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Abstract— This paper presents applications of the Exponential
Static Load model used to represent voltage depending loads.
This model has been used to represent loads of different types:
Industrial, Residential and of Petroleum Extraction Fields.

These loads belong to “Sistema Interconectado Patagénico™
(SIP), a small power system of 1200 MW of peak load situated in
the South of Argentina.

Models of several load types have been validated by tests.

Tests were made by applying steps to the feeding load voltage.

Load voltage sensitivity coefficients were obtained for the
different load types tested.

Load models validated by tests were used for SIP modal
analyses.

Index Terms-- Load — Load Model - Power system dynamic
stability — Simulation - Testing.

I. INTRODUCTION

EVERAL tests were made at medium voltage feedings of

different loads. These tests were made to validate the
modeling of different loads used for representation of voltage
sensitive loads. Tested and modeled loads belong to SIP, a
small power system of 1200 MW of peak load, situated in the
south of Argentinean continental territory.

Different load types were tested: Industrial, Residential, of
Petroleum Extraction Fields and several combinations of
them.

Tests were carried out applying tap changes to the voltage
feeding transformers. Test records were used to validate load
model simulating load behavior with Simulink-MatLab.

Load models validated by tests were used to carry out
small signal analyses to obtain SIP modal behavior as part of
studies of power system dynamic stability carried out over the
power system.

II. StAaTiCc LoAD MODEL
A general form, named Polynomial Load Model, is
normally used to represent Active (P) and Reactive (Q)
powers of voltage dependent static loads, [1]-[4].
Equations for this load representation are:
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Where:
e Py/Qp: Nominal Active/Reactive power at nominal
voltage U,.

e p/qi, p2/q and ps/qs: Distribution coefficients for
Active/Reactive power, with (pi/q;)+(p2/q2)+(ps/qs) = 1
e np/ng, np/ng and np/ng;:  exponents  for
Active/Reactive power, where np,/np,/nps/ and ng;/nga/ngs
are real numbers.
Usually, exponents for (1)-(2) are set to:
® np/ng =0 to represent constant power loads.
® np/ng =1 to represent constant current loads.
®  npi/ngs =2 to represent constant impedance loads.
For small voltage variations, Polynomial Load Model,
(1)-(2), could be replaced by Exponential Load Model
described by the following equations:
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Where:
e Py/Qp: Nominal Active/Reactive power at nominal

voltage U,.
* np/ng: Active/Reactive power exponents, where np/ng are
real numbers.

III. TESTS AND SIMULATIONS

A. Tests

Tests were carried out at several load feedings in the SIP
over different load types: Industrial, Residential, of Petroleum
Extraction Fields and several combinations of them.

Tests were conducted by applying steps to feeding load
voltage. Voltage steps were generated by means of
transformer tap changes.

For feeding points with two parallel transformers, one-tap
changes for each transformer were applied sequentially.

Records of Active power (P), Reactive power (Q),
Frequency Deviation (dF) and Feeding Voltage (U) were
taken during tests.

B. Simulations

Test records were used to simulate load behavior with
Simulink-MatLab, using the model shown in Fig. 1, where
gray blocks are test records. The model used for simulations
has load representation given by (3)-(4). P/Q were simulated
with the blocks “P/Q Model” respectively. Outputs P/Q, are
the simulated Active/Reactive power respectively.
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Fig. 1. Load Model for simulation.

Measured and simulated Active and Reactive powers are
inputs of the blocks: P and Q Quadratic Error. These blocks
calculate Quadratic Errors between measured and simulated
quantities. Quadratic Errors, E, and E; for P and Q
respectively, are given by:
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Calculating E, and E, is the selected way to verify P, and
Q, congruencies with P, and Q. Simulations results were
taken as valid when E;, < 5% and E; < 5%. Also, P and Q
Quadratic Error blocks of Fig. 1 smoothed measured and
simulated P and Q, by passing these quantities through a first
order filter of 5 seconds of time constant to obtain the
following variables: Filtered Active power, measured and
simulated (P, ¢ and P; ¢ respectively) and Filtered Reactive
power, measured and simulated (Q,, f and Qs ¢ respectively).
Then, small load variations due to intrinsic load
characteristics that are not depending on feeding voltage
variations were filtered.

