinpoint model, which includes
joinpoints referring to aspect weaving and execution.

This meta joinpoint model allows for the detection and resolution of shared
joinpoint, scope interaction, dependencies and interdependent introductions.
For example: the programmer can set specific precedence in joinpoints where
other precedence policies are already defined, in order to solve conflicts.

The detection of interactions in this reflective AOP environment can be
implemented as aspects that observe the aspect-level execution in order to report
aspect composition issues. That is, there are dedicated aspects which are looking
for events that invalidate the desired properties of the aspect system. As these
events are specific to each interaction case, “detection” aspects are also specific.

20 CHAPTER 2. AOSD AND INTERACTIONS

Once the problem is detected, a resolution is provided for each specific case.
Detection is possible thanks to the already mentioned meta joinpoint model.

Phase is a proof of concept of reflective AOP languages and has been only
applied to small size examples, which is not our case.

PHANtom Other Smalltalk based aspect languages include AspectS [46],
which is not being actively developed, and PHANtom [34]. PHANtom is a new
general purpose aspect oriented language supporting the core AOP constructs
(aspect, advice, dynamic and static pointcuts, inter-type declarations, etc.),
plus extended features such as computational membranes used to order of exe-
cution of aspects and provide reentrancy control. There is no special syntax for
PHANtom, instead programs are constructed using plain Smalltalk, as all the
components of PHANtom are first class objects. Due to the fact that PHANtom
aspects are regular objects, they can be affected by aspects. So it is possible
to develop ad-hoc aspect based resolution strategies for aspect interactions, by
defining aspects that cut across other aspects.

AspectJ The more widely accepted static aspect oriented language is As-
pectJ [52]. AspectJ has little built-in support for interactions, mainly aimed
at solving precedence issues i.e., advice application order when more than on
aspect are applied. The AspectJ Development Tools plugin for Eclipse (AJDT)
provides support to visualize the joinpoints captured by an aspect. Therefore,
it is left to the programmer to understand if there is some kind of interaction or
not. Aspects are also able to cut across other aspects, adding or altering their
behavior and structure. Therefore it is possible to implement ad-hoc interac-
tion resolution as additional aspects, as performed by Marot [58], but of course
restricted by the limitations of AspectJ’s joinpoint model.

Support for Interactions in AOP Languages Even though the support
for interaction resolution in preceding approaches seems to be promising, some of
them are just a proof of concept (Phase), other are theoretic tools that cannot
be applied to the development of an industrial system (Dounce’s approach)
and others are not maintained anymore (Reflex). Furthermore, as presented
in [58], we know that most interactions are very specific. Considering this,
it is important to evaluate if the use of general purpose aspect programming
languages is adequate to implement interaction resolution.

2.3 Summary

In this chapter we presented aspect orientation concepts, the problem of aspec-
tual interactions and different taxonomies for these interactions. The related
work on aspect interactions has been classified according to three phases in the
development process that are in the scope of this work, which are requirements
analysis, design and implementation phase.

For the design and implementation phases, it can be concluded that existing
research work deals with interactions at joinpoint level. We will see in the fol-
lowing chapters that it is a limitation that prevents the use of these approaches
in our case study. For the implementation phase, we found that non-formal

2.3. SUMMARY 21

AOP languages or frameworks provide limited joinpoint based support for in-
teractions. Consequently, we also regarded AOP languages without advanced
built-in support as an alternative to implement ad-hoc interaction resolution
logic.

22 CHAPTER 2. AOSD AND INTERACTIONS

Chapter 3

Slot Machine Domain

As the case study for this work we used slot machine software. Beyond our
familiarity with it, this software has important features that are relevant to this
work:

1. It is a real-world application with a high level of complexity.

2. It presents many crosscutting functional and non-functional concerns.

3. The concerns have not only crosscutting relationships, but they also in-
terfere.

In this chapter we explain some generalities about the slot machine domain,
the hardware that is used, the requirements regarding the state that must be
stored by the slot machine, connectivity, reporting functionality and how all
these features are tested. Finally, we present the concerns found for the slot
machine software and the relationships they have.

A slot machine (SM for short) is a gambling device found in casino facilities.
It has, usually, five reels which spin when a play button is pressed. The SM
defines many pay-lines: paths whose symbols are matched with certain pre-
configured prizes (see Fig. 3.1).

Figure 3.1: Pay lines.

23

24 CHAPTER 3. SLOT MACHINE DOMAIN

The player selects pay-lines he wants to play, and defines the bet per line.
On each play, the SM randomly selects the displayed symbol for each reel, and
pays the corresponding prize (if any), according to the pay-table.

Bets and prizes are expressed in credits. The value of the credit is also
configurable. A SM typically accepts payment in bills, coins, or tickets. Once
inserted, the money is converted into credits. Once the playing session has
finished, the remaining credits can be utilized or “cash-out” as coins, tickets or
electronic transfers.

3.1 Requirement Sources

The SM game concept is developed by the game designers while its implemen-
tation must obey a set of regulations that control both hardware and software.
The concept includes the visual look and the probabilistic fundamental behav-
ior. As a game concept can vary from SM to SM, we only focus on the legal
regulations, and we furthermore restrict ourselves to regulations for software.
These can be divided in three main groups:

Government Regulations Government regulations cover a broad spectrum
of characteristics of gambling devices: payout, randomness, connectivity,
shared prizes, and so on. One example of these are the Nevada Regula-
tions [63].

Standards To ensure proper behaviour of SMs, there are certification institutes
that perform several tests and quality checks on the SMs. The expected
behaviour of an SM is defined in documents called standards, for example
the GLI standard [40].

Technical Specifications Some requirements are related to the SM’s connec-
tivity with reporting systems (RS) and the underlying communication pro-
tocol. This is the case, for example, of the G2S [41] (Game to Server)
protocol, an open standard for communication of an SM with a back-end.
There are other propietary protocols that provide similar functionality

Requirements for the SM domain are therefore defined in different documents
(regulations, standards, protocol specifications), written by different stakehold-
ers, with diverse interests and backgrounds. We provide more detail and exam-
ples of this requirements in Sect. 4.2.

3.2 Rudimentary Design of a Slot Machine

The core design a slot game typically follows is the standard loop pattern de-
picted in Figure 3.2 [71]. First in this loop, input events are read. These
originate either from the user, from hardware drivers, or are scheduled events.
Second, the events are processed, which changes the internal game state. Third,
the graphical user interface is refreshed to reflect the new status. These opera-
tions must be completed in a short time frame. The loop essentially defines the
“main thread” of the application. Other actions that are not core to the game

3.3. SPECIFIC HARDWARE 25

Figure 3.2: Game main loop.

play or that may be time consuming, e.g. input/output to external devices, are
performed in a parallel thread.

In slot machines, the actions originated by the player include: play, select
a bet per line, enable lines, insert money, etc. An example loop is as follows:
when the player presses the play button the SM calculates the outcome and,
according to the calculated outcome, triggers the reel animation in a separate
thread.

3.3 Specific hardware

During their early years, SMs were developed using ad-hoc hardware mech-
anisms as they were electromechanical (not electronic) devices. They later
evolved to become (again ad-hoc) computer based products. In the last twenty
years, SM have moved to a standard PC hardware core, allowing the use of
mainstream programming languages.

Even though its core is standard PC hardware, the SM must be equipped
with several specific hardware items, for example:

• Intrusion sensors: a SM has sensors for detecting intrusion at different
levels of the SM cabinet.

• Coin hopper: used to cashout credits using coins.

• Coin Acceptor: accepts coins that are converted into SM credits.

• Bill acceptor: a device for inserting bills into the SM. It only validates
pre-configured bills.

• Ticket reader: similar to the bill acceptor, this device reads tickets with
an associated credit value. It is common to find a bill acceptor and ticket
reader implemented in an all-in-one physical device.

• Thermal ticket Printer: prints tickets to cash out credits from the SM.

• Alarm bell: the bell is sounded to call the attendant.

• Tower lamp: used to call the attendant.

26 CHAPTER 3. SLOT MACHINE DOMAIN

Table 3.1: Devices and some of their events.

Device Frequent Events Non-frequent event
Bill Acceptor Bill Accepted, Bill Stacked,

Bill Returned, Bill Rejected
Bill jam, Bill Stacker Full,
Stacker Open

Ticket Printer Ticket printed Printer out of paper
Attendant Key
switch

Attendant arrived/left

Sensors Cabinet Open, Cabinet
Closed

CPU enclosure open/closed

dip switches Reset meters, Demo mode
Coin Hopper Coin Paid Hopper Empty
Coin Acceptor Invalid Coin Coin cheated

• Attendant key switch: this switch is activated once the attendant inserts
a special key in the cabinet. It is used under special circumstances that
require human intervention in order to restore the SM to a working state.

• Electro-mechanical meters: these meters count the activity of the machine.
They are a kind of view (a copy) of some software meters. Meters are
explained in more detail in Sect. 3.4.

• Dip switches: these are hardware switches located in secure places inside
the cabinet. They are used, for example, to launch a game in Demo mode
or reset meters.

Figure 3.3 shows the cabinet and part of the specific hardware of a SM. The
interaction with this specific hardware adds complexity to the SM software as
it needs to deal with a lot of device drivers. Special conditions, such as events
and errors, need to be appropriately handled or reported to other systems in the
casino facility. Table 3.1 presents just some of the events and special conditions
raised by the hardware items mentioned.

3.3. SPECIFIC HARDWARE 27

Figure 3.3: Slot machine cabinet

28 CHAPTER 3. SLOT MACHINE DOMAIN

3.4 Meters, Persistence and Recall

SM activity is registered by a large set of counters, called meters. There are
meters for many purposes and most of them are required by regulations of
different countries or states.

Meters are accessed in the SM through a management user interface that
allows the attendants and inspectors to read and check their values. Many
meters are used to do accounting and share profits between the owner of the
machine and the casino. Others are used to measure different aspects of SM
performance. There are strict protocols to reset them, and their value must be
consistent at any time, as this is highly sensitive information.

There are hundreds of meters, and they cover a wide range of measurable
activity: from money in/out, to power cycles of the SM. Table 3.2 presents just
a few examples of meters. Progressive refers to the value of the incremental
jackpot prize. Tilt counts how many times the SM got locked due to cheating
detection. A full list can be derived from different documents including regu-
lations and certification lab recommendations [40]. Note that some meters are
calculated based on others, as is the case for Total Drop or Total Out.

Meters and configuration of the SM make up the core information stored in
the SM. In the event of a power outage, all the meters need to be recovered to
a consistent state. Furthermore, the state of a given play (bet per line, selected
lines, outcome if the play button was already pressed) must be recovered in
order to allow the player to continue with his playing session. This behavior
is usually called Program Resumption and is required through regulations in
almost every jurisdiction.

Regulations also require a feature called Game Recall, which provides the
ability to inspect the details of last N plays performed in the machine (the lowest
number we are aware of is 10). This feature is requested to solve disputes
regarding the behavior of the machine. Using this feature, in the event of a
player complaint regarding some prize not being correctly paid, the attendant
can inspect the history of plays, including bet per line, total bet, enabled lines,
and outcome of the game.

3.5 Monitoring

As SMs handle money, they are subject to careful monitoring and accounting.
This is needed not only for verification of the correct behavior of the machines,
but also for distributing revenues among stakeholders. In order to do almost
real-time accounting, SMs are connected to monitoring systems. There are dif-
ferent technologies for connecting them: from serial connections to Ethernet
based networks. Different communication protocols are also used. These differ-
ent communication protocols however provide equivalent functionality, allowing
to query the SM state i.e., its meters and configure some aspects of the SMs.

Communication protocols are defined in their corresponding technical speci-
fication documents. Some of them work in polling mode, in which the monitoring
system polls each machine at a regular intervals. Therefore, the machine can
send a message only as a response to a poll. Other protocols are based on web
services and both parties can send a message to the other when needed.

3.5. MONITORING 29

Table 3.2: Meter examples.

Topic Meter Description

General

Current Credits Credits available to the player
Total Drop Total amount of credits inserted and

stored in the SM
Total Out Total amount of credits cashed out
Game Played Total number of games played since last

meter reset
Game Won Total number of plays resulting in any

winning greater than zero
Game Lost Total numbers of plays with no win-

nings

Paid

Total Jackpot Total credits paid by the attendant
(hand-pays)

Jackpot Last credits paid by the attendant
(hand-pays)

Canceled Credits Total amount of credits cashed out from
the SM

Cumulative Pro-
gressive

The sum of all progressive prizes paid

Coin
Coin Drop Coins diverted to the drop
Invalid Coins Invalid coins entered into the SM (this

event tilts the SMs)
Coin In/Out Physical coins accepted or paid

Bills
Bill In Total amount (currency) of bill ac-

cepted by the validator.
Items Accepted Number of bills accepted by the valida-

tor
Bills Per Value Individual meters counting the number

of bills by denomination

30 CHAPTER 3. SLOT MACHINE DOMAIN

In this work we consider the two most widely used protocols. One of them is
a proprietary protocol, which prevents us from providing its name. We shall call
it SCP. The other protocol is called G2S [41], which is a modern protocol based
on web-services. It is open, and its specification can be found on the Gaming
Standard Association web page [5].

Communication protocols provide hundreds of types of messages, which can
be grouped as follows:

Meters Query Messages These are commands and responses used to query
the status of the SM, which is mostly stored in the meters. These meters
related messages are used as the main source of information for accounting
processes. These messages are sent by the accounting backend system.

General SM Configuration SMs can be configured remotely using the com-
munication protocols. For instance, it is possible to set the current time,
or select the desired payout profile of a SM. In multi-game machines, it is
also possible to select which game should be displayed.

Ticket-in and Ticket-out Messages In some casino facilities, cash is not
used. Instead, when the player arrives, he buys a certain amount of credits
in the form of a ticket. The ticket only contains an identifier and not a
monetary value. When inserted in a SM, the corresponding credits are
“transferred” to the SM. Once the player decides to cashout, a new ticket
is issued by the SM. The information regarding valid tickets and their
credit value is stored in centralized servers.

Real Time Event Reporting Events during the game cycle (BeginGame,
EndGame) must be reported to the monitoring systems. Events and error
conditions described in Sect. 3.3 should be reported when possible. This
conditional reporting feature is due to the fact that not all the devices
allow the detection of exactly the same events. In other cases, event re-
porting, for certain types of evens is not required by regulations, though
useful for casino management tasks.

A SM can be connected to more than one remote backend at the same
time. Configuration is a very sensitive part of these protocols. Configuration
inconsistencies may result in the SM misbehaving and paying incorrectly.

3.6 Certification and Demo mode

The features mentioned so far are usually requested through regulations im-
posed by the jurisdiction where the SMs are deployed. These features must be
present in every game before it arrives to the market. In order to ensure that
the games comply with the requirements, there are institutions devoted to the
certification process. These are called certification labs and are in charge of
verifying SM performance on a wide range of aspects, from electrical to game
logic, randomness and communication.

Certification is a laborious process where many aspects from the game are
compared with their expected behavior. We will not describe the electrical and
electronic part of certifications, as it is out of the scope of this work. From the

3.7. CONCERNS IN SLOTS MACHINES 31

software point of view, there are many elements analyzed during this process.
The most relevant are:

Random Number Generator The random outcome must be generated by
an approved random number generation algorithm. This ensures certain
properties on the probabilistic distribution of the results.

Payout The game must behave in correlation to the reporting payout for each
configuration. That is, in a long run (a million plays at least) it should
return to the player a certain percentage which depends on the pay table
and symbol configuration.

Pay-table payment The pay-table defines a map from symbol combinations
to prizes. The game is checked to ensure it pays the correct amount of
credit for each symbol combination declared in the pay-table.

The pay-table testing requires that all configured prizes be awarded so that
their payment can be checked. Big prizes have less probability of being awarded
so playing manually until a big prize is awarded is not feasible. To solve this
problem, certification labs require the SM to provide a special running mode,
called Demo. Demo mode provides a way of advising the SM to pay a certain
prize the next play. In this way, the certifier can select the different prizes of the
pay-table and check the correct payment of them. Of course, the demo mode
switch is out of reach of the player. In fact, it is implemented as a dip switch,
inside the CPU enclosure.

3.7 Concerns in Slots Machines

Considering our intention of applying aspect orientation to the SM domain and
based on our experience in the domain and the set of legal requirements that
apply, we organize the requirements in the following concerns:

Game This is the basic logic of a gambling device. The user can enter credits
into the machine, and then play. The output is determined randomly and
when the player wins, he is awarded an amount of credits.

Meters This refers to the set of counters that are used to audit the activity of
the game. Recall that for instance, there are meters that count the number
of plays, the total amount bet, total won, error condition occurrences, and
so on.

Program Interruption and Resumption Program Resumption is a persis-
tence and recovery set of requirements. Requirements in this concern
determine how the machine should behave after a power outage, specify-
ing which data need to be recovered. The system should recover the last
state or setting after a power outage.

Game Recall This refers to the information that must be available about the
current and previous plays, in order to solve any dispute with players.

Error Conditions Under certain circumstances, the game should detect error
conditions and behave accordingly. This concern defines what are consid-
ered error conditions and how the game must react to them.

32 CHAPTER 3. SLOT MACHINE DOMAIN

Communications The SM is connected to a monitoring system in the casino.
This concern defines the kinds of data, the format and when data must
be exchanged between the SM and the monitoring system. Recall that
several communication protocols exist, each with their own specification
that states what data needs to be persistent, which meters are necessary,
and so on. For our work, we consider either using G2S or SCP. In the
remainder of this thesis, we will refer to the generic Communication Pro-
tocol concern or, when appropriate, we will specify which protocol we are
considering.

Demo The demo concern contains the requirements specifying how the game
behaves in this mode. Playing the game in demo mode makes it is possible
simulate events such as entering money or winning a prize. Note that any
meter or data changed due to operation in demo mode should not be
stored or reported, as it is simulated behavior.

These concerns match the definition of Brito et al. for concerns in AORE [15],
which must refer to a coherent set of requirements that allude to a property or
feature that the system must provide. Some other concerns, such as the game
story line and bonus rounds, haven omitted in order to keep the discussion
focused. As the domain is complex, there may be other possible concern de-
compositions. We choose this one because, based on our experience, it properly
modularizes the different required features of slot machines and shows the in-
teractions that are at the core of this work. We expect some of the selected
concerns to become components and others aspects. Different instantiations
of the SM software may include different implementations or compositions of
components or aspects to comply with the regulations of each scenario.

Recall that an aspect adds its behavior at a joinpoint (captured by a point-
cut). Examples of interesting joinpoints in the SM, include the play of a game
or the execution point where error conditions are created. At these execution
points aspect must execute their behavior.

3.8 Interactions

As mentioned in Sect. 2.2, we classified interactions using the taxonomy de-
scribed by Sanen et al. (conflict, dependency, reinforcement and mutex). Based
on our previous experience implementing software for SMs, we observed the exis-
tence of these aspect interactions between the concerns identified in our domain.
For example, there is a conflict between the Demo and Meters concerns, since
Meters works correctly without Demo, but if Demo mode is active, activity in
the machine must not be counted by Meters. An example of mutex is in the
communication protocols: it is forbidden to have two protocols providing the
same functionality at the same time. A dependency example is the relationship
between Communications and Meters; the protocol needs to communicate the
status of the SM, which is in part represented by the meters. Finally, a reinforce-
ment is present between Error Conditions and Communications. The existence
of error condition detection enables communication protocols to provide “extra”
functionality, in this case real time error condition reporting.

Understanding how concerns interact with each other is key information that
needs to be passed to designers and programmers. For example, in the case of

3.8. INTERACTIONS 33

a dependency, the dependent concern will be affected by design decisions upon
the other. On the other hand, if there is a mutex relationship, architectural
mechanisms should be provided to ensure that both concerns (or parts of them)
will not be active at the same time.

Figure 3.4: Concern interactions in an ad-hoc notation. Regular arrows indicate
crosscutting, dashed arrows indicate interactions between concerns, tagged with
UML-like stereotypes.

Considering the concern division and the associated requirements, we have
deduced the relationships between different concerns and identified their inter-
actions. A representative selection of these is shown in Fig. 3.4, which uses
an ad-hoc notation where Game is the base concern (represented by a square)
and crosscutting concerns are represented by ovals. Different arrows are used to
indicate crosscutting and interaction relationships. More in detail, the cross-
cutting relationships are as follows:

1. Demo to Game: The demo requirements affect many of the definitions of
the original requirements of Game in order to alter the Game’s behavior
for testing purposes.

2. Game Recall to Game: Game Recall requirements affect many aspects of
the Game’s behavior, it is used to log the activity for each play and other
relevant events in order to solve disputes.

3. Meters to Game: Meters count activities of many functions defined in
Game, for instance: game play, bill in, cashout, etc.

4. Program resumption to Game, Game Recall, G2S and Meters: Program
resumption is analogous to persistence. It crosscuts all the places where
important data, which needs to be restored, is changed.

5. G2S to Game: This concern cuts across many Game requirements, since
several events in Game need to be reported, monitored and communicated
to the reporting system.

34 CHAPTER 3. SLOT MACHINE DOMAIN

6. SCP to Game: This refers to the other protocol used to monitor the
game’s behavior.

7. Error Conditions to Game: The behavior associated with error conditions
need to be woven into the game behavior. Requirements in Game that
could raise an error condition vary: from a bill jam to a door opened.

The are many interactions between these concerns. We highlight the the
following:

8. Conflict between Demo and Program Resumption: The demo mode fires
fake events that must not be counted nor restored after program interrup-
tion.

9. Conflict between Demo and G2S : both concerns cannot be active at the
same time because demo fires events that must not be reported to the
monitoring system. The same conflict exists forbidden Demo and SCP, it
is not added in the diagram to avoid clutter.

10. Dependency of G2S and SCP on Meters: Some data reported to the
monitoring system is stored or can be derived from meters. Hence, commu-
nication protocols need the meters to be up to date in order to accomplish
their purpose.

11. Reinforcement of G2S with Error Conditions: As we discuss in Sect. 5.2.2,
some parts of the G2S protocol are not mandatory for specific instances.
When error conditions are tracked in the game, additional behavior is
made available in G2S such as particular parts of real time event report-
ing functionality.

12. Mutex between G2S and SCP : There is overlapping functionality defined
in the requirements of both protocols. Recall that backends can configure
the SM remotely (see Sect. 3.5). For example, both of them are used to
keep the time in sync between the SM and the monitoring system. Having
both protocols active, with monitoring systems out of sync, would render
the time of the SM inconsistent. Therefore they cannot be active at the
same time.

13. Conflict between Demo and Meters: Meters must not be affected by
activity in Demo mode.

14. Reinforcement of SCP with Error Conditions: it is similar to 11, ad-
ditional behavior in SCP is available when new error conditions are sup-
ported.

This is only a selection of some representative interactions. There are many
more that we do not include in Fig. 3.4 nor talk about in detail. For exam-
ple: G2S and SCP depend on GameRecall as both protocols require to retrieve
information of the last plays, and Program Resumption crosscuts SCP for the
same reason as it crosscuts G2S. We effectively selected just one case of each
interaction type to keep the discussion focused.

3.9. SUMMARY 35

3.9 Summary

In this chapter we have succinctly described the relevant characteristics of the
domain in order to illustrate the intrinsic complexity of this kind of software.
The concerns found on this domain are:

• Game

• Meters

• SCP Communication protocol

• G2S Communication protocol

• Game Recall

• Program Resumption

• Demo

• ErrorConditions

Some of them are base concerns and others are crosscutting. These concerns
present a number of interactions which can be classified according to Sanen et
al.. [74] into: mutex, reinforcement, dependency and conflict. We selected the
following interaction instances for this work:

• Conflict between Demo and Meters, Game Recall, Program Resumption
and Communication protocols

• Dependency of Communication Protocols (SCP and G2S) on Meters.

• Reinforcement of Error Condition on SCP and G2S communication pro-
tocols.

• Mutex between configuration features SCP and G2S communication pro-
tocols.

These interactions have considerable impact on the game behavior. In our
experience not having proper mechanisms for handling them has been the source
of costly bugs in the past. Therefore, in the remainder of this work, we analyze
how these interactions can be handled in each stage of the development cycle
and how information about them can be traced along the development process.

36 CHAPTER 3. SLOT MACHINE DOMAIN

Chapter 4

Interactions in Analysis

This chapter is based on our previously published work Express-
ing aspectual interactions in requirements engineering: Experiences,
problems and solutions [97].

The first step in software development consists of understanding what the
software should do. The input for this are system requirements. Requirement
engineering is the process that produces the initial documents and models which
are used as the basis for design and implementation. Therefore, we need to start
modeling with requirements, concerns and their interactions.

This chapter presents requirement engineering with emphasis on the model-
ing of aspect interactions. The following section provides details on the require-
ments for SMs, and how two specific AORE approaches support the peculiarities
of the SM requirements. In addition, it also presents the extensions we made
to these approaches in order to handle SM requirements effectively and the
experiments performed to validate their applicability.

The chapter is organized as follows: Sect. 4.1 presents an overview of AORE
from the aspect dependencies and interactions perspective. Sect. 4.2 goes in
more detail on the slot machine requirements and some relevant characteristics
of their sources. The evaluated AORE approaches and the evaluation output
are presented in Sect. 4.3, including the limitations found for each approach. In
Sect. 4.4 we propose extensions to the original approaches in order to cope with
the limitations found. Sect. 4.5 describes a user study carried out in order to
validate the expressiveness of the extensions performed to MDSOCRE. Sect. 4.6
concludes the chapter. Two appendixes, (A and B), at the end of this thesis
contain the complete models we produced for this stage, showing the results of
applying the extensions to our setting.

4.1 Requirements Engineering and Aspect De-
pendencies and Interactions

In the requirements engineering community, interactions between requirements
are a well-known (intra) traceability problem [67]. In the AOSD community, and
hence when applying AORE techniques, this problem maps to what is known
as dependencies and interactions with aspects [17]. Dependency and interaction

37

38 CHAPTER 4. INTERACTIONS IN ANALYSIS

support is still an open issue for the AOSD community. Therefore, the focus
of our work lies in assessing the support for expressing interactions between
aspects or concerns, which, depending on the point of view, can be considered
either a requirements traceability problem or a problem of dependencies and
interactions with aspects.

Non-functional requirements approaches support conflict resolution, provid-
ing algorithms to find the best trade-off for the stakeholders [24]. In these
approaches, some requirements are not completely satisfied, in favor of other
more relevant ones (according to contribution analysis). In our domain how-
ever, all of the requirements need to be fulfilled (none can be discarded), and
their fulfillment is verified during the certification process (see Sect. 3.6). In-
stead of removing requirements, we need to deal with conflicts by not allowing
the activation or execution of conflicting features during a single system run.
In addition to this, it is interesting to note that most of our interacting cross-
cutting concerns are functional ones. In conclusion, typical non functional
requirements (NFR) approaches are not applicable in our scenario.

We elected to perform requirements engineering using two of the approaches
presented in Sect. 2.2.1: The Theme/Doc approach [9] and the Multidimen-
sional Separation of Concerns for Requirements Engineering (MDSOCRE) ap-
proach [60], focusing on how these allow us to express and document aspectual
dependencies and interactions. The choice of these two approaches was based
on our perception of their maturity and of their acceptance in the AORE com-
munity.

More concretely, Theme/Doc was selected, not only by its publication record,
but also because a book is available that describes at a detailed level its appli-
cation to a arguably complex example (which also demonstrates some degree of
scalability) [26]. Moreover, it also discusses later phases of development, for ex-
ample how to deal with conflicts in design documents when using Theme/UML.
MDSOCRE was selected because it claims to explicitly support conflict resolu-
tion and because of its flexibility due to the action/operator approach (discussed
in more detail in Sect. 4.3.4) that allows us to express more than just crosscut-
ting relationships.

Both of the approaches we evaluated enable us to partially express the re-
quirements, but neither of them was entirely satisfactory. Theme/Doc lacks
support for the kind of interactions we want to model, e.g. conflicts between
aspects, and needs a finer granularity for expressing crosscutting relationships.
MDSOCRE lacks explicit support for expressing interactions between concerns
when they do not cross-cut each other. In this chapter, in addition to describing
these drawbacks in more details, we also elaborate and validate extensions that
address these issues. We propose new kinds of relationships to Theme/Doc for
documenting interactions, and add new interaction information in MDSOCRE.

4.2 Requirements in the Slot Machines Domain

As said in Sect. 3.1, the SM game concept is developed by the game designers
while its implementation must obey a set of regulations that control both hard-
ware and software which can be divided in three groups (described in Sect. 3.1):

Government Regulations that specify the accepted behavior of the SM re-
garding: payout, randomness, shared prizes, and so on. For example the

4.2. REQUIREMENTS IN THE SLOT MACHINES DOMAIN 39

Nevada Regulations [63].

Standards Which are defined by certification laboratories. They specify the
expected behavior of an SM under certain circumstances for example, in
which situations the SM must call the attendant for a hand pay. This are
usually complementary with the government regulations.

Technical Specifications These requirements establish requirements regard-
ing connectivity with the reporting and monitoring systems (RS). They
define fundamentally the underlying communication protocols, for exam-
ple the G2S [41] (Game to Server) protocol.

These requirements are contained in documents, written by stakeholders
with different backgrounds and interests. Furthermore, this results in a sizable
set of documents using multiple terms for describing the same object, action or
event. We count approximately 150 pages of pure requirement specifications,
while the complete documents that include clarifying text, examples and notes
are approximately 2000 pages in size. Furthermore, in some cases it is neces-
sary to complement and normalize different sources referring to the same topic.
For instance, consider the case of Error Conditions, which are treated by both
the Nevada regulations [63] and the GLI standard [40]; some of the conditions
specified by the regulations match, but others are defined by only one of them.
Note that the final SM, if needs to be installed in Nevada, must comply with
the error conditions defined in both documents.

Lastly, an important characteristic of communication protocol requirements
(e.g. in G2S) is that they are divided in topics and that not all the topics
are required for certain deployments. As a result, part of the communication
functionality is optional, which has an impact on requirements modeling.

4.2.1 Selected Requirements

Due to the large number of requirements in our case (around 600), we only
show here a small subset of requirements that illustrate the main concerns for
the SM domain and the four types of interactions described by Sanen et al. [74]:
conflict, dependency, mutex and reinforcement.

The requirements we present here are slightly simplified and summarized
versions taken from the different original sources (regulations, standards and
protocol specifications). These documents are produced by the corresponding
organizations: certification laboratories, protocol steering committees, and insti-
tutions that regulate the gaming industry. It is important to note the particular
nature of these requirements: as these are legal requirements, all of them must
be fulfilled in the resulting application. Moreover, all of them are known and
presented at the start of the development process. Part of the formal certifi-
cation process of the software that is installed in the SMs is ensuring that all
these legal requirements are met. Also, the requirements we discuss here change
at a slow pace (which can be measured in years) when compared with the time
taken by the development of a SM game. This is due to the nature of the source
organizations that produce the legal requirement documents.

We have grouped the requirements according to the concerns presented in
Sect. 3.7 to favor the understanding of the different interactions which are the
core of this work. In Tables 4.1 and 4.2, we summarize some requirements,

40 CHAPTER 4. INTERACTIONS IN ANALYSIS

grouped by concern and not by the document where they are defined. For a
complete listing of them, we refer to the various requirements documents [40,
41, 63].

4.3 Evaluation of AORE Approaches

From the approaches presented in the related work (Sect. 2.2.1), we selected
Theme/Doc and MDSOCRE in order to evaluate their applicability. For both
of them we based our selection on their publication record and acceptance in the
AORE research community. In the case of MDSOCRE , we also evaluated that
it is part of a line of AORE approaches, which also have a measure of flexibility
(relationship among concerns can be configured). In the case of Theme/Doc, it is
important for us that it has a book with detailed description of the notation and
methodology and that it is integrated with a design approach (Theme/UML).
We provide more details of these approaches in the following sections.

4.3. EVALUATION OF AORE APPROACHES 41

Table 4.1: Requirements for SM domain concerns.

Game
R-SM-1 Slot machines have 5 reels. R-SM-4 A slot machine has one or more devices

for entering money.
R-SM-2 Reels spin when play button is pressed. R-SM-5 As money is inserted credits are “as-

signed” to the player.
R-SM-3 Prizes are awarded according to a pay ta-

ble.
R-SM-6 A slot machine must provide some means

for cashing the credits out. It could be a
ticket printer, a coin hopper, etc.

