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Abstract

We revisit the notion of using divergences, or relative-entropies, as
measures of the distance between two mixed states, with special em-
phasis on power-law entropies. We analyze the Csiszár and Bregman-
type q-divergences with reference to i) Werner states, and ii) thermal
states obtained using a one-dimensional Heisenberg two-spin chain with
a magnetic field B along the z-axis. In both cases, we find that the
q-Jensen-Shannon divergence enlarges the range of permissible power-
law exponents, as compared to results of previous literature. It is also
shown that this divergence-measure serves as a good indicator for crit-
ical phenomena in the Heisenberg model.
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1 Introduction

The discernibility of quantum states is a basic question for quantum-information
purposes and it is obviously associated to the concept of distance between dif-
ferent quantal distributions in the same Hilbert space. These distances play
an important role in several problems, like different preparations of the same
system [1], purification of a mixed state for quantum error correction [2, 3, 4],
the geometric properties of the quantum evolution sub-manifold [5], or for
ascertaining the quality of approximate treatments [6].

In classical information theory the distance between two probability dis-
tributions is usually discussed using the Kullback-Leiber divergence (i.e. the
ordinary, Shannon relative entropy) [7]. Regrettably enough, this quantity
cannot be employed, in a quantum mechanics context, for measuring the de-
gree of purification by comparing a mixed state density matrix ρ with a pure
reference-state σ [9, 10]. It is important to note that the Kullback-Leiber di-
vergence is well defined only when the support of σ is equal or larger than that
of ρ.

The situation can be remedied by recourse to non-logarithmic information
measures. These are also called by many authors power-law entropies, gen-
eralized, or “q−entropies”, and have indeed become rather fashionable nowa-
days, with multiple applications to different scientific disciplines (see, for in-
stance, [11] and references therein). They were introduced long ago in the
cybernetic-information communities by Harvda-Charvat [12] and Vadja [13]
in 1967-68, being rediscovered by Daroczy in 1970 [14] with several echoes
mostly in the field of image processing. For a historic summary and the perti-
nent references see [15]. In astronomy, physics, economics, biology, etc., these
non-logarithmic information measures are often rebaptized as Tsallis entropies
since 1988 [16]. The quantum q-divergence, defined as the generalized rel-
ative power-law-entropy associated with the quantum-mechanical version of
the Harvda-Charvat-Tsallis [11, 16] information measure, avoids the problem
of the σ support. The generalized versions of the relative entropy can be ob-
tained as well from the so-called f -divergences (Csiszár-type) [17] or by an
alternative expression which uses the derivative of f , called divergence of the
Bregman-type [18, 19] in the mathematics literature. It has been shown that
the quantum q-divergence of Csiszár-type is always well defined and no condi-
tions are required on the supports of ρ and σ if the index q ∈ (0, 1) [9].

In the present effort we will systematically explore the use of q-divergences
of both Csiszár’s and Bregman’s type within the context of Werner states ρW

[20], that play a paradigmatic role in information theory. They determine a
family of mixed states that includes both entangled and separable ones and
model a decoherence process occurring on a singlet state travelling along a
noisy channel. Thus, they are often employed in the quantum-communication
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literature to investigate distillation and concentration processes and thereby
as a “model” for assessing the value various types of theoretical treatment.

It will be shown that a Bregman-type divergence is well defined for all q > 1.
For the two types of divergences we will construct a useful generalization of
the Kullback-Leibler one, called the Jensen-Shannon divergence (JSD) [21], a
measure originally introduced by Rao [21] and currently used by several authors
(see, for example, [22, 23]). We will show that the symmetric JSD of the
mixed Werner state [20] with respect to a pure Bell-reference state is positively
defined for all q > 0-values. The result holds for our two types of q-divergences,
thereby considerably enlarging the range of validity in which one can apply the
standard quantum q-divergence as a purification-measure of ρW , with respect
to the above mentioned (0, 1)−interval. Additionally, the Jensen-Shannon
divergence obtained for our two types of quantum q-divergences will also be
utilized to compute the distance between quantum thermal states obtained
from the 1D-Heisenberg spin chain under the influence of a magnetic field B
oriented along the z-axis.

