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Abstract

Background: Leishmaniasis is one of the most diverse and complex of all vector-borne diseases worldwide. It is caused by
parasites of the genus Leishmania, obligate intramacrophage protists characterised by diversity and complexity. Its most
severe form is visceral leishmaniasis (VL), a systemic disease that is fatal if left untreated. In Latin America VL is caused by
Leishmania infantum chagasi and transmitted by Lutzomyia longipalpis. This phlebotomine sandfly is only found in the New
World, from Mexico to Argentina. In South America, migration and urbanisation have largely contributed to the increase of
VL as a public health problem. Moreover, the first VL outbreak was recently reported in Argentina, which has already caused
7 deaths and 83 reported cases.

Methodology/Principal Findings: An inventory of the microbiota associated with insect vectors, especially of wild
specimens, would aid in the development of novel strategies for controlling insect vectors. Given the recent VL outbreak in
Argentina and the compelling need to develop appropriate control strategies, this study focused on wild male and female
Lu. longipalpis from an Argentine endemic (Posadas, Misiones) and a Brazilian non-endemic (Lapinha Cave, Minas Gerais) VL
location. Previous studies on wild and laboratory reared female Lu. longipalpis have described gut bacteria using standard
bacteriological methods. In this study, total RNA was extracted from the insects and submitted to high-throughput
pyrosequencing. The analysis revealed the presence of sequences from bacteria, fungi, protist parasites, plants and
metazoans.

Conclusions/Significance: This is the first time an unbiased and comprehensive metagenomic approach has been used to
survey taxa associated with an infectious disease vector. The identification of gregarines suggested they are a possible
efficient control method under natural conditions. Ongoing studies are determining the significance of the associated taxa
found in this study in a greater number of adult male and female Lu. longipalpis samples from endemic and non-endemic
locations. A particular emphasis is being given to those species involved in the biological control of this vector and to the
etiologic agents of animal and plant diseases.
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Introduction

Leishmaniasis is a vector-borne neglected infectious disease of

worldwide incidence and its most severe clinical form is visceral

leishmaniasis (VL). Each year VL causes an estimated 500,000

new cases and more than 59,000 deaths [1], a death toll that is

only surpassed by malaria among the parasitic diseases [2].

Furthermore, both figures are approximations since VL is

frequently not recognized or not reported [3–4]. Leishmaniasis is

transmitted through the bite of two phlebotomine sandfly genera,

Phlebotomus in the Old World and Lutzomyia in the New World. In

Latin America VL is caused by Leishmania infantum chagasi and

transmitted by Lutzomyia longipalpis [5]. This phlebotomine sandfly

is only found in the New World, with a wide distribution from

Mexico to Argentina [6]. The geographical distribution of

leishmaniasis has undoubtedly expanded and is now being

reported in areas that were previously non-endemic. The

worldwide phenomenon of urbanisation, closely related to the

sharp increase in migration, is one of the major risk factors that is

making leishmaniasis a growing public health concern for many

countries around the world [7] and Argentina is not an exception.

Between 1925 and 1989 only 14 leishmaniasis human cases were

reported in Argentina and none was attributed to Le. chagasi.

Moreover, there were only two isolated reports of Lu. longipalpis (in

1953 and 2000) which were not associated with VL [8].

Nevertheless, this situation has changed dramatically, mostly due

to an indiscriminate advance of urbanisation, and the first

Argentine VL outbreak was recently reported [9]. From 2006 to

www.plosntds.org 1 September 2011 | Volume 5 | Issue 9 | e1304

Leishmaniasis, 



date the morbidity and mortality toll of this disease have amounted

to 83 human cases (35% corresponding to children under ten years

of age), 7 deaths and more than 7,000 infected dogs (National

Health Surveillance System, Epidemiology Bureau, National

Ministry of Health, Argentina).

In the natural environment, phlebotomine larvae feed on

organic matter from soil [10], while adults from both sexes feed on

sugars from plant sources [11–12]. Only female adults need blood

to obtain necessary proteins for the development of their eggs [5].

It is widely accepted that many insects derive their microbiota

from the surrounding environment, such as the phylloplane of

food plants or the skin of the animal host, and although the degree

of persistence of strains of the ingested species is unknown, these

microorganisms can influence the insect life cycle [13]. To

comprehensively understand the biology of insects, microorgan-

isms must be considered as a very important component of the

ecological system [14]. Moreover, an inventory of the associated

microbiota of phlebotomine sandflies, especially of wild specimens,

would aid in understanding the annual and regional variations

recorded for this disease [15] and in the development of novel

strategies for controlling these vectors, among others [13]. One

serious obstacle for the biological control of VL sandfly vectors is

that their precise breeding sites are poorly known. Furthermore, its

practical application seems to be limited to the adult VL vector

stage [16] because, as Lu. longipalpis larvae appear to be thinly

dispersed [17], this complicates the employment of biolarvicides in

the field.

There is scanty information on the microbial colonisation of Lu.

longipalpis and it is not yet clear if they possess an indigenous

community. Previously, midgut bacteria were examined from wild

and laboratory reared Lu. longipalpis populations [18–20] which

showed a predominance of Gram negative bacteria. Various

genera found ubiquitously in the environment (water, soil and

debris) were identified in these studies, including Acinetobacter,

Serratia, Pseudomonas, Stenotrophomonas, Flavimonas and Enterobacter.