Game Recall
R-GR-1 Information on at least the last ten (10)

games is to be always retrievable on
the operation of a suitable external key-
switch, or another secure method that is
not available to the player.

R-GR-2 Last play information shall provide all
information required to fully reconstruct
the last ten (10) plays. All values shall
be displayed; including the initial cred-
its, credits bet, and credits won, pay-line
symbol combinations and credits paid
whether the outcome resulted in a win
or loss [...]. This information should in-
clude the final game outcome, including
all player choices and bonus features.

Program Interruption and Resumption
R-PR-1 After a program interruption (e.g. pro-

cessor reset), the software shall be able
to recover to the state it was in immedi-
ately prior to the interruption occurring.

R-PR-3 An SM must store all meter information
in persistent memory.

R-PR-2 Restoring Power. If a gaming device
is powered down while in an error con-
dition, then upon restoring power, the
specific error message shall still be dis-
played and the gaming device shall re-
main locked-up [...].

Demo Mode
R-DM-1 The Slot Machine must permit a test, di-

agnostic or demo mode, which permits
a gaming device (e.g. a hopper) to be
tested. The test shall be completed on
resumption of normal operation.

R-DM-5 Specific meters are permissible for these
types of modes provided the meters indi-
cate as such.

R-DM-2 If the gaming device is in a test, diagnos-
tic or demo mode, any test that incorpo-
rates credits entering or leaving the gam-
ing device (e.g., a hopper test) shall be
completed on resumption of normal op-
eration.

R-DM-6 Test/diagnostics mode may be entered,
via an appropriate instruction, from an
attendant during an audit mode access.
These modes should not be accessible to
the player.

R-DM-3 There shall not be any mode other than
normal operation (ready for play) that in-
crements any of the electronic meters.

R-DM-7 When exiting from test-diagnostic mode,
the game shall return to the original state
it was in when the test mode was entered.

R-DM-4 Any credits on the gaming device that
were added during the test, diagnostic
or demo mode shall be automatically
cleared before the mode is exited.

R-DM-8 Test Games. If the device is in a game
test mode, the machine shall clearly indi-
cate that it is in a test mode, not normal
play.

42 CHAPTER 4. INTERACTIONS IN ANALYSIS

Table 4.2: Requirements for SM domain concerns (continuation).

Meters
R-M-1 Credit meter: shall at all times indicate

all credits or cash available for the player
to wager or cashout.

R-M-3 Accounting Meters: Coin In: [...] a me-
ter that accumulates the total value of all
wagers [...]. Games-played: accumulates
the number of games played; since power
reset, since door close and since game ini-
tialization.

R-M-2 Credit Meter Increment: The value of ev-
ery prize (at the end of a game) shall
be added to the player’s credit meter
[....]. The credit meter shall also incre-
ment with the value of all valid coins, to-
kens, bills, Ticket/Vouchers, coupons or
other approved notes accepted.

R-M-4 Meters should be updated upon occur-
rence of any event that must be counted,
including: play, cashout, bill in, coin in.

R-M-5 G2S meters are: gamesSinceInitCn
Number of games since initialization.
WonCnt: Number of primary games won
by the player. LostCnt: Number of pri-
mary games lost by the player.

Communications: G2S
R-G2S-1 The G2S protocol is designed to commu-

nicate information between an SM, and
one or more host systems.

R-G2S-4 The device can generate an event in a un-
solicited manner or in response to a host
command

R-G2S-2 Meter information can be queries by a
host in real-time or a host may set a peri-
odic subscription to cause the SM to send
selected meters at predetermined inter-
vals.

R-G2S-5 Current time-stamp can be set by the
host.

R-G2S-3 Information provided by the SM is used
for audit purposes.

R-G2S-6 Command GetGameRecallLog is used by
a host to request the contents of a trans-
action log of last plays from a SM.

Communications: Proprietary Comm. Protocol (SCP)
R-SCP-1 The SCP communicates a SM with a host

system.
R-SCP-2 The SCP must report meters of a SM

when required by the host.
R-SCP-3 Configuration settings such as current

time-stamp are configured from the host.
Error Conditions

R-EC-1 Gaming devices shall be capable of de-
tecting and displaying error conditions
and illuminate the tower light for each
or sound an audible alarm.

R-EC-5 Error conditions shall be communicated
to an on-line monitoring and control sys-
tem when this is available.

R-EC-2 Error conditions should cause the gam-
ing device to lock up and require atten-
dant intervention. Error conditions shall
be cleared either by an attendant or upon
initiation of a new play sequence after the
error has cleared except for those deemed
as a critical error.

R-EC-6 An event represents an occurrence of an
incident detected by a device in an EGM.

R-EC-3 Error conditions are: coin jam, reverse
coin in, stacker full, bill jam, external
doors open.

R-EC-7 Important events must be reported in
real-time, including: error conditions,
tickets inserted, ticket printed.

R-EC-4 Video based games shall display mean-
ingful text as to the error conditions.

4.3. EVALUATION OF AORE APPROACHES 43

4.3.1 Theme/Doc

Theme/Doc is an AORE methodology that, apart from being mature and ac-
cepted in the AORE community, is part of a more comprehensive approach
called Theme [9, 26], which also treats aspectual design (Theme/UML).

We selected Theme/Doc because it explicitly supports passing information
from the requirements analysis to the design phase, which could include inter-
actions. Besides this, the Theme book [26] mentions conflict resolution as a
feature of the Theme approach, which is one interaction type we are interested
in. Also, in terms of scalability, it was applied to a non-trivial example in the
book, which makes it a candidate for our evaluation.

Brief overview of Theme/Doc

Theme/Doc [8] is the requirement analysis part of the Theme approach [9,
26]. In Theme/Doc, requirements are organized into concerns, called themes.
Themes can be defined through an initial set of domain specific actions or con-
cepts, others may be recurring typical concerns: persistence, logging, and so
on.

In Theme/Doc a requirement is attached to a theme if the name of the
theme appears in the requirement. In other words, Theme/Doc relies on the
name-based analysis of actions in requirements to relate them to themes. In
our study, we did not strictly follow this rule. Instead, we use the concerns
we identified in Sect. 3.7 as themes. We will detail our motivation for this in
Sect. 4.3.3.

Ideally, each requirement should belong to one theme, but chances are that
some of them are shared among themes, i.e., crosscutting. In Theme/Doc, a
shared requirement is considered crosscutting if all of the following four condi-
tions are satisfied [26]:

1. The requirement cannot be split in order to avoid tangling.

2. One of the themes dominates the requirement: it has a stronger belonging
relationship with one of the themes.

3. The dominant theme is triggered by events in the base theme: the behavior
described by the dominant theme is fired as a result of the execution of
some behavior from the base theme.

4. The triggered theme is fired in multiple situations: the crosscutting be-
havior must be executed in several cases, not just one.

A crosscutting theme is one that contains at least one crosscutting require-
ment. An example of the application of the mentioned rules is as follows: re-
quirement R-M-4 from Meters mentions that plays and other events must be
counted. The base theme is Game, where the plays and other relevant events
occur. The dominant theme is Meters, whose requirement (count events) is fired
by events in the base. Therefore, Meters is a crosscutting theme.

An important feature of Theme/Doc is its visual support through diagrams,
which helps in the understanding of the requirements model of the system.
In Theme/Doc diagrams, requirements are represented by rounded boxes, and

44 CHAPTER 4. INTERACTIONS IN ANALYSIS

Figure 4.1: Game, Meters, G2S and Error Conditions concerns expressed using
the Theme/Doc notation.

they are organized around themes, which are depicted by diamonds. When a
crosscutting theme exists, a gray arrow is drawn from the theme that cross-
cuts, i.e., the aspect, to the theme that is being cut across, i.e., the base.
Consider for example Fig. 4.1, where Game, Meters, Error Conditions and G2S
concerns are represented along with their requirements and crosscutting rela-
tionships. Unfortunately, as we report in the following sections, it is not possible
to document which requirements participate in the crosscutting relationships.

The Theme book [26] claims that Theme/Doc has tool support through a
web application1. Unfortunately, this software was not available at the time of
our experiments. To the best of our knowledge, there are no other tools with
direct support for Theme/Doc. We therefore followed the notation from the
book to build our diagrams by hand.

4.3.2 Use of Theme/Doc

As shown in Fig. 4.1, the graphical approach of Theme/Doc makes it easy to
read the relationships between requirements and themes. Each theme can be
easily identified along with its associated requirements. The four steps to check
for crosscutting helped us to correctly establish which were the crosscutting
concerns. In the resulting diagrams, the crosscutting relationships are clear,
enabling us to easily identify which concern is playing the base and/or the
aspectual role. However, the involved requirement in these relationships cannot
be expressed using Theme/Doc.

Figure 4.2 shows crosscutting among the themes presented in Sect. 3.8. For
clarity, here we just present the crosscutting relationships between the themes
without including the requirements. The diagrams showing all the above con-
cerns with their more significant requirements are included in A. Note that in
contrast with Fig. 3.4 (which uses an ad-hoc notation for showing crosscutting
and interaction relationships) in this case only the crosscutting information is

1Stated to be available at: http://www.thethemeapproach.com:8081

4.3. EVALUATION OF AORE APPROACHES 45

present due to the limitations of Theme/Doc, which are analyzed in the follow-
ing sections.

Figure 4.2: Crosscutting relationships between themes using the Theme/Doc
graphical notation.

4.3.3 Limitations of Theme/Doc

In our evaluation, we encountered the following limitations of Theme/Doc.

Granularity

As explained before, gray arrows denote crosscutting. As each concern po-
tentially contains many requirements, it is difficult to discern which specific
requirement of the crosscutting theme affects which requirements on the base
theme. Consider for example Fig. 4.1 and the crosscutting relationship between
Meters and Game; here it is not possible to know which requirement in Meters
is crosscutting. Furthermore, it is not possible to know which specific require-
ments in Game are affected as the result of the crosscutting. Where possible,
it is desirable to pass that information to the design phase, so that base and
aspectual components can be properly designed. In fact, this information is
available during the analysis phase – in the identification of crosscutting themes
– of Theme/Doc, but it is not made explicit.

Expressing Interactions

In Fig. 3.4 we show different examples of interactions between aspectual con-
cerns for requirements. If we consider Fig. 4.1, we can however see that these
interactions are missing. This is because Theme/Doc lacks support for express-
ing interactions. For instance, missing in Fig. 4.1 is a dependency of G2S on
Meters. This information is however crucial: Multiple perspectives of a system
(themes in this case) need to be combined to form a system [85]. We require
the dependency information to select a sound set of themes for a system. For
example, it is not possible to build an SM with G2S support, but lacking Me-
ters. This is because G2S requires the existence of Meters to provide its own
functionality. The same applies to SCP and Meters. The same happens with
conflicts, for instance, between Demo and Meters. It is critical to know that
architectural or design mechanisms need to be included to avoid the activation

46 CHAPTER 4. INTERACTIONS IN ANALYSIS

of both concerns at the same time. Developing the system without this informa-
tion would entail costly fixes in the future, when the interaction is encountered.
The reinforcement from Error Conditions to G2S is also missing. Documenting
it signals that an optional part of G2S is active when Error Conditions are
available.

Implicit Requirements

As a consequence of performing a domain knowledge based analysis of our re-
quirements and concerns we also were confronted with the fact that the informa-
tion contained in the original requirements, in some cases, needs to be combined
with domain knowledge. This is needed in order to generate new requirements
that are more suitable for understanding concern relationships. It is similar to
the approach proposed by Bar-On et al. [11], where implied actions are used to
generate new derived requirements.

For example, during interaction analysis, it is possible that new requirements
arise because of interactions that need to be resolved. Consider the following
example:

G2S provides time and date configuration for slot machines. SCP
also provides the same configuration. A SM can be connected using
both protocols at the same time.

In this case there is an implicit mutex relationship present. The machine
can take the time and date from any of the protocols, but not from both of
them at the same time. This would lead to erratic behavior in case that both
times do not exactly match. Hence, the following issue arises: Which time and
date source should the SM take when both protocols are active? A decision
must be made in the requirements analysis, for example, stating that G2S is
preferable over any other source of time and date. This decision helps to resolve
the interaction problem by defining part of the behavior of the system, and must
be recorded.

Ambiguity of the Requirements

An ideal requirements specification should be complete, unambiguous, verifiable,
consistent, modifiable and traceable [1]. Under these assumptions Theme/Doc
should work smoothly. Unfortunately, in our particular case there is no single
requirements specification unifying all the sources and we are faced with sig-
nificant ambiguity. The variety of sources first results in synonyms being used
in different documents. Second, and more importantly, there are complete key
ideas, concepts or interactions that are expressed using different vocabulary and
style. Although we might consider our case as being exceptional, we consider it
worthwhile to examine the impact this has on Theme/Doc.

The ambiguity we face affects the mechanism proposed in Theme/Doc to
assign requirements to themes, and to identify potential crosscutting themes.
For example, consider the case of attaching requirements to themes, where it is
necessary to look for a theme’s name in the requirements. In our case, some-
times the theme’s name is represented by a phrase or an adjective, which gives
the analyst an indication to attach it to the theme. In the worst case however,
the requirement and the theme could be related by implicit actions, as outlined

4.3. EVALUATION OF AORE APPROACHES 47

above. Furthermore, the same issue is present when crosscutting relationships
are identified. According to Theme/Doc, shared requirements are potential in-
dicators of crosscutting. Having a shared requirement means that two concerns
are present in the text [26]. This suffers from the same drawback of requiring
unambiguity.

Baniassad and Clarke [9] have shown how Theme/Doc analysis of actions
helps to solve some ambiguities and how a synonym dictionary helps in the
case of multiple terms referring to the same concept. In our experience, the
problem goes deeper than the use of synonyms: we not only have some words
that are written in different way, sometimes ideas are equivalent but explained
differently. Put differently, the name-based approach proposed originally by
Theme does not work in our setting due to the nature of the requirements
sources. As an example, consider the case of requirements R-PR-3 and R-DM-
7 (from Tables 4.1 and 4.2. Note that these requirements refer to the same
concepts, but textual analysis fails due to the impossibility of matching words.
Having several large documents which present not only words but key ideas
using a different vocabulary prevents the use of the name-based approach of
Theme/Doc.

Considering the kind of requirements we face, we consider two options to
resolve ambiguities. The first one is to rewrite all the requirements, normalizing
them to use the same vocabulary; the second one is to use domain knowledge
to associate requirements with the corresponding themes directly. Due to the
large number of requirements (approximately 600) and presence of multiple
sources, the first option is not feasible, we therefore opt for the second. Note
that grouping requirements into concerns based on domain knowledge is not
new [60, 10]. Our experience is that the resulting concerns are useful as they
can be easily discussed with domain experts.

In conclusion, Theme/Doc lacks support for the identification and notation
of derived requirements

4.3.4 MDSOCRE

MDSOCRE (Multidimensional Separation of Concerns in Requirements Engi-
neering) is the evolution of a line of AORE approaches such as PreView [77]
and ARCaDe [70]. As it arguably provides the most expressive and flexible
constructs for binding crosscutting concerns to base concerns, we chose it as the
second case in our study.

Brief Overview of MDSOCRE

Multidimensional Separation of Concerns in Requirement Engineering (MD-
SOCRE) [60], is a refinement of the ARCaDe approach [70]. MDSOCRE treats
the concerns in a uniform fashion, regardless of the nature of the requirement
(functional or non-functional). It makes it possible for the requirement engineer
to choose a subset of requirements to observe the influences on each other and
to analyze crosscutting behavior. In contrast to Theme, it does not provide a
graphic notation, instead it uses XML to express requirements and composition
rules.

MDSOCRE aims to eliminate conflicts, which are the result of contradictory
concerns. These are detected and handled using contribution matrices. In such

48 CHAPTER 4. INTERACTIONS IN ANALYSIS

a matrix, rows and columns identify concerns and the cells denote how the
concerns contribute to one another (negative contributions denote conflicts).
These matrices help in the decision process of which (parts of) features will be
implemented. Conflicts in MDSOCRE differ from our definition in Sect. 3.8. In
our case, concerns are not a subject of negotiation, as all are required by some
standard or regulation. We must however check that at run-time conflicting
concerns are not simultaneously active.

MDSOCRE also provides support for meta concerns: generic concerns that
are instantiated for specific systems. The most important feature of meta con-
cerns for us is their capability for expressing commonly related concerns. We
will use this to express interactions in Sect. 4.3.6.

MDSOCRE is supported by the EA-Miner tool [73]. This tool is an Eclipse
plugin2 that needs the requirements to be entered in plain text format. As
part of its processing, EA-Miner uses a web service to parse natural language.
Unfortunately, this service was not working at the time of our experiments, and
we were not able to use the tool.

4.3.5 Use of MDSOCRE

We were able to build a complete requirements model of the SM application
using MDSOCRE. Listing 4.1 shows how some of the concrete concerns of our
domain are expressed in this approach. The Concern tag is composed of several
requirements which are surrounded by the Requirement tag. A requirement
can be referenced by its identifier (id) and can contain nested sub-requirements.
We do not include the detailed listing of all concerns here and instead refer to
the Appendix B

Listing 4.1: Game and Meter concerns expressed using MDSOCRE.

1 <Concern name="Game">
2 <Requirement id="1"> A slot machines have 5 reels.
3 </Requirement>
4 <Requirement id="2"> Reels spin when play button is
5 pressed.</Requirement>
6 <Requirement id="3"> Prizes are awarded according to a pay table.

</Requirement>
7 <Requirement id="4"> A slot machine has one or more devices for

accepting money.</Requirement>
8 <Requirement id="5"> As money is inserted credits are "assigned"

to the player. </Requirement>
9 <Requirement id="6"> A slot machine must provide a means for

cashing the credits out. It could be a ticket printer or coin
hopper.

10 </Requirement>
11 </Concern>
12

13 <Concern name="Meters">
14 <Requirement id="1"> Credit meter: shall at all times indicate

all credits or cash
15 available for the player to wager or cashout (GLI 11

4.10.1)
16 </Requirement>
17 <Requirement id="2"> Credit Meter Incrementing: The value of every

prize (at the end of a game) shall be added to the player’s

2Downloadable from http://www.aosd-europe.net/deliverables/d108EAMinerVersion2.zip.

4.3. EVALUATION OF AORE APPROACHES 49

credit meter. The credit meter shall also increment with the
value of all valid coins, tokens, bills, ticket/vouchers,
coupons or other approved notes accepted. (GLI 11 4.10.5)

18 </Requirement>
19 <Requirement id="3"> Accounting Meters (GLI 11 4.10.9): Coin In:

a meter that accumulates the total value of all wagers [...].
Games-played: accumulates

20
21 </Requirement>
22 <Requirement id="4"> Meters should be updated upon occurrence of

any event that must be counted, including: play, cashout,
bill in, coin in.

23 </Requirement>
24 </Concern>

Composition rules are used to express crosscutting relationships. Listing 4.2
shows an example of composition rules, consisting of a Constraint tag that
defines how the base requirements are constrained by aspectual requirements.
The Constraint tag has actions, operators and outcome elements, used to
express in detail how the base is affected. The action and operator tags in-
formally describe how the base concern is constrained, imposing conditions in
the composition. The operators express temporal intervals, temporal points or
restrictions between sets of concerns. The outcome tags (satisfied and fulfilled)
define the result of a composition. Fulfilled is used to denote that composition
constraints have been imposed. Satisfied takes other requirement IDs as param-
eters and indicates that those requirements have been satisfied as a consequence
of the imposed constraint [60].

Listing 4.2: A composition rule for Meters and Game using MDSOCRE.

1 <Composition>
2 <Requirement concern="Meters" id="4">
3 <Constraint action="enforce" operator="on">
4 <Requirement concern="Game" id="3" />
5 </Constraint>
6 <Outcome action="fulfilled"/>
7 </Requirement>
8 </Composition>
9 <Composition>

10 <Requirement concern="Error Condition " id="7">
11 <Constraint action="enforce" operator="on">
12 <Requirement concern="Game" id="6" />
13 </Constraint>
14 <Outcome action="satisfied">
15 <Requirement concern=" Error Condition" id="5"/>
16 </Outcome>
17 </Requirement>
18 </Composition>

The first composition rule of Listing 4.2 shows how the Meters concern
crosscuts the Game concern. In this example we have used the outcome action
“fulfilled”, because there is no other set of requirements to be satisfied. This
first composition rules means that when a play is awarded (according to the pay
table) it must be counted by the corresponding meters. Other possible outcome
action value is “satisfied” and the set of requirements that are satisfied. This is
the case of the Error Condition composition, because when such a condition is
detected an action must be taken, i.e., an additional requirement has to be sat-

50 CHAPTER 4. INTERACTIONS IN ANALYSIS

isfied after the constraints have been applied. A concrete example of this is the
second composition of Listing 4.2, which indicates that after a ticket is printed
(cashout action indicated in R-SM-6) this event must be communicated to the
on-line monitoring system (R-EC-5). This satisfies R-EC-7, which indicates
that important events, including ticket printed, must be reported in real-time.

The granularity of the approach is adequate for our case study, since it is
possible to clearly state which requirements are affected. The flexibility pro-
vided by the parameterized constraint tag helps to express different variants
of crosscutting relationships even though MDSOCRE does not natively sup-
port this. We were able to combine actions and operators to document the
interactions, as shown in Table 4.3.

We used the action ensure and the operator with to represent a Dependency
interaction. This follows the informal definition by Moreira et. al. [60], that says
that a certain condition for a requirement that is needed actually exists. We
used the action provide and the operator for for Reinforcement, as it specifies
additional features to a set of concern requirements. For Mutex the combina-
tion is the action enforce, to impose additional conditions with the operator
xor, as we want to prevent the simultaneous activation of two implementations
of the same functionality. Finally, note that for Conflict we used the same
combination, since operationally the desired effect is to satisfy just one of the
requirement sets involved (similar to Mutex). The downside of using this no-
tation is that both interactions are documented in the same way, even though
their semantics is clearly different.

4.3.6 Limitations of MDSOCRE

Although we were able to completely model the SM application, we were faced
with two limitations of MDSOCRE which resulted in models that are sub-
optimal. Firstly there is no explicit interaction relationship, and secondly there
is no support for unifying disparate requirements. We discuss these limitations
next.

Lack of Interaction Relationships

The actions and operators included in the composition rules only describe rela-
tionships between the crosscutting concern and the selected base concern. As
we explained in Sect. 3.8, interactions occur even between concerns without a
crosscutting relationship. In our case we need to express that G2S depends on
the existence of Meters to report this information and also that having Error
Conditions could reinforce the functionality of G2S enabling it to report a new
set of events: error events. These interactions as well as mutex (see Sect. 3.8)
are not explicitly supported by this approach.

As a workaround we have combined pairs of existing actions and operators,
as shown in Table 4.3.

This solution however has three downsides:

1. It forces the use of composition rules even when no crosscutting is present,
which seems contradictory with the original purpose of composition rules
expressed by the authors: “they describe how a concern cuts across other
concerns...” [60].

4.3. EVALUATION OF AORE APPROACHES 51

Table 4.3: Expressing Interaction types in MDSOCRE

action operator
Dependency ensure with

Reinforcement provide for
Mutex enforce xor

Conflict enforce xor

2. The expressiveness of our combinations is not optimal, as it is not easy
to map the different interaction types with pairs of actions and operator.
Consider, for instance, provide for compared to the word “reinforce”. Re-
inforce makes it explicit that the interaction is a positive influence to the
other aspect, but we have to use provide for, which is only a way to try
to represent this idea.

3. Using the semantics provided for actions and operators we could not find
a way for explicitily expressing conflicts. This is probably due to the
approach being focused on removing conflicts, hence no conflicts should
need to be documented.

We consider the second downside to be a key factor. The mapping from
Table 4.3 needs to be used to interpret implicit information that instead should
be explicit. This makes such interpretation in this approach error prone, as we
will show in Sect. 4.5.

Furthermore, the third downside has to do with inherent differences between
the definition of conflict used by the approach, and the kind of conflicts found
in the SM domain. As MDSOCRE includes a process for the elimination of
conflicts, they cannot be clearly expressed using the existing actions and opera-
tors. Instead, our conflicts need to be documented and modeled. The form that
conflicts in the SM domain is that of the not and (the negation of the logical
and. That is a SM cannot have Meters and Demo at the same time. In contrast,
mutex can be expressed as logical xor. For example, the SM can be configured
from G2S or SCP, only one of these.

An alternative would be the use of meta concerns, which seem to be a natural
place to store information regarding interactions. Extending MDSOCRE in
this way implies adding information regarding the interaction type and the
interacting concern. This could be done in a number of ways using XML, for
example by adding a tag parameterized with two attributes: the interaction type
and the name of the interacting concern. Meta concerns are not exactly aimed at
this purpose, but with this small extension they can support the different kinds
of interactions. The drawback here is a conceptual mismatch: meta concerns
were designed to document generic concerns, but in our case, interactions are
manifest in concrete concerns. We therefore did not use this alternative.

No Support for Unification

As in Theme, the ambiguity of requirements in the slot machine domain again
impacts the process. Recall that in Section 4.3.3 we discussed the impact of
having multiple and ambiguous requirement documents. For example, we may
have different documents that list the meters or counters that must be provided

52 CHAPTER 4. INTERACTIONS IN ANALYSIS

by the SM, and furthermore in the same document meters can be defined in
multiple requirements. In other words, the requirements of meters are scattered
over multiple documents. It is however necessary to group all this information
at design time to correctly design the meters concern.

One possibility here is to rewrite requirements so that meters listing is done
just once, containing meter definition from all the sources. However, such a
rewriting effort is only feasible when considering a small number of requirements.
Furthermore, a downside of creating a unified list is that after a requirements
fusion, it is hard to update these once (one of) the sources evolves.

Alternatively, we can keep requirements organized as in the originating doc-
ument, removing the need for unification as well as the issue of requirements
changes. However, it is desirable to have some kind of link between them, as
these different requirements complement each other, e.g. they jointly form the
list of all meters. This allows the engineer to analyze all the requirements defin-
ing the same concept. XML permits this, as it is possible to add cross-references
between different elements in the tree. However, MDSOCRE lacks a facility for
describing such cross-references.

4.4 Extensions of the Existing Approaches

4.4.1 Extensions to Theme/Doc: Theme/Doc-i

We now present some enhancements to Theme/Doc and give examples in the
SM domain. These allow us to deal with the issues expressed in the previous
section, as we will demonstrate next.

Granularity

In order to improve the information of requirements involved in a crosscut-
ting relationship, we added quantification labels to the existing gray arrows of
Theme/Doc. Quantification labels allow us to specify which requirements are
involved in a given crosscutting relationship, from both sides: the crosscutting
concern and the base concern.

As shown in Fig. 4.3, a quantification label has two parts separated by a
colon:

Crosscutting requirements IDs: this a list, a range, or the keyword all that
indicates which requirements are crosscutting in the concern where the
arrow has its origin.

Base concern requirements IDs: this a list, a range, or the keyword all that
indicates which requirements are the requirements affected by the cross-
cutting (the destination of the arrow).

Figure 4.3: Quantification label applied to a crosscutting relationship

4.4. EXTENSIONS OF THE EXISTING APPROACHES 53

Before deciding in favor of quantification labels, we evaluated the use of
graphical elements to indicate affected requirements. We considered, for exam-
ple, adding arrows from affecting to affected requirements. We discarded such
graphical approaches as we found that they add a large amount of clutter to
the diagrams, making comprehension more difficult.

In summary, quantification labels allows us to express fine grained infor-
mation that otherwise would be missed using the original Theme/Doc. This
information can be used in later phases to take special care of the design and
the implementation of the requirements involved in such relationships. For ex-
ample, quantification labels used in the base side of a crosscutting relationship
can help in the definition of pointcuts during design.

Expressing Interactions

As outlined in Section 4.3.3, we also need to model interactions between themes,
since multiple themes need to be combined to form a system. As interactions
are a new type of relationship between concerns, we decided on a notation that
is consistent with the Theme/Doc notation that relates concerns. We propose
to document interactions using dashed lines or dashed arrows, depending on
whether the interaction is directional or not. To this line or arrow a text label
is attached, indicating which type of interaction is represented (mutex, conflict,
reinforcement or dependency).

The choice of a line or an arrow depends on the type of the interaction. For
some interactions, such as mutex and conflict, there is no direction, since they
are symmetric relationships, hence no arrow is needed. However, in the case of
reinforcement and dependency, it is important to specify the direction of the re-
lationship in order to understand which concern is reinforcing the other concern,
or which concern depends on the other. Hence for those interactions arrows are
used. The different kinds of interaction notations are shown in Fig. 4.4.

Figure 4.4: Interaction relationships

54 CHAPTER 4. INTERACTIONS IN ANALYSIS

Interaction arrows can be combined with quantification labels in order to
document which specific requirements are involved in the relationship. Exam-
ples of these combinations are shown in Sect. 4.4.1.

Implicit Requirements, Ambiguity of Requirements

Both issues of implicit requirements and the ambiguity of requirements benefit
from the intervention of a domain expert. On the one hand, this will make
explicit the requirements that are implicit, and on the other hand, this allows the
requirements documents to be disambiguated. This implies adding some specific
task in the process of Theme, probably during the requirements processing stage
of Theme/Doc (where requirements are split, removed or added).

Considering the example of the implicit, derived requirement we presented
in Section 4.3.3, we propose to add such requirements to the affected interaction
itself. Fig. 4.5 shows how a derived time data source requirement is attached to
the mutex interaction.

Figure 4.5: A new requirement related to a mutex interaction.

Theme/Doc-i Applied

Using our extensions, we were able to explicitly specify all the interactions in
the case study. In this section we provide examples for the different types of
interactions we have modeled. We refer to Appendix A for the full requirements
model.

In Fig. 4.5 we have seen how a mutex interaction is represented. Fig. 4.6
shows how a conflict (explained in Sect. 3.8) is documented using the proposed
extensions. Note that besides the interaction type, the requirements involved
are specified using quantification labels.

Figure 4.6: Conflict between Demo and G2S concerns.

4.4. EXTENSIONS OF THE EXISTING APPROACHES 55

Fig. 4.7 shows a reinforcement between Error Conditions and G2S. In this
case, it is important to specify the direction of the relationship, since it should
be clear which concern is reinforcing which other concern. Again, quantifica-
tion labels have been used to identify requirements. From Fig. 4.7, it is clear
that requirement 5 of Error Conditions enables extra behavior in the G2S con-
cern, specifically it enables requirement 4 (Devices can generate an event in
unsolicited manner . . .).

Figure 4.7: G2S concern reinforced by Error Conditions concern.

G2S (and any protocol that needs to report the SM state) depends on Meters
to provide the required information. This situation is documented in Fig. 4.8,
which shows that in order to satisfy requirement 2 of G2S first requirements 4
and 5 from the Meters concern need to be satisfied.

Figure 4.8: G2S concern depends on Meters concern.

4.4.2 Extensions to MDSOCRE: MDSOCRE-i

Considering the shortcomings of MDSOCRE outlined above, we propose an
extension to MDSOCRE, called MDSOCRE-i. It consists of two parts: explicit
interaction relations to address the need for clear notation of interactions, and
cross-references to allow unification of scattered requirements into one complete
set of requirements for a concept.

Explicit Interaction Relations

Unfortunately, MDSOCRE does not natively support the notion of interactions.
Although they can be expressed using a combination of actions and operators, as
in Table 4.3, we do not consider this a clean solution. This is because interactions
are not documented in a way that makes it easy to differentiate between the
different types of interactions (as confirmed by experimental results in Sect. 4.5).
Note that in our requirements engineering we were forced to disregard parts
of the MDSOCRE methodology: originally conflicts are not supposed to be

56 CHAPTER 4. INTERACTIONS IN ANALYSIS

expressed in the resulting models as they should have been removed as part
of the requirements engineering process. Instead we need these conflicts to be
explicitly present.

An alternative to our workaround is the use of the meta concern facility to
store information regarding interactions. However there is a conceptual mis-
match here as it means storing concrete information in an artifact that is aimed
at expressing generic information regarding concerns.