The paper is organized as follows: In section II we present the quantum
q−divergences of both of Csiszár’s and Bregman’s type. Section III is devoted
to the application of these types of divergences and also of the JSD measure, to
the Werner state. Distances between two-qubits thermal states are considered
in section IV and, finally, some conclusions are drawn in section V.

2 Quantum divergences

Quantum divergences, or quantum relative-entropies, measure the “distance”
between two mixed states. We concentrate here on the generalized q−divergences
of the preceding section and start by reminding the reader that (in what would
be here the case q = 1) the Kullback-Leibler divergence writes [8]

K(ρ, σ) = Tr[ρ(ln ρ − ln σ)], (1)

which is positive and well defined if the support of σ is larger or equal to that
of ρ. The quantum q-divergences obtained as the generalized relative entropy
associated to the Harvda-Charvat-Tsallis (HCT) information measure [11, 16]
relieves one from taking into account this condition for certain values of the
q-entropic parameter. We consider here two-types of q−divergences that often
appear nowadays in the literature:

• 1) Csiszár-type, developed in [10] for (normalized) density matrices. For
two classical probability distributions ρc and σc the so-called f -divergence
writes [18, 17]

C(ρc, σc) = Tr[ρcf(ρc/σc)], (2)
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with f a convex function defined for x > 0. Using for f the corresponding
HCT- information measure and replacing ρc and σc by the corresponding
quantum density matrices ρ and σ, we obtain

Cq(ρ, σ) =
1

q − 1
[Tr(ρq σ1−q) − 1]. (3)

By means of the spectral decomposition of our density matrices

ρ =
∑

a

r(a)|a〉〈a|; σ =
∑

b

s(b)|b〉〈b|, (4)

we get [10]

Cq(ρ, σ) = 1
1−q

∑
a,b |〈a|b〉|2 r(a)q [r(a)1−q − s(b)1−q] =

= 1
1−q

∑
a,b |〈a|b〉|2 r(a)

[
1 − {s(b)/r(a)}1−q] , (5)

that can be shown to be positive definite, so that no restrictions are
needed on the support of ρ and σ if q ∈ (0, 1) [10].

• 2) Bregman-type [18, 19] is based upon the derivative of f , and for two
densities ρ and σ reads

B(ρ, σ) = Tr[f(ρ) − f(σ) − (ρ − σ)f ′(σ)], (6)

and we realize that both (2) and (6) coincide in the Shannon-case f(x) =
x log x. When the HCT-information measure is used for f one obtains

Bq(ρ, σ) =
1

q − 1

[
Tr(ρq) − Tr(ρ σq−1)

]
+
[
Tr(σq) − Tr(ρ σq−1)

]
,

(7)

to be discussed below in the quantal cases of interest here.

3 Werner states

The so-called Bell basis is spanned by four vectors that in the canonical basis
write

|1〉 ≡ |Φ+〉 = 1√
2
| + +〉 + | − −〉; |2〉 ≡ |Φ−〉 = 1√

2
| + +〉 − | − −〉,

|3〉 ≡ |Ψ+〉 = 1√
2
| + −〉 + | − +〉; |4〉 ≡ |Ψ−〉 = 1√

2
| + −〉 − | − +〉. (8)
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To these vectors one associates the four density operators (projectors)

|Ψ+〉〈Ψ+|; |Ψ−〉〈Ψ−|,

|Φ+〉〈Φ+|; |Φ−〉〈Φ−|, (9)

respectively. We will cast in terms of these Bell projectors the Werner density
matrix, that will we the protagonist of our present discussion. It mixes, with
a parameter, x the pure state |Ψ−〉〈Ψ−| with the totally mixed state I/4 and
reads [20]

ρW = x|Ψ−〉〈Ψ−| + [(1 − x) I]/4 ≡

≡ F |Ψ−〉〈Ψ−| + [(1 − F )/3] [|Ψ+〉〈Ψ+| + |Φ−〉〈Φ−| + |Φ+〉〈Φ+|] ≡

≡ [(1 − F )/3] [|1〉〈1| + |2〉〈2| + |3〉〈3|] + F |4〉〈4|, (10)

where we have introduced the fidelity F of ρW with respect to the pure state
|Ψ−〉〈Ψ−|

F = (3x + 1)/4; (1/4 ≤ F ≤ 1). (11)