These bacteria have also been found associated with the gut of

several other insects [21–24], suggesting they are a part of the

natural or transient microbiota. Prior studies on guts and

malpighian tubes from wild P. papatasi and P. tobbi showed a high

incidence of mycoses which were similar to Aspergillus sclerotiorum

and Saccharomyces cerevisiae [25]. Various types of virus have also

been found infecting phlebotomine sandflies [26], including

Vesiculovirus [27–28] and Cytoplasmic Polyhedrosis Virus [29].

Furthermore, in addition to Leishmania, Trypanosoma, Endotrypanum

and possibly other trypanosomatids [30], neotropical sandflies may

harbour other parasites including microsporidians [31–32],

gregarines [33–36], some Plasmodium spp. that parasitise lizards

[37] and nematodes [38–41]. Nevertheless, there is little

information on the pathological effects these parasites may

produce in their sandfly hosts.

Metagenomics facilitates the culture-independent analysis of

microbial communities [42], an approach which does not require

prior assumptions about the composition of the target community.

Metagenomic sequencing of communities containing eukaryotes,

in particular protists, is mostly cost-prohibitive because of their

enormous genome sizes and low gene coding densities [43].

Nevertheless, from an ecological perspective, excluding eukaryotes

from a metagenomic analysis compromises the ability to assess the

microbial community in its entirety. A possible approach to bypass

the problem of large amounts of non-coding eukaryotic sequence

data consists in obtaining molecular data at the RNA level. Given

the recent VL outbreak in Argentina and with the ultimate goal of

identifying possible biological control agents, this study used

unbiased high-throughput pyrosequencing technology [44] to

compare the diversity of the taxonomic groups associated with

wild male and female adult Lu. longipalpis from endemic (Posadas,

Misiones) and non-endemic (Lapinha Cave, Minas Gerais) VL

locations in Argentina and Brazil, respectively. As in this study

phlebotomine sandflies were considered environmental samples,

the term ‘‘associated with’’ was used here in its broadest sense,

referring to a wide variety of possible interactions ranging from

casual associations due to random environmental contact (e.g.,

plant pathogenic fungi spores adhering to the hairy surface of the

sandflies when sugar-feeding on plants) to closer pathogenic or

symbiotic interactions (e.g., protists that parasitise phlebotomines

or permanent gut microbiota, respectively). This analysis revealed

the presence of sequences from bacteria, fungi, protists, plants and

metazoans.

Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Manual for the Use of Animals/

FIOCRUZ (Manual de Utilização de Animais/FIOCRUZ) of

Fundação Oswaldo Cruz, FIOCRUZ, Ministry of Health of Brazil

(National decree Nr 3,179). The protocol was approved by the

Ethics Committee for the Use of Animals of the Fundação

Oswaldo Cruz - FIOCRUZ, Ministry of Health of Brazil (Nr 242/

99).

Field sampling and specimen preparation
Lu. longipalpis specimens from the non-endemic VL location,

Lapinha Cave (Minas Gerais, Brazil), situated in the Sumidouro

National Public Park, were kindly provided by Dr. Paulo Pimenta

(Laboratory of Medical Entomology, Centro de Pesquisas René

Rachou, Fundação Oswaldo Cruz, FIOCRUZ). Sandflies from this

location were chosen as reference because they have been

extensively studied. Lu. longipalpis specimens from the endemic VL

location, Posadas (Misiones, Argentina), where they occur in high

density, were kindly provided by Dr. Marı́a Soledad Santini and

Mr. Enrique Adolfo Sandoval (Research Network for Leishmaniasis

Author Summary

Leishmaniasis is a vector-borne disease with a complex
ecology and epidemiology. It has three main clinical forms
of which visceral leishmaniasis (VL) is the most severe, as it
is fatal if untreated. It is caused by a protist parasite,
Leishmania spp., and is transmitted to humans by
phlebotomine sandflies. The best method to interrupt
any vector-borne disease is to reduce man-vector contact.
Vector-targeted strategies are particularly attractive be-
cause the vectorial capacity to transmit infectious diseases
to humans is proportional to vector density and, in an
exponential way, to vector survival. Biological control is an
effective means of reducing or mitigating pests through
the use of natural enemies and is more environmentally
friendly than traditional insecticide treatments. Neverthe-
less, there is very scanty information on the biological
control of sandflies and their potential control agents. In
this context, a detailed knowledge of the microorganisms
that are associated with these vectors would aid in the
development of novel strategies for controlling them. This
is the first study to survey the taxa associated with
leishmaniasis vectors and, more importantly, with any
infectious disease vector, using an unbiased and high-
throughput approach.

Metagenomic Analysis of Lutzomyia longipalpis
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in Argentina, REDILA, and Posadas Municipality Quality of Life

Department).

Captures were made using CDC light traps [45] on the 15th

and 26th of May 2009 in the Lapinha Cave and in Posadas,

respectively. The Lapinha Cave (S19 33 42.42 W43 57 34.96) is a

network of interconnected caves located in a vast tropical savanna

ecoregion called cerrado, characterised by great plant and animal

biodiversity. The trap was left 50–80 cm above ground level in an

external small annex cave (2 mt long) where a chicken was kept to

attract the sandflies and as a source of food (see Table 1 for a

detailed description of the site). Posadas, the densely populated

capital city of the province of Misiones, is located in the

subtropical fields and grasslands ecoregion. In the Posadas area

this ecoregion contacts the Paranaense forest and has a savanna-

type landscape. The trap was installed in the peridomicile of a

worst-case scenario homestead (domestic animals, dense vegeta-

tion, nearby spring) (S27 23.266 W55 53.403) (see Table 1 for a

detailed description of the site).