We assert that a new relationship between concerns, aimed at documenting
interactions, is needed. This new relationship would enable us to express in-
teractions between concrete concerns, as well as between meta concerns when
necessary. We propose an extension for MDSOCRE to effectively document
interactions and call this extension MDSOCRE-i.

Before deciding for the extension presented here we evaluated different solu-
tions. For example, having new actions or operators was considered as a possible
solution. We however discarded this because some combinations of existing ac-
tions and operators with new actions or operators would not make any sense.
Another possibility we evaluated was to replace the Composition XML tag
by an Interaction tag, which would be a much more intrusive change to the
MDSOCRE specification. Moreover, interactions form part of the information
of a composition, and therefore this option was also discarded.

We propose to extend the Composition XML element of MDSOCRE, al-
lowing it not only to express crosscutting relationships but also interactions. In
listing 4.3, we show a new Interaction XML element that can be parame-
terized with the interaction type. We do not pose any restriction on this type,
and here simply specify the interaction types as used in the previous sections
of the text. Note that we only apply this extension at the base level, but it can
also be extended to apply at the meta-concern level.

The interaction element is always contained in a requirement element and
nests a second requirement element. The containing requirement element af-
fects the nested requirement element as specified by the type of the interaction
element. In other words, the direction of the interaction relationship (when
relevant) is from the outer requirement to the inner one. Consider for exam-
ple Listing 4.3 that describes the dependency between G2S (requirement 6) and
Game Recall (requirements 1 and 2). As we explained in Sect. 3.8, G2S depends
on Game Recall, as it needs the information captured by Game Recall in order
to communicate it to the on-line monitoring systems when needed.

Listing 4.3: The Interaction element instantiated for a dependency

1 <Composition>
2 <Requirement concern="G2S" id="6">
3 <Interaction type="dependency">
4 <Requirement concern="GameRecall" id="1,2"/>
5 </Interaction>
6 </Requirement>
7 </Composition>

Note that the Requirement tag has not been modified with respect to
the original MDSOCRE specification as it already allows specification of which
requirements participate in a composition.

Listing 4.4 shows examples for the other three interactions (reinforcement,
mutex and conflict).

4.4. EXTENSIONS OF THE EXISTING APPROACHES 57

Listing 4.4: Reinforcement, conflict and mutex interactions

1 <Composition>
2 <Requirement concern="Meters" id="2,3">
3 <Interaction type="reinforcement" >
4 <Requirement concern="Proprietary Communication Protocol" id

="4"/>
5 </Interaction>
6 </Requirement>
7 </Composition>
8

9 <Composition>
10 <Requirement concern="Demo Mode" id="1,4">
11 <Interaction type="conflicts" >
12 <Requirement concern="Game Recall" id="1,2"/>
13 </Interaction>
14 </Requirement>
15 </Composition>
16

17 <Composition>
18 <Requirement concern="Demo Mode" id="9">
19 <Interaction type="mutualExclusion" >
20 <Requirement concern="Game" id="3"/>
21 </Interaction>
22 </Requirement>
23 </Composition>

Note that in the case of mutex and conflict interactions the relationships are
symmetrical, so the order of the requirements may vary with no impact: It is
equivalent to say that Game Recall conflicts with Demo or Demo conflicts with
Game Recall. In the case of mutex, the symmetrical nature of the relationship
is more obvious as it is used to document two (or more) instances of a given
functionality. For example, Listing 4.4 documents the mutual exclusion between
two requirements, one of the Game concern and one of Demo concern. The
mutual exclusion is required because both of them determine a different way of
generating the outcome for a play.

Cross-references for Unification

As indicated in Sect. 4.3.6, in the SM domain requirements coming from dif-
ferent sources describe the same concepts. These different sources need to be
unified to eliminate ambiguities and to ensure that the requirements model is
complete. This is because requirements may complement each other while orig-
inating from different documents, or from different parts of the same document.
Furthermore changes in a requirement may impact all the requirements that
it complements, in the same document as well as in other documents. To al-
low such unification and a more straightforward assessment of the impact of
changing a requirement, MDSOCRE-i contains a second extension: adding
cross-references to a requirement.

The cross-reference extension is meant to be used inside of a single concern
to link requirements describing different perspectives of the same concept. Our
extension consists of a seeAlso attribute that lists the identifiers of related
requirements, i.e., specifying a cross-reference. When adding complementary
requirements to an existing set of requirements, the requirement engineer adds
this attribute to the requirement tags. This attribute is added both in the exist-

58 CHAPTER 4. INTERACTIONS IN ANALYSIS

ing set of requirements, referring to the newly added requirement that comple-
ments them, as well as to the new requirement, referencing the old requirements
that are being complemented.

In Listing 4.5, we show an example of how a requirement defining some me-
ters, taken from the G2S documentation, refers (using the seeAlso attribute)
to requirements 1, 3 and 4 of the same concern, defined in the GLI documenta-
tion that contain complementary information.

Listing 4.5: See also extension

1 <Concern name="Meters">
2 <!-- From GLI 11 -->
3 <Requirement id="1" seeAlso="3,4,5"> Credit meter: shall at all

times indicate all credits or cash available for the player to
wager or cashout.

4 </Requirement>
5 <Requirement id="2"> Credit Meter Incrementing: The value of every

prize (at the end of a game) shall be added to the player’s
credit meter. The credit meter shall also increment with the
value of all valid coins, tokens, bills, Ticket/Vouchers,
coupons or other approved notes accepted.

6 </Requirement>
7 <Requirement id="3" seeAlso="1,4,5"> Accounting Meters: Coin In: a

meter that accumulates the total value of all wagers [...].
Games-played: accumulates the number of games played; since
power reset, since door close and since game initialization.

8 </Requirement>
9 <Requirement id="4" seeAlso="1,3,5"> Meters should be updated upon

occurrence of any event that must be counted, including: play,
cashout, bill in, coin in.

10 </Requirement>
11 <!-- From G2S Docs-->
12 <Requirement id="5" seeAlso="1,3,4"> Some G2S meters are:

gamesSinceInitCn Number of games since initialization. WonCnt:
Number of primary games won by the player. LostCnt: Number of
primary games lost by the player.

13 </Requirement>
14 </Concern>

Applying MDSOCRE-i

We successfully used MDSOCRE-i to build a complete requirements model of
the SM requirement subset presented in Sect. 4.2. We were able to model all in-
teractions present in the requirements, and to use cross-references to build com-
plete sets of requirements for all concepts that are defined in a scattered form.
Considering the size of the specification documents, we found that MDSOCRE-
i yielded slightly shorter documents: 228 lines versus 236 lines for MDSOCRE,
even though extra cross-reference information is available. The full model is
included in Appendix B.

4.4.3 Summary of Extensions

In this section we have proposed a number of extensions to both Theme/Doc
and MDSOCRE to address the weaknesses we encountered when performing

4.5. USER STUDY: MDSOCRE, MDSOCRE* AND MDSOCRE-I 59

Table 4.4: Limitation of Theme/Doc and proposed extensions.

Limitation in Theme/Doc -
Sect. 4.3.3

Extension in Theme/Doc-i -
Sect. 4.4.1

Granularity Quantification labels
Expressing Interactions New arrow notation combined with

quantification labels
Ambiguous and implicit require-
ments

Disambiguation, derived requirements

requirements analysis. The tables 4.4 and 4.5 summarize the weaknesses of the
approaches we studied and the extensions we made to address them.

Table 4.5: Limitation of MDSOCRE and proposed extensions.

Limitation in MDSOCRE -
Sect. 4.3.6

Extension in MDSOCRE-i -
Sect. 4.4.2

Lack of explicit interaction rela-
tionships

New tags and attributes to describe in-
teracting concerns and requirements

No support for unification New tag and attribute to document
relationships between requirements de-
scribing closely related topics.

The extensions we propose to Theme/Doc allow us to express information
that otherwise would not be present in the requirements specifications we pro-
duce. Our extensions to MDSOCRE that yield MDSOCRE-i however do not
add new expressive capabilities for interactions to the methodology. Instead,
they aim at helping the requirements engineer to easily understand interactions
as contained in the requirements specifications we produce. In order to validate
this hypothesis, we performed a user study that is presented next.

4.5 User Study: MDSOCRE, MDSOCRE* and
MDSOCRE-i

As we have discussed above, both MDSOCRE and MDSOCRE-i are sufficient
to be able to model interactions, thanks to the use of the mappings specified
in Table 4.3. We call the variant of MDSOCRE that includes these mappings
MDSOCRE*. The aim of MDSOCRE-i however goes beyond MDSOCRE*: it
also aims to achieve a conceptually cleaner fashion to model interactions, leading
to a modeling phase that is faster and a model that is more complete and less
error-prone to interpret. We have performed an additional comparison between
MDSOCRE (including MDSOCRE*) and MDSOCRE-i to verify whether this
is indeed the case, in the form of a restricted user study.

In our user study we compared interaction support of the two approaches
in terms of accuracy and speed by means of two experiments. In other words,
we compared legibility of the explicitly labeled interactions versus the action-
operator pairs we used in Section 4.3.6. In the first experiment we established

60 CHAPTER 4. INTERACTIONS IN ANALYSIS

whether or not the action-operator pair notation has legibility issues, by evalu-
ating the advantages of using Table 4.3 (i.e., using MDSOCRE*) in the require-
ments interpretation process. We found that the use of Table 4.3 significantly
improves legibility of the requirements model. In the second experiment, we
therefore compared MDSOCRE-i against MDSOCRE*, to see if MDSOCRE-
i outperforms this setup. We found that indeed, even in this case, MDSOCRE-
i is a significant improvement.

In each of the two experiments we tested legibility of the four interaction
types as follows: In the first phase we established legibility of the first nota-
tion, and in the second phase of the second notation. Each phase consisted of
four tasks, covering the four interaction types. In each task two concerns were
presented with their interaction described in the corresponding notation. Then,
a multiple choice of three different interactions between the two concerns was
presented. The subject had to select which of the options was correct, yielding
a measure of accuracy. The time needed to solve each task was also measured,
in order to establish which approach delivers faster results while working with
interactions. For both experiments all the subjects were in the same room. A
single clock was available so that the subjects could take note of the current
time for each individually finished task. The final times taken for each task
were calculated by taking the difference between the time of the current and
the previous task. Lastly, in order to evaluate the subjective preference for each
approach, after executing each experiment, a survey was completed by the sub-
jects. It inquired as to their preference of notation per interaction type, graded
on a five-point Likert scale.

The details of each case study are described in the following sections.

4.5.1 Case Study 1: MDSOCRE vs. MDSOCRE*

The first experiment we performed aimed to evaluate the original MDSOCRE,
without knowledge of the semantics of the operator-action pair notation given in
Table 4.3, versus MDSOCRE where this semantics is explicitly defined, which we
call MDSOCRE*. Note that MDSOCRE* does not make any modifications to
the MDSOCRE notation, the only difference is the semantics which is explicitly
defined in Table 4.3.

Evaluators The subjects of the study were seven experienced IT professionals,
but not knowledgeable in the SM domain. Each of them at least worked for
four years using requirements, most of them in the role of requirements analyst.
The group has an average experience of 11.5 years working on commercial IT
projects.

Activities The requirement interpretation tasks presented to the subjects
were not taken from the SM domain, to avoid confusion due to unknown ter-
minology. Instead, generic requirements were generated for their interpreta-
tion. For example, Listing 4.6 shows the requirement specification testing De-
pendency, in the second phase of the experiment treating MDSOCRE*. The
multiple-choice options given to the subject for this task were the following (the
correct answer is the third option):

4.5. USER STUDY: MDSOCRE, MDSOCRE* AND MDSOCRE-I 61

1. User history features can be used without the availability of storage facil-
ities.

2. User history benefits from the availability of storage facilities when avail-
able.

3. User history features depend on the availability of storage facilities.

Listing 4.6: Task evaluating Dependency in MDSOCRE*

1 <Concern name="Context-awareness">
2 <Requirement id="1">Context-monitoring is the repeated observation

of an entity’s context through an input mechanism.
3 </Requirement>
4 <Requirement id="2"> User history is tracked through an input

mechanism, and it has to be retrieved afterward.
5 </Requirement>
6 </Concern>
7

8 <Concern name="Persistence">
9 <Requirement id="1">State-encoding is the conversion of application

data to a format more suitable for storage in a database
management system.

10 </Requirement>
11 </Concern>
12

13 <Composition>
14 <Requirement concern="Persistence" id="1">
15 <Constraint action="ensure" operator="with">
16 <Requirement concern="Context-awareness" id="2"/>
17 </Constraint>
18 <Outcome action="fulfilled"/>
19 </Requirement>
20 </Composition>

The overall organization of the experiment was as follows:

1. The four types of interactions were presented.

2. The MDSOCRE approach was explained, including usage examples.

3. The first set of tasks was given to the subjects for resolution.

4. After all the users finished solving the first set, the mappings for interac-
tions, i.e., MDSOCRE*, was explained.

5. A second set of tasks was given for resolution.

Survey After all tasks were completed, study subjects were presented a ques-
tionnaire. It asked, for each interaction type, whether they would use a specific
notation in the future to document this kind of interaction, graded on a five
point Likert scale. Sentences followed the pattern below:

I would use MDSOCRE to express dependency — reinforcement
— mutex — conflict interactions in the future.
I would use MDSOCRE* to express dependency — reinforcement
— mutex — conflict interactions in the future.

62 CHAPTER 4. INTERACTIONS IN ANALYSIS

Table 4.6: Results of case study 1: MDSOCRE (M) versus MDSOCRE* (M-*),
and statistical analysis of population independence of subjective evaluation.

Interaction Correctness Time Subjective Evaluation
M M-* M M-* Use M Use M-* p-value

Dependency 85.71% 71.42% 3m 43s 2m 34s 2.28 4.14 0.006
Reinforcement 57.14% 71.42% 3m 3m 09s 2.2 4 0.011
Conflict 57.14% 85.71% 3m 51s 3m 1.8 4.14 0.002
Mutex 71.42% 100% 2m 26s 1m 43s 2 4.28 0.002

Global 64.28% 85.71% 13m 10m 26s 2.10 4.14

Results The results of the experiment regarding accuracy, time and subjective
preference are presented in Table 4.6. Global results show that MDSOCRE* is
amply more accurate (85.71% against 64.28%) for the whole experiment. Bro-
ken down by interaction type, MDSOCRE* is more accurate for Reinforcement,
Conflict and Mutex interactions but slightly less accurate for Dependency. Re-
garding the time taken, MDSOCRE* provided significantly faster results, except
for Reinforcement, where the time taken was slightly more than MDSOCRE.
Overall time taken shows that MDSOCRE* is 24% faster than MDSOCRE.
In the subjective preference score we see a strong bias towards MDSOCRE*,
both per interaction type as globally. Moreover, statistical analysis reveals that
the difference between the opinions for both notations is highly significant. We
performed a population independence test3 to establish this for each interac-
tion type. The p-values for the tests show that with a 98% confidence level we
can say that the opinion of the test subjects for MDSOCRE is different than
for MDSOCRE*. Lastly, overall results show that the study subjects would
use MDSOCRE* in the future, while they did not agree to use MDSOCRE in
the future.

To conclude, the experiment shows that interpreting interactions in a re-
quirement model written in MDSOCRE* is not only preferred by the users,
but also significantly faster and also more accurate than when written in MD-
SOCRE.

4.5.2 Case Study 2: MDSOCRE* vs MDSOCRE-i

The second experiment we performed evaluated the advantages of our exten-
sion to unmodified MDSOCRE. As the previous experiment showed that MD-
SOCRE* performs better than MDSOCRE, we chose to compare MDSOCRE* with
MDSOCRE-i.

Evaluators To avoid that learning effects from the first experiment influence
the results of this experiment, a different group of test subjects was used. The
group for this experiment consisted of eight people with industrial experience
in the SM domain. All of them have worked for a company developing and
testing SM software during an average of 4 years. They occupied different
positions, e.g. testers, architects, developers. For this experiment we therefore
used concerns and interactions taken from our SM requirement models written
in MDSOCRE and MDSOCRE-i (included in Appendix B).

3A two independent sample Wilcoxon rank sum test.

4.5. USER STUDY: MDSOCRE, MDSOCRE* AND MDSOCRE-I 63

Table 4.7: Results of case study 2: MDSOCRE* (M-*) versus MDSOCRE-i (M-
i), and analysis of population independence of subjective evaluation.

Interaction Correctness Time Subjective Evaluation
M-* M-i M-* M-i Use M* Use M-i p-value

Dependency 75% 87.5% 4m 4m 24s 2.5 3.5 0.36
Reinforcement 75% 100% 5m 28s 2m 23s 2.25 3.5 0.46
Conflict 87.5% 100% 2m 22s 2m 35s 2.5 3.87 0.007
Mutex 87.5% 87.5% 1m 54s 1m 59s 2.25 3.87 0.005

Global 81.25% 93.75% 13m 44s 10m 21s 2.37 3.68

Activities The experiment was organized as follows:

1. The four types of interactions were presented.

2. MDSOCRE approach was explained, including usage examples.

3. The mappings of MDSOCRE* for interactions were introduced.

4. MDSOCRE-i was introduced, including usage examples.

5. The two sets of tasks were delivered for their resolution.

Survey After the tasks were completed, a similar survey as in the first exper-
iment was handed to the subjects (substituting MDSOCRE-i for MDSOCRE in
the questions). This survey also included the following questions, allowing a
response of either MDSOCRE* or MDSOCRE-i:

Which notation makes interactions more evident?
Which notation describes the interactions more clearly?

Results The results for the second case study are presented in Table 4.7. Cor-
rectness is shown in the two first columns. Globally, MDSOCRE-i results in a
higher accuracy than MDSOCRE*. Considering the interaction type, for De-
pendency, Reinforcement and Conflict MDSOCRE-i performed better while for
Mutex the correctness results are the same. With respect to time, MDSOCRE-
i was notably faster for Reinforcement, while for the other interactions the re-
sults are equivalent. In the overall time measure MDSOCRE-i was 32% faster
than MDSOCRE*. Regarding subjective preference, users mildly agree to use
MDSOCRE-i in the future while mildly disagreeing to use MDSOCRE* in the
future. With less pronounced differences between the opinions of both nota-
tions, statistical analysis reveals that the difference between the opinions for
both notations still is significant. The p-values for the tests show that with a
95% confidence level we can say that the opinion of the test subjects for MD-
SOCRE* is different than for MDSOCRE-i.

Finally, for the last two questions of the questionnaire: which tool makes
interaction more evident and which tool describes interactions more clearly,
on both questions MDSOCRE-i got 87.5% of preference compared to 12.5%
obtained by MDSOCRE.

From the second experiment, we can conclude that MDSOCRE-i is preferred
by the users, while being somewhat more accurate and significantly faster than
MDSOCRE*.

64 CHAPTER 4. INTERACTIONS IN ANALYSIS

Overall, considering the time and accuracy measurements of both experi-
ments we can therefore conclude that for the interpretation of interactions in
a requirements model MDSOCRE-i is significantly more accurate than MD-
SOCRE while also being much faster. Finally, from the subjective evaluation
of MDSOCRE* being better than MDSOCRE, and of MDSOCRE-i being bet-
ter than MDSOCRE*, we can infer that users largely prefer MDSOCRE-i over
unmodified MDSOCRE (which includes MDSOCRE*).

Time Taken Using our extensions implies that more time needs to be invested
in the explanation on how to use these new constructs. Even though we did not
accurately measure the time needed for this teaching part of the experiment,
we do have some observations in this regard. After the engineers were exposed
to the limitations of the original approach and our workaround, they welcomed
our extensions and quickly understood how to use them. Roughly speaking, the
explanation of the extensions took one third of the time needed for the original
introduction of the approach (which includes the workaround). Lastly, compared
to the time to explain the extensions, the explanation of the workaround took
more time, in addition to being more cumbersome and more error prone.

Study Validity: Strong and Weak Points

Strong Point: Industrial Profile Because the MDSOCRE-i extension has
been inspired by industrial experience in a complex domain, having the proposed
extension validated by people in industry is fundamental. The strongest point
of our study is therefore the industrial profile of the subjects.

In both cases the subjects had considerable experience in the industry. In
the case of the first experiment, the test subjects belong to a company which
develops mainly for the enterprise domain. They were accustomed coping with
interactions of requirements, frequently present in enterprise applications.

For the second case study, the subjects were experts for the particular do-
main of SMs. Moreover, they occupied different positions in the company, which
reinforces the hypothesis about the ability of MDSOCRE-i to improve compre-
hension, not only for requirement engineers, but also for testers, developers and
other profiles.

Weak Point: Small Scale The main weakness of both our studies is that
they were performed with a small group of test subjects (seven and eight respec-
tively). Given the industrial setting, we were unable to locate a larger group of
people for both tests. Moreover, for the second test, the use of domain experts
further restricted the set of possible test subjects.

However we do consider the study to be relevant because we see that the
results are very consistent. Our assessment is confirmed at least regarding the
user preference since the statistical analysis of the subjective evaluation returns
highly significant results. In other words, we can conclude that with a bigger
sample size it is extremely likely that the user preferences would also be in favor
of MDSOCRE-i.

In conclusion we state that despite the small number of subjects the
results regarding time, accuracy and subjective evaluation demonstrate
that MDSOCRE-i significantly outperforms MDSOCRE with respect to the
comprehension of interactions in requirement models.

4.6. CONCLUSIONS 65

4.6 Conclusions

This chapter presents our study of applicability of two AORE approaches:
Theme/Doc [8] and MDSOCRE [60], in the Slots Machines Domain. We fo-
cused mainly on the expressiveness of these approaches in terms of interactions
between requirements. We found that both approaches lacked comprehensive
support for our case, and proposed and validated extensions to both approaches
to address this issue.

From our analysis we conclude that, considering both approaches without
our extensions, MDSOCRE performs better than Theme/Doc. This because it
allows specification of the composition of concerns in detail. We also noticed a
considerable difference in the process for attaching requirements to their con-
cerns. Theme/Doc relies on the analysis of the text of requirements, searching
for the concern name, while MDSOCRE relies on the analyst’s domain knowl-
edge. As we have different sources with different terminology, we found the
MDSOCRE approach more suitable for our needs.

The first limitation of Theme/Doc is the lack of detailed information regard-
ing the requirements participating in crosscutting relationships. To address this
we added quantification labels that allow the analyst to provide more detail to
concern relationships. A second issue is the lack of support for expressing in-
teractions between concerns. In order to solve this we introduced a new kind of
interaction relationship that permits to express a conflict, mutex, dependency or
reinforcement between two concerns, information that otherwise would be lost.
This new interaction relationship can be combined with quantification labels to
accurately document the requirements involved in the interaction.

For MDSOCRE, we were able to model interactions between two concerns
using specific combinations of action and operator attributes in constraint spec-
ifications. As these combinations can be ambiguous and seemed unintuitive, we
extended MDSOCRE with explicit support for interactions, called MDSOCRE-
i. We then performed a user study to establish this ambiguity and to validate
that MDSOCRE-i delivers faster results and aids in the understanding of inter-
actions.

Having identified and documented the interacting concerns we expect this
information will aid in the development of the architectural and design arti-
facts that will allow the produced application to correctly address interactions
between these concerns. We next present our work on the design phase in the
Slot Machines domain.

66 CHAPTER 4. INTERACTIONS IN ANALYSIS

Chapter 5

Interactions in Design

This chapter is based on our previously published work Expressing
Aspectual Interactions in Design: Experiences in the Slot Machine
Domain [36].

In the previous chapter we studied interactions in the context of requirements
analysis. The next step is modeling the software using an adequate approach
for Aspect Oriented Modeling (AOM). However, to the best of our knowledge
there has been no work published that evaluates AOM approaches in an indus-
trial setting with a focus on interactions between the different concerns. We
therefore undertook an evaluation of two mature AOM approaches to establish
their applicability in our context. Somewhat surprisingly, neither of these two
is adequate in our setting, as we report in this chapter.

As basis for our selection we used surveys on AOM [20, 75], complemented by
a study of more recent literature. The chosen approaches are Theme/UML [26]
and WEAVR [28, 29]. Beyond their maturity, acceptance in the AOM com-
munity, and claimed support for interactions, both methodologies have spe-
cific advantages. Theme/UML integrates with Theme/Doc: an aspect-oriented
methodology for requirements specification. WEAVR is arguably the best-
known industrial application of AOM [94], and the only methodology that we
are aware of that is used in industry to develop complex applications.

Other approaches has not been included due to the lack of interaction model-
ing support. MATA [93] provides interaction – particularly conflicts – detection
capabilities based on a model of influences. After detection, conflicts must be
removed. The JAC Design Notation [66] has been tested against industrial
cases, but it does not support interactions. UML based approaches, such as
Aspect-Oriented Software Development with Use Cases [48], recognize the exis-
tence of conflicts, but they claim that conflicts must be avoided, or planned its
support as future work [76].

This chapter is organized as follows: Sect. 5.1 presents our needs consider-
ing design documents in the context of our problem. Next, Sect. 5.2 presents
some design decisions for the SM. Section 5.3 then proceeds with an evaluation
of Theme/UML, and Sect. 5.4 follows up with an evaluation of WEAVR. We
present our conclusions and future work in Sect. 5.5.

67

68 CHAPTER 5. INTERACTIONS IN DESIGN

5.1 Requirements for the Design

5.1.1 What is Expected from the Design Document

In the design phase, our goal is to refine the requirement specification documents
into a model of the software artifacts that will form the final system. This
model, written down in a design document, will be passed to the developers
for implementation. Hence, it should be sufficiently complete to allow for the
implementation to be produced relatively independently. As we are performing
Aspect-Oriented Software Development, the choice of an AOM approach for
creating this document is a given. We expect that we will be able to produce
the complete design documents, i.e., not having to resort to a significant amount
of additional documents with an ad-hoc notation to complement for omissions
in the methodology. In the latter case, the advantages of using a standard AOM
are small and we would consider rolling our own AOM. We furthermore have two
related expectations of the design document: maintenance support and explicit
interactions.

In subsequent maintenance or evolution phases, the changes made in the
requirements will trigger subsequent changes in the design, and the developers
will modify the implementation accordingly. Such later modifications may not
break the system because they violate constraints of the original design or go
against the original design decisions. If the change is significant enough to
warrant modifying the design constraints or assumptions, the original intentions
should be maintained as much as possible. Hence the design document must
be clear on which are the the critical design decisions that were made and
what assumptions were taken. Furthermore, it is known that the presence of
aspects in a software system that is evolving can be problematic [51]. Such
issues should be mitigated by the information that is explicitly available in the
design document. When evolving the software the implementers must be able
to use the document as a guide, seeing what assumptions taken by the aspects
no longer hold, or what new code now also falls within the realm of an aspect.

As we have said above, our experience is that there is a significant amount
of non-trivial interactions between the different aspects of the system. This is
also confirmed by the results of the requirements analysis we have reported in
Chapter 4. Even though aspects are intended to provide advanced modularity
and decoupling, they do not exist in isolation. As any module in software,
their presence impacts other modules and their functionality may depend on
other modules. Documented design decisions should therefore include not only
which modules will be aspects and where they crosscut, but also how they
interact with each other. This information must be made explicit so that critical
information is correctly passed to the implementation phase, and is present when
maintaining or evolving the software.

5.1.2 Scalability is Key

Recall that in Sect. 4.2 we mentioned that the SM application requirements doc-
uments establish approximately 600 requirements [99]. This results in a crucial
need for scalability of the design phase. We consider it unrealistic to produce
a design document that goes into great detail for all of these requirements, as
such a heavyweight approach will not scale.

5.2. DESIGN OVERVIEW 69

A second motivation for the need for scalability is that the different require-
ment specifications [40, 41, 63] regularly change and moreover, are under control
of different legal institutions. As a result, changes to deal with new (legal) issues
are not synchronized between the different documents. A heavyweight design
document that needs to be updated on each change of a regulation document
as well as consequent changes in other documents will cause an unacceptable
overhead in maintenance and evolution.

As a partial solution to handle these scalability issues, we expect the AOM
approach to provide for some means of abstraction over similar patterns in
the design. For example, there are different (informal) types of errors that can
occur in the SM, and each type requires a different action to be undertaken. The
two extreme cases of errors are the following: Minor errors, such as the ticket
printer running out of paper, requires a message to be sent to the casino server
without interrupting play. Major errors, such as a player tilting the machine
(to attempt to influence the outcome of a play) requires the machine to lock
up immediately, and call an attendant by lighting the lamp at the top of the
machine while sounding an alarm. There should be a way such that for a class
of error only one model is created, instead of a model for each specific error
condition.

5.2 Design Overview

Considering the results of the requirements analysis phase we previously per-
formed, we now give an outline of how we envision the design of the SM software.
This provides us with a concrete basis for evaluation of the AOM, as it must
allow us to expand and refine this overview into a complete design document.

5.2.1 Aspects in the Design

A class diagram that shows the outline of the design is given in Fig. 5.1. It
uses an ad-hoc extension of UML to indicate crosscutting, showing that we
model the following crosscutting concerns as aspects: Metering, Demo, Program
Resumption, Error Conditions, SCP Protocol, G2S Protocol. For a description
of these concerns, see Sect. 3.7 The following is an overview of their crosscutting
nature:

Metering The Metering aspect crosscuts Game and other base entities in
order to keep meter data up to date.

Demo The SM must have a “Demo” mode, where all possible outcomes for
a play can be simulated. The Demo concern needs to control the outcome
produced by the Game class or the Random Number Generator. It furthermore
crosscuts Metering to avoid polluting accounting meters when it is active. It
also needs to avoid communication protocols (G2S and SCP) reporting data
during a demo run (as it would report fake events).

Program Resumption Information to be saved includes the status of the
current play and the values of the meters and events which are pending for

70 CHAPTER 5. INTERACTIONS IN DESIGN

Figure 5.1: Overview of the class structure of the design.

reporting to the monitoring system. The system should recover the last state
or setting after a power outage.

Error Conditions Error conditions detected by the game such as: tilt, out of
paper, . . . are detected by the Error Condition Detection aspect. Once an error
condition is detected some actions need to be performed, e.g. in case of a tilt
illuminating the tower lamp and sounding an alarm to call the casino attendant.

GameRecall Information regarding credits, reels position and prize awarded
is saved for each play.

Communication Protocols These aspects crosscut the Game modules to
add behavior such as multiple SMs vying for the same jackpot. Moreover, both
protocols need to report metering information and hence crosscut the Meters
aspect.

Figure 5.1 shows that a simple extension of UML already suffices to provide
the outlines of the aspectual design. Not surprisingly, most, if not all, of the
AOM approaches we studied, allow us to produce a model similar to this dia-
gram. What is however lacking in the above diagram is the information of how
the various aspects interact with each other, as well as with the base application.
For example, when in Demo mode network communication must be disabled, as
queries from the server may only receive values corresponding to normal play
conditions. This information should also be present in the design document, but
we find no immediately obvious way in which this can be diagrammed, hence
the lack of this information in the Figure 5.1.

5.2. DESIGN OVERVIEW 71

5.2.2 Interactions Between Concerns

Our resulting design document not only needs to contain the information of the
aspects present in the system and how they crosscut, but also the interactions
between concerns. That is, It is also necessary that the interactions which were
identified in the requirements analysis phase be present in the design document.
Furthermore, the strategies envisioned to treat those interactions need to be
expressed.

To better understand what our needs are for this part of the design docu-
ment, now we briefly recap on the different interactions in the SM, and how we
want this to be reflected in the document.

At a lower level of abstraction, we need to specify how the crosscutting
behavior and the interactions must be operationalized. This will depend on
the final implementation platform. Therefore we prefer not to go into too much
detail at this point. Instead, we present a general design on how the interactions
should be resolved.

Conflict between Demo and Multiple Concerns

As explained in Sect. 2.2 a conflict arises when aspects add incompatible behav-
ior. In our case it is not possible to completely solve the conflict by removing
part of the behavior, as both are required. Instead, we need to implement the
system in a way that avoid the incompatible behaviors to be present a the same
time. This is what we call a conflict resolution strategy.

