CENTRO DE INGENIEROS PROVINCIA DE BUENOS AIRES

REVISTA DE INGENIERIA

Numero 144
año LIII
Junio de 2007

ISSN 0482 5772
Reg. N.P.I. 524.058
Resumen

Se describe la metodología empleada para la determinación de parámetros de unidades generadoras funcionando, conectadas al Sistema Argentino de Interconexión (SADI) a través de ensayos basados en recahos de cargas. Se presentan algunos de las identificaciones realizadas por el IITREE-LAT, en el marco del Contrato Res. 285 de CAMMESA “Provisión de Recursos Estabilizadores para el SADI”.

Los modelos usados para la identificación paramétrica son los utilizados por el software para estudios de estabilidad transitoria o dinámica, ampliamente difundidos en el mundo, como por ejemplo el citado en la Ref. [1]. Estos modelos se basan en aquellos especificados por las normas de aplicación, como la Ref. [2]. Se presenta una descripción de los ensayos diseñados con tal fin, y los resultados obtenidos. La magnitud de entrada a los modelos es la tensión de campo (Efd) medida. En los resultados se observa en general una buena concordancia entre la salida del modelo (tensión terminal del generador dividida la frecuencia, equivalente al flujo) y la corriente de campo, con respecto a las mismas magnitudes medidas.

Palabras clave

ENSAYOS - PARAMETROS - GENERADOR - MODELOS

1. Introducción

En el Contrato con CAMMESA citado previamente, surge la necesidad de validar la base de dato del sistema eléctrico argen-tino para realizar los estudios correspondientes a la ubicación de nuevos estabilizadores de potencia y su sintonía. Con este objetivo se determinan las centrales claves para la estabilidad dinámica del SADI, en especial aquellas sobre las que no se disponían datos confiables, seleccionándose así distintos tipos de máquinas: hidráulicas, térmicas tipo T6 y tipo TV.

Figura 1: Diagrama en bloque del generador

y T’-q, así como la curva de saturación basada de la corriente de campo y tensión.

3. Elección del punto de funcionamiento-
recaho de carga

Para la determinación de los parámetros de los generadores se trata de lograr despolarizar que los flujos de las máquinas excitan de un eje por vez.

3.1 Eje Directo

Para lograr solo flujo d y por lo tanto corriente real, potencia reactiva únicamente, tipo máquina sub-excitada, para trabajar con corriente corriente estatótica, corriente de campo, y frecuencia. El registro inicia al ir previo a la apertura del interruptor y se completa para permitir determinar la corriente del eje mayor (T’-do). Se dispone así de los flujos de potencia (registro de corriente y tensión) y de la fase temporal entre ambas.

3.2 Eje en cuadratura

Para lograr solo reacción de armadura, corriente real (sólo corriente q), se debe despolarizar y reactiva tal que cumplan una condición técnica de la xq, (parámetro a determinar), lo que
los generadores

Los generadores usados se corresponden con los modelos de rotor imán, cuyo diagrama en bloque se representa en la Fig. 1. La saturación se representa por la arrollamiento amotiguador en el eje d. El eje q es el eje de un arrollamiento amotiguador, desprotegido.

Técnicas de los generadores se corresponden con el modelo de rotor imán, cuyo diagrama en bloque se representa en la Fig. 2. La saturación se representa por la arrollamiento amotiguador en el eje d. El eje q es el eje de un arrollamiento amotiguador, desprotegido.

3. Elección del punto de funcionamiento previo al rechazo de carga

Para la determinación de los parámetros de los modelos de los generadores se trata de lograr desplazos de carga tales que los flujos de las máquinas exciten solo los parámetros de un eje por vez.

3.1 Eje Directo

Para lograr solo flujo d y por lo tanto corriente id se desecha potencia reactiva únicamente, tipo capacitiva (máquina sub-excitada), para trabajar con la mínima saturación posible. Para mantener la tensión de campo lo más constante posible durante toda la prueba, el control de excitación se coloca en control manual. Se abre el interruptor de máquina y se registra: tensión terminal del generador, corriente estatórica, corriente de campo, tensión de campo, y frecuencia. El registro inicial al menos 0.1 segundo previo a la apertura del interruptor y durante el tiempo necesario para permitir determinar la constante de tiempo mayor (T"d). Se dispone así de los valores iniciales de potencia (registro de corriente y tensión estatóricas, con la fase temporal entre ambas).