The state (10) is separable (unentangled) if the mixing coefficient x ≤ 1/3 (F ≤
1/2) [20]. For x > 1/3 (F > 1/2) the Werner state is entangled [25, 26, 27].As
in [9] we obtain for the divergence (3)

Cq(ρW , |4〉〈4|) = (1 − q)−1 (1 − F q),
Cq ≥ 0 iff 0 < q < 1, (12)

which is not linear in F and yields a measure of the “distance” between the
mixed state ρW and the pure (entangled) projector-state |4〉〈4|. In this instance
the support of σ ≡ |4〉〈4| is smaller than that of ρ and the Csiszár q-divergence
is only positive definite for q ∈ (0, 1).

A situation of special interest is that of q = 1/2 [24]. We consider it below in
some detail because it leads to an interesting picture. Let us first of all define

d2 ≡ C2(ρW , |4〉〈4|) = 2(1 −
√

F ), (13)

entailing

F = (1 − d2/2)2. (14)
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We thus obtain

ρW =
1 − (1 − d2/2)2

3
[ |1〉〈1| + |2〉〈2| + |3〉〈3| ] + (1 − d2/2)2|4〉〈4|, (15)

so that we have entanglement for d2 ≤ (2 − √
2). We can picture a kind of

hyper-sphere centered around |4〉〈4| in the 2-qubits space with hyper-radius
= d2. You find entangled Werner states within the “hyper-sphere”. Outside
it one encounters only separable Werner states. We are thus associating in
geometric fashion entanglement with “distance”.

Consider now, for arbitrary q, the distance Cq from the Werner state to the
totally mixed one

Cq(ρW , I/4) = 1
q−1

[Tr(ρq
W (I/4)1−q) − 1] =

= 1
q−1

[
(1/4)1−q

(
3
(

1−F
3

)q
+ F q

)− 1
]
. (16)

One easily ascertains that

Cq(ρW , I/4) ≥ 0 iff q > 0 (17)

As expected, when the σ support is larger than the one of ρ, (3) is positive
definite for q > 0.

Let us evaluate now the other divergence, namely Bq. Traces are to be com-
puted, for convenience, in the Bell-basis {|1〉; |2〉; |3〉; |4〉}. The eigenvalues
of ρW , are, respectively,
{[(1 − F )/3]; [(1 − F )/3]; [(1 − F )/3]; F}. In such way one obtains

Bq(ρW , |4〉〈4|) =
1

q − 1

[
3

(
1 − F

3

)q

+ F q − F

]
+ 1 − F, so that

Bq ≥ 0iff q > 1, (18)

and the distance from the Werner state to the maximally mixed one reads

Bq(ρW , I/4) = 1
q−1

{
F q

1 + 3(1−F1

3
)q + (q − 1)41−q − q [F14

1−q + (1 − F1)4
1−q]
}

,

with Bq ≥ 0 iff q > 0. (19)

Using (3) and (7) we can compute the distances between two Werner states
using our two divergence-measures. Let us call

ρW1 = [(1 − F1)/3] [|1〉〈1| + |2〉〈2| + |3〉〈3|] + F1|4〉〈4|, (20)
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and

ρW2 = [(1 − F2)/3] [|1〉〈1| + |2〉〈2| + |3〉〈3| ] + F2|4〉〈4|. (21)

According to (3), the corresponding Kullback-Leibler divergence between the
two states writes

Cq(ρW1, ρW2) = 1
q−1

[Tr(ρq
W1 ρ1−q

W2 ) − 1] =

= 1
q−1

[F q
1 F 1−q

2 + (1 − F1)
q(1 − F2)

1−q − 1]. (22)

Notice that for F2 = 1 we recover the distance to the maximally entangled
Bell-state |4〉〈4| (12) and for F2 = 1/4 the distance to the maximally mixed
state I (16). As depicted in Fig. 1a, the Csiszár-type distance to the maximally
entangled state is only positive in the interval 0 < q < 1 and increases with
growing q−values. The distance to the maximally mixed state (Fig. 1b) also
increases with q, but remains positive for all q > 0. In this last case, large
q-values imply also a strong dependence of the distance on F .