Sandflies were transported alive in a nylon cage to the

corresponding laboratories in Belo Horizonte (Minas Gerais) and

Posadas (Misiones) and no mortality was registered on arrival.

Other insect species were captured together with the sandflies

including hymenopterans, lepidopterans and mosquitoes. Sandflies

were killed at low temperature, identified and separated according

to sex, and stored alternatively in Tri-Reagent (Molecular Research

Center Inc., Cincinnati, OH) or RNAlaterH (Qiagen). A total of four

groups of 100 sandflies each, two per location, were separated and

named according to: SS1, females from the Endemic VL location

(EVL females); SS2, EVL males; PP1, females from the Non-

Endemic VL location (NEVL females); and PP2, NEVL males.

Sample preparation
Individual samples were ground in Tri-Reagent (Molecular

Research Center Inc., Cincinnati, OH) with a Teflon pestle and

total RNA was immediately extracted, according to the manufac-

turer’s instructions. Total RNA was amplified using a modified

sequence-independent amplification protocol [46]. Briefly, M-

MuLV Reverse Transcriptase (Fermentas, Vilnius, Lithuania) was

used for a first-strand reverse transcription which was initiated

with a random octamer linked to a specific primer sequence (59-

GTT TCC CAG TAG GTC TCN NNN NNN N-39) [47]. cDNA

was then amplified with the Expand Long Template PCR System

(Roche) using a 1:9 mixture of the above primer and a primer

targeting the specific primer sequence (59-CGC CGT TTC CCA

GTA GGT CTC-39) [48]. The following profile was used: initial

denaturation cycle at 94uC for 2 minutes; five low stringency

cycles with denaturation at 94uC for 30 seconds, 25uC for

30 seconds and 68uC for 6 minutes, were followed by 30 cycles

at 94uC for 30 seconds, 55uC for 30 seconds and 68uC for

6 minutes and a final extension cycle at 68uC for 5 minutes.

Pooled samples were submitted for high-throughput pyrosequenc-

ing (Macrogen Inc., Korea).

Sequence accession numbers
Reads were submitted to the NCBI Sequence Read Archive

(SRA) (submission SRA026595) under accessions SRR089611

(adult EVL female Lu. longipalpis; Posadas, Misiones, Argentina;

SS1), SRR089612 (adult EVL male Lu. longipalpis; Posadas,

Misiones, Argentina; SS2), SRR089613 (adult NEVL female Lu.

longipalpis; Lapinha Cave, Minas Gerais, Brazil; PP1) and

SRR089614 (adult NEVL male Lu. longipalpis; Lapinha Cave,

Minas Gerais, Brazil; PP2).

Sequence analysis
Reads ranged in size from approximately 100 to 1200 base pairs

(bp) (350 bp average). Raw sequence reads were trimmed to

remove sequences derived from the amplification primer. With the

purpose of reducing database search efforts and improving the

homology detection sensitivity [49], Cd-hit [50] was used to

generate non-redundant nucleotide datasets but these represented

less than 1% in every case (data not shown). For this reason, singlet

sequences were used for the nucleotide database search. Non-

Table 1. Ecological description of the EVL (Posadas, Argentina) and NEVL (Lapinha Cave, Brazil) sampling site locations.

Ecological description

Sampling site Animals Plants Others

Posadas Domestic animals present in the
homestead: Canis lupus familiaris (dog);
Felis catus (cat); Gallus gallus (chicken)

Homestead plants: Myrtus
communis (common myrtle); Citrus x
sinensis (orange tree); Citrus x limon
(lemon tree); Delonix regia (flame
tree); Punica granatum (pomegranate);
Jacaranda spp.; Persea americana
(avocado); Ficus carica (fig tree)

Family homestead situated in a densely populated
urban area with a spring of water, dense vegetation
and abundant organic matter produced by domestic
animals and humans.

Lapinha Cave Animal species confirmed at the time
of sampling: Gallus gallus (chicken), Homo
sapiens (human). Other animal species
found in the area: Mammals: Dasypodidae
(armadillos); Leopardus tigrinus (tiger cat);
Lontra spp. (otter); Tamandua tetradactyla
(tamanduá-de-colete). Reptiles: Crotalus
spp.; Sistrurus spp.; Bothrops spp.; Boidae.
Birds: Buteogallus spp.; Buteo spp.;
Leucopternis spp.; Dendrocygna viduata
(white-faced whistling duck); Phalacrocorax
brasilianus (Neotropic cormorant)

Plant species found in the area:
Tabebuia chrysantha (yellow Ipê);
Tabebuia serratifolia (yellow
lapacho); Lithraea molleoides
(aruera); Campomanesia pubescens
(guabiroba); Hymenaea
stigonocarpa (jatobá do campo)

Cave situated in a damp environment, with organic
matter produced by animals (chicken and bats,
among others) and a nearby lake. Located in the
cerrado ecoregion which is characterised by a
community of trees and large shrubs, usually 2–8 m
in height, belonging to many species and producing
10–60% coverage, with a well-developed grassy
ground layer between. The ground layer is usually
about 60 cm tall and consists of many species of
grasses and sedges mixed with a great diversity of
forbs, amongst which Leguminosae, Compositae,
Myrtaceae and Rubiaceae families are the most
important [88].