The Meters, Communication Protocols and Program Resumption aspects are
present to comply with legal accounting requirements regarding plays performed
on a SM. The Demo aspect, also a legal requirement, conflicts with all of the
above mentioned aspects. The conflict originates from the regulation, which
states that a play in Demo mode must not alter the meters nor that its activity
is visible over the network to the monitoring system, nor saved into persistent
storage. Hence, after a Demo session, the Game must recover its original state
and any event or state change while in Demo must not be reported by the
communication protocols to monitoring system.

The key behavior for our Demo aspect is to influence how the Game and the
outcome generator decide the prize to be awarded. At the same time, from the
conflict standpoint, it interacts with other aspects to keep system data consistent
according to regulations, avoiding the pollution of critical information with the
information generated during the Demo session.

Design decisions In order to provide the Demo behavior and treat its con-
flicting behavior, design decisions may include:

1. To implement the core behavior of the Demo mode, around advices will
be used to capture and alter the behavior of methods that determine the
generated outcome for a given play.

2. Communication Protocols must report the SM as being in out of service
state, so that no “demo” information is reported to the backends and
monitoring systems. This might be done by intercepting the responding

72 CHAPTER 5. INTERACTIONS IN DESIGN

behavior of the protocols and responding with an “out of service” mes-
sage1.

3. Meters and GameRecall information must not be polluted with Demo
information. A possible solution is to keep objects representing the state
in a safe place, and replace them by fake ones, where data generated during
Demo will be stored. On the finishing of the Demo session, the “original
objects” must be restored.

4. Program Resumption must not persist the information generated during
“demo” plays. The functionality of this aspect must be deactivated. That
is, if the machine is re-started in normal mode, changes due to demo mode
must be lost.

Mutex for Communication Protocols

Both communication protocols provide similar functionality: allowing the mon-
itoring system to query information and set some configuration values and state
on the SM. For query commands, such as reporting the value of certain meter or
requesting information regarding the last plays, there is no problem with having
both protocols active at the same time, as they will not interfere with each other.
Conversely, for operations that modify the state of the SM, mutual exclusion
must be ensured during a single program execution. If not, inconsistencies in
the SM internal state may arise. For example, consider setting the time of the
SM, an operation performed by the casino server. With both communication
protocols enabled, two different servers with different clock values may set the
time on the SM to either of both clock values. As a result, the time-stamps of
events on the SM will be inconsistent because newer events may show a pre-
vious time-stamp to older ones. The same happens with a progressive prize
accumulator, which is sent to the SM by the monitoring system. This value is
presented in some displays of the SM. If the SM processes the progressive value
coming from two different servers (which for sure will have different progressive
values), it could result in the SM showing (and possibly paying!) an incorrect
progressive prize.

To document this mutex it is necessary to state that certain execution traces
must not occur during a single SM run session.

Design Decisions

• Different server commands will be objects of different classes, which will
belong to the same hierarchy as needed. For example: SetProgressive,
SetTime, etc.

• As protocols use almost the same set of commands, these will be shared
between the protocols. That is, there will be no separate hierarchies for
G2S and SCP commands. This means that a command such as SetTime
can be issued either by G2S or SCP protocol.

1All the communication protocols (there are others apart from those treated in this work)
allow to report the machine as being out of service. Stopping communications completely is
not an option due to protocol constraints.

5.2. DESIGN OVERVIEW 73

• For a given run of the system, it is necessary to assign which command
can be received from which protocol. This can be done by configuration,
or using an alternative policy, for example: once a command (let’s say
SetTime) is received through a protocol (for instance G2S), the next oc-
currences of SetTime will only be processed if they come from the G2S
monitoring system.

• Complementary, if a configuration command arrives through an improper
protocol (SetTime coming from SCP in our example), it will be ignored,
and this occurrence will be logged for future fixing.

• Changes in the configuration can be assumed to occur when the SM is
restarted.

Reinforcement of Comm. Protocols with Error Conditions

There is a reinforcement from Error Conditions to Communication Protocols.
Not all the Error Conditions specified in the regulations are mandatory. How-
ever, when an optional error condition is present in the game, e.g. because a
driver allows for these errors to be detected, it must be analyzed whether the er-
ror condition must be notified or not. This means that during the development
of new versions of the Game, when new error conditions are present, the notifi-
cation behavior related to the Communication Protocols should be revisited to
ensure that the new information is properly reported (or consciously avoided).

Design Decisions In order to cope with reinforcement, we need to express
the following design decisions:

• Error Condition aspect must capture the joinpoints where the error con-
ditions are issued.

• It is necessary to perform some kind of check that ensures the error con-
dition is notified or it is intentionally left aside for each communication
protocol.

Dependency of Communication Protocols on Meters

The communication protocols access the values stored and maintained by the
Metering aspect in order to report them to the monitoring systems. Conse-
quently, communication protocols require the Metering aspect to operate as
expected. When a communication protocol is enabled, meters must be present
and properly fed. We need to document this dependency to ensure the consis-
tent behavior of the system, avoiding situations where communication protocols
can not accomplish their responsibilities due to the absence of meters.

Concern Execution Order

The order in which the aspects must execute can be derived from the regulations.
It requires that all information that is reported must be first persisted in the
SM before being made visible to the outside world. This means that after the
occurrence of a relevant event in Game, such as a play, the expected order for
aspect execution is the following:

74 CHAPTER 5. INTERACTIONS IN DESIGN

1. Metering

2. GameRecall

3. Program Resumption

4. Error Conditions (if applicable)

5. Communications protocols (G2S or SCP).

The design documentation should make the proposed order clear even when
aspectual behavior needs to be applied at different joinpoints.

To summarize, we presented some general strategies which could be used to
resolve the interactions. These are the design decisions that need to be docu-
mented. In the next sections, we evaluate the Theme/UML and WEAVR aspect
oriented modeling approaches to assess their ability for expressing these kinds
of decisions.

5.3 Evaluation of Theme/UML

Theme/UML is the second half of the Theme approach for Aspect-Oriented
requirements analysis and design. Recall that in Sect. 4.3.1 we discussed The
first half, called Theme/Doc. Theme provides a process for transforming re-
quirements in Theme/Doc into a design in Theme/UML, and moreover, claims
to have support for conflict resolution. We therefore chose to evaluate Theme
for our development effort. In the requirements engineering phase we have eval-
uated Theme/Doc, and now continue with an evaluation of Theme/UML.

The Theme/UML approach [26] is an extension of UML that provides both a
notation and a methodology for modeling AO systems. In Theme/UML, a theme
refers to a concern. A theme can consist of class diagrams, sequence diagrams
and state diagrams, each of which is extended with the required notation to be
able to express Aspect-Oriented concepts. Each theme is designed separately,
and subsequently the themes are composed with each other. This is performed
using composition relationships that detail how this is performed.

Themes are divided into two classes: base and crosscutting themes. Base
themes describe a concern of the system that has no crosscutting behavior.
Base themes are composed, both structurally and behaviorally, to form the
base model. If a given concept appears in multiple themes, the composition can
merge the various occurrences into one entity. Crosscutting themes describe be-
havior that should be triggered as the result of the execution of some behavior
in the base model. They are designed similarly to base themes, and are param-
eterizable. Parameters provide a point for the attachment of the crosscutting
behavior to the base model. By binding them to values of the base themes, the
crosscutting themes are composed with the base model. Crosscutting themes
are composed one by one with the base themes until the complete design is
produced.

In accordance to Fig. 5.1, we modeled Game as a base theme and Demo, G2S,
Meters, ErrorConditions, ProgramResumption, GameRecall and SCP as cross-
cutting themes. We found it to be straightforward to express where to attach
the crosscutting behavior, both on the base themes and on other crosscutting
themes. However, when considering interactions we find that Theme/UML does

5.3. EVALUATION OF THEME/UML 75

not perform as well. We now discuss the obstacles we encountered classified in
the four different kinds of interactions (see Sect. 2.2): conflict, mutex, reinforce-
ment and dependency.

5.3.1 Conflict

Theme/UML provides support for conflict resolution when composing different
themes. These composition conflicts arise when the same diagram element in
different themes has an attribute with different values. An example of this is an
instance variable with different visibility specifications. Conflict resolution then
consists of choosing which of the conflicting attributes to use in the composition.

The conflicts we are facing are however of a different nature. For example,
consider the Demo aspect. As mentioned in Sect. 5.2.2, when it is active all
conflicting aspects must be somehow deactivated. We therefore need to model
the predominant nature of this aspect in some way. There is however no explicit
means in Theme/UML to declare this kind of predominance. Instead, we are
required to design a conflict management strategy, as explained in Sect. 5.2.2,
making the conflict implicit.

Depending on the aspect language used in the implementation, such a con-
flict management strategy can be realized in different ways:

1. The Demo aspect could intercept and skip the behavior of the conflicting
aspects (using around advice without a proceed).

2. When the Demo aspect is deployed, conflicting aspects must be unde-
ployed. That is, if run-time deployment and undeployment of aspects is
possible.

3. If load time weaving is available, different configurations of active aspects
could be loaded when the SM boots. One of these would have Demo
installed, and the conflicting aspects not, a second configuration would be
the inverse.

We were obliged to model the conflict management strategy using the first
option. This is because, to the best of our knowledge, there is no way to fully
express the other options using Theme/UML. The Theme/UML book [26] only
provides a partial solution: select some concerns to form an application from
a larger set of concerns that gives support to a product family. This allows
different versions of the software to contain different configurations of active
concerns. However, in our case the same application needs different concerns to
be active in different scenarios.

We therefore model conflict management as follows: the Demo theme cross-
cuts the Game theme, capturing the execution of play() for the Game class.
When active, Demo skips the execution of the original play() and instead gen-
erates a predetermined outcome (which is the main responsibility of the Demo
mode). In order to keep the meters unharmed, parts of the Metering theme
behavior is captured and skipped. Considering the communication protocols,
their original behavior is altered: instead of responding to queries, failure (out
of service) responses are returned.

Our model is shown in Fig. 5.2. We use Theme/UML sequence diagrams, a
straightforward extension of UML sequence diagrams. The figure shows three

76 CHAPTER 5. INTERACTIONS IN DESIGN

(a) Demo on Game (b) Demo on Meters

(c) Demo on Protocols

Figure 5.2: The Demo theme affecting the behavior defined in Game, Metering
and Protocols

Themes, each of which has a template parameter in the top right corner, cor-
responding to the message send that starts the sequence. At composition time,
this parameter is bound to a specific message send in the base theme, i.e., the
join point in the base code is identified. Also, within a sequence diagram, the
behavior of the join point which is matched can be invoked. Put differently,
Theme has an equivalent of the AspectJ proceed construct. The syntax to ex-
press this call is do templateOperation. Note that absence of such a call implies
that the original behavior never occurs. For instance, in Fig. 5.2 there are no
do play, do count or do query calls, which means the join point behavior is

skipped.
The above proposed solution has two downsides. Firstly and most impor-

tantly, the design does not explicitly reveal the intention: the conflict between
Demo and Meters, and Demo and the communication protocols. Instead it must
be deduced from the implementation proposed in the diagrams. Secondly, we
cannot model the conflict resolution strategy differently. Of the three design
choices we proposed above, only the first could be modeled in Theme.

5.3.2 Mutex

Part of the behavior of the communication protocols is configuration command
processing, as these game parameters can be set by the servers. Both protocols
implement this feature, but it is not permitted to have multiple protocols setting
the same value during a run of the program. The interaction we thus want to
model is mutual exclusion between configuration actions: two protocols cannot
configure the same item during a given program execution.

Concretely, the protocols are each modeled as a theme, where each theme de-
fines the behavior through a set of sequence diagrams. Considering the sequence
diagrams in Fig. 5.3 for the two different protocols, what we need to document
is that the behavior in diagrams a) and b) cannot happen in the same program
execution. However, to the best of our knowledge, Theme does not provide any

5.3. EVALUATION OF THEME/UML 77

(a) SCP theme (b) G2S theme

Figure 5.3: Two themes configuring the same item in the Game.

way in which we can express this mutex relationship between both sequence
diagrams. We also see no alternative solution in the same spirit as the design
of the conflict interaction. Consequently, we are not able to express this mutex
in the design.

5.3.3 Reinforcement

The error condition aspect reinforces the behavior of the communication pro-
tocols, reporting error conditions to the remote servers. Considering this in-
teraction, we have a situation similar to mutex: We model the communication
protocol concern as a theme, and the error conditions concern as a theme.
However, we are unaware of a way in which to explicitly state the reinforcement
semantics. In this particular case, we are able to integrate the reinforcement
into the design, but at the cost of making the reinforcement implicit. We show
this next.

Figure 5.4: SCP Theme reinforced by Error Conditions theme.

The left hand side of Fig. 5.4 shows a sequence diagram for the most severe
type of error condition. It specifies how the error event occurring causes the
tower lamp to be lit and the attendant to be called. Reporting the error to
the server is specified in the right hand side of Fig. 5.4 using a theme for the
communication protocol. By binding both themes using the arrow construct, we
define a crosscutting behavior of the communication protocol, specifying that it
intercepts all calls of ErrorConditionBehavior.processSevere(Error).

However, as this states that the relationship between them is a typical
crosscutting relationship, the reinforcement semantics is lost. Even though the
generic behavior of the communication protocols captures all error conditions of
this type, it is not clear that we know there may be new types of error conditions
in the future, and each of them needs to trigger protocol notification behavior.

78 CHAPTER 5. INTERACTIONS IN DESIGN

(a) Metering theme acquiring information
regarding events on Game

(b) Metering theme acquiring information
regarding events on Game

Figure 5.5: SCP theme using information acquired by Metering behavior.

This information is crucial to check the consistency of the system during main-
tenance and evolution. As the reinforcement semantics remains implicit here,
this verification step might be omitted.

5.3.4 Dependency

The metering theme keeps track of given events in the game by changing the
values of meters objects. Complementary to this, the communication protocol
themes specify that to respond to queries sent by the remote server, the infor-
mation stored in the meters objects is used. It is clear that the latter behavior
requires the former, hence the communication theme depends on the meters
theme.

The Theme/UML methodology however states that each theme defines all
structure and behavior needed to provide the desired functionality, i.e., in a
standalone fashion. Furthermore, the designer may choose a subset of all themes
to compose a system [26]. In our case this will lead to errors, as selecting the
theme of a communication protocol without adding the theme of meters leads to
an inconsistent design of the system. Figure 5.5 demonstrates how the meters
theme gets data from the game and how this date is used later by the SCP
protocol for responding to query commands.

What we need is a way to express that the meters theme is necessary when-
ever the communication protocol themes are composed into the system, but we
have found no way to specify this in Theme/UML. Hence, we are unable to
include the dependency in the design.

5.3.5 Scalability

An important feature of the AOM we require is support for scalability. As dis-
cussed in Sect. 5.1.2 we need to be able to abstract over common patterns in
the design, in this case in the different themes. We however only found one
mechanism that allows for such abstraction: template parameters for crosscut-
ting templates. We now illustrate how it only addresses some of our scalability
issues, using two of the examples we have seen above.

When producing the complete design, the error conditions theme shown in
Fig. 5.4 needs to be bound to the occurrence of errors in a base theme. This

5.4. EVALUATION OF WEAVR 79

binding expression can be a list of methods, and may use wildcards as well.
As such, this one theme is an abstraction over all events in the base code that
trigger a severe error. Note that if this theme would be a base theme, there
would be no template instantiation, and therefore we would need to manually
produce a diagram for all events that produce a severe error.

The second example of a need for abstraction is found in the specification
of the communication protocols in Fig. 5.3. The diagrams for both themes are
the same, save for the initiating method call and the name of the protocol class.
We need to produce such duplicate diagrams for a large amount of configuration
setting functionality, as both protocols provide largely the same features. Since
these themes are not crosscutting there is however no template functionality
available, hence we must duplicate the work.

Our only recourse for these is to have the themes as generic diagrams that
the programmer needs to apply to a concrete case, refining when needed. As
Theme provides no support for this, an ad-hoc solution will need to be created
to guide the programmer in this effort, which is what we want to avoid, as
outlined in Sect. 5.1.1.

To summarize, the composition of crosscutting themes with the base themes
gives us a means of abstraction, but it does not address all our needs, and
therefore Theme falls short in this respect.

5.3.6 Conclusion: Theme/UML

We found that Theme/UML does not allow us to express any of the four types
of interactions in an explicit way. At the most, we are able to integrate support
for conflict resolution and reinforcement into the design. However this comes at
the cost of obscuring the explicit relationship between different aspects, which
is likely to lead to errors during maintenance or evolution. Regarding scalabil-
ity, Theme/UML allowed us to express the crosscutting relationships through
templates and bindings. However bindings require a very precise information
regarding where they crosscut, which is at one hand it is useful to have a clear
scope of themes but, on the other hand, it is tedious and particularly difficult
to maintain due to its susceptibleness to the fragile pointcut problem [80]. As
a result, we consider Theme/UML inappropriate to specify the design of a SM.

5.4 Evaluation of WEAVR

WEAVR is an add-in extension to the MDE (model driven engineering) tool
suite used by Motorola, adding support for AOM to their process of building
telecom software [28, 29]. Morotola makes extensive use of MDE for its telecom
software. Next to a UML notation, the Motorola tool suite also uses SDL [47]
transition oriented state machines as the graphical formalism to define behav-
ior. These state machines are unambiguous and allow for introducing pieces
of code. This enables code generation of the complete application in C and
C++. As WEAVR is arguably the best-known industrial application of AOM,
with claimed support for interactions, we chose it as the second candidate for
evaluation.

MDE tools have been extended to support aspect oriented concepts: aspects,
pointcut, advice and some interesting/particular relationships between them. In

80 CHAPTER 5. INTERACTIONS IN DESIGN

the case of WEAVR pointcut notation is based on state machines, allowing to
capture action and transition joinpoints. Wildcards are allowed to refer multiple
states or actions. Advices are also expressed as state machines which are related
to the pointcuts using the bind relationship. The WEAVR pointcut notation
is based on state machines, permitting the capture of action and transition
joinpoints. Wildcards are allowed to refer to multiple states or actions. Advice
are also expressed as state machines, and are related to the pointcuts using the
bind relationship. WEAVR is an aspect weaver: it combines an aspectual state
machine with a base state machine when there is a join point match. The tool
allows to visualize the new composed state machine, so that engineers can verify
the composition for correctness before actual code generation.

Note that although WEAVR can be used to generate the code of the appli-
cation, we do not require this, we only want to specify the design. Also, due
to licensing issues we were not able to use the tool for our evaluation, instead
relying on published work [28, 29]. Lastly, even though SDL is a standard, the
notation of its usage by WEAVR is not consistent among all the publications.
The diagrams in this text are our best effort to produce a consistent notation,
but we are not able to guarantee their notational correctness.

5.4.1 Conflicts

Support for conflict resolution in WEAVR is realized by the hidden by stereo-
type that is used in the deployment diagrams, where aspects are applied to
classes. The hidden by stereotype relates two different aspects that intercept
the same join point. The relationship states that the aspect that is hidden does
not apply in those cases. For example, specifying AspectA hidden by AspectB
denotes that at a join point captured by both aspects, only the behavior of
AspectB will be executed. In other words, we can state that the presence of
one aspect implies the absence of another aspect, but only at the level of join
points.

In our case such conflict resolution is however not sufficient as we are faced
with aspects that conflict when active on different join points. For example,
consider Demo: when it is active, the different protocols must return a failure
(out of service) message upon a query of the server, which is a different join
point than starting a play. We require instead of a hidden by semantics that
works at join point level, a similar semantics at the system or aspect level. That
is, the activity of Demo should imply the inactivity of G2S and SCP.

Similar to the workaround for Theme we proposed in Sect. 5.3.1, we can
provide a design that incorporates the required conflict resolution behavior.
Advices in WEAVR are always around advice, and use a proceed call. As
in Fig. 5.2, we can specify an around advice that intercepts Meters and the
communication protocols, without performing the original behavior of the in-
tercepted call. This workaround consequently suffers from the same drawbacks
as in Sect. 5.3.1, most importantly the loss of the explicit conflict specification.
The same strategy can be used to avoid other conflict behavior, such as that
belonging to Program Resumption or Game Recall.

5.4. EVALUATION OF WEAVR 81

(a) State machine for G2S. (b) State machine for SCP.

Figure 5.6: Mutually exclusive state machines for the setTime command.

5.4.2 Mutex

Recall that our mutual exclusion consists of the prohibition that, in a single run
of the game, the same configuration item is configured by multiple protocols.
As an example, Fig. 5.6 shows the design of the SetTime functionality for both
protocols in WEAVR. The mutual exclusion in this case boils down to preventing
that the state machine of Fig. 5.6a executes if the state machine of Fig. 5.6b
was previously run, and vice-versa. However, WEAVR does not provide for
any way in which this can be specified.

It is feasible to produce a design document that implements the mutex,
but at the cost of making the explicit information of the mutex implicit. We
can manually combine the different state machines for the different protocols
such that the mutex relation is implemented. Briefly put, for each configuration
action we combine the two state machines of the different protocols into one state
machine. This combined machine contains the functionality of both protocols
together with the logic that ensures that once the item has been configured by
one protocol it cannot be configured by the other.

The downside of this solution is that it adds a considerable amount of tedious
work, combining the state machines for all configuration settings, and obscures
the intent of the design. Moreover, it produces a design where both protocols are
tightly coupled. Consequently, we consider this option unfeasible and discard
it.

5.4.3 Reinforcement

The design of the reinforcement from error conditions to communication proto-
cols is similar to the design in Theme/UML discussed in Section 5.3.3. We have
an error conditions aspect that handles the different types of errors that occur,
and the communications protocols report these errors by intercepting this. They
define a pointcut that matches on the processing of the error, and the advice
then sends the corresponding notification to the server. We have however not
found a means to denote the reinforcement relationship as such.

As in Section 5.3.3, the downside of this is that the explicit reinforcement
relationship has become implicit, which may lead to inconsistencies during main-
tenance and evolution, e.g. when new types of errors are added to the system.
An upside of using WEAVR is that its model simulation capabilities allow for

82 CHAPTER 5. INTERACTIONS IN DESIGN

consistency checking of the composed models. This could corroborate the whole
execution path from the occurrence of a new error condition to the final noti-
fication to the server. However, the need for such a verification for all types
of error conditions still has to be specified in the design document, and we are
unaware of a means to express this in WEAVR.

5.4.4 Dependency

Figure 5.7: Part of the G2S Protocol state machine depending on meters.

Similar to the design in Theme, shown in Sect. 5.3.4, we have an interplay
between the metering concern and the communication concerns. The meter-
ing concern captures events regarding game activity and updating the meters,
while the communication protocols consult data contained in these meters when
processing server requests. In Fig. 5.7, we show the latter, for the G2S proto-
col. The action code response := Meters::GetCurrent() refers to data previously
stored in the Meters object by the Metering aspect (which is not included in the
figure for clarity of the discussion). The communication protocols thus depend
on the meters to provide correct functionality. Put differently, if the Meters
object is available but for some reason the behavior of the metering aspect is
not executed, the data returned will be inconsistent.

To declare dependency relationships, WEAVR provides for the depends on
relationship. It states that one aspect depends on another to be able to provide
the required functionality. As in the hidden by stereotype relationship, this
however only applies at the join point level. If AspectA depends on AspectB, for
each shared join point the advice of AspectB will be executed before the advice
of AspectA. Additionally, if AspectB does not match a join point matched by
AspectA, an error is produced.

In our case however, the contact point between two aspects is the existence
of the Meters object, not a shared join point. As a consequence, the depends on
relationship does not allow us to express the required dependency. This is as
the semantics of the depends on relationship is too fine grained, and only works
at joinpoint level. In our case, we need to be able to express this relation at the
level of aspect deployment, e.g. state that the deployment of AspectA implies
the deployment of AspectB. WEAVR does not provide any other dependency
construct, and we are not aware of an alternative option to relate the state
diagrams above. We are therefore unable to include the dependency specification
in the design.

WEAVR is intended to generate the code of the designed system. Its MDE
approach should make the system more maintainable. However, we had no

5.5. CONCLUSIONS 83

access to the tool so we could not validate this. It is a matter of further in-
vestigation to perform an experiment using the tool to generate (part of) the
code of SM. The crosscutting mechanisms of WEAVR makes it resistant to
the syntactic changes in the base concern, so the approach can be considered
more tolerant to the fragile pointcut problem, in comparison with Theme/UML.
Finally, even though the dependency and conflict support is not applicable to
our case, it scales for the cases foreseen by WEAVR authors, as the interaction
directives work automatically for all the interferences of the aspects.

5.4.5 Conclusion: WEAVR

We have seen that WEAVR does not allow us to explicitly express any of the
four interaction types. If we allow making the explicit relations implicit, we can
include support for conflict resolution and mutual exclusion in the design, the
latter of which would be a large amount of tedious work. Such implicit relations
however come at a cost of probable errors during maintenance or evolution.
Consequently, we consider WEAVR unsuited to specify the design of an SM.

5.5 Conclusions

The AOSD-Europe technical report on interactions [74] classifies interactions in
four types: dependency, conflict, mutex and reinforcement. In our software for a
Slot Machine all four types are present, and we evaluated the abilities of two ma-
ture AOM approaches: Theme/UML and WEAVR, to explicitly communicate
these in the design.

The somewhat surprising result of this chapter is that neither Theme/UML
nor WEAVR allow us to satisfactorily express any of the four types of depen-
dency. Although both approaches are considered mature, are accepted by the
community, and furthermore claim to have support for specific kinds of interac-
tions, it was not possible to apply them to document interactions design to our
satisfaction. In our experience, their support is however at the wrong level of
granularity and scope to be useful to us. In both methodologies the support is
too fine-grained and the scope is too restricted.

As an alternative approach, instead of explicitly specifying the interactions,
we have been able to include ad hoc, implicit support for interactions in the
design. In Theme/UML, we were able to incorporate conflict and reinforcement
in the design, while in WEAVR we could include conflict and mutex. However,
having these relations implicit instead of explicit makes it likely for errors to
arise in later maintenance and evolution phases. As a consequence, we need to
discard these solutions as well.

Scalability is also weak point for these approaches, especially for Theme/UML,
which require very detailed models of the system, making it hard to scale.
WEAVR also requires detailed models, but its MDE nature and code gener-
ation should be a pay-off on this regard. Furthermore Theme/UML is very
susceptible to fragile pointcut problem. In contrast, the pointcut notation of
WEAVR, based on state transitions, makes it more resistant to this problem.

Our case study have proven to be complex enough to highlight deficiencies in
current AOM approaches. We believe it is a solid test case for other AOM tools,
not only for the evaluation of their interaction support but also for complex

84 CHAPTER 5. INTERACTIONS IN DESIGN

crosscutting relationships. Besides this, the modelling of interactions using ad-
hoc support is another contribution of this chapter.

Having (roughly) documented the interactions, we present in the next chap-
ter the results of the implementation.

Chapter 6

Interactions in
Implementation

Part of this chapter is inspired on our previously published work: A
Fine Grained Aspect Coordination Mechanism [100].

In Chapter 4, we have identified interactions and documented them dur-
ing requirements engineering. Next, during the design phase, in Chapter 5,
decisions were made regarding the software components that will form the sys-
tem. These decisions include which of these will be objects and which aspects,
and how they are supposed to interact. After understanding how the aspects
should interact, the implementation of the final system, using aspect oriented
languages, is the logical next step. In this chapter, we report on the results of
such implementation.

Interaction resolution strategies, which originated in the requirements engi-
neering phase, and were expressed in the design documents, can be implemented
in different ways, according to the features offered by the underlying program-
ming language. Therefore, we found it necessary to assess the consequences
generated by the selection of a static or a dynamic aspect language.

In the following sections, we compare the implementation of the interactions
using static and dynamic aspect oriented languages. Using this experience,
we evaluate the impact that the different languages have on the implementa-
tion of these interactions. For example, the availability of run-time weaving
in dynamic languages impacts directly on the implementation of the conflict
resolution strategy. We then discuss different improvements, considering our
implementation, in order to provide better separation of concerns and ease the
maintenance of the aspects and the implementation of their interactions.

6.1 Static and Dynamic AOP Languages

AOP languages [34, 52, 78] usually are extensions to existing programming lan-
guages [14, 38, 42, 45], as they add new features to a programming language.
AOP languages enhance a base programming language with the aspect mod-
ule which contains its behavior in the form of advice. The aspect also defines

85

86 CHAPTER 6. INTERACTIONS IN IMPLEMENTATION

pointcut designators, which capture the joinpoints in the base program. For ex-
ample, consider AspectJ [52], which is an aspect oriented extension of Java [42].
AspectJ provides notations for aspects, advice and pointcuts on top of Java.

AspectJ is the pioneer aspect language, and a lot of research has been car-
ried out on it. It is, arguably, the most mature and widely used aspect oriented
language. It has been used as part of an industriallyy accepted middleware
framework for Java, called Spring framework [79]. Furthermore, it has mature
development tools, such as the AJDT plugin for the Eclipse IDE. For these
reasons we have chosen AspectJ as one of the languages to study the implemen-
tation of aspectual interactions.

A key distinction between (aspect oriented) programming languages is their
dynamic or static nature. Java and therefore AspectJ are static. Weaving is
performed at compile or load time, but definitively, before run time. Once as-
pects have been woven, they remain as part of the system. Aspects, in AspectJ,
cannot be uninstalled nor removed by any means. In addition, once the system
is running, it is not possible to deploy new aspects.

On the other hand, dynamic programming languages allows for modifying
and extending programs at run-time. Hence, they provide the necessary tools
for the implementation of run-time weaving of aspects. Therefore, dynamic
aspect languages allows for run-time deployment and removal of aspects.

PHANtom [34] is an aspect oriented language extension for Smalltalk, ar-
guably the most influential object oriented language. PHANtom allows for fine
grained control on the application of aspects. It supports advanced aspect scop-
ing mechanisms such as computational membranes [83], reentrancy control, and
dynamic ordering for aspect application. These features make PHANtom a
good example of a general purpose dynamic aspect oriented language. There-
fore, we decided to also implement the slot machines software using PHANtom
to compare its results against the implementation in AspectJ.

We choose to implement our interactions using both a dynamic and a static
language, in order to compare the results obtained for each scenario. The com-
parison is not oriented towards obvious topics such as performance. We will not
discuss the overhead that dynamic aspect languages may impose, neither the
lack of flexibility of static languages. Instead, our comparison is aimed at evalu-
ating how different languages features impact on the final implementation of the
interactions, and which are the pros and cons of the mentioned implementations,
fundamentally, with respect to maintenance.

Regardless of their dynamic or static nature, aspect oriented languages pro-
vide little or no support for aspect dependencies and interactions. When pro-
vided, interactions support is usually aimed at working at joinpoint level, as
reported by Cleenewerck et al. in [88].

Due to the particular semantics of the interactions in the SM domain and
the poor support for interactions built in the languages used, we were forced to
implement the interactions in an ad-hoc manner, in a similar way as we roughly
modeled interactions during design phase due to limitations of the existing ap-
proaches.

In order to evaluate the effect stemming from the use of these languages, two
independent implementations of the SM were carried out. These were done by
two different engineers with knowledge of the domain in order to avoid learning
effects. This allows us to more objectively evaluate the impact of the static or
dynamic languages for the same interaction types on the same domain. In both

6.2. IMPLEMENTING INTERACTIONS IN PHANTOM 87

cases, the engineers counted with extensive experience in the development of
software for SM, which ensures familiarity with the vocabulary used in require-
ments and design documentation, and a similar degree of understanding of the
system.

To ensure a common base line for the development, the following actions
were carried out:

• Both engineers were provided with the same requirement documents.

• They knew about the concern decomposition chosen (presented in Sect. 3.7).

• They were instructed regarding the interaction types proposed by Sanen et
al. in [74].

• The interaction instances found in the domain were introduced to them
as in Sect. 3.8.

• The general idea regarding where crosscutting concerns should cut the
base (Game) concern was presented, as explained in Sect. 5.2.1.

• The design decisions on the strategies for treating the interactions were
presented, as explained in Sect. 5.2.2.

Note that no detailed design was provided, therefore there are some minor
and incidental differences in the resulting implementations.