3.2 Eje en cuadratura

Para lograr solo reacción de armadura en el eje en cuadratura (sólo corriente dq), se debe desparazar potencia activa y reactiva tal que cumplan una condición determinada por la xq, (parámetro a determinar), lo que obliga a hacer más de un rechazo y registrar la corriente de campo hasta lograr que el salto inicial de esta sea nulo. En general se parte de un valor estimado de xq, eligiendo P (potencia activa), y Q (potencia reactiva) que cumplan con esta condición. El vínculo entre P, Q, la tensión terminal del generador Ut y xq es:

\[P^2 + Q - \frac{Ut^2}{2xq} = \left(\frac{Ut}{2xq}\right)^2 \]

Dado los valores de Ut y xq queda determinado el lugar geométrico (una circunferencia de radio Ut/2xq, con centro en P=0 y Q=Ut/2xq) en el plano P-Q, de los puntos de operación que dan corriente solo en el eje q. La P debe ser mayor que cero y menor que Ut/2xq y la Q capacitiva (máquina subexcitada). Ambos, P y Q, deben permanecer dentro de los límites permitidos (Curva de potencia límite de la máquina-Capability chart).

Si el primer rechazo da un salto de corriente en un sentido se modifica el valor de Q y/o P para lograr que la variación de Id cambie de signo, luego por interpolación entre los dos valores obtenidos se determina el tercer punto de ensayo, que dará cambio de corriente de campo nulo (Id = 0).

4. Consideraciones sobre el método de medición

Los transductores deben ser lo suficientemente rápidos y de respuesta plana para no modificar las características de las variables medidas. Se utiliza un filtro pasa-bajos de 100Hz de frecuencia de corte, para todas las señales medidas, para evitar señales esporádicas sobre todo aquellas presentes en la Tensión de Campo debido a la ondulación del rectificador de potencia.

Se prefirió registrar la tensión y la corriente sinusoidal que
entregaba la máquina. De estas dos magnitudes, mediante adecuados algoritmos, se extrae las potencias activa y reactiva, la frecuencia (2πf=ω), y la evolución temporal del valor eficaz de la tensión terminal, con lo que se obtiene el flujo eficaz terminal (-Ut/ω). Con esta forma de adquirir las señales se evitan los retardos de los traductores de valores eficaces, de potencias activa y reactiva, y de frecuencia.

5. Descripción de las unidades a identificar

Nuestro grupo de trabajo determinó los parámetros de 5 unidades generadoras en distintas centrales del SADI: una de Agua del Toro (hidráulica), una de Los Reynudos (hidráulica), una de La Central Luis Piedra Buena (TV), y dos de Agua del Cajón (TC). Otro grupo de trabajo, supervisado por el ITTRE-LAT, determinó los parámetros de otras 4 unidades generadoras: una de Río Grande (hidráulica de bombeo), una de Salto Grande (hidráulica), y dos de Güemes (TV).

Las condiciones de realización de los ensayos no se ajustaron estrictamente a las condiciones ideales teóricas, situación que había sido evaluada previo a la determinación del método de determinación de los parámetros. El efecto de la saturación no fue despreciable pues los puntos de funcionamiento obtenidos no permitieron disminuir la tensión terminal lo suficiente, ya que las máquinas estaban conectadas al SADI. La tensión de campo no se mantuvo constante por diversos motivos relacionados con los sistemas de excitación de las mismas, y sus diferentes modalidades al operar en forma manual. Los reguladores de tensión de la Central Agua del Toro, controles tensión en bornes a través de un puente rectificador controlado que gobierna la tensión de campo del generador. El puente es alimentado por medio de un generador auxiliar, montado en el mismo eje del generador principal. El sistema de Los Reynudos es similar pero el puente rectificador se alimenta de la tensión en bornes del generador por medio de un transformador.

En el caso de las máquinas hidráulicas de Agua del Toro y Los Reynudos, cuando las máquinas operan con control manual el sistema de control de excitación trata de mantener la corriente de campo constante. Por este motivo durante la prueba de rechazo de carga de eje directo la tensión de campo tiene una gran excursión en amplitud. Las unidades de Agua del Cajón tienen un sistema de excitación tipo “brushless”, en el cual resulta inaccesible la corriente y la tensión de campo de la máquina principal. En estos casos se midió la tensión y la corriente de campo de la excitatriz.

La corriente de campo de los generadores es suministrada por un rectificador no controlado alimentado por un generador auxiliar montado en el mismo eje del generador principal. La tensión de campo de este generador auxiliar, es suministrada por un rectificador semicontrolado alimentado por un generador auxiliar, llamado PMG. El regulador automático de tensión controla la tensión en bornes del generador actuando sobre la tensión de campo del generador auxiliar. Cuando el control de la excitación es manual, se mantiene constante la tensión de campo de la excitatriz, sin embargo la tensión de campo puede variar.