Posadas, the capital city of the province of Misiones, is large, densely populated and located in the Argentine fields and grasslands ecoregion. The Lapinha Cave is a
tourist attraction site located in the Sumidouro National Public Park which is part of the Brazilian cerrado ecoregion.
doi:10.1371/journal.pntd.0001304.t001
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redundant (nt) and non-human, non-mouse ESTs (est-others)

NCBI databases last modified on 23/04/10 and 25/04/10,

respectively, were downloaded locally (ftp://ftp.ncbi.nlm.nih.gov/

blast/db/). After trimming, singlet sequences were compared to

these databases using BLASTN (nucleotide homology) [51], with a

1e-50 cutoff E-value. The resulting BLAST alignments were

analysed and classified according to their taxonomical hierarchies

using custom applications written in Mathematica (Wolfram

Mathematica 7; available upon request). 16S sequences were

confirmed by alignment to type-species 16S rRNA sequences from

the Ribosomal Database Project (http://rdp.cme.msu.edu/) [52–

53]. Hits for every taxon were individually revised and confirmed

and only those which showed unequivocal results were included in

the final analysis. Fisher’s Exact Test [54] (p,0.05) was used to

establish the significance of sequences in the different samples

using a custom application written in Mathematica (Wolfram

Mathematica 7; available upon request).

Results

The vast majority of reads obtained for each sample

corresponded to Lu. longipalpis sequences (,85%) and an

important fraction showed no significant hits in the homology

searches against the different databases (,14%). Hits which

corresponded to taxa other than Lu. longipalpis represented less

than 0.2% of the total reads.

Results for each taxon were organised separately in this section.

Figure 1 emphasises the treatment of these vectors as environ-

mental samples. It shows an overview of the workflow used in this

study, summarising and associating information on the sampling

Figure 1. VL vectors as environmental samples: taxa identified in phlebotomine sandflies considering sampling site conditions. This
figure summarises and associates sampling site characteristics with taxa identified in male and female adult Lu. longipalpis from both locations. In all
cases figures are only schematic and not an exact representation of either the sampling sites, phlebotomine sandflies or identified taxa. A) Shows the
most significant ecological characteristics of both phlebotomine capture site locations in Argentina and Brazil: Posadas and Lapinha Cave,
respectively. Only those animal species confirmed at the time of sampling were represented schematically (Table 1 includes a detailed list of animal
and plant species in both locations). (B) Total RNA was extracted from male and female adult Lu. longipalpis specimens and amplified using sequence
independent amplification (see Methods section). (C) Shows the different taxa identified by sequence homology in all four samples (bacteria, fungi,
protists, metazoans and plants). Taxa are represented schematically and the particular species identified for each taxonomical group are not shown,
except in the case of metazoans (see Figure 2 for a detailed list). Grey rectangular boxes group taxa found in female adult Lu. longipalpis. White
rectangular boxes group taxa found in male adult Lu. longipalpis. VL: Visceral Leishmaniasis.
doi:10.1371/journal.pntd.0001304.g001
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sites and on the taxa identified by sequence homology in each

adult Lu. longipalpis sample. A detailed ecological description of

both sampling sites is given in Table 1. Figure 2 integrates and

summarises results for all the samples, indicating the taxa that

were identified in each case, the species that were found for each

taxon and the number of sequences for each species. Table S1 lists

all the reads that showed significant hits and a brief description of

each hit.

Bacteria
BLASTN analysis of the high-throughput sequencing data

identified bacteria in females from both locations (SS1 and PP1)

and in NEVL males (PP2) (Figures 1 and 2). Bacteria were

identified mostly by homology to completely sequenced bacterial

genomes (7 reads), followed by rRNA genes (4 reads) and lastly to

plasmid sequences (2 reads) (Table S1). Ten different bacterial

types were identified, six of which showed homology at the species

level (five to genomic sequences and one to plasmid sequences) and

four to diverse uncultured environmental samples (three to 16S

rRNA genes and one to genomic sequences). The bacterial

composition was different and unique in every case and included

sequences from Ralstonia pickettii, Anoxybacillus flavithermus, Geobacillus

kaustophilus, Streptomyces coelicolor, Propionibacterium acnes, Acinetobacter

baumannii, uncultured Veillonella sp. and uncultured bacterium

clones isolated from environmental samples (cow faeces, wetland

soil and water) (Figure 2; Table S1).

The totality of identified bacteria showed a predominance of

Gram negative rods (53.8%, 7 reads) and a significant proportion

of Gram positive bacteria (38.5%, 5 reads), in accordance with

previous studies [18–20,55]. Of all the bacterial sequences that

were identified in this study, only A. baumannii, which was found in

NEVL males (PP2), had been previously identified in adult female

Lu. longipalpis. This species had been isolated from female

laboratory reared specimens from the same non-endemic VL

location (Lapinha Cave) [20] and from wild female specimens

from endemic VL locations in Brazil (Jacobina, Bahia, and São

Luı́s, Maranhão) [18].

Fungi
Fungi were only found in NEVL males and females (PP1 and

PP2) (Figure 1). A total of four different species was identified by

homology to rRNA genes (Figure 2; Table S1). These differed

between males and females and have not been found to date

associated with phlebotomines. The identified species included

Peronospora conglomerata, Cunninghamella bertholletiae, Mortierella verticil-

lata and Toxicocladosporium irritans (Figure 2; Table S1).