C. Results
Table I summarizes results of tests and simulations carried
out for a representative subset of typical loads tested.
Table 1. Test and Simulation results.

Type Power Py np Ep Qo ng E, | Fig.
Factor | (MW) (%) | (MVA (%)
r)
Py 0.936 7.04 | 04 | 43 2.64 3.6 | 2.8 2
P, 0.966 3.68 | 0.0 | 5.0 0.98 34 | 3.1 3
R 0.915 2.95 1.1 0.9 1.30 4.5 1.7 4
| 0.891 3.816 | 0.1 1.5 1.94 20| 0.8 5
P=0.6/R=0.4 | 0.964 11.28 | 0.8 1.2 3.12 6.0 | 09 6
P=0.9/R=0.1 | 0.997 | 25.36 | 0.4 1.7 2.10 15 4.7 7
P;=0.9/R=0.1 | 0.874 | 25.36 | 0.4 1.7 14.10 | 40 | 0.8 8
Where load Type is:

e Py: of Petroleum Extraction Fields using Rod Pumps.
e P,; of Petroleum Extraction Fields using Submersible
Electrical Pumps.

e  R:Residential

e [: Industrial (Petrochemical).

Fig. 2 to Fig. 11 show records of some made tests and
their simulations. Variables in gray and black traces were
obtained from test records and from simulations respectively.

2

Fig. 2.a to Fig. 2.c show test records and simulations for a
test made at 132/33/13.2 kV feeding transformer of a “P,”
load type. P and Q were recorded at 132 kV side, meanwhile
U was recorded at 132 kV and 33 kV. Simulation was made
by taking into account Q absorbed by transformer (Qr) by
means of:

2 2 2
0, POl oy, i
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Where:
e  P,Qun[W/VAr]: Recorded Active/Reactive power at 132 kV
e Up[V]: Recorded Voltage at 132 kV
e X [pu]: Transformer longitudinal reactance between 132 kV
and 33 kV
e  S,[VA]: Nominal transformer VA at 132 kV side

For this test, simulation yields Ep < 4.3 % and Eq < 2.8 %
for np = 0.4 and ng = 3.6, at 33 kV transformer side.

Fig. 3.a to Fig. 3.c show test records and simulations for a
test made at 132/33/13.2 kV feeding transformer of a “P,”
load type. P, Q, U and dF were recorded at 33 kV. Simulation
shown in Fig. 3.b was made with nP = 0.05. It can be seen
that P does not have dependence on U. For this test,
simulation yields Ep < 5.0 % and Eq < 3.1 % for np = 0.0 and
ng = 3.4.

Fig. 4.a to Fig. 4.c show test records and simulations for a
test made at 132/33/13.2 kV feeding transformer of “R” load
type. P, Q, U and dF were recorded at 13.2 kV. For this test,
simulation yields Ep < 0.9 % and Eq < 1.7 % for np = 1.1 and
Ng = 4.5.

Fig. 5.a to Fig. 5.e show test records and simulations for a
test made at 132/33 kV feeding transformer of an “I”
(Petrochemical) load type. P, Q, U and dF were recorded at 33
kV.

Fig. 5.a and Fig. 5.b show P, Q, U and dF complete test
records. This industrial plant has a cyclic working time as it
can be seen in Fig. 5.b.

Simulation was made during a stable part of working time,
without sudden P variation.

Fig. 5.c and Fig. 5.e show P, Q, U and dF partial test
records and corresponding simulations. For this test part,
simulation yields Ep < 1.5 % and Eq < 0.8 % for np = 0.1 and
ng = 2.0.

Fig. 6.a to Fig. 6.c show test records and simulations for a
test made at 132/13.2 kV feeding autotransformer of a
combination of 60 % “P,” and 40 % of “R” load types. P, Q,
U and dF were recorded at 13.2 kV. For this test, simulation
yields Ep < 1.2 % and Eq < 0.9 % for np = 0.8 and ng = 6.0.