Consider now the symmetrized Kullback-Leibler between ρW1 and ρW2. It
reads

CSq(ρW1, ρW2) = Cq(ρW1, ρW2) + Cq(ρW2, ρW1) =
1

q−1
[F q

1 F 1−q
2 + F q

2 F 1−q
1 +

+(1 − F1)
q(1 − F2)

1−q + (1 − F2)
q(1 − F1)

1−q − 2]. (23)

Using it we can construct the so-called q−quantum Jensen-Shannon divergence
(q−QJS), which assigns “weights” πi to each ρWi. In the special case q = 1 and
for weight-values π1 = π2 = 1/2 one recovers the quantum Jensen-Shannon
divergence (QJS) of [28]. The q−QJS measure writes

JSq
π1,π2(ρW1, ρW2) =

= π1Cq(ρW1, π1ρW1 + π2ρW2) + π2Cq(ρW2, π1ρW1 + π2ρW2) =

π1

q−1
[F q

1 (π1F1 + π2F2)
1−q + (1 − F1)

q
(
π1(1 − F1) + π2(1 − F2)

)1−q

− 1]

+ π2

q−1
[F q

2 (π1F1 + π2F2)
1−q+

+(1 − F2)
q
(
π1(1 − F1) + π2(1 − F2)

)1−q

− 1], (24)

which, for π1 = π2 = 1/2, specializes to
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JSq
1/2,1/2(ρW1, ρW2) =

1

2(q − 1)

[
(F q

1 + F q
2 )

(
F1 + F2

2

)1−q

+

+
(
(1 − F1)

q + (1 − F2)
q
)(2 − F1 − F2

2

)1−q

− 2

]
(25)

We have systematically explored (see Fig. 2) the behavior of (25) as a function
of q, selecting as ρW2 either the maximally entangled state (Fig. 2a) or the
maximally mixed one (Fig. 2b). In both instances JSq turns our to be positive
for q > 0 and increases with q for all F values.

We pass now to the consideration of the distance between two Werner states
using the Bregman-type parametrization (7) and write [18, 19]

(q − 1)Bq(ρW1, ρW2) = [Tr(ρq
W1) + (q − 1)Tr(ρq

W2) − qTr(ρW1 ρq−1
W2 )] = X

X = F q
1 + 3(1−F1

3
)q+

+(q − 1)
(
F q

2 + 3(1−F2

3
)q
)
− q

[
F1F

q−1
2 + (1 − F1)(

1−F2

3
)q−1

]
, (26)

The Bregman-type distance to the maximally entangled state is positive
only for q > 1 and decreases (non-monotonically) as q grows. For large q
values a saturation limit is reached and the distance becomes constant for all
F values, dropping off abruptly to zero for F = 1. If ρW2 is the maximally
mixed state, (26) is positive for all q > 0. The distance increases with q in
the interval 0 < q < 1 and diminishes for q-values larger than 1, but without
reaching a saturation limit-value. As in the case of the Csiszár-type distance,
the dependence of the distance on F is strong for large q-values.

The associated symmetrized Bregman-quantity reads

BSq(ρW1, ρW2) = Bq(ρW1, ρW2) + Bq(ρW2, ρW1) =

= q
q−1

[
Tr(ρq

W1) + Tr(ρq
W2) −

(
Tr(ρW1 ρq−1

W2 ) + Tr(ρW2 ρq−1
W1 )

) ]
=

= q
q−1

[
F q

1 + 3(1−F1

3
)q + F q

2 + 3(1−F2

3
)q −

−
(
F1F

q−1
2 + (1 − F1)(

1−F2

3
)q−1 + F2F

q−1
1 + (1 − F2)(

1−F1

3
)q−1

)]
=

= q
q−1

(F1 + F2)
[
F q−1

1 − F q−1
2 + (1−F2

3
)q−1 − (1−F1

3
)q−1

]
, (27)

and the q−Bregman-Jensen Shannon defined with the B distance thus becomes
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(q − 1)JSBq
π1,π2(ρW1, ρW2) =

= (q − 1)[π1Bq(ρW1, π1ρW1 + π2ρW2) + π2Bq(ρW2, π1ρW1 + π2ρW2)] =

=

{
π1

(
F q

1 + 3(1−F1
3 )q

)
+ π2

(
F q

2 + 3(1−F2
3 )q

)
+

+
(
(q − 1)(π1 + π2) − q

)[
(π1F1 + π2F2)q + 3

(
π1(1−F1

2 ) + π2(1−F2
2 )