El modelo equivalente para la obtención de los parámetros en el caso de Agua del Cajón se completó con el modelo de la excitatriz presentado en la Figura 3. Para estas máquinas, recientemente ingresadas al SADI, se disponen de ensayos de cortocircuitos realizados por el fabricante en la que se presentaba la evolución temporal de la corriente para diversos valores de tensión del generador. Por lo tanto se conocía con bastante exactitud los parámetros de eje directo. También se disponía de curvas relevadas en fábrica de tensión y corriente de rotor y tensión de excitatriz con el generador en vacío de las cuales se pudo obtener los parámetros de la excitatriz (Kc, Kd, y Se).

Figura 3. Diagrama en bloque de la excitatriz de Agua del Cajón.

La máquina de la Central Luis Piedra Buena tiene corriente de campo suministrada por un rectificador no controlado, alimentado por un generador auxiliar (excitatriz principal). A su vez la excitación de la excitatriz principal posee 3 bobinados, uno de los cuales se encuentra en serie con el bobinado rotórico del generador. Los otros dos son bobinados independientes (OB1 y OB2), controlados por el regulador automático de tensión, cuyas corrientes poseen sentidos opuestos. Cuando se controla la excitación en forma manual, se regula (por medio de un reóstato) la corriente en OB1, en el cual se encuentra aplicada la tensión suministrada por un puente rectificador sin control alimentado por un segundo generador auxiliar llamado PMG, siendo la corriente nula en OB2. La tensión de campo no puede mantenerse constante durante la prueba, observándose una variación rápida de la misma.

6. Método para la determinación de los parámetros

En vista de la descripción hecha en el punto anterior la aplicación estricta de la metodología descrita en la Ref. [2] no fue posible. El método utilizado consiste en la determinación de los parámetros de eje directo, como primer paso. En condiciones ideales si la tensión de campo no varía en la distancia (Effd) para tiempos mucho mayores que t’ y cuando la tensión es mayor que la corriente de campo y el flujo del rotor (t=0), o cuando el incremento de la corriente de campo, por encima de la saturación. Se es función de E’q(S) sea constante, y se obtiene E’q(t). Con este valor se obtiene L’d. La pendiente de esta recta es t’ do.

De la ecuación (4) se obtiene:

\[L’ = \frac{E’q(0) - Ut(0)}{id} \]

En condiciones ideales se tiene:

\[L’ = \frac{E’q(0) - Ut(0)}{id} \]
equivalente para la obtención de los parámetros de Agua del Cajón se completó con el modelo de la figura 3.3.4.

Se dispone de curvas de máquinas, recientemente integradas al SADI, y los ensayos de cortocircuitos realizados por la empresa que se presentaba la evolución del motor para diversos valores de tensión del generador. El salto inicial de flujo \(\Delta U/t_o \) es id. \(L''d \) es la salto de corriente de campo, el salto de flujo (tensión terminal), el valor de \(\omega \) y \(E/f(\omega) \). El valor de \(E/f(\omega) \) cambia proporcionalmente entre \(t=t_0 \) y \(t=0 \), mientras que el salto de corriente de campo es lineal con la tensión inicial y \(L''d \) se calcula con la ecuación (3).

El valor de \(L''d \) es el valor de la realimentación en el eje en la corriente de campo y el flujo del rotor \(E''q \). \(E''q \) es el valor de \(\Delta f/d \), incremento de la corriente de campo, para tener en cuenta la saturación. Se obtiene de \(E''q \) y se obtiene \(\Delta f/d \) de la ecuación (3). La ecuación (4) se obtiene:

\[
Ld = \frac{E/f(0^+) - Ut(0^-)}{\omega} - L''Se
\]

\(E/f(\omega) \) es el valor de la realimentación del lazo entre la corriente de campo y el flujo del rotor \(E''q \). \(E''q \) es el valor de \(\Delta f/d \), incremento de la corriente de campo, para tener en cuenta la saturación. Se obtiene de \(E''q \) y se obtiene \(\Delta f/d \) de la ecuación (3). La ecuación (4) se obtiene:

\[
Ld = \frac{L''d - Ll + \frac{\Delta f/d}{\omega}}{\omega} - L''Se
\]

En el caso de rotor de polos salientes se puede iterar de modo de obtener \(L''d \), \(L''d \) y \(Ld \) a partir de suponer una \(Ll \) (ya que no es posible inferir el valor de \(E''q(\omega) \), y considerando el salto de corriente de campo, el salto de flujo (tensión terminal), el valor de \(\omega \) y \(E/f(\omega) \). El valor de \(E/f(\omega) \) cambia proporcionalmente entre \(t=t_0 \) y \(t=0 \), mientras que el salto de corriente de campo es lineal con la tensión inicial y \(L''d \) se calcula con la ecuación (3).