6.2 Implementing Interactions in PHANtom

PHANtom [34] provides typical aspect oriented features (aspect, advice, point-
cuts) as well as advanced mechanisms based on the powerful Smalltalk reflective
capabilities (e.g. computational membranes). Therefore, there are many pos-
sible ways for implementing the interactions that we analyze along this work.
In order to make the implementations in AspectJ and PHANtom comparable,
we decided not to use the most advanced mechanisms available in PHANtom.
Instead, we applied a subset of PHANtom’s features that can be found in most
aspect oriented languages. Being that PHANtom is an extension of a dynamic
language, we took advantage of the possibility of run-time deployment of as-
pects.

Fig. 6.1 presents main classes and aspects for the PHANtom based imple-
mentation. This design has been developed by the implementor of the PHAN-
tom version of the SM software. The notation is an ad-hoc variant of UML
class diagram where each package box represent a concern and a crosscutting
relationship is denoted by a dotted line with the corresponding stereotype. Our
PHANtom based implementation consists of the following concerns and modules
(classes and aspects):

Game concern implemented in several classes, of which the more relevant
are: Game and OutcomeGenerator (in charge of generating the random
output for each play).

88 CHAPTER 6. INTERACTIONS IN IMPLEMENTATION

Figure 6.1: Classes and aspects for the PHANtom based implementation.

Game Recall concern implemented mainly in the GameRecall aspect and
some helper classes (such as a log of the last plays). GameRecall aspect
captures relevant information for each play, packages it and stores it using
the persistence services provided by the platform.

Error Conditions concern implemented as an aspect capturing the occur-
rence of events that require some specific action(s) to be carried out. There
is a hierarchy of objects representing the different available actions. Con-
sider for example, the event of the printer running out of paper. In this
case it is necessary to light the tower lamp. For other events, more than
one action may be needed. Therefore, several actions can be associated
with an error condition. If no action is associated, the detected error
condition is silently ignored.

Demo Mode concern implemented in the Demo aspect whose main respon-

6.2. IMPLEMENTING INTERACTIONS IN PHANTOM 89

sibility is to allow the selection of the next awarded prize. It adds a menu
for the selection of the prize and it replaces, using an around advice, the
behavior of the OutcomeGenerator to effectively simulate the awarding
of the selected prize.

Meters concern There is a Meters class, which uses a dictionary for storing
the different meters. The Metering aspect crosscuts the Game concern
objects to obtain the relevant information that needs to be counted.

SCP concern This communication protocol concern is mostly implemented
in the SCP aspect, which crosscuts the game in order to report the SM
activity to the monitoring system. This concern also includes hierarchies
of events (objects that encapsulate information flowing from the SM to
the monitoring system) and commands (objects containing configuration
information sent from the monitoring system to the SM).

G2S concern This is very similar to SCP. The G2S aspect contains most of
the logic for this protocol. Events and commands used by this concern
are shared with SCP.

Note that most event and command classes are shared by the two com-
munication protocol concerns. G2S and SCP differ mainly in the low level
serialization format of messages (events, commands), and in the frequency and
pattern of message exchange and the events that triggers these exchanges. For
example, G2S allows the monitoring system to register to certain meters and
get their value at regular time intervals, while SCP works only by polling. This
is why events and commands can be shared, but the logic of the protocols is
independent.

6.2.1 Dependency

As explained earlier in Sect. 5.2.2 and documented in Sect. 5.4.4, the Metering
aspect is needed by the communication protocols (G2S and SCP), in order to
report the SM state.

For this implementation, the G2S and SCP aspects each have a reference to
the Metering aspect. The Metering aspect instance to be used during a run
is passed as a parameter to the communication protocol in the corresponding
constructor. Note that G2S and SCP aspects implement only one constructor,
which requires the Metering aspect instance (see Listing 6.1), since it makes no
sense to instantiate a communication protocol without a meters source. Hence
dependency is enforced as a side effect of the instantiation order of our aspects,
and the constructors that must be used for the protocols.

The protocols report what the Meters object knows about the SM state.
To make certain of these values are updated, it is required that Metering
aspect is installed. In turn, to ensure that Metering aspect is deployed,
hence the dependency is satisfied, communications protocols should invoke the
isInstalled method. This is a message define in the PhAspect class (PHAN-
toms’s superclass for all aspects), and that returns true if the receiver (an aspect
instance) has been woven.

This run-time check plus PHANtoms’s ability of doing dynamic aspect de-
ployment allows the dependent to programmatically install its dependencies.

90 CHAPTER 6. INTERACTIONS IN IMPLEMENTATION

That is, communications protocols instances can install the Metering aspect
if they find this has not yet been done .

From this, we can conclude that, in PHANtom, honoring references between
aspects is not enough to guarantee that the dependency is satisfied and that
the system will behave as expected. Extra logic for checking required aspects
installation is needed, but this code gets buried with the rest of the dependent
aspect code (in this case in the install method, see install method in
Listing 6.1), making this information implicit. The lack of explicit support for
dependency make the maitenance of this relationship error prone.

Listing 6.1: CommuncationProtocol abstract class constructor .

1 CommunicationProtocol class>>
2 for: aGame server: aServer meters: aMetersAspect
3 ˆ (super new)
4 server: aServer;
5 meters: aMetersAspect ;
6 initializeGame: aGame;
7 yourself
8

9 CommunicationProtocol>> install
10 self meters isInstalled
11 ifFalse: [self meters install].
12 ˆsuper install.

6.2.2 Reinforcement

There is a reinforcement from the error condition concern to the communication
protocols. This means that extra functionality that otherwise is not available,
is enabled in the G2S and SCP communication protocols as a result of the
availabity of a new error condition to be detected. More concretely, this means
that a new error condition enables the communication protocol (and the corre-
sponding monitoring system) to act accordingly. This design decision has been
documentation in Sect. 5.3.3.

From the programming standpoint, implementing a reinforcement means
that when the system is able to detect a new condition it must be decided
whether it needs to be reported to the monitoring systems using the protocols.
The error condition must be considered, and the notification to the monitoring
system must be programmed or configured accordingly.

This is error prone, as error conditions may originate through a myriad of
circumstances. Furthermore, the programmers who are aware of them usually
are not familiar with regulations and technical specifications of communication
protocols, which in turn define the proper behavior upon the occurrence of an
error condition.

Hence, the design and implementation of the reinforcement interaction must
ensure that the notification of each error condition is properly considered. In
order to help in this process, our implementation forces a decision making on
what to do with each error condition. If there is no explicit decision, the rein-
forcement ad hoc mechanism raises an error and the system is halted.

The UML class diagram in Fig. 6.2 presents the reinforcement interaction.
The ErrorConditionDetection aspect is in charge of capturing the occur-

6.2. IMPLEMENTING INTERACTIONS IN PHANTOM 91

Figure 6.2: Class diagram of Error Conditions implementation in PHANtom.

rence of any error condition. Even though error conditions can be raised in
different parts of the system, they are notified to the Game core in well known
places. Once an error condition is captured, different actions can be carried
out, for instance, sounding an alarm, switching the SM to out of service state,
calling the attendant by lighting the tower lamp, etc. Therefore, there is an
error condition policy object which keeps the actions associated with each error
condition, and which executes them upon error condition capture.

The reinforcement states that once the actions associated with an error
condition policy are executed, notifications to the communication protocols must
be dispatched.

In order to keep this functionality modularized, an aspect implementing the
interaction has been defined. This aspect isintroduced in this stage, as it was
not present at the design phase.The EC2CPReinforcement (Error Condition
to Communications Protocol) aspect introduces an instance variable on the
definition of the ErrorConditionPolicy class, as shown in Listing 6.2. This
reference holds a collection of notifications to be dispatched for the associated
error condition. The aspect also uses an after advice to send the notifications
for the communication protocols on the actions execution. This collection of
notification objects cannot be empty. If it is case, the system is halted with
a meaningful error message. If the error condition is such that it must not be
reported to the monitoring system, this can be expressed by instantiating a
NoNotification object (an instance of the NullObject design pattern [95]).

Listing 6.2: Part of the initialize method for the reinforcement implementation
aspect.

1 EC2CPReinforcement>>initialize
2 | modifier |
3 [modifier := PhClassModifier new on: (PhPointcut receivers:

92 CHAPTER 6. INTERACTIONS IN IMPLEMENTATION

4 ’ErrorConditionPolicy’ selectors: #any asParser).
5 modifier addNewInstanceVar: ’notificationsPerErrorCondition’.
6 modifier install.

Listing 6.3: Notification execution code in the reinforcement aspect.

1 EC2CPReinforcement>>executeNotificationsFor: anErrorCondition
2 (ecPolicy notificationsFor: anErrorCondition) isEmpty
3 ifTrue: [
4 self error:’Reinforcement error:notification for EC is
5 missing’]
6 ifFalse: [
7 (ecPolicy notificationsFor: anErrorCondition)
8 do: [:notification |
9 notification notify:anErrorCondition.

10]]

This approach to the implementation of reinforcement presents the following
upsides:

• It forces the programmer to make a decision on the need (or not) to notify
the error condition. If a decision is not taken, the first time the offending
error condition is raised, the system will halt.

• The intention of the programmer at the time of the decision is explicitly
recorded in the code. If an instance of NoNotification is found, it
means that the error condition must NOT be notified. The difference
between this case and a forgotten notification is therefore obvious.

• The logic of reinforcement is decoupled from the ErrorCondition as-
pect, and encapsulated in a separate aspect. This allows for easy mainte-
nance of both of them.

6.2.3 Conflict

As seen in Sect. 5.2.2 Demo concern must change the behavior of Game in order
to allow affecting the prize awarding algorithm. Design decision on this regard
has been documented in Sect. 5.3.1. To implement the core functionality of the
“demo” concern, our Demo aspect uses an around advice in order to replace
the behavior that generates the random outcome, as depicted in the Fig. 5.2a.

The conflict between “demo” mode and meters, communication protocols,
game recall and program resumption concerns dictates that when the SM runs
in “demo” mode, part of the behavior of the aspects that implement Program
Resumption, GameRecall, Metering and communication protocols need to be
partially or completely avoided or skipped. There are several alternatives for
implementing this behavior. In this particular case, we decided to use the
dynamic deployment of aspects offered by PHANtom.

During deployment of our Demo aspect, the following actions are performed
to cope with the conflict (see Listings 6.4 and 6.5):

• In order to keep the Meters unharmed with demo plays, a reference to the
real meters is kept by Demo, and the Meters object used by the Metering
aspect is replaced. In this way, the meters during the demo session reflect

6.2. IMPLEMENTING INTERACTIONS IN PHANTOM 93

exclusively data derived from the plays in demo mode. At the same time,
the original meters are kept safe.

• An around advice instruments how the communication protocols report
the SM behavior. Instead of responding according to an event occurred
during the demo session, the SM is reported as being out of service. This
keeps the reported information consistent, and demo activity is not con-
sidered for the accounting.

• In order to avoid persisting information regarding demo plays, the Pro-
gram Resumption aspect is undeployed.

• To avoid mixing information of regular and “demo” plays in the GameRe-
call log, we decided to use the same strategy employed with Metering,
that is, to temporarily replace the GameRecall log for a fake one. This
allows the certifier to recover the log of the plays he completed without
harming the original plays.

Fig. 6.3 presents a sequence diagram for the deployment of Demo, and how
conflict management is implemented in this case.

Figure 6.3: Sequence diagram for Demo aspect installation in PHANtom.

From the UI standpoint, our Demo aspect also adds extra interface items.
A label indicating that demo mode is active is displayed. Besides this, there is
a menu that allows the player to select the prize that must be awarded in the
next play. As these elements do not interfere with other concerns, we will not
explain them in further detail.

The behavior mentioned above is triggered by the install method of our
Demo aspect (the method used to deploy aspects in PHANtom). This means
that weaving Demo implies all the mentioned actions to be carried out on the
system, assuring the correct behavior of the SM during Demo mode.

Listing 6.4: Part of Demo aspect initialize code.

1 Demo>>initialize
2
3 pcGenerator := PhPointcut
4 receivers: ’OutcomeGenerator’
5 selectors: ’generateOutcome’
6 context: #(#receiver #proceed)

94 CHAPTER 6. INTERACTIONS IN IMPLEMENTATION

7 if: [:ctx | ctx receiver = self game generator].
8 adviceGenerator := PhAdvice
9 around: pcGenerator

10 advice: [:context |
11 self generateFakeOutcome.
12].
13 self add: adviceGenerator.
14

15 pcG2S := PhPointcut
16 receivers: ’G2S’
17 selectors: ’sendToServer:’
18 context: #(#receiver #proceed)
19 if: [:ctx | ctx receiver = self g2sAspect].
20 adviceG2S := PhAdvice
21 around: pcG2S
22 advice: [:context | context receiver reportOutOfService].
23 self add: adviceG2S

When Demo is unweaved, the around advices which replaced the outcome
calculation and those that affected the communication protocols, are removed.
During the un-installation of the Demo aspect the following steps are followed
(see code Listing 6.5):

• The original meters are restored, and the fake ones discarded. This is
done by restoring the original Meters instance used by the Metering aspect
before the SM entered into Demo mode.

• Program Resumption is re-installed (weaved) into the system, so that
persistence is enabled once again.

• Game Recall log is replaced by the original log object.

• The original behavior of communication protocols is restored as a conse-
quence of the unweaving process.

Listing 6.5: Demo aspect install and uninstall code.

1 Demo>>install
2 super install.
3 originalMetersContents := metersAspect metersContent copy.
4 originalLog:= recallAspect log copy.
5 programResumptionAspect uninstall.
6 self aspectMembrane advise: self g2sAspect aspectMembrane.
7

8 Demo>>uninstall
9 super uninstall.

10 metersAspect metersContent: originalMetersContents.
11 recallAspect log: originalLog.

It could be argued that in some cases communication protocols can be deacti-
vated by unweaving the corresponding aspects. However, the expected behavior
during Demo mode is the SM remain “visible” to the monitoring system. More-
over, we preferred here to remove part of the communication protocol behavior
(it does not report events to the monitoring system), to illustrate both situa-
tions: complete removal of an aspect (ProgramResumption) or partial removal
(G2S).

6.2. IMPLEMENTING INTERACTIONS IN PHANTOM 95

6.2.4 Mutex

In our case study, Mutex interaction refers to the impediment of receiving con-
figuration (writing) commands for the same configuration item from different
communication protocols. Recall that this interaction could not be satisfactory
documented in Chapter 5. Configurable items include payment options, such as
ticket-in ticket-out settings, clock information, setting the SM out of service or
restoring it back in service, progressive prize accumulator value, etc.

The interaction resolution strategy for mutex, as defined in Sect. 5.2.2, al-
lows only one communication protocol per configuration item. This means that
a configuration of different items may come from different communication pro-
tocols, but for a single item, only one protocol is allowed for configuring it. To
implement this, it is necessary to establish which configuration item (or their
corresponding command objects) can be set by which protocol. Commands ar-
riving from the wrong protocol are then ignored. These occurrences are logged
for further study, as they may indicate an erroneous configuration of the moni-
toring system servers.

Our implementation in PHANtom uses a MutexController aspect, which
is in charge of intercepting the reception of configuration commands (using an
around advice) coming from both protocols. In this particular implementation,
and due to the fact that communication protocols belong to a hierarchy, the
MutextController aspect captures the #process: method on all sub-classes of
the CommunicationProtocol aspect, as shown in Fig. 6.4. Once a configuration
command arrives, it is checked against the configuration. If it arrived from an
allowed protocol, the command is applied (proceed is called). Otherwise, it is
discarded and the occurrence is logged.

Note that in this case, the interaction has been implemented in a separate
aspect. As a consequence, the SCP and G2S concrete aspects are not coupled,
since they are coordinated by a third party, the MutextController aspect.
Part of the initialize method, where the pointcut and the advice are defined is
presented in Listing 6.6

Listing 6.6: MutexController initialization code.

1 MutexController>>initialize
2 |pc advice command |
3 super initialize.
4 pc := PhPointcut receivers: ’CommunicationProtocol+’ selectors:
5 process:’ context: #(#receiver #proceed #arguments).
6 advice := PhAdvice
7 around: pc
8 advice: [:context |
9 command := context arguments at: 1.

10 (configuration at: command class ifAbsent: [nil]) =
11 context receiver class
12 ifTrue: [context proceed]
13 ifFalse: ["nothing to do, warn the programer"].
14 nil].
15 self add: advice.
16 ...

Regarding the scalability when adding a new protocol, its process: method
will be automatically intercepted (Listing 6.6 line 4), so that their configura-
tion commands will be under the control of our MutexController. Furthermore,

96 CHAPTER 6. INTERACTIONS IN IMPLEMENTATION

adding a new command does not require additional changes in the code, the
command will be applicable once the corresponding mutex configuration is up-
dated accordingly.

Figure 6.4: Mutex implementation in PHANtom.

6.2.5 Summary

From the implementation in PHANtom it is clear that the implementation of the
interaction resolution strategies requires deep knowledge of internal details of
the involved aspects. As an example, consider the conflict, where the program-
mer needs to know some implementation details to avoid mixing data coming
from regular and demo plays. This adds extra coupling, as a change in the imple-
mentation of the meters concern (for example, splitting the meters into different
objects), will impact in the conflict resolution strategy code. However, we do
not consider this a downside originating from PHANtom. Instead, it seems to
be an obvious need derived from the desire to control certain behaviors from
our aspects without re-implementing them completely,

The dynamic features of PHANtom have an impact on conflict management.
If the resolution strategy for a conflict can be implemented in terms of unweav-
ing of aspects, it can be implemented straightforwardly, as this operation is
supported by PHANtom.

On the other hand, the few compile time checks present in PHANtom require
us to implement an ad-hoc mechanism to ensure reinforcement. As we will see
in the following sections, where the AspectJ based implementation is presented,
this mechanism can be replaced by compile checks.

For dependency and mutex there is no evident impact of the dynamic fea-
tures offered by PHANtom. Dependency is implicitly implemented, through
a instance variable which reference that must be provided somehow. Instead,
Mutex is implemented a separate aspect encapsulating the logic to avoid more
than one communication protocol to configure the same configuration item.

6.3 Implementing Interactions in AspectJ

The implementation of the SM in AspectJ follows the general design explained
Sect. 5.2, where the Game concern is implemented as a set of classes which are

6.3. IMPLEMENTING INTERACTIONS IN ASPECTJ 97

crosscut by the aspects in charge of implementing the crosscutting behavior.
An overview of the main classes and aspects of this implementation is shown in
Fig. 6.5.

Figure 6.5: Class diagram for the SM implementation in AspectJ

Some relevant information regarding the implementation follows:

• Error conditions are organized as a hierarchy, with the ErrorCondition
abstract class as its root. Each error condition maintains a reference to
a list of actions objects (instances of sub-classes of the Action abstract
class), which represent the operations that must take place upon the de-
tection of an error condition.

• The G2S and SCP concerns are implemented as two concrete aspects,
which are sub-aspects of the abstract CommunicationProtocol aspect.

• The Metering aspect crosscuts the Game concern objects and keeps a
MetersManager which stores the value of all the meters, which is equivalent
to the Meters class in the PHANtom based implementation.

• The GameRecall and ProgramResumption concerns are implemented as
the corresponding GameRecall and ProgramResumption aspects, which
crosscut Game concern objects, taking the relevant information they need
to persist.

98 CHAPTER 6. INTERACTIONS IN IMPLEMENTATION

6.3.1 Dependency

For this implementation, the MetersManager object is in charge of keeping
the value of the current meters. These values are fed by the Metering aspect.
The communication protocols use the values stored in the MetersManager to
respond to query messages from the monitoring system. More specifically, the
GetMeter message, reads the value from MetersManager.

In this case, the dependency of the G2S and SCP concerns on the Meters
concern is reified as a reference. There is as an object (the GetMeter command)
belonging to the communication protocol concerns, which reads data from the
MetersManager, belonging to the Meters concern (see Listing 6.7).

The communication protocols depend on the deployment of the Metering as-
pect. The AspectJ compiler ensures that aspects are correctly installed if they
are included in the build configuration. This means that if a (buggy) configura-
tion file excludes the Metering aspect, the values stored in MetersManager will
be out of date.

In AspectJ it is possible to enforce that the required Metering aspect is
installed by using the aspectOf() static method, which returns the singleton
aspect (the default instantiation policy for aspects in AspetJ). This can be seen
in line 2 of Listing 6.7. Alternatively, the hasAspect() can be use.

If the required aspect is missing in the configuration file, an unresolved type
error is raised during compile. The down side of this approach is, once again,
that (part of) the code related to the dependency is tangled with the rest of the
code of the dependent aspect, making it hard to maintain.

Listing 6.7: Dependency in AspectJ implementation.

1 after(GetMeter event): cflow(g2sExecute()) && getMeter(event) {
2 Aspects.aspectOf(concerns.meters.aspects.Metering.class);
3 GetMetersResponse resp = new GetMetersResponse();
4 resp.setMeterName(event.getMeter());
5 resp.setMeterValue(metersManager.getValue(event.getMeter()));
6 send(resp);
7 }

Although this implementation is slightly different from the PHANtom based,
it is equivalent in the sense that communication protocol objects (in this case
the concrete command that reads data) require a reference to the meters value
holder (in this case MetersManager). In both cases, the dependency is im-
plicit, and the dependent aspect can check the existence of the required aspect.
In the case of PHANtom it is also possible to deploy it on demand, for example,
a communication protocol that calls the install method on a Metering as-
pect instance. Hence, we conclude that there is no significant difference between
PHANtom and AspectJ based implementations of the dependency interaction.

In order to help the programmer to locate the bug more easily, it is necessary
explicit support for dependency, and runtime checks indicating the dependency
is correctly (un)satisfied. This explicit dependency support or alternatively,
the ad-hoc check are important for efficient debugging. In our previous experi-
ence with SM, inconsistent meters reporting was a significant bug, and a lot of
testing effort was devoted to check their consistency. Therefore, we consider a
requirement for the aspect languange to be used, to allow some kind of checking
ensuring the dependency is satisfied.

6.3. IMPLEMENTING INTERACTIONS IN ASPECTJ 99

6.3.2 Reinforcement

The implementation of error condition execution in AspectJ is similar to that
of PHANtom. In both cases there are a set of actions associated to the er-
ror conditions. These actions are executed when an error condition has been
signaled.

Recall that the objective of the reinforcement implementation is to enable
the notification of error conditions to the monitoring system through the com-
munication protocols. In the case of the addition of a new error condition
supported by the system, it is critical to ensure that the possibility of notifying
monitoring systems, has been considered by the programmer. In consequence,
the implementation must supply a mechanism to force the programmer to make
a decision in this regard.

In this case, the reinforcement interaction is implemented taking advantage
of static language features:

• The G2S and SCP protocol aspects use an inter-type declaration to intro-
duce an abstract method called notifyG2S(G2S) or notifySCP(SCP)
respectively, in the ErrorCondition abstract class. This can be seen
in Listing 6.8, line 3.This forces the implementation of the correspond-
ing concrete method in order to provide specific behavior for each error
condition and for each protocol.

• The notifySCP and notifyG2S methods are defined in the respective
communication protocol aspect class and introduced into the error con-
dition classes through intertype declarations. An example for two error
conditions (DoorOpen and OutOfPaper) are included in Listing 6.8, lines
5 to 10.

Listing 6.8: Reinforcement implementation for AspectJ.

1 public aspect G2SAspect extends CommProtocolAspect {
2 ...
3 public abstract void ErrorCondition.notifyG2s();
4

5 public void concerns.errorConditions.DoorOpen.notifyG2s() {
6 getProtocol().sendEvent(new Notification("DoorOpen"));
7 }
8 public void concerns.errorConditions.OutOfPaper.notifyG2s() {
9 getProtocol().sendEvent(new Notification("OutOfPaper"));

10 }
11 ...

Given a new error condition, which is added to the implementation of the
the SM in AspectJ, the inherited abstract method will force the implementation
(and therefore make a decision) on what to do with the new error condition.
Otherwise, the compilation process will fail as there is a missing implementation
for an abstract method. This is shown in Fig. 6.6 where in grey we show the
places where new code is needed for this case.

An additional advantage of this implementation is that, in case of including a
new communication protocol, this mechanism ensures that each error condition
will be considered for its notification. This is due to a new notifyNewProtocol()
abstract method that will be introduced by the corresponding aspect in the root

100 CHAPTER 6. INTERACTIONS IN IMPLEMENTATION

of the error conditions hierarchy (the ErrorCondition class). This is shown in
Fig. 6.7. In this way, until an implementation of the notifyNewProtocol()
abstract method is provided for each error condition, the program cannot be
compiled.

Figure 6.6: Class diagram for reinforcement. In grey we mark where changes
need to be made for adding a new error condition.

Figure 6.7: Class diagram for reinforcement. In grey we mark where changes
need to be made for adding a new communication protocol.

The implementation of the reinforcement from the ErrorConditions con-
cern to the SCP and G2S concerns is implemented differently due to language
characteristics. The differences between these implementations developed using
PHANtom and AspectJ are significant. Due to the static nature of AspectJ, it
was possible to implement the reinforcement in a way that takes advantage of
the compilation process. The compiler will fail in case an error condition lacks
concrete behavior defined for the supported communication protocols. In con-
trast, the PHANtom based implementation can detect the missed reinforcement
only in run-time, the first time the error condition is raised.

6.3.3 Mutex

For mutex interaction, configuration commands from SCP and G2S concerns for
the same configuration item must not be allowed. To implement this behavior,
there is a lock (part of our implementation) for each configuration command,
which needs to be acquired by the aspects implementing each communication
protocol. In this way, a given configuration item can be configured by a com-
mand coming from one protocol only if the protocol is allowed to do that, i.e.,
if the lock is granted to that protocol.

6.3. IMPLEMENTING INTERACTIONS IN ASPECTJ 101

The Mutex aspect delegates the logic to decide if a lock can be conceded
to an object or not, in the form of the Strategy design pattern. This allows for
different locking strategies, for example:

• FirstLockerKeepsLock: that is, the first object that obtains the lock is
the only one allowed to regain it in the future. This means that if the
same command arrives from a different protocol, its execution will be
skipped, otherwise it will proceed. This is useful as a default policy so
that each configuration item can be configured, at least by some protocol,
in a consistent manner.

• ParameterizedLockStrategy: this holds a configuration that specifies which
command is allowed to come from which communication protocol. The
command and its source are compared against this configuration in order
to determine if the execution of the command should proceed or not. This
is similar to the PHANtom based implementation.

Besides the differences regarding the possibility of selecting an specific lock-
ing strategy, which is not available in our PHANtom implementation, the mutex
interaction follows a different approach to that on PHANtom. In this case Mu-
tex is implemented as an abstract aspect with an abstract pointcut. Each sub-
aspect must define the concrete pointcut to match the joinpoint where mutex is
needed. Typically this is the execute() method of configuration commands.
Therefore, there will be a subclass for each command, as it is exemplified in
Fig. 6.8.

Figure 6.8: Class diagram for mutex interaction implemented in AspectJ.

Fig. 6.8 presents a class diagram for mutex. Two concrete aspects have been
defined for two different configuration items (Time and Progressive) and their
respective commands.

102 CHAPTER 6. INTERACTIONS IN IMPLEMENTATION

Even though the implementation in AspectJ is different from the one written
in PHANtom, there are no essential differences due to the features provided
by the programming languages used. Instead, they are a product of different
design and implementation decisions, both of them valid and compliant with
the requirements.

6.3.4 Conflicts

The implementation of conflict interaction for AspectJ is somewhat different
from the one proposed in PHANtom. Due to AspectJ limitations, the Demo
aspect can not be deployed dynamically. Instead, it is always installed, but
it provides its functionality according to the state of the demo dip-switch in
the SM. This state is mapped to the state of the Demo aspect, which could be
enabled or disabled1. When demo mode is enabled, the corresponding advice
replaces the outcome for ReelsManager.spin() method. This is similar to
the PHANtom implementation where the OutcomeGenerator return value is
changed.

Besides forcing the prize to be awarded, it is necessary to apply the con-
flict interaction resolution strategy explained in Sect. 5.2.1. Therefore the
Metering, Communication Protocols, GameRecall and Program Resumption
aspects behavior need to be altered. Part of the functionality of these aspects
needs to be skipped while playing in demo mode. In this case, it is not possible
to uninstall them, as AspectJ does not allow for dynamic (un)deployment of
aspects. As a workaround, the Demo aspect cuts across all the advices of the
ProgramResumption, GameRecall and Metering aspects, so that Demo
can decide to skip or proceed them. Conflicting aspectual behavior can be
then avoided. Note that in this case it was decided to avoid the execution of
the mentioned aspects, while in the PHANtom version of conflict resolution,
for some cases, the approach used consisted of replacing some collaborators by
mock objects, for instance, the Meters object was replaced. This is shown in
code Listing 6.9.

Listing 6.9: Conflict resolution strategy for Demo, in AspectJ implementation.

1 // Definition of point-cuts in aspects in conflict with demo mode.
2 pointcut programResumptionAspectsMethods() :
3 execution(* concerns.programResumption.ProgramResumption.*(..)
4);
5

6 pointcut metersAspectsMethods() :
7 execution(* concerns.meters.Metering.*(..));
8

9 pointcut gameRecallAspectsMethods() :
10 execution(* concerns.gameRecall.GameRecallAspect.*(..));
11

12 Object around() :
13 programResumptionAspectsMethods()
14 || metersAspectsMethods()
15 || gameRecallAspectsMethods()
16 {
17 if(!_on)
18 return proceed();
19 else

1Alternatively this could be implemented using the conditional if pointcut constructor [56]

6.4. ON THE GENERIC AND EXPLICIT INTERACTION SUPPORT 103

20 return null;
21 }

The difference between PHANtom and AspectJ based implementations for
conflict are inherent to the dynamic vs. static features of each language. For
this kind of conflict, it is necessary to unweave, or remove some aspectual func-
tionality. If the implementation aspect language or platform does not allow for
this, it is necessary to implement a workaround that simulates this “unweav-
ing” feature. The Demo aspect captures conflicting aspects advices, so that
their behavior can be skipped when Demo mode is enabled.

The result of this limitation in AspectJ is that aspects are installed even
though they are not actually active. This is the case of our Demo aspect during
a production run and Meters, Communcation Protocols, Program Resumpton
and Game Recall during a demo run.

Alternatively, for static aspect oriented languages, another possibility is to
have different “builds” of the system. Each build is an instance of the system
containing a sound set of aspects. In this way a demo game will not contain,
for example, a Program Resumption weaved into the system.

In our experience, certification laboratories requiere the sources and instruc-
tions for the build, both in demo and production modes.

In AspectJ, aspects can be weaved in load time. In this case, a configuration
file defines which aspects are weaved before the classes are loaded into the
system. This allows to building a Demo configuration, which could exclude
conflicting aspects, or a production build without Demo functionality.

Note: the last two alternatives require restarting the system in order to
run in demo mode. These alternative also may seem fishy from the certifaction
laboratory point of view.

6.4 On the Generic and Explicit Interaction Sup-
port

From our implementation experience, we observe that interaction implementa-
tion is tangled with the functionality of our crosscutting concerns. For example,
consider the case of the Demo aspect. It on the one hand, adds its core func-
tionality (change the outcome of the SM), but on the other hand, it is also
responsible for avoiding the execution of other aspects, such as G2S, program
resumption or Game Recall. In fact, there is no clear way to distinguish the
core functionality of the Demo aspect from interaction implementation. That
is to say, interaction implementation is quite implicit. It can be argued that
implementing the conflict resolution behavior in a separate aspect is a trivial
improvement, but it is necessary to consider that adding conflict resolution in
this way adds an extra dependency as our Demo aspect will depend on the
existence of the conflict resolution aspect.

Besides the maintainability and evolvability problems this could pose, im-
plicit information regarding interactions hinder other tasks such as testing.
For example, consider the case of the dependency of G2S on Meters. If the
Metering aspect is not correctly deployed, the G2S aspect will offer incon-
sistent data to the server. At the testing phase, testers will connect this SM
with a server, play and then observe that the SM keeps reporting wrong data.

104 CHAPTER 6. INTERACTIONS IN IMPLEMENTATION

This problem goes back to the programmers in the form of: “the SM reports
incorrect data” bug report. At this point, some possible sources of this problem
are:

1. The Metering aspect is not capturing (all) the relevant events (such as
play). This happens if it was not deployed, among other possible causes.