Protists
Protist sequences were only identified in EVL female and male

specimens (SS1 and SS2) (Figure 1), of which the vast majority

(99.8%) were found in males (Figure 2; Table S1). Protists were

identified by homology to sequenced rRNA genes (360 reads,

61.4%), cDNA (208 reads, 35.5%) and chromosomal sequences

(18 reads, 3.1%) (Table S1). Ten species and one genus of

apicomplexan parasites were identified that parasitise Diptera

(Ascogregarina taiwanensis, Psychodiella chagasi), birds (Eimeria tenella,

Sarcocystis falcatula, Sarcocystis cornixi), mammals (Cryptosporidium muris,

Sarcocystis arieticanis, Besnoitia besnoiti, Plasmodium falciparum, Plasmo-

dium berghei) and reptiles, birds and mammals (Sarcocystis sp.)

(Figure 2; Table S1). Most of the apicomplexan sequences (64.8%,

Figure 2. Taxa associated with wild adult male and female Lu. longipalpis specimens analysed in this study. Results for all the samples
were integrated and summarised in this figure, which indicates all the taxonomical groups that were identified, the species that were found for each
taxon and the number of sequences for each species. Solid black lines group the different taxa (plants, protists, metazoans, bacteria and fungi). For
bacteria, the dotted black lines separate and differentiate Gram+ and Gram- rods. The different species that were found are named beneath each
column. The number of sequences for each species is indicated on the top part of each cylinder. SS1: adult females from the Endemic VL location
(EVL); SS2: adult EVL males; PP1: adult females from the Non-Endemic VL location (NEVL); PP2: adult NEVL males.
doi:10.1371/journal.pntd.0001304.g002
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379 reads) were homologous to the mammalian parasites C.muris,

S. arieticanis, B. besnoiti, P. falciparum and P. berghei. Of these, more

than half (53.6%, 203 reads) were homologous to published cDNA

libraries and the rest to rRNA genes (41.7%, 158 reads) and

chromosomal DNA (4.7%, 18 reads). The second most numerous

group of apicomplexan sequences was homologous to the avian

parasites E. tenella, S. cornixi and S. falcatula rRNA genes (28.2%,

165 reads) and the rest were homologous to the dipteran parasites

A. taiwanensis and P. chagasi rRNA genes (7%, 41 reads).

Metazoans
Metazoan sequences (mammals, birds and reptiles) were also

found in all the samples and included Homo sapiens, Gallus gallus and

Anolis carolinensis (Figures 1 and 2). Homo sapiens was identified by

homology to genomic chromosomal sequences (16 reads). Gallus

gallus was identified by homology to genomic chromosomal

sequences (46 reads), cDNA (18 reads) and rRNA genes (1 read).

Anolis carolinensis was identified by homology to cDNA (1 read)

(Table S1). Human sequences were found in males and females

from both locations, whereas chicken sequences were found in

NEVL females (PP1) and EVL males (SS2) and lizard sequences

were only found in NEVL females (PP1) (Figures 1 and 2).

Plants
A total of ten different plant species were identified in males and

females from both locations, namely Elaeis guineensis, Capsicum

annuum, Juglans hindsii, Artemisia annua, Brassica napus, Vitis vinifera,

Solanum tuberosum, Nicotiana tabacum, Oryza sativa and Rhapidophyllum

hystrix (Figures 1 and 2). All plant sequences were identified by

homology to cDNA libraries (56 reads), except for R. hystrix which

was identified by homology to rRNA genes (1 read) (Table S1).

EVL males and females showed a greater number of species (5 and

6 species, respectively), followed by NEVL males (4 species) and

lastly NEVL females (3 species) (Figure 2). However, these

differences were significant (p,0.05) only between females from

both locations (Table 2). EVL females showed the highest number

of plant sequences (23 reads), followed by EVL and NEVL males

(13 reads) and lastly NEVL females (8 reads) (Figure 2). The only

case in which these differences were not significant (p,0.05) was

between EVL females and NEVL males (Table 3).

C. annuum (bell pepper) was found in EVL males and females

and in NEVL males. E. guineensis (African oil palm) was found in

EVL females and NEVL males and females. S. tuberosum (potato)

was found in EVL males and females and in NEVL females. J.

hindsii (Northern California walnut) was found in EVL males and

females and A. annua (sweet wormwood) was found in males from

both locations. R. hystrix (needle palm) and B. napus (rapeseed) were

only found in EVL females and V. vinifera (grapevine) was only

found in EVL males. O. sativa (rice) was only found in NEVL

females and N. tabacum (tobacco) was only found in NEVL males

(Figure 2).

Discussion

This is the first study to survey taxa associated with an infectious

disease vector applying an unbiased and comprehensive metage-

nomic approach. To ensure an unbiased description of the

microbial community, the rationale chosen for this study included

the extraction of total RNA and sequence-independent amplifica-

tion. Total RNA was extracted from wild adult male and female

Lu. longipalpis from an endemic (Posadas, Misiones) and a non-

endemic (Lapinha Cave, Minas Gerais) VL location in Argentina

and Brazil, respectively, and submitted to high-throughput

pyrosequencing [44]. Given the high background level of vector

sequences (,85%), this approach proved to be very sensitive since

it enabled the identification of taxa present in percentages up to

0.00036%. Moreover, as the different taxa were identified by

homology to both rRNA and mRNA, the chosen approach was

adequate for the objectives of this study.