)q
]}

(28)

which, for π1 = π2 = 1/2, writes

JSBq

1/2,1/2(ρW1, ρW2) = 1
q−1

{
1
2

[
F q

1 + 3

(
1−F1

3

)q

+ F q
2 + 3

(
1−F2

3

)q]
−

−
[(

F1+F2

2

)q

+ 3

(
2−F1−F2

6

)q]}
(29)

The Jensen-Shannon divergence obtained from the Bregman type diver-
gence is positive definite for all q−positive values and exhibits the same type
of qualitative behavior as the standard q−divergence (26). When we con-
sider the distance to the maximally entangled state the saturation limit is here
reached already for small q−values, the distance becoming constant for all F
values up to F = 1. Figs. 3a and 3b depict our two Bregman-type divergences
respect to the maximum entangled state and the maximum mixed state as
a function of F . We appreciate the existence of “crossings” between differ-
ent q−curves. This fact indicates that q−based divergences of the Bregman
kind seem not physically acceptable as measures of quantum distances, since
“q−single-valuedness” is violated.

4 Thermal states

In this Section we consider the Hamiltonian H of the 1D Heisenberg spin chain
with a magnetic field of intensity B along the z-axis, as given by Arnesen et
al. [29] with the idea of studying thermal entanglement. H is of the form

H =
N∑

i=1

(Bσi
z + JH�σi �σi+1), (30)

where σi
x,y,z stand for the Pauli matrices associated with spin i and periodic

boundary conditions are imposed (σN+1
μ = σ1

μ). JH is the strength of the spin-
spin repulsive interaction (only the anti-ferromagnetic (JH > 0) instance is
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discussed). If we limit ourselves to the case N = 2, we will be dealing with
two spinors, i.e., with a two-qubits system. For “thermal equilibrium” one
should consider [29] the thermal state

ρ(T ) =
exp(− H

kBT
)

Z(T )
, (31)

with Z(T ) the partition function. Expressing both H and ρ(T ) in the compu-
tational basis |00〉, |01〉, |10〉, |11〉 we obtain

H =

⎛
⎜⎜⎝

2JH + 2B 0 0 0
0 −2JH 4JH 0
0 4JH −2JH 0
0 0 0 2JH − 2B

⎞
⎟⎟⎠ . (32)

After defining, for convenience’s sake,
ewmy = exp (−2w − 2y);
ewp = exp (−2w) + exp (6w);
ewm = exp (−2w) − exp (6w);
ewpy = exp (−2w + 2y),
with w = JH/kBT and y = B/kBT , we also get

ρ(T ) =
1

Z(T )

⎛
⎜⎜⎝

ewmy 0 0 0
0 ewp/2 ewm/2 0
0 ewm/2 ewp/2 0
0 0 0 ewpy

⎞
⎟⎟⎠ , (33)

Entanglement is measured by the concurrence of ρ(T ), that reads [29]

C = 0; for T ≥ Tc (or e8w ≤ 3),

C =
e8w − 3

1 + e−2y + e2y + e8w
; for T < Tc (or e8w > 3), (34)

For our purposes we must emphasize that there is no entanglement beyond
a certain critical temperature Tc = 8JH/(kB ln 3) [29]. Our interest here is
aroused by the following consideration: one the one hand, it is well-known
that entanglement vanishes for a high enough degree of mixing. On the other
one, in the present scenario, “thermal entanglement” decreases as we increase
T . It is tempting then to suggest that temperature plays a “mixing role”, as
verified in Ref. [30].

Notice that Tc is independent of B and thus an intrinsic structural property.
Also, there is a change in the structure of the ground state of hamiltonian (30)
at Bc = 4JH . In what follows we consider JH = 1. For our present purposes it
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is worth remarking that the ground state (T = 0) of H has no entanglement
for all B > Bc [30].

Remarkably enough, the Werner states (10) and the thermal states (31) of
the 1D Heisenberg model for N = 2 can be put, for B ≤ Bc, into a one-to-one
corresponce via a mapping fidelity-temperature F ⇔ T as demonstrated [30],
(see their Eq. (18)]. Notice that, by recourse to (11), this mapping writes
F = C+1

2
, with C depending on the temperature as stipulated in Eq. (34).