2. The G2S protocol for some reason reports incorrect meters, for instance,
it takes the values from the wrong meters.

3. There is a bug in serialization so that meter values arrived corrupted.

If the dependency is somehow made explicit in the code, the system would
be able to give a warning announcing that the Metering aspect could not be
deployed. The system then is able to stop the execution or continue but without
G2S support. In this way, a lot of time is saved on testing and debugging. The
same idea can be applied to semantic conflicts. If they are explicitily declared the
weaver (at compile or run tinme) can raise an error indicating that incompatible
behavior is being composed into the system.

These two implementations of interactions presents another drawback: each
interaction resolution strategy has been implemented in an ad hoc manner.
This lack of generality makes it harder to reuse previously applied solutions.
We consider this not a major problem, as more interactions implementations
need to be studied before a useful generic implementation can be written.

To summarize, the implementations lacks explicit information regarding in-
teractions, it is not possible for the system to check if the system is consistent
or not.

6.5 Discussion: PHANtom VS. AspectJ Imple-
mentation Results

In this section we summarize the significant differences and similarities found
while implementing the interactions with the selected programming languages.
Table 6.1 presents an excerpt of the comparison between both implementations.

Table 6.1: Comparison of interaction implementation done using AspectJ and
PHANtom.

Interaction PHANtom AspectJ
Dependency Reference + deploy check Reference + deploy check
Reinforcement Ad-hoc logic (+ null ob-

ject)
Inter-type declaration
forces considering rein-
forcement

Mutex Dedicated aspect + inter-
ception of the JP

Dedicated aspect + inter-
ception of the JP

Conflict Run-time (un)weaving +
interception

Ad-hoc (de) activation
logic

6.5. IMPLEMENTATION RESULTS 105

The different interaction types found in the SM software have been imple-
mented successfully, although the degree of enforcement of the interaction, the
mechanism used to implement, and the visibility and explicitness of program-
mer’s intention vary.

Dependency The dependency for both cases is implemented as a reference to
the meters that is required by the communication protocols in order to
read and report data. Both implementations share the need for check-
ing the required aspect is installed. Both languages provide means to
check this. PHANtom additionally allows to eventually deploy the re-
quired aspect. AspectJ offers support in order to force a compile-time
check ensuring the required aspect is woven.

Reinforcement This interaction requires implementing some kind of check.
In the case of PHANtom based implementation, this is done using ad-
hoc logic for ensuring a decision was made for each error condition. In
the case of AspectJ, this ad-hoc logic is replaced by the compiler checks,
which ensure that there is a method definition for an abstract inherited
one. Hence, a missed error condition can be found at compile time in the
AspectJ based implementation. Instead, in PHANtom, the missed error
condition will be discovered at run-time, the first time it is raised.

Mutex Both implementations apply an aspect which captures the joinpoints
where communication protocol mutual exclusion (at configuration item
level) must be enforced. However, there are some minor differences between
both implementations. The— AspectJ based implementation defines a hi-
erarchy of aspects providing the mutex behavior. The abstract Mutex
aspect must be sub-classed for each different configuration item (or their
corresponding command) to be configured. Furthermore, the AspectJ
based implementation allows to define different criteria for mutex. The
differences mentioned before derive from low level design decisions, and
are not related to the features offered by the languages used.

Conflict This interaction presents notable differences, originating in the pro-
gramming language capabilities. As PHANtom is a dynamic aspect lan-
guage, it allows for run-time weaving and unweaving of aspects. This
feature is used by the conflict resolution strategy whenever a conflicting
aspect needs to be disabled. In this case, the aspect is removed from the
system and re-installed when the conflict is gone. The static approach
of AspectJ prevents us of performing run-time weaving. It is thus neces-
sary to simulate the activation and deactivation of aspects. This can be
achieved by intercepting the advices of the conflicting aspects, and avoid-
ing their execution by the use of an around advise which does not call
proceed(). This kind of implementation has some disadvantages, for
example:

• It makes debugging more complex, as not all the installed aspects
can be considered as “active”, since the conflict resolution strategy
may avoid the execution of the behavior of the mentioned aspects.
Furthermore, aspects (such as Demo) are installed even though they
are not necessary most of the time.

106 CHAPTER 6. INTERACTIONS IN IMPLEMENTATION

• This mechanism creates extra coupling between aspects, since the
aspect that deactivates others needs, of course, refer to the controlled
aspects.

6.6 Interactions Extensions for AspectJ

From the implementation of the interactions, we observed that new interaction
features are welcome in AOP languages. The examples in literature and our case
demonstrate that interactions may materialize in several forms. As a summary
of the lessons learned during the implementation stage, we propose some ex-
tensions to AspectJ. These extensions are aimed at making interactions explicit
in the code. In addition, the information expressed there can be used by the
aspect weaver and/or an execution monitor in order to verify their fulfillment
(through run-time checks).

We considered AspectJ as the base for the extensions as it is the most widely
accepted AOP language. However, the ideas behind them can be transferred to
other languages or tools. We will also consider joinpoint based interactions, as
they have been acknowledged by several authors. The implementation of these
extensions is considered as part of our future work.

6.6.1 Conflict

At joinpoint level, it can be specified similarly to the hidden by semantics
of WEAVR. Listing 6.10 shows our proposed syntax: a new declare state-
ments (where hence AspectJ’s type-patterns can be used). Note that only two
parameters can be given.

Listing 6.10: Joinpoint conflict extension for AspectJ.

1 declare advice_conflict: AspectA, AspectB;

In this case AspectA and AspectB can be installed at the same time but, for
a given joinpoint it is not possible to have advices of AspectA and AspectB being
executed. As the intersection of pointcuts can be calculated at compile time, it
is possible to stop the weaving process when a joinpoint conflict is detected.

At aspect level, we learned from PHANtom that it is very useful to feature
dynamic aspect deployment. Extending AspectJ with such a feature is desirable,
in order to cope with conflicts. To allow this an API or keywords are necessary
in order to invoke weaving and unweaving. CeasarJ [4] defines keywords that
allow to deploy an instantiated aspect. Note that in this case instantiation does
not mean aspect activation but requires support for instantiation. In AspectJ
it is however not possible to manipulate aspect instances, we therefore pro-
posed a minimal deployment API in the aspects, the methods deploy() and
undeploy(). These allow for the installation respectively uninstallation of all
the instances. By default all aspect are installed. An example for uninstalling
would be calling the static method Metering.undeploy(). This call should
uninstall all the corresponding instances of Metering aspect, irrespective of
their declared instantiation policy (perTarget, perThread, etc).

Additionally, it is possible to instruct the weaver to avoid conflicts by declar-
ing semantic conflicts. Listing 6.11 shows the general format for declaring a

6.6. INTERACTIONS EXTENSIONS FOR ASPECTJ 107

semantic conflict, meaning that both aspects cannot be installed at same time
(again type-patterns are used and only two parameters can be given).

Listing 6.11: Semantic conflict extension for AspectJ.

1 declare conflict: TypePattern1, TypePattern2;

In our case study, a combination of dynamic weaving of aspects, plus the
corresponding declaration of semantic conflicts, as shown in Listing 6.12, suffice.

Listing 6.12: Semantic conflict declarations for the SM domain.

1 declare conflict: Demo, Metering;
2 declare conflict: Demo, ProgramResumption;
3 declare conflict: Demo, SCP;
4 declare conflict: Demo, G2s;

Based on this declaration, at the time of the installation of Demo, the con-
flicting aspects can be uninstalled automatically. Conversely, when Demo is
uninstalled , the conflicting aspects are installed.

6.6.2 Dependency

At joinpoint level, dependency can be implemented following the semantics of
WEAVR’s depends on keyword. This means that if AspectA depends on
AspectB, every advice execution of AspectA requires that an advice of AspectB
be previously executed. We will informally call this joinpoint dependency.

Joinpoint dependency is not useful for semantic dependency, as it is our
case for Metering and communication protocols aspects. For this case, we need
that an aspect requires another aspect to be installed, we informally call this
semantic dependency. This can be seen as syntactic sugar that hides the exe-
cution of the tests performed using aspectOf() in AspectJ (see Sect. 6.3.1),
or isInstalled, for PHANtom (see Sect. 6.2.1). The proposed notation is
presented in Listing 6.13 (again type-patterns are used and only two parameters
can be given).

Listing 6.13: Dependency extensions for AspectJ

1 //Joinpoint based dependency
2 declare joinpointdepends: TypePatternA, TypePatternB;
3 //Semantic dependency
4 declare depends: TypePatternA, TypePatternB;

Unsatisfied dependencies found during weaving stops the process.
In our case, the communication protocol aspects would be declared as in

Listing 6.14.

Listing 6.14: Dependencies for SM domain.

1 declare depends:G2S,Metering;
2 declare depends:SCP,Metering;

If the dependencies are unsatisfied, i.e., Metering is not present when G2S
and SCP are woven, the weaving process fails.

108 CHAPTER 6. INTERACTIONS IN IMPLEMENTATION

6.6.3 Reinforcement

Reinforcement is a less frequent interaction in the literature, therefore it is
difficult to propose a generic mechanism for supporting it. According to our
experience, it can be generically thought as a functionality that needs to be
called in case other (optional) functionality is executed [74].

To express this, indicate the optional functionality must be indicated, as well
as the new functionality that should be called as a consequence. More concretely,
we can say that if joinpoint1 occurs then joinpoint2 must occur later.
If this does not happen, the system behavior is considered inconsistent, and a
corresponding error handler block is executed.

Besides the two involved joinpoints, it is necessary to establish the limits
of the computation where joinpoint2 can occur before considering the re-
inforcement as unsatisfied. We propose to use the control flow to delimit the
scope of the reinforcement interaction. The notation for this is shown in List-
ing 6.15, where the code means that joinpoints matched by pointcut2 must
occur in the control flow of joinpoints matched by pointcut1. Note that the
reinforcement declaration takes exactly two pointcuts. The concrete application
to our case study is presented in Listing 6.16.

Listing 6.15: Reinforcement extension applied to the SM.

1 declare reinforcement: pointcut1, pointcut2
2 { //error handling code for unsatisfied interaction
3 }

Listing 6.16: Reinforcement extension for AspectJ.

1 declare reinforcement:
2 execution(ErrorCondition.execute()),
3 execution(ErrorCondition.notifyToSCPServer())
4 { System.exit(1); }

6.6.4 Mutex

For mutex interactions at joinpoint level, we consider the support provided
by Reflex as adequate, since it avoids the execution of two mutually exclusive
advices.

Listing 6.17: Mutex extension for AspectJ.

1 declare joinpointmutex: TypePattern1, TypePattern2;

We propose a notation for mutex in Listing 6.17. Line 2 shows the general
form of mutex declaration, AspectJ’s type-patterns are used to denote the two
mutually exclussive elements. That is, for a given joinpoint, if pointcuts of both
the first and the second match, only the advices of one of the two aspects will
be executed. As we have seen in Sect. 6.3.3, mutex may consider policies for de-
termining preference. A default one could be: “the first aspect has precedence”,
or stop weaving with a meaningful error message. In this case, the semantics of
this is similar to hidden by keyword of WEAVR.

6.7. CONCLUSIONS 109

At a semantic level, as in our case, it is necessary to express that certain
mutually exclusive joinpoints cannot occur. The scope of the interaction must
be provided. Again we consider control flow as the possible scoping source,
which leads us to the code in Listing 6.18, it declares that either the joinpoints
captured by pointcut1 or the joinpoints captured by pointcut2 can occur,
but not both. Note that this can only be detected at runtime, so it is necessary
to declare an error handling block associated with the interaction.

Listing 6.18: Scoped mutex extension for AspectJ.

1 declare mutex: pointcut1, pointcut2, scopingPointcut
2 { //error handler block for unsatisfied mutual exclusion
3 }

In our case, two message sends of the same message of the same class
must be mutually exclusive, for example the execute() method in the
SetTimeCommand. What we want to avoid is the call of this method (dur-
ing a run of the SM) from different communication protocols. So we need to
specify the control flow of the main method as part of our mutex declaration,
as shown below in Listing 6.19.

Listing 6.19: Scoped mutex extension for AspectJ.

1 declare mutex:
2 call(SetTime.execute()) && cflow(call(SCP.process(..))),
3 call(SetTime.execute()) && cflow(call(G2S.process(..))),
4 in: execution (SlotMachine.main(..))
5 {System.exit(1);}

6.7 Conclusions

In this chapter the implementation of the interactions has been presented using
dynamic and static aspect languages. These two implementations highlighted
differences derived from the capabilities of the two aspect languages. We ob-
served that compiler checks of AspectJ helps in the implementation of the re-
inforcement, while at the same time it falls short for conflicts where a more
dynamic approach is needed. Due to the limitations of AspectJ, it was neces-
sary to simulate aspect deactivation for conflict resolution. This results in extra
code and logic that hinders the maintainability of the AspectJ implementation
of interactions.

On the other hand, the dynamic features of PHANtom allowed for run-time
weaving and unweaving of conflicting aspects, making the implementation more
clear and maintainable. This flexibility comes at the cost of having almost no
checks at compile time, so reinforcement needs to be implemented as an ad-hoc
check that ensures the interaction is satisfied. Once again, this adds extra code
that needs to be maintained.

Finally, we presented a set of extensions to AspectJ that to express the
the semantic interactions we face in this work and also the joinpoint based
interactions reported in the literature. The reimplementation of the interactions
using this extension is considered future work.

110 CHAPTER 6. INTERACTIONS IN IMPLEMENTATION

Chapter 7

Conclusions and Future
Work

Aspect Oriented Software Development is arguably not yet a mainstream prac-
tice. Its applicability to complex systems still needs investigation so that remain-
ing impediments for its adoption can be removed. One of these impediments is
the inherent difficulty in understanding the behavior of the system that is built.
This understanding is hindered by the fact that aspects can interact in unex-
pected ways. Such interactions must however not always be avoided. On the
contrary, there are cases where the interactions of crosscutting concerns must
be controlled and implemented correctly in order to obtain the desired behavior.
Aspect interactions need to be correctly handled and in order to accomplish this
objective adequate tools, language constructs and modeling methodologies must
be available. Developing them only can be done when having a deep knowledge
of the nature of aspect interactions .

The main contribution of this thesis is the identification, modeling and im-
plementation of interactions. During the development cycle of an industrial and
non-trivial piece of software. In each phase we evaluated the existing support
for interaction of two emblematic aspect oriented approaches. For some of the
evaluated approaches, extensions for the explicit support of interactions have
been presented.

Our case: software for slot machines (SM), is complex and presents many
interacting crosscutting concerns. One of the reasons for this is the fact that
the requirements come from different sources. They include government reg-
ulations, technical specifications, and standards. As the authors of these re-
quirements have fundamentally different backgrounds and interests, the con-
cerns extracted through requirements analysis exhibit numerous interactions.
We classified them according to Sanen’s taxonomy [74], in conflict, mutex, de-
pendency and reinforcement. Notably, the SM presents concrete examples for
each of these interactions.

In order to develop an aspect oriented version of the SM software, it was
necessary to express the interactions in the requirements models, in the design
models and during implementation. We evaluated the capability of existing
approaches to carry out this task.

In the requirements phase, discussed in Chapter 4, Theme/Doc [9] and

111

112 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

MDSOCRE [60] were used to model requirements, concerns and interactions.
We found different limitations such as lack of granularity in Theme/Doc, and
absence of interaction expressing features for both Theme/Doc and MDSOCRE.
For both approaches we proposed extensions. These included a new graphical
notation for Theme/Doc allowing to improve granularity and expressiveness,
and new XML constructs in order to improve legibility of MDSOCRE regarding
interactions. These extensions have been experimentally demonstrated to be
useful for expressing the interactions in this domain.

With this information at hand, in Chapter 5 we studied how to express at the
design level how our aspect oriented SM software provides the behavior. Once
again, it was necessary to express several design decisions regarding interactions.
We therefore evaluated two AOM approaches in order to assess their capabilities:
the continuation of Theme/Doc, called Theme/UML, and WEAVR, which has
an industrial background and support for interactions. We however found that
the interaction support of Theme/UML is poor, and only oriented to fix low level
conflicts, such as name clashes, conflicting visibility or cardinality. WEAVR’s
interactions support is far more advanced than Theme/UML’s, but it is intended
to solve joinpoint level dependencies or conflicts and therefore is also lacking.
Overall, we were able to define the desired behavior at design level but at the
cost of making important information regarding the interactions implicit. That
is, it is possible to describe the behavior for each interaction, but there is no way
to explicitly document the relationship between the artifacts that implement it
and the interactions they model.

Once the design decisions regarding interactions had been (roughly) mod-
eled, in Chapter 6 two AOP languages were evaluated for the implementation.
AspectJ, arguably the most popular AOP language, was elected as the repre-
sentative of static aspect oriented languages. On the dynamic languages side,
PHANtom was selected to implement the same set of interactions. Considering
the four types of interactions, only reinforcement benefited from compiler checks,
since it was implemented using intertype declarations. Dependency and mutex
were similar, both requiring ad-hoc logic. Conflict benefited from dynamic weav-
ing in PHANtom, and required intrumentation of conflicting aspects in AspectJ.
Based on this implementation experience, we proposed language extensions for
AspectJ. The extensions deal with joinpoint based and semantic interactions,
and may be implemented as a combination of checks at compile time and run
time.

After reviewing the research work on aspect interactions and comparing it
with the interactions present in the slot machine domain it is not surprising that
aspect interaction support falls short in most cases, especially for semantic in-
teractions. In interactions research, we observed that semantic interactions have
been neglected in favor of joinpoint based interactions. Even though joinpoint
interactions are supported in (some of) the approaches we evaluated, there is no
report of a complex industrial system development that validates their suitabil-
ity. In each phase of the development process of the SM software we observed
that aspect orientation lacks maturity regarding interaction support. In spite
of the absence of built-in interaction support, in most cases a workaround could
be found, but this always made the interactions implicit.

We believe that some interactions can be recurrent in their form for certain
domains. At least for the SM, we found more examples for each interaction type,
and for each type, all the instances behave in a similar way. For example, all

7.1. TOWARDS A FULL ASPECT ORIENTED DEVELOPMENT CYCLE113

the configuration commands present a mutex interaction that may be resolved
in the same way.

Comparing the surveyed interaction examples with those from the SM do-
main demonstrates that in general interactions take different forms. Hence ,
the form of interactions is too specific for comprehensive support. Nonethe-
less, some kind of basic support should be added to aspect oriented approaches
for all stages of software development. In this direction, we presented explicit
support for AORE approaches in this work. In the design phase interaction
behavior was expressed, but explicit support should be developed such that the
interactions can be made explicit in the design. General purpose aspect ori-
ented languages also need support for interactions, therefore we presented some
possible extensions to AspectJ that need further study.

As a final reflection, it can be concluded that the earlier in the development
development stage, the more generic interactions are. Therefore, the more easier
is to provide support for them. In later development stages, as the software
turns concrete, interactions forms gets more specific, making their support more
difficult.

7.1 Towards a Full Aspect Oriented Develop-
ment Cycle

AOP ideas have infused into many stages in the development process. Besides a
good selection of aspect (programming) languages, there is a plethora of aspect
oriented requirement analysis and modeling approaches, as reported in several
surveys [20, 75, 94]. However, it is clear to us that aspect orientation is not yet
industry strength. From our experience we report which needs are covered and
which remain unsatisfied.

7.1.1 AORE

Support for crosscutting requirements is the defining feature of AORE ap-
proaches. However the granularity used to describe such relationships varies.
Somewhat surprisingly, some approaches, such as Theme/Doc [9], do not pro-
vide clear information regarding which requirements cut across others.

AORE approaches generally neglect interactions with the exception of “con-
flict”. As the semantics of “conflicts” vary among the different approaches, the
support provided also differs. It ranges from including detection of conflicts, con-
tribution analysis and decision making (in goal oriented approaches) to avoiding
conflicts. Therefore most of the approaches lack elements for modeling them.

We also noted a deficiency regarding scalability. Many approaches recognize
the need for tools in order to scale the number and complexity of requirement
models. Yet at the same time, we found that the few tools proposed are un-
maintained.

7.1.2 AOM

In our opinion, AOM tools, apart from a few rare exceptions, are clearly behind
AORE and AOP in terms of maturity.

114 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Interactions have been considered mostly at a syntactic (joinpoint) level.
New mechanisms are needed in order to cope explicitly with semantic interac-
tions. Otherwise this information may be lost, even though it is critical for the
correct behavior of the system.

The differences in the notation for some common concepts of aspect ori-
entation is, in our opinion, a distracting factor. Thus, unifying the modeling
languages is needed, at least for basic AO concepts such us crosscuts, advice,
aspects, etc.

AOM shares the same scalability problem of AORE and lack of supporting
tools. Tools for AOM can be classified regarding their objective: modeling,
weaving and code generation. The absence of tool support for modeling and
the resulting lack of scalibility can be alleviated by the use of abstractions that
allow to apply the same solution to similar scenarios. This may reduce the
amount of design documents to be maintained. However, tool support is needed
for automatic weaving of models. We consider the modeling and weaving tools
as being critical for the success of AOM. In contrast, code generation, while
desirable, is not essential for the future of AOM.

7.1.3 AOP

Developers dislike when their code is altered by other developers or programs,
especially if these changes cannot be properly visualized. The nature of as-
pects is to typically alter the behavior of several modules. This is confusing for
developers and may be one of the reasons for them being reluctant to adopt
AOP languages. In this regard, tool support to adequately visualize where
the aspects crosscut is needed. The AspectJ development tools provide visu-
alization and navigation tools. However, the visualization presents deficiencies
such as poor scalability and complexity problems. More advanced tools such
as AspectMaps [2] overcome or alleviate these problems. AspectMaps provides
structural zoom and other facilities that improve the understanding of the sys-
tem. However, it is a new tool and time is needed to evaluate its applicability
to industrial problems.

Aspect interactions complicate the scenario, as they can occur in unantici-
pated ways. Therefore, having support for interaction detection is important,
as a result there are many languages that claim to provide joinpoint level inter-
action detection. Moreover, having tools/constructs that allow the programmer
to clearly and explicitly define the behavior of the system when interactions
occur is key.

The current support for implementing aspect interactions in AOP languages
is poor, however it is possible to implement interaction using ad-hoc logic. This
usually makes implicit the implementation of such interactions, with the result-
ing maintainability problems.

7.1.4 From the Lab to the Industry

AOSD approaches need to accomplish the migration from the academy to the
industry. While reviewing the existing literature we found few industrial ap-
plications of them. This results in immature approaches that work mostly for
limited and well selected case studies.

7.1. TOWARDS A FULL ASPECT ORIENTED DEVELOPMENT CYCLE115

In the academia, initial case studies may be carefully selected to match the
capabilities of the tool to be presented. Many implementations we studied are
proofs of concept that did not need to deal with certain issues. Finally, as we
observed in some AORE approaches regarding interactions, it is possible to skip
certain problems instead of modeling them: consider for example the conflict
management of Theme/UML, or the conflict removal process of MDSOCRE.

The next step is therefore to try the existing approaches in the “real world”.
Industrial and commercial systems present new challenges for these approaches.
Requirements come from different competing stakeholders. Trade-offs are the
rule. The low time to market highlights the need for lightweight methodologies,
as there is not much time for modeling and documentation. Changes in the
requirements and the need for new versions of the software containing those
changes call for traceability mechanisms.

The evolution of the AOSD approaches needed to support these scenarios
takes time and effort. Any tool presents a lot of inconveniences in its initial ver-
sions. User communities are needed and continuous evolution and maintenance
effort is critical to reach a minimal industrial maturity level. A good example
is AspectJ, which has been available during more than a decade and holds the
throne of the most influential aspect oriented language.

7.1.5 The Missing Link: Traceability

Traceability from requirements to the implementation and back again is vital to
many software engineering activities [81] and still remains as an open problem
in this field [49].

We found some support for traceability during this experience. In the case
of Theme/Doc and Theme/UML they are supposed to seamlessly integrate. A
theme in Theme/Doc maps directly to a theme in Theme/UML. The Theme
documentation proposes to propagate changes made at design time back to the
requirements in order to keep models consistent. However, there are no explicit
process or tools for doing so. From design to implementation, Theme proposes
some rules to map Theme/UML designs to code in an aspect oriented program-
ming language. Following this rule implies the use of abstract aspects named
as themes, and concrete aspects defining their bindings as concrete pointcuts.
Somewhat surprisingly, MDSOCRE does not consider the traceability problem.

In the case of WEAVR there is no AORE approach associated. Concerns are
modeled as state machines. Crosscutting concern state machines are woven into
other machines based. We believe that any AORE approach can be used with
WEAVR, as long as consistency between concerns in the requirements analysis
phase and in the design phase is maintained. Some special attention would
be needed in order to highlight those requirements that define states, state
changes and weaving points. As WEAVR includes code generation, traceability
from design to implementation is direct. However, it is not specified whether
the generated code can be modified and those modifications preserved in later
builds.

116 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2 Contributions and Related Publications

We summarize below the contributions of this work and the associated publica-
tions:

• An aspect oriented development cycle of the SM software has been carried
out, considering interactions from the onset. To the best of our knowledge,
this the first report of a complete development cycle of such complex
software. This resulted in the following three contributions.

• Two AORE approaches have been assessed and extended. These exten-
sions have been evaluated experimentally in order to judge their applica-
bility. This work is published in [97, 98, 99]

• AOM modeling approaches that claim to support interactions, even in
industrial settings, have been tested against the interactions in the SM
domain. They proved to fall short in most of the cases. This work is
published in [36].

• Static and dynamic AOP languages have been used to implement ad-hoc
solutions for these interactions. The results show that their dynamic or
static nature has a strong impact on the implementation of some inter-
actions. We also proposed a set of extensions for an aspect oriented lan-
guage that cover all the interactions found plus the joinpoint interactions
reported in the literature. Even though the results of this stage are not yet
implemented, some of them are inspired on our work published in [100].

• An industrial case study revealing a complex domain has been studied in
depth, resulting in a sizable amount of crosscutting concerns being found.
Many of them are functional concerns.

• Genuine aspect interaction examples have been found and documented.
We believe the interactions found serve as a challenging test bed for up-
coming AOSD approaches.

7.3 Future work

7.3.1 General

Interactions in other Domains

The slot machines domain presented a good amount of functional and non-
functional concerns. There were also many examples of the different kinds of
interactions. To the best of our knowledge, there is no other report in the
literature with such a high amount of interactions. This fact makes us wonder
if other domains exhibit as many concerns and interactions as SM. There are
two possible results we would like to confirm:

• There are more domains, which can indicate that existing studies have
overlooked interactions, possibly due to lack of deep domain knowledge.

7.3. FUTURE WORK 117

• Other domains present a lower number of crosscutting concerns and inter-
actions. On the positive side, this means that the SM is an exceptionally
good case study to test the power of different approaches. On the nega-
tive side, this means that the obtained results maybe not easily applied
to other domains.

Traceability

Traceability of interactions needs to be studied. We know that requirement
sources change at different speeds. A change in some requirement of a crosscut-
ting concern may impact in several aspects if it is part of an interaction. For
example, a change in the requirements for meters impacts not only in the Meters
aspect, but also on the communication protocols, whose code need to be up-
dated in order to keep reported data consistent. Therefore, support for practical
traceability from requirements to interactions in design and implementation is
needed, in order to make a consistent change set.

7.3.2 Requirements Analysis

A first avenue of future work would be a study of the impact of our extensions
to evolution of requirements. Second, the size of our requirements base and
the fact that these come from different sources with their own formats, makes it
desirable to automatize how the modeled version of the requirements is obtained
and evolved from one version to another. We believe that extra information
represented by the interactions can help to better track the impact of changes,
but this needs to be corroborated.

Although we were able to improve the expressiveness of Theme/Doc, a de-
tailed experiment could be useful to compare it with the results obtained in
Sect. 4.4.1 for MDSOCRE-I. Also, the deployment of our extensions in the
industry will help to analyze other issues such as scalability or requirements
evolution.

7.3.3 Design

The key question for future work is how we would be able to satisfactorily
express the interactions in our design. The most straightforward solution would
be to extend one of the above methodologies such that it includes the support
we are lacking. We consider this therefore as the main avenue for future work.

From the evaluation performed on WEAVR and Theme/UML we envision
useful extensions for those approaches. The lack of explicit support for mutex,
reinforcement and dependency in Theme/UML could be solved by extending
the notation. Conflict could benefit of such extensions, but some of the reso-
lution strategies explained in Sect. 5.2.2, need further additions. In this case,
Theme/UML requires to be extended in order to model the weaving process,
allowing to express directives for aspect deployment.

In the case of WEAVR, conflict and dependency support is only at joinpoint
level, thus an extension to aspect level could help to make our interactions more
explicit. Mutex is not supported, and the ad-hoc solution found (composi-
tion of the mutual exclusive state machines) clearly poses a scalability problem.

118 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

We believe that recursive composition of WEAVR’s state machines may over-
come this problem. For reinforcement, the state machine execution engine of
WEAVR might be useful for running simulations, and checking if the optional
behavior gets called. However, this needs to be evaluated. Separately, it is nec-
essary to make reinforcement explicit, so that the engineer can easily identify
when the simulation needs to be run again.

Part of our future work is also the application of a third AOM approach,
called RAM [55], which claims to support interactions and conflicts.

7.3.4 Implementation

Configuration vs Sanity Check

From Chapter 6 we conclude that aspects implementing crosscutting concerns
and interaction resolution strategies are overloaded with responsibilities. Decou-
pling (part of) the interaction resolution implementation helps to relieve them
of extrinsic responsibilities, improving maintainability.

From our implementations, we observed that part of the resolution of inter-
actions can be implemented by controlling the deployment configuration of our
aspectual system. By deployment configuration we refer to the selection of the
included aspects in a given run or deployment.

Specific configurations should be developed for different deployments. In
our experience, chances are that the resulting deployment is not fully consistent
due to unsatisfied interactions. Therefore a diagnostic mechanism for checking
interaction satisfaction is also needed. This mechanism must check that inter-
actions are satisfied, if it is not the case the SM should not run, indicating the
error.

Interaction relationships can be expressed in the form of constraints. If
the language provides facilities for metadata, constraints can be placed in the
source code. Adding metadata to code, in order to express and check constraints
or document the code semantics is not a new practice [13, 54]. For example,
in [100] we have used annotations to denote the role of aspects and advices in
order to manage their activation using a rule engine. Interaction constraints
should be the result of the information collected during requirement analysis
and design phases. The whole set of constraints for the selected aspects in
a given deployment must be checked on start-up. If any constraint fails, the
system can be considered to be in an inconsistent state, therefore, it must be
shutdown indicating the reason in a error message. This is what we call a sanity
check. The purpose of this mechanism is to detect unsatisfied interactions in
the deployed system.

In our proposal, metadata is used to check the satisfaction of the aspect
interaction constraints. The decision of what to do when interactions are un-
satisfied is left to the programmer, but some default actions, such as shutdown
the system, can be defined.

Separation of Concerns for Interactions Implementation

Several implementations for the different interactions have been discussed and
presented. A future work is to analyze the feasibility of generalizing them to
find ways of reusing the knowledge acquired and the behavior defined for them.

7.3. FUTURE WORK 119

Before generalizing them, it is however necessary to decouple interaction res-
olution strategies which are tangled with the aspects’ core behavior. Consider
the Demo aspect, whose core behavior consists of offering the player (certifier in
this case) to select a prize, and forcing the outcome for matching the selected
prize. Besides this core functionality, our Demo implementation copes with
extra responsibilities such as: switching off (un-installing) certain conflicting
aspects or replacing behavior in the communication protocols to prevent report-
ing of demo plays. These extra responsibilities clearly hinder the objective of
providing a clear and as modular as possible separation of concerns. Further-
more, if the interaction resolution strategy implementation is separated from the
interacting aspects, it is possible to find common interaction resolution behavior
in order to generalize it and finally try to reuse it.

In the previous section, we discussed how to decouple part of the interaction
resolution strategies by using deployment configurations and the sanity check to
ensure that the included aspects and their interactions are consistent. Unfortu-
nately, this does not allow for a complete interaction resolution implementation.
Some parts of the interaction resolution strategies still need to be implemented
programmatically. In these cases, we consider it important to keep them as sep-
arated objects or aspects (according to the needs) so that they can be studied,
when possible, in isolation.