The bacterial community identified in females from both

locations and in NEVL males was distinct in every case. The only

results in common with previous studies of gut microbiota from

wild and laboratory reared female Lu. longipalpis and laboratory

reared female P. duboscqi [18–20,55], included the prevalence of

Gram negative bacteria and the identification of A. baumanni,

which in this study was found in NEVL males. Although previous

reports established an essential basis for phlebotomine gut

microbiota current knowledge, in these studies bacteria were

identified using standard bacteriological methods. Consequently,

those descriptions did not consider the remaining 99% of

unculturable environmental microbes [56]. Hence the differences

with this study, which applied a culture independent unbiased

high-throughput approach that bypassed cloning of environmental

DNA.

Interestingly and in accordance with results from this study, in

previous reports the proportion of bacteria isolated from wild

dipterans has been low. Studies on the midgut microbiota of wild

mosquitoes, isolated bacteria from less than 50% of the specimens

and the numbers of bacteria varied between individuals [57–58].

In a more recent study which used culture dependent and

independent screening of field-collected Anopheles, bacteria were

found in 15% of the mosquitoes, few of the mosquitoes harboured

more than one bacterial species and only one species was found in

more than one mosquito [23].

Only one bacterial type was found in EVL females (SS1), which

corresponded to an unculturable bacterium originally isolated

from cow faeces (Figure 2). Furthermore, a sequence match

against RDP [52] indicated high similarity with Alistipes sp., a

Gram negative anaerobic bacteria found in human faeces

(Figure 2). Five bacterial species were found in NEVL females

(PP1), four of which were Gram positive (Figure 2). Of these

species, R. pickettii, A. flavithermus, G. kaustophilus and S. coelicolor,

were originally isolated from contaminated lake sediment, waste

water [59], deep-sea sediment [60] and soil [61], respectively.

Interestingly, A. flavithermus and G. kaustophilus are thermophilic.

Even though R. pickettii 12D was originally isolated from

contaminated lake sediment, it is a ubiquitous microorganism

found in water and soil [62] and is emerging as an opportunistic

Table 2. Statistical analysis of the number of plant species
between samples (Fisher’s Exact Test; p,0.05).

SS1 SS2 PP1 PP2

Total species 9 18 13 11

Plant species 6 5 3 4

SS1 NA 0.0552015 0.0482972 0.150036

SS2 0.0552015 NA 0.310627 0.28232

PP1 0.0482972 0.310627 NA 0.272693

PP2 0.150036 0.28232 0.272693 NA

The total number of associated taxa (total species) that were found for each
sample and the total number of plant species are indicated for every sample.
NA: not applicable; SS1: adult females from Endemic VL location (EVL); SS2:
adult EVL males; PP1: adult females from Non-Endemic VL location (NEVL); PP2:
adult NEVL males.
doi:10.1371/journal.pntd.0001304.t002
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pathogen found in a wide variety of clinical samples [63]. P. acnes

[64] is a universal inhabitant of human skin and is found at high

population densities on the fat-rich areas of the face, scalp and

upper trunk [65]. Four bacterial types were found in NEVL males

(PP2), 50% of which were Gram negative (Figure 2). One of these

bacterial types was the multidrug-resistant A. baumannii [66], which

is recovered from natural environments and has emerged as an

important opportunistic pathogen worldwide [67]. Another of the

bacterial types corresponded to uncultured Veillonella sp. isolated

from human skin [68]. The other two bacteria were uncultured

bacterial types originally recovered from environmental samples.

In one case, BLASTN analysis indicated homology both to an

uncultured bacterium from a water sample (Atlantic Ocean) and to

Leifsonia xyli, a sugar-cane pathogen [69]. The other bacterial

sequence corresponded to a proteobacterium clone isolated from

wetland soil [70].

In summary, bacteria identified in this study are ubiquitous in the

diverse environments these sandflies frequent (faeces, soil, water,

sediment, plants, human skin) and which were present in both

sampling sites (Figure 1, Table 1). Hence, possibly they were indicative

of the behavioural patterns and feeding habits of these sandflies and

are probably part of their transient microbiota. However, more in

depth research is required to determine these interactions.

Four different species of fungi were found in NEVL Lu.

longipalpis (PP2 and PP1), which differed between males and

females (Figure 2). In previous reports for P. papatasi and P. tobbi,

mycoses with a high incidence rate were found in the guts and

malpighian tubes of wild specimens. Similar fungi cultured from

guts of laboratory reared P. papatasi were identified as A. sclerotiorum

and S. cerevisiae [25]. Microsporidians, which are highly pathogenic

for some insects [71], have also been found parasitising neotropical

sandflies [32,72]. The two species identified in this study in NEVL

females were P. conglomerata [73], a plant pathogen (mildew), and C.

bertholletiae [74], a common soil fungus and a rare cause of

zygomycosis in humans. On the other hand, the species found in

NEVL males were M. verticillata [75], a genus commonly found in

soil and a zygomycete which also causes zygomycosis in animals,

and T. irritans [76], which belongs to a genus of foliar pathogens

[77]. Given the very high vegetation density in the Lapinha Cave

area (Figure 1, Table 1), a possible scenario is that plant

pathogenic spores adhered to the sandflies’ hairy surface during

sugar-feeding on infected plants. This suggested Lu. longipalpis has a

putative capacity of casual dispersal of plant pathogens, among

others (see below). In conclusion, fungi identified in this study are

found ubiquitously in the environments frequented by sandflies

(plants and soil), which were abundant in the sampling site

(Lapinha Cave), and so were probably indicative of their sugar-

feeding habits and behavioural patterns.