Here we analyze, by recourse to the Jensen-Shannon divergence, the distance
between

• ρ(T ) and

• ρ(T = 0)

• for the three cases B < Bc, B = Bc = 4, and B > Bc.

Both Csiszár’s and Bregman’s types of divergence are used. In all cases the
Jensen-Shannon divergence is well defined for positive q−values. For T → ∞ a
saturation limit corresponding to the distance between ρ(0) and the maximally
mixed state is attained.

In Fig. 4 we show the q−JSD (Csiszár type) of ρ(T ) with respect to ρ(0)
for q = 0.25 (Fig.4a) and q = 2.5 (fig.4b) and several values of the magnetic
field. The saturation limit reached by the Jensen-Shanon divergence increases
with the value of the q−parameter. For values of the magnetic field above o
below the critical value, the saturation is reached for smaller T -values than in
the case of B = Bc. The values of this limit are similar when the magnetic field
strength is either greater or smaller than the critical strength-value Bc and, in
both cases, are larger than those for the B = Bc instance. The same comments
apply to the q−JSD measure obtained from the Bregman-type q−divergence.
However, in this case the distance between the density matrices decreases as
q−increases (see Figs. 5a and 5b).

In both Figs. 4 and 5 a rather surprising fact is to be registered. For any
q−value, the curve corresponding to B = Bc “separates” nitidly out of all
the other curves, generating a noticeable “gap”. For example, the curves for
B = 3.9 and B = 4.1 fall in-between those actually drawn in the figures for
B = 6 and B = 2. This gap between the Bc−curve and the curves for all
other B−values indicates that our distance-measures are excellent “detectors”
of the critical field-strengths.

5 Conclusions

We have performed a rather exhaustive study of several types of distance
between quantum density matrices of Werner and thermal states. Our main
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results are:

1. We were able to associate in geometric fashion entanglement with “dis-
tance” in Section III.

2. Our distance-measures are excellent “detectors” of the critical field-strengths
in the Heisenberg model, as evidenced by the gap between the Bc−curve
and the curves for all other B−values.

3. We appreciate the existence of “crossings” between different q−curves for
distances associated to the Bregman family, indicative of the fact that
they seem not physically acceptable as measures of quantum distances,
since “q−single-valuedness” is violated.

4. In the two analyzed cases, the Jensen-Shannon divergence obtained from
the Csiszár and Bregman quantum q−divergences are well defined for all
positive q−values. As a consequence, they can be applied to confidently
compute distance between two-qubit mixed states and no conditions are
needed on the supports of the two density matrices that we compare in
this way. In particular the q−JSD can be used as a measure of the pu-
rification of the Werner state. Clearly, the Jensen-Shannon divergences
enlarges the validity range of the standard quantum q−divergences for
the Werner and thermal states, usually employed as a ”models” in quan-
tum communication.
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Figure 1: a) Csiszár type quantum q-divergence (Cq) of ρW with respect to the
maximally entangled state and to the b) maximally mixed state.
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Figure 2: a) Jensen-Shannon divergence (25) of ρW with respect to the maxi-
mally entangled state and b) to the maximally mixed state.



Divergences in the 2-qubits’ space: Werner and thermal states 1057

1e-007

1e-006

1e-005

0.0001

0.001

0.01

0.1

1

10

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

JS
B

q

F

a b

q=0.01
q=0.99
q=5.0
q=10

1e-020

1e-018

1e-016

1e-014

1e-012

1e-010

1e-008

1e-006

0.0001

0.01

1

100

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

JS
B

q

F

a b

q=0.01
q=0.99

q=10
q=25

Figure 3: a) Jensen-Shannon divergence (29) of ρW with respect to the maxi-
mally entangled state and b) to the maximally mixed state.
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Figure 4: a) Jensen-Shannon divergence (25) of ρ(T ) with respect to ρ(0) for
B < Bc, B = Bc and B > Bc and parameter q = 0.25. b) Same result for
q = 2.5. In both cases horizontal dot-dashed line is the limit T → ∞ for
B = 2.
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Figure 5: a) Jensen-Shannon divergence (29) of ρ(T ) with respect to ρ(0) for
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