Implementation of AspectJ extensions for Interactions

As a final avenue for future work we considered the implementation of the
proposed extensions to AspectJ in order to support interactions. For many of
them it is possible to develop a proof of concept by using code transformation.
In this case, we need to develop a parser that takes the extended syntax and
converts it into regular AspectJ code that implement the interactions semantic.
We consider this approach feasible as it does not involves altering the (complex)
AspectJ compiler. Another possible implementation alternative is to use the
abc compiler [6], which is an open implementation intended to test AspectJ
extensions, as it is our case.

120 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] Recommended practice for software requirements specifications. IEEE Std
830-1998, 1998.

[2] The 19th IEEE International Conference on Program Comprehension,
ICPC 2011, Kingston, ON, Canada, June 22-24, 2011. IEEE Computer
Society, 2011.

[3] Sven Apel, Wolfgang Scholz, Christian Lengauer, and Christian Kästner.
Detecting dependences and interactions in feature-oriented design. In IS-
SRE, pages 161–170. IEEE Computer Society, 2010.

[4] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An
overview of caesarj. T. Aspect-Oriented Software Development I, pages
135–173, 2006.

[5] Gaming Standards Association. Gaming standards association home page,
January 2013.

[6] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha
Kuzins, Jennifer Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni,
Ganesh Sittampalam, and Julian Tibble. abc: an extensible aspectj com-
piler. In Proceedings of the 4th international conference on Aspect-oriented
software development, AOSD ’05, pages 87–98, New York, NY, USA, 2005.
ACM.

[7] Shubhanan Bakre and Tzilla Elrad. Scenario based resolution of aspect
interactions with aspect interaction charts. In Proceedings of the 10th
international workshop on Aspect-oriented modeling, AOM ’07, pages 1–
6, New York, NY, USA, 2007. ACM.

[8] Elisa Baniassad and Siobhan Clarke. Finding aspects in requirements
with Theme/Doc. In Early Aspects 2004: Aspect-Oriented Requirements
Engineering and Architecture Design, workshop of the 3rd International
Conference on Aspect-Oriented Software Development, March 2004.

[9] Elisa Baniassad and Siobhan Clarke. Theme: An approach for aspect-
oriented analysis and design. In ICSE ’04: Proceedings of the 26th Inter-
national Conference on Software Engineering, pages 158–167, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

[10] Elisa Baniassad, Paul C. Clements, Joao Araujo, Ana Moreira, Awais
Rashid, and Bedir Tekinerdogan. Discovering early aspects. IEEE Softw.,
23(1):61–70, 2006.

121

122 BIBLIOGRAPHY

[11] David Bar-On and Shmuel Tyszberowicz. Derived requirements genera-
tion: The DRAS methodology. Software Science, Technology and Engi-
neering, IEEE International Conference on, 0:116–126, 2007.

[12] L. Bergmans. The Composition Filters Object Model. Technical report,
Dept. of Computer Science, University of Twente, 1994.

[13] Lodewijk M. J. Bergmans. Towards detection of semantic conflicts
between crosscutting concerns. In Jan Hannemann, Ruzanna Chitchyan,
and Awais Rashid, editors, Analysis of Aspect-Oriented Software (ECOOP
2003), July 2003.

[14] Andrew Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet,
Damien Cassou, and Marcus Denker. Pharo by Example. Square Bracket
Associates, 2009.

[15] Isabel Brito and Ana Moreira. Integrating the NFR framework in a RE
model. In Early Aspects 2004: Aspect-Oriented Requirements Engineering
and Architecture Design, workshop of the 3rd International Conference on
Aspect-Oriented Software Development, 2004.

[16] Isabel Sofia Brito, Filipe Vieira, Ana Moreira, and Rita Almeida Ribeiro.
Handling conflicts in aspectual requirements compositions. Transactions
in Aspect-Oriented Software Development, 3:144–166, 2007.

[17] Ruzanna Chitchyan, Johan Fabry, Shmuel Katz, and Arend Rensink. Ed-
itorial for special section on dependencies and interactions with aspects.
5490:133–134, 2009.

[18] Ruzanna Chitchyan, Johan Fabry, Shmuel Katz, and Arend Rensink. Ed-
itorial for special section on dependencies and interactions with aspects.
T. Aspect-Oriented Software Development, 5:133–134, 2009.

[19] Ruzanna Chitchyan, Awais Rashid, Paul Rayson, and Robert Waters.
Semantics-based composition for aspect-oriented requirements engineer-
ing. In AOSD ’07: Proceedings of the 6th international conference on
Aspect-oriented software development, pages 36–48, New York, NY, USA,
2007. ACM.

[20] Ruzanna Chitchyan, Awais Rashid, Pete Sawyer, Alessandro Garcia,
Mónica Pinto Alarcon, Jethro Bakker, Bedir Tekinerdogan, Siobhán
Clarke, and Andrew Jackson. Survey of analysis and design ap-
proaches. Technical Report AOSD-Europe Deliverable D11, AOSD-
Europe-ULANC-9, University of Lancaster, 2005.

[21] Ruzanna Chitchyan, Awais Rashid, and Peter Sawyer. Comparing re-
quirement engineering approaches for handling crosscutting concerns. In
João Araújo, Amador Durán Toro, and João Falcão e Cunha, editors, 8th
Workshop on Requirements Engineering held at CAiSE’05, pages 1–12,
2005.

[22] Lawrence Chung and Brian A. Nixon. Dealing with non-functional re-
quirements: three experimental studies of a process-oriented approach. In
Proceedings of the 17th international conference on Software engineering,
ICSE ’95, pages 25–37, New York, NY, USA, 1995. ACM.

BIBLIOGRAPHY 123

[23] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-
Functional Requirements in Software Engineering, volume 5 of Interna-
tional Series in Software Engineering. Springer, 1999.

[24] Lawrence Chung and Julio Cesar Prado Leite. Conceptual modeling:
Foundations and applications. chapter On Non-Functional Requirements
in Software Engineering, pages 363–379. Springer-Verlag, Berlin, Heidel-
berg, 2009.

[25] Selim Ciraci, Wilke Havinga, Mehmet Aksit, Christoph Bockisch, and Pim
van den Broek. A graph-based aspect interference detection approach for
uml-based aspect-oriented models. T. Aspect-Oriented Software Develop-
ment, 7:321–374, 2010.

[26] Siobhán Clarke and Elisa Baniassad. Aspect-Oriented Analysis and De-
sign. The Theme Approach. Object Technology Series. Addison-Wesley,
Boston, USA, 2005.

[27] Aspect Oriented Modeling Community. Aspect oriented modeling work-
shop series home page, January 2013.

[28] Thomas Cottenier, Aswin V. Berg, and Tzilla Elrad. The Motorola
WEAVR: Model Weaving in a Large Industrial Context. In in Proceedings
of the International Conference on AspectOriented Software Development,
Industry Track, 2006.

[29] Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad. Motorola
weavr: Aspect and model-driven engineering. Journal of Object Tech-
nology, 6(7):51–88, 2007.

[30] Edsger W. Dijkstra. On the role of scientific thought. In Selected Writ-
ings on Computing: A Personal Perspective, pages 60–66. Springer-Verlag,
1982.

[31] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse
and interaction analysis of stateful aspects. In Proceedings of the 3rd
international conference on Aspect-oriented software development, AOSD
’04, pages 141–150, New York, NY, USA, 2004. ACM.

[32] Rémi Douence, Pascal Fradet, and Mario Südholt. A framework for the
detection and resolution of aspect interactions. pages 173–188. Springer-
Verlag, 2002.

[33] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented pro-
gramming: Introduction. Commun. ACM, 44(10):29–32, October 2001.

[34] Johan Fabry and Daniel Galdames. Phantom: a modern aspect language
for pharo smalltalk. Software: Practice and Experience, pages n/a–n/a,
2012.

[35] Johan Fabry, Éric Tanter, and Theo D’Hondt. Relax: implementing kala
over the reflex aop kernel. In Proceedings of the 2nd workshop on Domain
specific aspect languages, DSAL ’07, New York, NY, USA, 2007. ACM.

124 BIBLIOGRAPHY

[36] Johan Fabry, Arturo Zambrano, and Silvia Gordillo. Expressing aspectual
interactions in design: Experiences in the slot machine domain. In Jon
Whittle, Tony Clark, and Thomas Kühne, editors, Model Driven Engi-
neering Languages and Systems, volume 6981 of Lecture Notes in Com-
puter Science, pages 93–107. Springer Berlin Heidelberg, 2011.

[37] Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming
is quantification and obliviousness. Technical report, 2000.

[38] David Flanagan and Yukihiro Matsumoto. The ruby programming lan-
guage. O’Reilly, first edition, 2008.

[39] B. D. Fraine, P. D. Quiroga, and V. Jonckers. Management of aspect
interactions using statically-verified control-flow relations. In Proceedings
of the 3rd International Workshop on Aspects, Dependencies and Interac-
tions, 2008.

[40] Gaming Laboratories International. Gaming Devices in Casinos, 2007.
Available at: http://www.gaminglabs.com/.

[41] Gaming Standard Association. Game to Server (G2S) Protocol Specifica-
tion, 2008. Available at: http://www.gamingstandards.com/.

[42] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-
guage Specification, Third Edition. Prentice Hall, June 2005.

[43] John C. Grundy. Aspect-oriented requirements engineering for
component-based software systems. In RE ’99: Proceedings of the 4th
IEEE International Symposium on Requirements Engineering, pages 84–
91, Washington, DC, USA, 1999. IEEE Computer Society.

[44] Wilke Havinga, Istvan Nagy, Lodewijk Bergmans, and Mehmet Aksit.
Detecting and resolving ambiguities caused by inter-dependent introduc-
tions. In 5th International Conference on Aspect-Oriented Software De-
velopment, AOSD, pages 214 – 225, January 2006.

[45] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Language Spec-
ification. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2003.

[46] Robert Hirschfeld. Aspects - aspect-oriented programming with squeak.
In Revised Papers from the International Conference NetObjectDays on
Objects, Components, Architectures, Services, and Applications for a
Networked World, NODe ’02, pages 216–232, London, UK, UK, 2003.
Springer-Verlag.

[47] Z. 100: ITU. Specification and description language (sdl). In International
Telecommunication Union. 2000.

[48] Ivar Jacobson and Pan-Wei Ng. Aspect-Oriented Software Development
with Use Cases (Addison-Wesley Object Technology Series). Addison-
Wesley Professional, 2004.

BIBLIOGRAPHY 125

[49] A. Kannenberg and H. Saiedian. Why software requirements traceabil-
ity remains a challenge. The Journal of Defense Software Engineering,
22(7):14–19, 2009.

[50] Emilia Katz and Shmuel Katz. Incremental analysis of interference among
aspects. In Curtis Clifton, editor, FOAL, pages 29–38. ACM, 2008.

[51] A. Kellens, K. Mens, J. Brichau, and K. Gybels. Managing the evolu-
tion of aspect-oriented software with model-based pointcuts. In European
Conference on Object-Oriented Programming (ECOOP), number 4067 in
LNCS, pages 501–525, 2006.

[52] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of aspectj. In Proceedings of the
15th European Conference on Object-Oriented Programming, ECOOP ’01,
pages 327–353, London, UK, UK, 2001. Springer-Verlag.

[53] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In ECOOP, pages 220–242, 1997.

[54] Gregor Kiczales and Mira Mezini. Separation of concerns with proce-
dures, annotations, advice and pointcuts. In Andrew P. Black, editor,
ECOOP, volume 3586 of Lecture Notes in Computer Science, pages 195–
213. Springer, 2005.

[55] Jörg Kienzle, Wisam Al Abed, and Jacques Klein. Aspect-oriented multi-
view modeling. In Proceedings of the 8th ACM international conference
on Aspect-oriented software development, AOSD ’09, pages 87–98, New
York, NY, USA, 2009. ACM.

[56] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Pro-
gramming. Manning Publications Co., Greenwich, CT, USA, 2003.

[57] Jia Liu, Don S. Batory, and Srinivas Nedunuri. Modeling interactions in
feature oriented software designs. In Feature interactions in telecommu-
nications and software systems VIII, pages 178–197, 2005.

[58] Antoine Marot. Preserving the Separation of Concerns while Composing
Aspects with Reflective AOP. Phd thesis, Université Libre De Bruxelles,
October 2011.

[59] Katharina Mehner, Mattia Monga, and Gabriele Taentzer. Interaction
analysis in aspect-oriented models. In RE, pages 66–75. IEEE Computer
Society, 2006.

[60] A. Moreira, A. Rashid, and J. Araujo. Multi-dimensional separation of
concerns in requirements engineering. In Proc. 13th IEEE International
Conference on Requirements Engineering, pages 285–296, 29 Aug.–2 Sept.
2005.

[61] Freddy Munoz, Benoit Baudry, Romain Delamare, and Yves Le Traon.
Inquiring the usage of aspect-oriented programming: an empirical
study. In 25th IEEE International Conference on Software Maintenance
(ICSM’09), Edmonton, Alberta, Canada, Canada, 2009.

126 BIBLIOGRAPHY

[62] Gunter Mussbacher, Jon Whittle, and Daniel Amyot. Semantic-based
interaction detection in aspect-oriented scenarios. In RE, pages 203–212.
IEEE Computer Society, 2009.

[63] Nevada Gaming Commission. Technical Standards For Gam-
ing Devices And On-Line Slot Systems, 2008. Available at:
http://gaming.nv.gov/stats regs.htm.

[64] Nan Niu, Yijun Yu, Bruno González-Baixauli, Neil A. Ernst, Julio Ce-
sar Sampaio do Prado Leite, and John Mylopoulos. Aspects across soft-
ware life cycle: A goal-driven approach. T. Aspect-Oriented Software
Development VI, 6:83–110, 2009.

[65] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12):1053–1058, 1972.

[66] Renaud Pawlak, Laurence Duchien, Gerard Florin, Fabrice Legond-Aubry,
Lionel Seinturier, and Laurent Martelli. A uml notation for aspect-
oriented software design. In IN WORKSHOP ON ASPECT-ORIENTED
MODELING WITH UML (AOSD-2002, 2002.

[67] Balasubramaniam Ramesh and Matthias Jarke. Toward reference models
for requirements traceability. IEEE Trans. Softw. Eng., 27:58–93, January
2001.

[68] A. Rashid, T. Cottenier, P. Greenwood, R. Chitchyan, R. Meunier,
R. Coelho, M. Sudholt, and W. Joosen. Aspect-oriented software de-
velopment in practice: Tales from aosd-europe. Computer, 43(2):19 –26,
feb. 2010.

[69] Awais Rashid and Ana Moreira. Domain models are NOT aspect free. In
ACM/IEEE 9th International Conference on Model Driven Engineering
Languages and Systems (MODELS06), volume 4199 of Lecture Notes in
Computer Science, pages 155–169. Springer Verlag, October 2006.

[70] Awais Rashid, Ana Moreira, and Joāo Araújo. Modularisation and com-
position of aspectual requirements. In Proceedings of the 2nd international
conference on Aspect-oriented software development, AOSD ’03, pages 11–
20, New York, NY, USA, 2003. ACM.

[71] Andrew Rollings and Dave Morris. Game Architecture and Design: A
New Edition. New Riders Games, 2003.

[72] Americo Sampaio, Phil Greenwood, Alessandro F. Garcia, and Awais
Rashid. A comparative study of aspect-oriented requirements engineer-
ing approaches. In ESEM ’07: Proceedings of the First International
Symposium on Empirical Software Engineering and Measurement, pages
166–175, Washington, DC, USA, 2007. IEEE Computer Society.

[73] Américo Sampaio, Awais Rashid, Ruzanna Chitchyan, and Paul Rayson.
Ea-miner: Towards automation in aspect-oriented requirements engineer-
ing. In Awais Rashid and Mehmet Aksit, editors, Transactions on Aspect-
Oriented Software Development III, volume 4620 of Lecture Notes in Com-
puter Science, pages 4–39. Springer Berlin / Heidelberg, 2007.

BIBLIOGRAPHY 127

[74] Frans Sanen, Eddy Truyen, Bart De Win, Wouter Joosen, Neil Loughran,
Geoff Coulson, Awais Rashid, Andronikos Nedos, Andrew Jackson, and
Siobhan Clarke. Study on interaction issues. Technical Report AOSD-
Europe Deliverable D44, AOSD-Europe-KUL-7, Katholieke Universiteit
Leuven, 28 February 2006 2006.

[75] A. Schauerhuber, W. Schwinger, E. Kapsammer, W. Retschitzegger, and
M. Wimmer. A survey on aspect-oriented modeling approaches. Technical
report, Vienna University of Technology, 2007.

[76] Devon Simmonds, Raghu Reddy, Robert France, Sudipto Ghosh, and
Arnor Solberg. An aspect oriented model driven framework. In Proceed-
ings of the Ninth IEEE International EDOC Enterprise Computing Con-
ference, EDOC ’05, pages 119–130, Washington, DC, USA, 2005. IEEE
Computer Society.

[77] Ian Sommerville, Ian Sommerville, Pete Sawyer, and Pete Sawyer. View-
points: principles, problems and a practical approach to requirements
engineering. Annals of Software Engineering, 3:101–130, 1997.

[78] Olaf Spinczyk, Daniel Lohmann, and Matthias Urban. Advances in aop
with aspectc++. In Proceedings of the 2005 conference on New Trends in
Software Methodologies, Tools and Techniques: Proceedings of the fourth
SoMeTW05, pages 33–53, Amsterdam, The Netherlands, The Nether-
lands, 2005. IOS Press.

[79] Spring. Springframework reference manual 3.1. 2011.

[80] Maximilian Stoerzer and Juergen Graf. Using pointcut delta analysis
to support evolution of aspect-oriented software. In Proceedings of the
21st IEEE International Conference on Software Maintenance, ICSM ’05,
pages 653–656, Washington, DC, USA, 2005. IEEE Computer Society.

[81] Senthil Karthikeyan Sundaram, Jane Huffman Hayes, Alex Dekhtyar, and
Elizabeth Ashlee Holbrook. Assessing traceability of software engineering
artifacts. Requir. Eng., 15(3):313–335, 2010.

[82] Éric Tanter. Aspects of composition in the reflex aop kernel. In Proceedings
of the 5th international conference on Software Composition, SC’06, pages
98–113, Berlin, Heidelberg, 2006. Springer-Verlag.

[83] Éric Tanter. Execution levels for aspect-oriented programming. In Pro-
ceedings of the 9th ACM International Conference on Aspect-Oriented
Software Development (AOSD 2010), pages 37–48, Rennes and Saint
Malo, France, March 2010. ACM Press. Best Paper Award.

[84] Éric Tanter and Jacques Noyé. A versatile kernel for multi-language aop.
In Robert Glück and Michael R. Lowry, editors, GPCE, volume 3676 of
Lecture Notes in Computer Science, pages 173–188. Springer, 2005.

[85] Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton. N
degrees of separation: multi-dimensional separation of concerns. In ICSE
’99: Proceedings of the 21st international conference on Software engi-
neering, pages 107–119, Los Alamitos, CA, USA, 1999. IEEE Computer
Society Press.

128 BIBLIOGRAPHY

[86] Peri Tarr, Harold Ossher, William Harrison, Stanley M. Sutton, and Jr.
N degrees of separation: Multi-dimensional separation of concerns. pages
107–119, 1999.

[87] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr.
N degrees of separation: multi-dimensional separation of concerns. In
Proceedings of the 21st international conference on Software engineering,
ICSE ’99, pages 107–119, New York, NY, USA, 1999. ACM.

[88] Bruno De Fraine Thomas Cleenewerck, Johan Brichau. Conflict resolution
strategies. Technical report, Aspect Lab II, AOSD Europe, 2007.

[89] Claire Tristram. The Technology Review 10: Emerging Technologies that
Will Change the World. 1:97–103+, 2001.

[90] Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided
tour. In Proceedings of the Fifth IEEE International Symposium on Re-
quirements Engineering, RE ’01, pages 249–, Washington, DC, USA, 2001.
IEEE Computer Society.

[91] Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided
tour. In Proceedings of the Fifth IEEE International Symposium on Re-
quirements Engineering, RE ’01, pages 249–, Washington, DC, USA, 2001.
IEEE Computer Society.

[92] Jon Whittle and João Araújo. Scenario modelling with aspects. IEE
Proceedings - Software, 151(4):157–172, 2004.

[93] Jon Whittle and Praveen Jayaraman. MATA: A tool for aspect-oriented
modeling based on graph transformation. In Holger Giese, editor, Models
in Software Engineering: Workshops and Symposia at MoDELS 2007,
volume 5002 of Lecture Notes in Computer Science, pages 16–27. Springer
Berlin / Heidelberg, 2008.

[94] Manuel Wimmer, Andrea Schauerhuber, Gerti Kappel, Werner Rets-
chitzegger, Wieland Schwinger, and Elizabeth Kapsammer. A survey
on uml-based aspect-oriented design modeling. ACM Comput. Surv.,
43(4):28:1–28:33, October 2011.

[95] Bobby Woolf. Pattern languages of program design 3. chapter Null object,
pages 5–18. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1997.

[96] Yijun Yu, Julio Cesar Sampaio do Prado Leite, and John Mylopoulos.
From goals to aspects: Discovering aspects from requirements goal models.
In Proceedings of the Requirements Engineering Conference, 12th IEEE
International, pages 38–47, Washington, DC, USA, 2004. IEEE Computer
Society.

[97] Arturo Zambrano, Johan Fabry, and Silvia Gordillo. Expressing aspectual
interactions in requirements engineering: Experiences, problems and so-
lutions. Science of Computer Programming, 78(1):65 – 92, 2012. Special
Section: Formal Aspects of Component Software.

BIBLIOGRAPHY 129

[98] Arturo Zambrano, Johan Fabry, and Silvia Gordillo. Aspect-Oriented Re-
quirements Engineering, chapter Experience Report: AORE in Slot Ma-
chines. Springer Verlag, To appear in August 2013.

[99] Arturo Zambrano, Johan Fabry, Guillermo Jacobson, and Silvia Gordillo.
Expressing aspectual interactions in requirements engineering: experi-
ences in the slot machine domain. In Proceedings of the 2010 ACM Sym-
posium on Applied Computing (SAC 2010), pages 2161–2168. ACM Press,
2010.

[100] Arturo Zambrano, Silvia Gordillo, and Johan Fabry. A fine grained aspect
coordination mechanism. International Journal of Software Engineering
and Knowledge Engineering (IJSEKE), 20(7):1025–1042, November 2010.

130 BIBLIOGRAPHY

Appendix A

Theme/Doc Diagrams

Figure A.1: Theme/Doc approach applied to the selected requirements and
concerns

131

132 APPENDIX A. THEME/DOC DIAGRAMS

Figure A.2: Extensions to Theme/Doc applied

Appendix B

MDSOCRE Code Listings

Listing B.1: Concerns and crosscutting relationships for selected requirements

1 <?xml version="1.0" encoding="UTF-8"?>
2 <root>
3 <Concern name="Game">
4 <Requirement id="1"> A slot machines have 5 reels.
5 </Requirement>
6 <Requirement id="2"> Reels spin when play button is pressed.
7 </Requirement>
8 <Requirement id="3"> Prizes are awarded according to a pay

table.
9 </Requirement>

10 <Requirement id="4"> A slot machine has one or more devices
for entering money.

11 </Requirement>
12 <Requirement id="5"> As money is inserted credits are "

assigned" to the player.
13 </Requirement>
14 <Requirement id="6"> A slot machine must provide means for

cashing the credits out. It could be a ticket printer,
a coin hopper.

15 </Requirement>
16 </Concern>
17

18 <Concern name="Meters">
19 <!-- From GLI 11 -->
20 <Requirement id="1"> Credit meter: shall at all times

indicate all credits or cash available for the player to
wager or cashout (GLI 11 4.10.1)

21 </Requirement>
22 <Requirement id="2"> Credit Meter Incrementing: The value of

every prize (at the end of a game) shall be added to
the player’s credit meter. The credit meter shall also
increment with the value of all valid coins, tokens,
bills, Ticket/Vouchers, coupons or other approved notes
accepted. (GLI 11 4.10.5)

23 </Requirement>
24 <Requirement id="3"> Accounting Meters (GLI 11 4.10.9):

Coin In: a meter that accumulates the total value of all
wagers [...]. Games-played: accumulates the number of
games played; since power reset, since door close and
since game initialisation.

25 </Requirement>

133

134 APPENDIX B. MDSOCRE CODE LISTINGS

26 <Requirement id="4"> Meters should be updated upon
occurrence of any event that must be counted, including:
play, cashout, bill in, coin in.

27 </Requirement>
28 <!-- From G2S -->
29 <Requirement id="5" seeAlso="2,4"> Some G2S meters are:

gamesSinceInitCn Number of games since initialisation.
WonCnt: Number of primary games won by the player.
LostCnt: Number of primary games lost by the player

30 </Requirement>
31 </Concern>
32

33 <Concern name="Game Recall">
34 <Requirement id="1"> Information on at least the last ten

(10) games is to be always retrievable on the operation
of a suitable external key-switch, or another secure
method that is not available to the player.

35 </Requirement>
36 <Requirement id="2"> Last play information shall provide all

information required to fully reconstruct the last ten
(10) plays. All values shall be displayed; including the
initial credits, credits bet, and credits won, payline
symbol combinations and credits paid whether the outcome
resulted in a win or loss. This information should
include the final game outcome, including all player
choices and bonus features.

37 </Requirement>
38 </Concern>
39

40 <Concern name="G2S">
41 <Requirement id="1"> The G2S protocol is designed to

communicate information between a SM, and one or more
host systems.

42 </Requirement>
43 <Requirement id="2"> Meter information can be queried by a

host in real-time or a host may set a periodic meter
subscription to cause the EGM to send selected meters at
predetermined intervals.

44 </Requirement>
45 <Requirement id="3"> Information provided by the SM is used

for audit purposes.
46 </Requirement>
47 <Requirement id="4"> The device can generate an event in an

unsolicited manner or in response to a host command.
48 </Requirement>
49 <Requirement id="5"> Current timestamp can be configured by

the host.
50 </Requirement>
51 <Requirement id="6"> Command GetGameRecallLog is used by a host to

request the contents of a transaction log of last playsfrom a
SM.

52 </Requirement>
53 </Concern>
54

55 <Concern name="Proprietary Communication Protocol (SCP)">
56 <Requirement id="1"> The SCP communicates a SM with a host

system.
57 </Requirement>
58 <Requirement id="2"> It must report all meters of a SM.
59 </Requirement>
60 <Requirement id="3">Configuration settings such as current

timestamp are configured from the host.

135

61 </Requirement>
62 <Requirement id="4"> If error conditions such as: door open,

ticket inserted, paper out, etc. can be detected they
shall be informed to the host.

63 </Requirement>
64 </Concern>
65

66 <Concern name="Program Resumption">
67 <!--From Nevada regulation -->
68 <Requirement id="1" seeAlso="3"> After a program interruption (e

.g., processor reset), the software shall be able to recover
to the state it was in immediately prior to the
interruption occurring.

69 </Requirement>
70 <Requirement id="2"> Restoring Power. If a gaming device is

powered down while in an error condition, then upon
restoring power, the specific error message shall still
be displayed and the gaming device shall remain locked-
up.

71 </Requirement>
72 <!-- From G2S 1.16 -->
73 <Requirement id="3" seeAlso="1"> A SM must store all meter

information in persistent memory.
74 </Requirement>
75 </Concern>
76

77 <Concern name="Error Conditions and Events">
78 <!--From Nevada regulation -->
79 <Requirement id="1"> Gaming devices shall be capable of

detecting and displaying error conditions and illuminate
the tower light for each or sound an audible alarm.

80 </Requirement>
81 <Requirement id="2"> Error conditions should cause the

gaming device to lock up and require attendant
intervention. Error conditions shall be cleared either
by an attendant or upon initiation of a new play
sequence after the error has cleared except for those
deemed as a critical error.

82 </Requirement>
83 <!-- From GLI -->
84 <Requirement id="3"> Error conditions are: coin jam, reverse

coin in, stacker full, bill jam, external doors open.
85 </Requirement>
86 <Requirement id="4"> Video based games shall display

meaningful text as to the error conditions.
87 </Requirement>
88 <Requirement id="5"> Error conditions shall be communicated

to an on-line monitoring and control system when this
is available.

89 </Requirement>
90 <!-- From g2s -->
91 <Requirement id="6" seeAlso="1"> An event represents an

occurrence of an incident detected by a device in an EGM
92 </Requirement>
93 <Requirement id="7"> Important events must be reported in

real-time, including: error conditions, tickets inserted
, ticket printed.

94 </Requirement>
95 </Concern>
96

97 <Concern name="Demo Mode">
98 <!-- From Nevada -->

136 APPENDIX B. MDSOCRE CODE LISTINGS

99 <Requirement id="1"> The Slot Machine must permit a a test,
diagnostic or demo mode, which permits gaming device (e.
g., a hopper test) shall be completed on resumption of
normal operation.

100 </Requirement>
101 <Requirement id="2"> If the gaming device is in a test,

diagnostic or demo mode, any test that incorporates
credits entering or leaving the gaming device (e.g., a
hopper test) shall be completed on resumption of normal
operation.

102 </Requirement>
103 <Requirement id="3"> There shall not be any mode other than

normal operation (ready for play) that increments any of
the electronic meters.

104 </Requirement>
105 <Requirement id="4"> Any credits on the gaming device that

were added during the test, diagnostic or demo mode
shall be automatically cleared before the mode is exited
. </Requirement>

106 <!-- From GLI 11 4.17 -->
107 <Requirement id="5"> Specific meters are permissible for

these types of modes provided the meters indicate as
such

108 </Requirement>
109 <Requirement id="6"> The main cabinet door of the gaming

device may automatically place the gaming device in a
service or test/diagnostic mode. Test/diagnostics mode
may also be entered, via an appropriate instruction,
from an attendant during an audit mode access. These
modes should not be accessible to the player

110 </Requirement>
111 <Requirement id="7"> When exiting from test-diagnostic mode

, the game shall return to the original state it was in
when the test mode was entered

112 </Requirement>
113 <Requirement id="8"> Test Games. If the device is in a game

test mode, the machine shall clearly indicate that it is
in a test mode, not normal play.