Protist sequences were only found in EVL male and female

specimens, of which the vast majority were found in males

(Figure 2). Nearly 90% of the identified apicomplexans corre-

sponded to coccidians (genera Cryptosporidium, Eimeria, Sarcocystis

and Besnoitia, 88.7%) and the rest to gregarines (genera Ascogregarina

and Psychodiella, 7%) and haemosporidians (Plasmodium spp., 4.3%).

The absence of leishmanial sequences was not unexpected

considering the rate of infection of sandflies with Leishmania is

generally very low (0.01–1%) [78], even in endemic areas [5].

Gregarines have been reported in over 20 species of sandflies

and Ascogregarina spp. have only been described in mosquitoes [79].

Given A. taiwanensis sequences were found in EVL males in this

study, this could indicate that the parasite also infects Lu.

longipalpis. Genus Psychodiella comprises 3 species with host

specificity to phlebotomine sandflies: P. chagasi, P. saraviae and P.

mackiei [35,79]. In the New World, only P. chagasi and P. saraviae

have been found parasitising Lutzomyia spp. and P. chagasi seems to

infect a large range of neotropical species [33–36]. In this study, P.

chagasi sequences were found in EVL males. The exact pathology

caused by gregarines is unknown, but in Lu. longipalpis the parasite

can reduce longevity and egg production and the level of

parasitaemia can reach over 80% in laboratory colonies [80].

Notwithstanding, the use of P. chagasi as a control method in the

field has not been considered efficient because the parasite seems

to have a limited range and a minimal effect on sandfly biology

under natural conditions [81]. The fact that in this study P. chagasi

was found in randomly caught wild specimens, suggested it could

be a more efficient control method under natural conditions than

what was previously reported.

The free-living oocyst stage of coccidians is discharged by

infected animals through their faeces. Sandflies are found around

human habitations and breed in specific organic wastes, exploiting

the accumulation of organic matter produced by domestic animals

and poor sanitary conditions such as faeces, manure, rodent

burrows and leaf litter [5]. Since the EVL sampling site (Posadas)

was a worst case-scenario homestead which included dense

vegetation, various domestic animals and abundant organic matter

(Figure 1, Table 1), this could account for the presence of these

parasites in EVL males and females. On the other hand, female

sandflies suck blood from different animal species including

humans, bovines, pigs, equines, dogs, opossums, birds, various

rodents and reptiles [5,82] and, additionally, some Plasmodium spp.

that parasitise lizards have been found in sandflies [37]. In the field

it is common to see lek-like aggregations of males and females

assembled on or near hosts where blood feeding and mating occur

[83–84]. This behaviour could account for the presence of

haemosporidian sequences (blood borne parasites) in EVL males.

Nevertheless, as these sequences were found only in males, this

Table 3. Statistical analysis of the number of plant sequences between samples (Fisher’s Exact Test; p,0.05).

SS1 SS2 PP1 PP2

Total sequences 34 600 84 28

Plant sequences 23 13 8 13

SS1 NA 7.18638610225 4.61455610210 0.0510662

SS2 7.18638610225 NA 0.00162601 8.40853610213

PP1 4.61455610210 0.00162601 NA 5.71033610205

PP2 0.0510662 8.40853610213 5.71033610205 NA

The total number of reads of associated taxa that showed significant hits (total sequences) and the total number of plant sequences are indicated for every sample. NA:
not applicable; SS1: adult females from Endemic VL location (EVL); SS2: adult EVL males; PP1: adult females from Non-Endemic VL location (NEVL); PP2: adult NEVL males.
doi:10.1371/journal.pntd.0001304.t003
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suggested males, and not females, would be the primary source of

Plasmodium spp. Furthermore, P. falciparum was recently identified

by PCR in faecal samples from gorillas [85] and considering the

EVL sampling site had a significant amount of organic matter

(Figure 1, Table 1), it is highly feasible that males acquired these

microorganisms from human faeces. Alternatively, EVL males

could have acquired these microorganisms by contact with other

vectors bearing P. falciparum (i.e., Anopheles spp.) during transpor-

tation. In any case, these results suggest that, due to their

behavioural patterns, Lu. longipalpis could be implicated in the

casual dispersal of parasites of medical and veterinary importance.

Human sequences were found in males and females from both

locations, whereas chicken sequences were found in NEVL

females and EVL males and lizard sequences were only found in

NEVL females (Figures 1 and 2). Lu. longipalpis is ubiquitous in

dwellings where sanitary conditions are poor and domestic

animals, such as dogs, chickens and pigs, are kept in and around

the houses. In this kind of environment, the sandfly tends to

congregate at outdoor sites, including animal sheds, where leks

easily form on abundant, stationary hosts [7,84]. In this context, as

previously mentioned, the EVL location (Posadas) was a worst

case-scenario homestead that kept dogs, chickens and a cat, had

dense vegetation and a nearby spring (Figure 1, Table 1). In the

NEVL location (Lapinha Cave), a chicken was kept to attract

sandflies and as a source of food (Figure 1, Table 1). Furthermore,

35 species of lizards can be found in the Minas Gerais region [86].