Fig. 7.a to Fig. 7.c show test records and simulations for a
test made at 132/35/10.4 kV feeding transformer of a
combination of 90% of “P;” and 10 % of “R” load types. P,
Q, U and dF were recorded at 35 kV. For this test, simulation
yields E, < 1.7 % and E; < 4.7 % for np = 0.4 and ng = 15.

Fig. 8. shows corrected test records and a new simulation
for Q of the previous test, by discounting the shunt capacitor -
of 3x4 MVAr at 35 kV bus - effects over Reactive power.

Capacitor was simulated like a load given by (4) with
ng = 2. For this Q corrected test, simulation yields Eq < 0.8 %
for ng =4.0.

[var] ™

n
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Fig. 2.a. P; load. Measured feeding Voltage (U,,, upper gray trace, right scale)
and measured Frequency deviation (dF,, lower gray trace, left scale).
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Fig. 2.b. P; load. Measured/Simulated Active power without filtering (P,,/Ps,
upper gray/black traces, left scale) and with filtering (P, #/Ps , lower gray/black
traces, right scale).
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Fig. 2.c. P;. Measured/Simulated Reactive power without filtering (Q./Qs,
upper gray/black traces, left scale) and with filtering (Qm #/Q;_r, lower gray/black
traces, right scale).

04 1,07
Um (pu)

03 ‘r"“"me 1,03

0,99

0,1 0,95

MMM
Ve S T e,

(Hz) H Time (s)

-0,1

o 100 200 300 400 500 600 700 800

Fig. 3.a. P, load. Measured feeding Voltage (U, upper gray trace, right scale)
and measured Frequency deviation (dF,, lower gray trace, left scale).
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Fig. 3.b. P, load. Measured/Simulated Active power without filtering (P,,/Ps,
upper gray/black traces, left scale) and with filtering (P, ¢/Ps , lower gray/black
traces, right scale).
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Fig. 3.c. P;load. Measured/Simulated Reactive power without filtering (Q/Qs,
upper gray/black traces, left scale) and with filtering (Qm #/Q;_r, lower gray/black
traces, right scale).
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Fig. 4.a. R load. Measured feeding Voltage (Uy,, upper gray trace, right scale)
and measured Frequency deviation (dF,, lower gray trace, left scale).
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Fig. 4.b. R load. Measured/Simulated Active power without filtering (P,/P;,
upper gray/black traces, left scale) and with filtering (P, ¢/P;_r, lower gray/black
traces, right scale).
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Fig. 4.c. R load. Measured/Simulated Reactive power without filtering (Qu/Qs,
upper gray/black traces, left scale) and with filtering (Qm #/Qs_r, lower gray/black
traces, right scale).
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Fig. 5.a. I load. Measured feeding Voltage (Uy, upper gray trace, right scale)
and measured Frequency deviation (dF,, lower gray trace, left scale). Complete
test records.
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Fig. 5.b. I load type. Measured Active power without filtering (Py,, upper gray
trace, left scale) and Measured Reactive power without filtering (Q,, lower gray
trace, right scale). Complete test records.
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Fig. 5.c. I load. Measured feeding Voltage (U, upper gray trace, right scale)
and measured Frequency deviation (dF,, lower gray trace, left scale). Partial test
records.
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Fig. 5.d. I load. Measured/Simulated Active power without filtering (P,./Ps,
upper gray/black traces, left scale) and with filtering (P, #/Ps , lower gray/black
traces, right scale). Partial test records.
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Fig. 5.e. I load. Measured/Simulated Reactive power without filtering (Qu/Qs,
upper gray/black traces, left scale) and with filtering (Qm #/Q;_r, lower gray/black
traces, right scale). Partial test records.
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Fig. 6.a. P;.60 % and R = 40 % load. Measured feeding Voltage (Uy,, upper
gray trace, right scale) and measured Frequency deviation (dFy, lower gray
trace, left scale).
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Fig. 6.b. P;-60 % and R = 40 % load. Measured/Simulated Active power
without filtering (P,./Ps, upper gray/black traces, left scale) and with filtering
(P ¢/Ps 1, lower gray/black traces, right scale).
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Fig. 6.c. P;_60 % and R = 40 % load. Measured/Simulated Reactive power
without filtering (Qn/Qs, upper gray/black traces, left scale) and with filtering
(Qm #/Qs_s, lower gray/black traces, right scale).
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Fig. 7.a. P;_-90 % and R = 10 % load. Measured feeding Voltage (U,, upper
gray trace, right scale) and measured Frequency deviation (dF,,, lower gray
trace, left scale).
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Fig. 7.b. P;-90 % and R = 10 % load. Measured/Simulated Active power
without filtering (P,,/P;, upper gray/black traces, left scale) and with filtering
(P ¢/Ps 1, lower gray/black traces, right scale).