114 </Requirement>
115 </Concern>
116

117 <!-- CROSSCUTTING RELATIONSHIPS -->
118

119 <Composition>
120 <Requirement concern="Demo Mode" id="all">
121 <Constraint action="enforce" operator="on">
122 <Requirement concern="Game" id="all" />
123 </Constraint>
124 <Constraint action="exclude" operator="on">
125 <Requirement concern="Game" id="1" />
126 <Requirement concern="Game" id="2" />
127 </Constraint>
128 <Outcome action="fulfilled"/>
129 </Requirement>
130 </Composition>
131

132

133 <Composition>
134 <Requirement concern="Game Recall" id="2">
135 <Constraint action="enforce" operator="on">
136 <Requirement concern="Game" id="2" />
137 </Constraint>

137

138 <Outcome action="fulfilled"/>
139 </Requirement>
140 </Composition>
141

142

143 <Composition>
144 <Requirement concern="Meters" id="4">
145 <Constraint action="enforce" operator="on">
146 <Requirement concern="Game" id="2,3,4,5,6" />
147 </Constraint>
148 <Outcome action="fulfilled"/>
149 </Requirement>
150

151 </Composition>
152

153

154 <Composition>
155 <Requirement concern="Program Resumption" id="1">
156 <Constraint action="enforce" operator="on">
157 <Requirement concern="Game" id="2" />
158 </Constraint>
159 <Outcome action="fulfilled"/>
160 </Requirement>
161 </Composition>
162

163

164 <Composition>
165 <Requirement concern="G2S" id="4">
166 <Constraint action="enforce" operator="on">
167 <Requirement concern="Game" id="2" />
168 </Constraint>
169 <Outcome action="fulfilled"/>
170 </Requirement>
171 </Composition>
172

173 <Composition>
174 <Requirement concern="Error Condition " id="3">
175 <Constraint action="enforce" operator="on">
176 <Requirement concern="Game" id="2,3,5,6" />
177 </Constraint>
178 <Outcome action="satisfied">
179 <Requirement concern=" Error Condition" id="2"/>
180 </Outcome>
181 </Requirement>
182 </Composition>
183

184 <Composition>
185 <Requirement concern="Proprietary Communication Protocol

" id="1,2">
186 <Constraint action="enforce" operator="on">
187 <Requirement concern="Game" id="2" />
188 </Constraint>
189 <Outcome action="fulfilled"/>
190 </Requirement>
191 </Composition>
192

193 </root>

Listing B.2: Interactions for the selected requirements expressed using MD-
SOCRE notation

138 APPENDIX B. MDSOCRE CODE LISTINGS

1 <Composition>
2 <Requirement concern="Meters" id="3">
3 <Constraint action="ensure" operator="with">
4 <Requirement concern="G2S" id="1,2"/>
5 </Constraint>
6 <Outcome action="fulfilled"/>
7 </Requirement>
8 </Composition>
9 <Composition>

10 <Requirement concern="Meters" id="3">
11 <Constraint action="ensure" operator="with">
12 <Requirement concern="SCP" id="1,2"/>
13 </Constraint>
14 <Outcome action="fulfilled"/>
15 </Requirement>
16 </Composition>
17 <Composition>
18 <Requirement concern="G2S" id="7">
19 <Constraint action="enforce" operator="xor">
20 <Requirement concern="Proprietary Communication Protocol" id

="5"/>
21 </Constraint>
22 <Outcome action="fulfilled"/>
23 </Requirement>
24 </Composition>
25 <Composition>
26 <Requirement concern="Error Condition" id="2,3">
27 <Constraint action="provide" operator="for">
28 <Requirement concern="G2S" id="4"/>
29 </Constraint>
30 <Outcome action="fulfilled"/>
31 </Requirement>
32 </Composition>
33 <Composition>
34 <Requirement concern="G2S" id="3">
35 <Constraint action="enforce" operator="xor">
36 <Requirement concern="Proprietary Communication Protocol" id

="4"/>
37 </Constraint>
38 <Outcome action="fulfilled"/>
39 </Requirement>
40 </Composition>
41 <Composition>
42 <Requirement concern="GameRecall" id="1,2">
43 <Constraint action="ensure" operator="with">
44 <Requirement concern="G2S" id="6"/>
45 </Constraint>
46 <Outcome action="fulfilled"/>
47 </Requirement>
48 </Composition>
49 <Composition>
50 <Requirement concern="SCP" id="all">
51 <Constraint action="enforce" operator="xor">
52 <Requirement concern="Demo" id="all"/>
53 </Constraint>
54 <Outcome action="fulfilled"/>
55 </Requirement>
56 </Composition>
57 <Composition>
58 <Requirement concern="G2S" id="all">
59 <Constraint action="enforce" operator="xor">
60 <Requirement concern="Demo" id="all"/>

139

61 </Constraint>
62 <Outcome action="fulfilled"/>
63 </Requirement>
64 </Composition>

Listing B.3: Interactions for the selected requirements expressed using
MDSOCRE-i notation

1 <Composition>
2 <Requirement concern="G2S" id="1,2">
3 <Interaction type="dependency">
4 <Requirement concern="Meters" id="3"/>
5 </Interaction>
6 </Requirement>
7 </Composition>
8 <Composition>
9 <Requirement concern="Proprietary Communication Protocol

" id="1,2">
10 <Interaction type="dependency">
11 <Requirement concern="Meters" id="3"/>
12 </Interaction>
13 </Requirement>
14 </Composition>
15 <Composition>
16 <Requirement concern="Proprietary Communication Protocol

" id="5">
17 <Interaction type="mutex">
18 <Requirement concern="G2S" id="7" />
19 </Interaction>
20 </Requirement>
21 </Composition>
22 <Composition>
23 <Requirement concern="Error Condition" id="2,3">
24 <Interaction type="reinforcement" >
25 <Requirement concern="G2S" id="4"/>
26 </Interaction>
27 </Requirement>
28 </Composition>
29 <Composition>
30 <Requirement concern="Proprietary Communication Protocol

" id="4">
31 <Interaction type="mutex" >
32 <Requirement concern="G2S" id="3"/>
33 </Interaction>
34 </Requirement>
35 </Composition>
36 <Composition>
37 <Requirement concern="G2S" id="6">
38 <Interaction type="dependency">
39 <Requirement concern="GameRecall" id="1,2"/>
40 </Interaction>
41 </Requirement>
42 </Composition>
43 <Composition>
44 <Requirement concern="Proprietary Communication Protocol

" id="all">
45 <Interaction type="conflict" >
46 <Requirement concern="Demo" id="all"/>
47 </Interaction>
48 </Requirement>
49 </Composition>

140 APPENDIX B. MDSOCRE CODE LISTINGS

50 <Composition>
51 <Requirement concern="G2S" id="all">
52 <Interaction type="conflict" >
53 <Requirement concern="Demo" id="all"/>
54 </Interaction>
55 </Requirement>
56 </Composition>

Appendix C

Resumen en Español

C.1 Motivación

La programación orientada a aspectos (AOP) provee herramientas poderosas
para el encapsulamiento de las llamadas “incumbencias transversales” (cross-
cutting concerns) a nivel de programación.

Las ideas y conceptos de AOP rápidamente impregnaron otras etapas del
desarrollo de software, incluyendo el análisis de requerimientos y el diseño, dando
origen respectivamente a la ingenieŕıa de requerimientos orientada a aspectos
(AORE, por sus iniciales en inglés) y modelado orientado a aspectos (AOM).
El conjunto de técnicas orientadas a aspectos, aplicadas al ciclo desarrollo de
software se conocen como aspect oriented software development (AOSD).

Dado que los aspectos encapsulan incumbencias independientes, se esperaŕıa
que no debieran interferir, pero es reconocido que dichas interferencias ocur-
ren [58, 74, 88]. Estas interacciones son un tema abierto en la comunidad
cient́ıfica que realiza investigación en orientación a aspectos [18]. El mismo
ha sido parcialmente estudiado acotándolo a etapas aisladas del desarrollo de
software, pero las interacciones entre aspectos nunca han sido tratadas de man-
era consistente a largo del ciclo que va desde los requerimientos hasta la im-
plementación. Por otra parte, los ejemplos de interacciones encontrados en la
bibliograf́ıa refieren en general a un solo tipo de interacciones, que llamamos
interacciones a nivel de joinpoint.

Esta tesis propone el estudio de las interacciones entre aspectos en tres etapas
del desarrollo de software: análisis de requerimientos, diseño e implementación,
en el contexto de un sistema de software complejo, de tipo industrial. Nuestra
hipótesis es que el estudio de las interacciones desde etapas tempranas del de-
sarrollo proveerá información importante sobre la naturaleza de las mismas, la
cual permitirá desarrollar herramientas efectivas para su tratamiento.

C.2 Objetivos

Con el propósito de desarrollar mecanismos que permitan modelar e implemen-
tar las interacciones entre aspectos, en este trabajo se ha llevado adelante el
desarrollo orientado a aspectos de un caso de estudio derivado de la industria,
haciendo foco en el problema de las interacciones desde el inicio.

141

142 APPENDIX C. RESUMEN EN ESPAÑOL

Podemos resumir los objetivos de este trabajo de la siguiente manera:

• El objetivo principal consiste en comprender las interacciones entre aspec-
tos a partir de su estudio en varias etapas del ciclo de desarrollo, para
proveer mecanismos o soluciones que permitan tratarlas de manera ade-
cuada. A partir de este objetivo se desprenden los siguientes sub-objetivos.

• El análisis un caso de estudio industrial complejo con presencia de inter-
acciones entre las diferentes incumbencias o aspectos.

• El estudio de la naturaleza de dichas interacciones y su clasificación de
acuerdo a las taxonomı́as existentes.

• La evaluación de las capacidades expresivas de los enfoques de AORE
existentes para el modelado de las interacciones, proponiendo extensiones
cuando fuera necesario.

• Evaluación del soporte para interacciones provisto por enfoques de mod-
elado orientado a aspectos, proponiendo extensiones cuando fuera nece-
sario.

• La implementación de las interacciones, utilizando lenguajes orientados
a aspectos dinámicos y estáticos, con el objetivo de evaluar el soporte
existen proponiendo las extensiones que fueran necesarias.

C.3 Detalle del Contenido de la Tesis

Para el desarrollo de este trabajo hemos utilizado como caso de estudio el soft-
ware para slots machines (SM, máquinas tragamonedas).

Las SM son máquinas de apuestas, usualmente instaladas en casinos. Por
tratarse de máquinas que manejan grandes volúmenes de dinero tanto el hard-
ware como el software están sujetos a numerosas reglamentaciones, estándares
aplicables y recomendaciones técnicas. El software de las SM, cuyas carac-
teŕısticas se presentan en el caṕıtulo 3 se compone de numerosas incumbencias
transversales funcionales (functional crosscutting concerns).

Estas incumbencias presentan varios ejemplos de interacciones, los cuales
pueden ser clasificados de acuerdo a la taxonomı́a de Sanen et al. [74]. En dicha
taxonomı́a las interacciones entre aspectos se clasifican en cuatro categoŕıas:

Conflict : representa un interferencia semántica entre aspectos. Si existe un
conflicto entre dos aspectos A y B, cada uno funciona correctamente sobre
el sistema de base, pero los dos no pueden ser instalados al mismo tiempo.
La combinación de los aspectos A y B genera comportamiento indeseable
en el sistema.

Mutex : En este caso dos aspectos brindan una funcionalidad similar pero no
pueden ser instalados en el sistema al mismo tiempo.

Dependency : El aspecto A depende del aspecto B, si A necesita que B este
instalado para funcionar correctamente. Si B no esta presente, el compor-
tamiento de A no será el esperado.

C.3. DETALLE DEL CONTENIDO DE LA TESIS 143

Reinforcement : Existe un refuerzo del aspecto B en el aspecto A si la presencia
de B beneficia al aspecto A. El aspecto A puede funcionar en ausencia de
B, pero la presencia de B habilita funcionalidad extra en el aspecto A.

Dada la importancia que tienen las interacciones en el dominio elegido (ver
sección 3.8), hemos decido aplicar AOSD haciendo especial énfasis en la iden-
tificación, documentación, modelado e implementación de las interacciones. En
las distintas etapas del ciclo de desarrollo se ha analizado el soporte existente,
extendiendo algunos de los enfoques para AORE, AOM y AOP con soporte
expĺıcito para las interacciones.

C.3.1 Interacciones entre Aspectos en el Análisis de Re-
querimientos

Para este trabajo se ha comenzado en etapas tempranas del desarrollo, particu-
larmente en el análisis de requerimientos. De acuerdo a Liu et al. [57] la mayoŕıa
de las interacciones entre caracteŕısticas (feature interactions) pueden ser detec-
tadas en etapas tempranas del ciclo de desarrollo razonando acerca de las causas
y construyendo modelos de ellas. El objetivo de esta detección es documentar
tantas interacciones como sea posible de manera que esta información pueda ser
utilizada en etapas posteriores (diseño e implementación).

El resultado de esta etapa debe ser un modelo de requerimientos tan consis-
tente como sea posible. Dado que una consistencia total y absoluta no es posible
ante la presencia de conflictos, estos deben ser documentados de forma de diferir
su resolución a las etapas posteriores del desarrollo. Para lograr este objetivo
es necesario apoyarse en mecanismos expresivos provistos por las técnicas en
seleccionadas para esta etapa.

A nuestro mejor entender, no existe ningún trabajo previo detallando ex-
periencias acerca del soporte de interacciones en metodoloǵıas AORE, en el
contexto de un caso industrial. Por lo tanto, se decidió realizar un estudio en
profundidad utilizando dos reconocidos enfoques de AORE, con el fin de evaluar
su aplicabilidad en el dominio de las SM: Theme/Doc [9] y MDSOCRE [60].

En el caṕıtulo 4 se muestra cómo estos enfoques fueron aplicados. Los re-
sultados han demostrado deficiencias, como ser la falta de granularidad en The-
me/Doc y la ausencia de soporte de interacciones para ambos. En el mismo
caṕıtulo se han propuesto extensiones para la notación de Theme/Doc, agre-
gando granularidad (permite indicar que requerimientos intervienen en las rela-
ciones entre concerns) y la capacidad de expresar requerimientos derivados (ver
sección 4.4.1). En el caso de MDSOCRE se agregó soporte expĺıcito para inter-
acciones, el cual fue testeado mediante un experimento con ingenieros expertos
en el dominio y demostró ser más preciso para la representación de interacciones
y más eficiente en términos de tiempo (ver sección 4.5).

C.3.2 Interacciones entre Aspectos en el Diseño

El siguiente paso consiste en modelar el software utilizando un enfoque ade-
cuado de AOM (aspect oriented modeling). En la fase de diseño el objetivo es
refinar la especificación de requerimientos para obtener un modelo de los arte-
factos de software que conformarán el sistema final. Este modelo, descripto

144 APPENDIX C. RESUMEN EN ESPAÑOL

en un documento, debeŕıa ser utilizado por los desarrolladores como gúıa du-
rante la etapa de implementación de manera relativamente independiente. Por
lo tanto debe ser lo suficientemente completo como para que los desarrolladores
no necesiten releer anexos conteniendo requerimientos. En esta fase, esperamos
producir diseños completos sin necesidad de recurrir a (muchos) documentos
adicionales con notaciones ad-hoc, ya que en este caso utilizar una metodoloǵıa
AOM reportaŕıa muy pocos beneficios, y consideraŕıamos desarrollar nuestro
propio enfoque AOM. En particular nuestras expectativas incluyen el soporte
expĺıcito para interacciones entre concerns, y la mantenibilidad.

Es conocido que la presencia de aspectos en un sistema que evoluciona
puede ser problemática [51]. Estos problemas deben mitigarse gracias a la in-
formación expĺıcita disponible en el diseño. Las interacciones entre aspectos
pueden complicar la comprensión sobre el comportamiento esperado del sistema.
Esta información es crucial para la implementación correcta del sistema y su
evolución. Por lo tanto la documentación de las decisiones de diseño debe in-
cluir no sólo los módulos que serán aspectos y donde atraviesan a otros módulos,
sino también cómo interactuan entre ellos. Esta información debe disponerse
de forma expĺıcita, de manera que pueda ser comunicada adecuadamente a la
etapa de implementación. El enfoque AOM utilizado debe proveer soporte para
expresar dicha información.

Hasta donde conocemos, no existe ningún trabajo que evalúe los enfoques
de AOM en un contexto industrial con foco en las interacciones entre concerns.
Nuevamente decidimos realizar una evaluación de dos reconocidos enfoques para
aspect oriented modeling : Theme/UML [26] y WEAVR [28]. En el caṕıtulo 5 se
estudió cómo expresar a nivel de diseño el comportamiento que las SM deben
proveer, incluyendo las interacciones entre aspectos. Si bien Theme/UML afirma
brindar soporte para conflictos, hemos comprobado que el soporte esta orien-
tado a problemas menores como conflictos de cardinalidades o visibilidad de-
bido a declaraciones diferentes en distintos temas. Por otra parte, el soporte de
WEAVR es más avanzado, permitiendo resolver a nivel de joinpoint las depen-
dencias y conflictos. Sin embargo, también es insuficiente ya que no permite
expresar de manera expĺıcita las interacciones que ocurren en el dominio de
las SM. En el mismo caṕıtulo se ha mostrado que es posible para ambos enfo-
ques describir el comportamiento de las interacciones de forma impĺıcita, lo cual
acarrea problemas de mantenimiento y evolución en el sistema.

En ambos casos existen problemas de escalabilidad. En el caso de The-
me/UML no existe una herramienta que soporte la metodoloǵıa. En el caso
de WEAVR si bien existe una herramienta reportada en al bibliograf́ıa, la
notación no soporta abstracciones que permitan aplicar soluciones a problemas
recurrentes (como las interacciones).

C.3.3 Interacciones entre Aspectos en la Implementación

Una vez que las decisiones de diseño respecto de las interacciones han sido do-
cumentadas, debe realizarse la implementación de las mismas. En esta etapa
es deseable que el programador disponga de construcciones del lenguaje que le
permitan codificar de manera expĺıcita las interacciones. En su defecto, será
necesario implementar las interacciones valiendose de construcciones definidas
enel lenguaje, las cuales no fueron pensadas para esta función. Por lo tanto, se
decidió implementar las interacciones utilizando lenguajes orientados a aspectos

C.4. CONTRIBUCIONES 145

de propósito general, con el objetivo de evaluar el impacto que ellos tienen en
las interacciones entre aspectos. En primer lugar se eligió a AspectJ [52] que es,
discutiblemente, el lenguaje orientado a aspectos más maduro e influyente. Dado
que AspectJ es un lenguaje estático, hemos decido contrastar los resultados con
la implementación de las interacciones en un lenguaje dinámico, en este caso
hemos elegido a PHANtom [34].

La programación utilizando tales lenguajes es una tarea importante para
poder evaluar la conveniencia de cada uno a la hora de implementar las in-
teracciones mediante lógica espećıfica para cada caso, y definir cuales son las
extensiones más necesarias para soportarlas de manera nativa. En el caṕıtulo 6
se describe la forma en la cual cada una de las interacciones pueden implemen-
tarse en cada uno de los lenguajes, analizando el impacto que estos tienen en
dicha implementación. A partir de este trabajo se puede ver que de los cuatro
tipos de interacciones sólo reinforcement se benefició de los chequeos en tiempo
de compilación que realiza AspectJ, debido al uso de inter-type declarations. De-
pendency y mutex ocurren de manera similar, y requieren el uso de lógica ad-hoc
para su implementación. En el caso de dependency es deseable añadir chequeos
en run-time para asegurar la consistencia del sistema (ver sección 7.3.4). Por
otro lado, conflict se beneficia del weaving dinámico en PHANtom y requiere
la instrumentación de los aspectos (para desactivarlos) en el caso de AspectJ.
Basados la experiencia de esta implementación, se propusieron extensiones a
AspectJ en la sección 6.6, las cuales permiten tratar tanto interacciones a nivel
de joinpoint como interacciones semánticas. Estas extensiones pueden ser im-
plementadas como una combinación de chequeos en tiempo de compilación y
ejecución.

C.4 Contribuciones

Las contribuciones de esta tesis se resumen a continuación:

• El reporte de un ciclo de desarrollo orientado a aspectos para un do-
minio industrial. Hasta donde conocemos no existe un reporte incluyendo
análisis, diseño e implementación de un sistema industrial utilizando ori-
entación a aspectos.

• Dos reconocidos enfoques de AORE fueron evaluados y extendidos. Estas
extensiones fueron evaluadas experimentalmente con el fin de juzgar su
aplicabilidad. Este trabajo fue publicado en [97, 98, 99].

• Dos enfoques de AOM, que afirman tener soporte para interacciones, han
sido evaluados utilizando las interacciones encontradas en el dominio de
las SM. En ambos casos se han encontrado falencias, las cuales han sido
reportadas y publicadas en [36]1.

• La implementación de los 4 tipos de interacciones utilizando tanto un
lenguaje de aspectos dinámico como uno estático. Los resultados mues-
tran la naturaleza dinámica o estática del lenguaje usado tiene un impacto
considerable en la implementación de la misma. A partir de la experien-
cia se propone una extensión para AspectJ que cubre las interacciones

1Este art́ıculo fue premiado como best paper en el track industrial de MODELS 2011.

146 APPENDIX C. RESUMEN EN ESPAÑOL

encontradas y además las reportadas en la bibliograf́ıa. Estos resultados
no se encuentran publicados aún pero están inspirados en nuestro trabajo
reportado en [100].

• Finalmente, esta tesis contribuye el estudio en profundidad de un caso in-
dustrial y complejo, compuesto por numerosas incumbencias transversales,
muchas de ellas funcionales. Ejemplos genuinos y nuevos de interacciones
han sido encontrados y documentados. Estas interacciones difieren de los
reportados en la bibliograf́ıa disponible y por lo tanto presentan un desaf́ıo
relevante para estos y otros enfoques de orientación a aspectos.

C.5 Análisis de las conclusiones

Durante nuestra investigación hemos observado que en general las interacciones
entre aspectos, especialmente las semánticas, han sido parcialmente ignoradas.
Aun cuando algunas interacciones a nivel de joinpoint son soportadas por al-
gunos de los trabajos relacionados no existe ningún reporte de un desarrollo de
un sistema industrial y complejo, que valide su aplicabilidad.

Hemos comprobado la existencia de numerosas interacciones semánticas en-
tre concerns (o aspectos, dependiendo de la etapa del desarrollo de la que es-
temos hablando) en el dominio de las SM. Estas interacciones demostraron ser
diferentes a las habitualmente tratadas en la bibliograf́ıa. Por lo tanto, no
es sorprendente que los enfoques de desarrollo orientados a aspectos muestren
limitaciones y deficiencias para expresarlas correctamente. Por lo tanto, en cada
etapa del ciclo de desarrollo se ha observado que las metodoloǵıas y enfoques
orientados a aspectos carecen de la madurez suficiente para el desarrollo de
sistemas complejos donde existan interacciones entre aspectos.

Consideramos que este soporte debe ser agregado a los enfoques orientados a
aspectos, ya que ignorar la existencia de las interacciones restringe notablemente
la aplicabilidad de la orientación a aspectos. En este sentido hemos presentado
un soporte expĺıcito para interacciones en los enfoques AORE estudiados. Los
experimentos realizados demostraron que las extensiones propuestas permiten
expresar de forma eficaz la semántica de la interacciones (sección 4.5). Además
estas extensiones permiten a los ingenieros interpretar las relaciones ente los
concerns en forma más rápida. En la etapa de diseño se ha mostrado cómo el
comportamiento referido a las interacciones puede expresarse sólo de manera
impĺıcita debido a la ausencia de soporte adecuado para las interacciones. Las
limitaciones en cuanto a expresividad y escalabilidad de los enfoques evaluados
permitarán desarrollar extensiones para las interacciones. En la etapa de im-
plementación, dos lenguajes orientados a aspectos de propósito general fueron
utilizados mostrando que es necesario soporte expĺıcito para las interacciones.
A partir de estas implementaciones es posible concluir qué efecto tiene la di-
namicidad del lenguaje elegido, en la implementacion de los cuatro tipos de
interacciones tratadas. Estos efectos pueden ser tenidos en cuenta al momento
de elegir un lenguaje para la implementación, considerando las interacciones
presentes. Finalmente, se presentaron extensiones para el lenguaje AspectJ, las
cuales permiten tratar las interacciones a nivel de joinpoint (como las reportadas
en la bibliograf́ıa) y semántico.

Como una reflexión final respecto de las interacciones, podemos concluir que

C.5. ANÁLISIS DE LAS CONCLUSIONES 147

las interacciones tratadas en etapas tempranas del desarrollo tienen una forma
más genérica. Por lo tanto, es más sencillo proveer soporte para ellas. En etapas
posteriores del desarrollo, las decisiones de diseño e implementación referidas a
las interacciones, requieren mecanismo con una semántica muy particular.

C.5.1 Evaluación de la Orientación a Aspectos en un Do-
minio Industrial

El caso de estudio analizado en esta tesis nos ha permitido, además de evaluar el
soporte de interacciones y proponer extensiones para soportarlas en las distintas
etapas, juzgar la aplicabilidad de los enfoques orientados a aspectos a problemas
reales en la industria. Hemos visto que en la etapa de requerimientos no proveen
soporte para interacciones, a excepción de los conflictos. Sin embargo, dado que
el signicado de “conflicto” difiere entre los enfoques, también lo hace el soporte
que ellos proveen. En general los enfoques de AORE que soportan conflictos
permiten detectarlos o proveen herramientas para eliminarlos. Vemos que este
soporte es insuficiente, ya que algunos conflictos deben ser documentados para
su tratamiento en posteriores etapas del ciclo de desarrollo.

Las herramientas AOM se encuentran en un estado de inmadurez mayor que
las de la etapa análisis de requerimientos e implementación. Hemos observado
que cuentan con tres problemas importantes: 1) soporte pobre para interac-
ciones, 2) notaciones incongruentes para conceptos comunes de la orientación
a aspectos y 3) falta de escalabilidad debido a la ausencia de herramientas.
Con respecto a 1) hemos observado que debido a que proveen un soporte pobre
para interacciones, información relevante debe ser expresada impĺıcitamente.
En lo que respecta a 2) las diferentes notaciones, radicalmente diferentes, son
un factor distractivo que agrega complejidad innecesaria. En nuestra opinión
la notación, al menos para los conceptos básicos de AOP como ser: pointcut,
advice, aspecto, introducciones (inter type declarations) etc, debeŕıa ser unifi-
cada. Finalmente, con respecto a 3) vemos que los enfoques de AOM y AORE
sufren un problema de falta de escalabilidad, directamente relacionado con la
escacez de herramientas que automaticen o den soporte a ciertos procesos. Las
herramientas para AOM pueden proveer soporte para el modelado, el weaving
y la generación de código. La falta herramientas para modelado puede ser par-
cialmente subsanada con la utilización de abstracciones que permitan aplicar la
misma solución a diferentes escenarios, de forma tal de reducir la cantidad de
documentos de diseño a generar y mantener. Sin embargo, no hay posibilidad
de aliviar la falta de herramientas para el weaving automático de modelos. Con-
sideramos que tanto las herramientas para modelado y weaving, a diferencia de
las herramientas para generación de código, son cŕıticas para el éxito de AOM.

En lo que respecta a la etapa de implementación, vemos que AOP presenta
un reto para los programadores a la hora de comprender el comportamiento del
sistema, ya que la naturaleza de los aspectos hace que modifiquen el compor-
tamiento de muchos módulos. Por lo tanto, la ayuda provista por el lenguaje
y las herramientas de desarrollo para la correcta visualización de los efectos de
los aspectos es crucial. Las interacciones entre aspectos complican aún más el
panorama, dificultando comprender el comportamiento de sistema final. Hemos
observado que los lenguajes no proveen un soporte adecuado para expĺıcitas las
interacciones, haciendo necesario implementarlas de manera ad-hoc, Esto re-
sulta en restricciones del comportamiento impĺıcitas, lo cual acarrea problemas

148 APPENDIX C. RESUMEN EN ESPAÑOL

de mantenibilidad.
Creemos que varios de los puntos mencionados pueden ser las causas por

las cuales la orientación a aspectos no se ha convertido en un paradigma de
aplicación masiva. A partir de estas observaciones podemos afirmar que AOSD
no está listo para la industria.

C.6 Trabajo Futuro

A partir del trabajo desarrollado para esta tesis se desprenden las siguientes
ĺıneas de acción a futuro:

• El trabajo desarrollado nos ha mostrado que existen muchas interacciones
en el dominio de las SM y que si bien se pueden clasificar de acuerdo
a taxonomı́as conocidas, la forma de las interacciones es diferente a las
reportadas en la bibliograf́ıa. Esto plantea un nuevo interrogante: ¿estas
interacciones únicamente ocurren en el dominio de las SM? ¿O no han sido
reportadas como consecuencia de una selección tendenciosa de los casos de
estudio? Es necesario estudiar otros dominios complejos para responder a
esta pregunta.

• La trazabilidad es un elemento importante en el proceso de desarrollo de
software. Las interacciones debeŕıan ser trazadas desde los requerimientos
hasta la implementación, de forma tal que al evolucionar los requerimien-
tos asociados a una incumbencia que presenta interacciones, las restric-
ciones asociadas a la interacción no sean violadas. De aqúı se desprende
que es necesario estudiar y posiblemente realizar nuevas extensiones que
permitan dicha trazabilidad.

• Motivados por las diferentes fuentes de requerimientos, en la etapa AORE
proponemos el estudio del impacto de nuestras extensiones en la evolución
de los requerimientos (ver sección 7.3.2).

• En la etapa de diseño es necesario proveer soporte expĺıcito para inter-
acciones a las metodoloǵıas utilizadas. En la sección 7.3.3 se discuten
brevemente estas posibles extensiones. Además nuevos enfoques de AOM
reportan tener un soporte avanzado para interacciones, en particular, la
aplicación de RAM [55] es un de los trabajos planeados a corto plazo.

• En la etapa de implementación, en la sección 7.3.4 se describe brevemente
como como las configuraciones de deployment2 del sistema afectan o ayu-
dan a implementar las interacciones, y como chequeos en run-time de-
beŕıan ser realizados para asegurar la consistencia del sistema. Diferentes
experimentos deben ser realizados para luego comparar la implementación
de las interacciones usando estos mecanismos con las implementaciones ya
realizadas.

• También en la etapa de implementación es necesario evaluar las exten-
siones propuestas para AspectJ. En este caso deben considerarse no sólo

2Llamamos configuración de deployment al conjunto de aspectos considerados activos para
un deployment del sistema.

C.6. TRABAJO FUTURO 149

las interacciones encontradas en el dominio de las SM, sino también aquel-
las reportadas en la literatura sobre interacciones entre aspectos, las cuales
en su mayoŕıa son interacciones a nivel de joinpoint.

	Acknowledgments
	Introduction
	Unfinished Business I: Aspect Orientation in the Industry
	Unfinished Business II: Aspect Interactions
	The Slot Machine Domain
	Motivation
	Thesis Statement
	Objectives
	Methodology
	Contributions
	Outline of this Dissertation

	Aspect Oriented Software Development and Aspect Interactions
	From Objects to Aspects
	Modularization Issues in Current Software Engineering Practices
	Advanced Separation of Concerns and Aspect Oriented Programming
	Aspect Oriented Software Development

	Interactions in Aspect Oriented Software Development
	Interactions in the Requirements Analysis Phase
	Interactions in the Design and Modeling Phase
	Interactions in the Implementation Phase

	Summary

	Slot Machine Domain
	Requirement Sources
	Rudimentary Design of a Slot Machine
	Specific hardware
	Meters, Persistence and Recall
	Monitoring
	Certification and Demo mode
	Concerns in Slots Machines
	Interactions
	Summary

	Interactions in Analysis
	Requirements Engineering and Aspect Dependencies and Interactions
	Requirements in the Slot Machines Domain
	Selected Requirements

	Evaluation of AORE Approaches
	Theme/Doc
	Use of Theme/Doc
	Limitations of Theme/Doc
	MDSOCRE
	Use of MDSOCRE
	Limitations of MDSOCRE

	Extensions of the Existing Approaches
	Extensions to Theme/Doc: Theme/Doc-i
	Extensions to MDSOCRE: MDSOCRE-i
	Summary of Extensions

	User Study: MDSOCRE, MDSOCRE* and MDSOCRE-i
	Case Study 1: MDSOCRE vs. MDSOCRE*
	Case Study 2: MDSOCRE* vs MDSOCRE-i

	Conclusions

	Interactions in Design
	Requirements for the Design
	What is Expected from the Design Document
	Scalability is Key

	Design Overview
	Aspects in the Design
	Interactions Between Concerns

	Evaluation of Theme/UML
	Conflict
	Mutex
	Reinforcement
	Dependency
	Scalability
	Conclusion: Theme/UML

	Evaluation of WEAVR
	Conflicts
	Mutex
	Reinforcement
	Dependency
	Conclusion: WEAVR

	Conclusions

	Interactions in Implementation
	Static and Dynamic AOP Languages
	Implementing Interactions in PHANtom
	Dependency
	Reinforcement
	Conflict
	Mutex
	Summary

	Implementing Interactions in AspectJ
	Dependency
	Reinforcement
	Mutex
	Conflicts

	On the Generic and Explicit Interaction Support
	Implementation Results
	Interactions Extensions for AspectJ
	Conflict
	Dependency
	Reinforcement
	Mutex

	Conclusions

	Conclusions and Future Work
	Towards a Full Aspect Oriented Development Cycle
	AORE
	AOM
	AOP
	From the Lab to the Industry
	The Missing Link: Traceability

	Contributions and Related Publications
	Future work
	General
	Requirements Analysis
	Design
	Implementation

	Theme/Doc Diagrams
	MDSOCRE Code Listings
	Resumen en Español
	Motivación
	Objetivos
	Detalle del Contenido de la Tesis
	Interacciones entre Aspectos en el Análisis de Requerimientos
	Interacciones entre Aspectos en el Diseño
	Interacciones entre Aspectos en la Implementación

	Contribuciones
	Análisis de las conclusiones
	Evaluación de la Orientación a Aspectos en un Dominio Industrial

	Trabajo Futuro