As female sandflies blood feed on different animal species such as

birds, reptiles and humans [5,82], the presence of these sequences

in females was not unexpected. Contrariwise, it was unexpected to

find human and chicken sequences associated with males.

Nonetheless, this could be due to their previously mentioned

behavioural patterns of aggregation and courtship, where male

sandflies are often seen over the host where they form leks,

attracting females for a blood meal and increasing their chance for

mating [83–84]. Alternatively, the trap itself was another area of

close contact between male and female sandflies and with other

potential vectors of medical importance. Consequently, males

could have acquired these sequences by contact during transpor-

tation.

A total of ten different plant species were identified in males and

females from both locations. Capsicum annuum (bell pepper), Elaeis

guineensis (African oil palm) and Solanum tuberosum (potato) were

identified in three of the four Lu. longipalpis samples. Juglans hindsii

(Northern California walnut) was found in both EVL samples and

Artemisia annua (sweet wormwood) was found in both male samples.

Rhapidophyllum hystrix (needle palm) and Brassica napus (rapeseed)

were only found in EVL females and Vitis vinifera (grapevine) was

only found in EVL males. Oryza sativa (rice) and Nicotiana tabacum

(tobacco) were only found in NEVL females and males,

respectively (Figure 2). As adults from both sexes feed on sugars

from different plant sources [12], this diversity could be indicative

of the different feeding preferences and/or food source availability.

Moreover, as sugar meals are not composed primarily by cells,

plant RNA could also have originated from other sources.

Namely, pollen dispersed by wind could have adhered to the

sandflies’ hairy surface or, alternatively, these vectors could be

casual pollinators during sugar-feeding.

For a more comprehensive understanding of these results, a few

limitations of the chosen approach should be considered. In the

first place, homology searches are circumscribed to the number

and quality of sequences in the databases at the time of analysis.

The relatively high number of sequences which showed no

significant hits (,14%) was a clear indication of this. Moreover, if

the query corresponds to a given organism that has not yet been

sequenced, the hit will probably coincide with the most related

organism found in the database. Notwithstanding and given this

situation, the results from the homology search will provide a close

approximation to the real case-scenario. Another aspect is that,

similarly to a previous study [48] and in order to obtain as much

environmental data as possible, specimens were neither surface

cleaned nor dissected to extract their guts. As they were not surface

cleaned, some (or all) of the identified taxa could have been surface

contaminants, acquired during transportation by contact with

other captured species, i.e. hymenopterans, lepidopterans and

mosquitoes, or during manipulation in the lab. In the latter case,

even though samples were manipulated with extreme care, this

was still a potential source of contamination. Nevertheless, if

contamination occurred during manipulation, it was plausible to

expect the same contaminating species in males and females from

the same location (when specimens were identified and separated

according to sex) or from both locations (when total RNA was

extracted). The only species present in all four samples was Homo

sapiens and, consequently, contamination during manipulation was

a possibility for these reads. Notwithstanding, as some biological

control agents act by surface contact, such as Beauveria bassiana

[39,87], and since the ultimate goal of this study was to identify

possible biological control agents for this neglected infectious

disease vector, had the specimens been surface cleaned, this

information could have been lost together with other valuable

environmental data. On the other hand, as the gut was not

separated from the rest of the specimen and, consequently, they

were not analysed independently, it was not possible to classify the

observed taxa in putative surface contaminants and gut inhabi-

tants, among others. Therefore, the possible role of putative

permanent gut residents could not be inferred, such as influence

on the insect development cycle or on the parasite transmission

ability. Nevertheless, even a careful extraction process would not

preclude the possibility of cross-contamination between the gut

and the rest of the specimen and/or loss of information. In this

sense, the chosen approach ensured that no data was lost and,

notwithstanding the aforementioned limitations, enabled the

identification of taxa that could putatively influence sandfly

development and which have become the target of ongoing

studies to determine their significance and location in the sandfly.

Finally, the diversity of bacterial, fungal, protist, plant and

metazoan sequences found in this study in wild adult Lu. longipalpis

from endemic and non-endemic locations, mostly confirmed their

feeding habits and behavioural patterns. Nevertheless, it also

suggested that these vectors could possibly be a chance source of

dispersal of various animal and plant diseases, such as coccidiosis

and malaria. This is particularly significant since the geographical

distribution of this vector is undoubtedly expanding [7]. The fact

that RNA was obtained from these animal and plant pathogens

would indicate that they were biologically active, but this cannot

be determined with the present results and further studies must be

performed to establish the significance of these findings. The

identification of gregarines in wild Lu. longipalpis specimens could

indicate that these parasites are a more efficient control method

under natural conditions than what was previously suggested [81].

This is specially meaningful as studies on biological control of

phlebotomines are still scarce and its practical application seems to

be limited to the adult VL vector stage [16]. The employment of

biolarvicides in the field is difficult due to the diversity of habitats

in which this vector can reproduce and evidence that Lu. longipalpis

larvae appear to be thinly dispersed and not concentrated in any

particular microhabitat [17]. Nevertheless, as the number of

samples analysed in this study was limited, a greater number of

specimens must be studied to establish the significance of these
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results. Current studies are underway to analyse the presence and

establish the significance of the taxa found in this study in a greater

number of adult male and female Lu. longipalpis samples from

endemic and non-endemic locations. A particular emphasis is

being given to those taxa implicated in the biological control of this

vector and to the etiologic agents of animal and plant diseases.
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