3.0 37

Qm,Qs (MVAr) L‘M}ﬂ m‘
kR

Time (s) Qm| ,Qs_f (MVAr)
1,0 17

o 20 40 60 80 100 120
Fig. 7.c. P;-90 % and R = 10 % load. Measured/Simulated Reactive power
without filtering (Q,/Qs, upper gray/black traces, left scale) and with filtering
(Qm #/Qs_t, lower gray/black traces, right scale).
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gray/black traces, left scale) and with filtering (Qn Qs , lower gray/black
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D. Analysis

From all tests and simulations carried out, the following
mean values for np were obtained on each load type:

o “Pinp=04

o “Py”inp=0.0

e “R”np=1.1

e “Tnp=0.1

On the other hand, ng factor strongly depends on load
power factor compensation.

For the same load type, the higher power factor, the higher
ng factor was obtained from tests.

Last example shown in Fig. 8 yields an nqg = 4.0 for power
factor = 0.874, meanwhile an ng = 15 was obtained for power
factor = 0.997 in the same example shown in Fig. 7.

In Argentina, it is a common practice to represent load
Active power using (1) with the following parameters:

e p;=0,p,=08andp;=0.2

e np;=0,npp=1andnpz =2

It means that Active power is represented by 80 % of
Constant Current and by 20 % of Constant Impedance.

By using (3), this load combination yields an equivalent
np= 1.2 for small voltage variation.

This np factor value is similar to those obtained from tests
for “R” type loads and it only represents loads of this kind.

Instead, in order to represent “P,”, “P,” or “I” type loads,
an np factor close to 0 must be used.

These load types normally have associated electronic
control devices and have quasi-constant Active power.

In the same way, it is a common practice to represent load
Reactive power using (2) with the following parameters:

e ¢=0,90=05andq;=0.5

o nQ]=0,nQ2=1anan3=2

It means that Reactive power is represented by 50 % of
Constant Current and by 50 % of Constant Impedance.

By using (4), this load combination yields an equivalent
ng = 1.5 for small voltage variation.

This low value used for ng supposes a very low power
factor taking into account the ny values obtained from tests
and displayed in Table I.

Then, the nq factor used to represent load Reactive power
must be correlated with the load power factor. The higher
power factor, the higher ny must be set.
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IV. CONCLUSIONS

Models described in the technical literature and used to
represent static loads were briefly presented.

Also, results of several tests made at feeding load
transformers were reported and analyzed.

A procedure for model parameter validation was presented.
This procedure uses the classical quadratic error technique.

Parameters for different load types were obtained by test
simulation with the proposed model.

The following conclusions can be pointed out from test
records and simulation presented:

e The used model reproduces test records in a good
agreement for all load types tested.

e Active power exponents (np) obtained from tests for all
load types are in agreement with those reported in
technical papers.

e Reactive power exponents (ng) obtained from tests for all
load types strongly depend on load power factor
compensation.

In short, the static model described in the technical
literature was validated by tests made at several feeding load
transformers and for different load types.

The model and its corresponding parameters for each load
type obtained from test simulations were incorporated to the
Data Base for dynamic studies and were used to conduct
modal analyses.
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