El valor de \(L''d \) es el valor de la realimentación en el eje en la corriente de campo y el flujo del rotor \(E''q \). \(E''q \) es el valor de \(\Delta f/d \), incremento de la corriente de campo, para tener en cuenta la saturación. Se obtiene de \(E''q \) y se obtiene \(\Delta f/d \) de la ecuación (3). La ecuación (4) se obtiene:

\[
Ld = \frac{E/f(0^+) - Ut(0^-)}{\omega} - L''Se
\]

\(\Delta f/d \) es una función de \(\omega(\omega) = Ut(\omega)/\omega \) (curva de saturación). Para \(t=t_0 \) es función de \(Ut(\omega)/\omega \). La ecuación (3) se obtiene directamente \(Ld \), sin necesidad de iterar. Igual que en el caso de rotor de polos salientes usando \(t_0 \) se obtiene \(L''d \), igual que es la tensión de campo no permanece constante y/o el efecto de la saturación permanece constante. Se elige un valor de \(Ll \) y \(L''d \) se obtiene \(Ld \). Luego se procede igual que en el caso de rotor de polos salientes descripto anteriormente.
directo, se pueden obtener los valores correspondientes de \(i_q \), \(q \), y \(q' \) a partir del modelo y las mediciones. Del valor de \(\Delta f_d = [i_f(d)] - f_d(0) \), se obtiene \(\phi_d \) de \((q) \), y con la corriente total medida se obtiene \(i_q \):

\[
i_q = \sqrt{i^2 - i_d^2}
\]

Para el caso de máquina de rotor de polos salientes se obtiene:
Flujo de eje directo:

\[
\phi_d(0) = \frac{E_{fd}(0) - (L_d - L'd)d}{1 + S_e} - idL'd
\]

Flujo de eje en cuadratura:

\[
\phi_q(0) = \sqrt{\frac{U_t(0)}{\omega}} - \varphi_d(0)^2
\]

Se calcula \(L_q \):

\[
L_q = \frac{\phi_q(0)}{i_q}
\]

\[
\varphi'' d(0) = \frac{E_{fd}(0) - (L_d - L'd)d}{1 + S_e} - id(L'd - L''d)
\]

\[
\varphi'' q(0) = \sqrt{\frac{U_t(0)}{\omega}} - \varphi'' d(0)^2
\]

Se calcula \(L''q \) a partir de \((50) \) y \((13) \):

\[
L'' q = \frac{\varphi q(0) - \varphi'' q(0)}{i_q}
\]

Para el caso de máquina de rotor liso se obtiene una ecuación equivalente a la (9):

\[
E_{fd}(0) - L_d id = L'' d.id \frac{\Delta L_d id}{U_t(0)}
\]

\[
\varphi d(0) = \frac{E_{fd}(0) - id - L'' d d}{1 + \frac{\Delta L_d id}{U_t(0)}}
\]

La ecuación equivalente a la (12)

\[
\varphi'' d(0) = \frac{E_{fd}(0) - id - [L_d - L'' d]}{1 + \frac{\Delta L_d id}{U_t(0)}}
\]

Luego se obtiene \(V'' q \) usando \((13) \) y \((14) \) a partir de la \((16) \). Para obtener \(Lq \) se parte de \(q \) obtenido a partir de la \((10) \) usando la \((16) \) y considerando la saturación. Resulta:

\[
-\varphi q(0') + \frac{L'' d}{U_t(0)} - \varphi'' d(0) - \varphi q(0) = \frac{\Delta L_d id}{U_t(0)} (\varphi q(0') + iq' q)
\]

\[
Lq = \frac{\varphi q(0') - \varphi'' d(0)}{i_q} + \frac{\Delta L_d id}{U_t(0)} (\varphi q(0') + iq' q)
\]

Para obtener \(L'' q \) si se observa muy poca variación de \(ifd(0) \) y \(E_{fd}(0) \), se puede aplicar el método descripto anteriormente, expresado en la ecuación (44). En este caso el objetivo es extrapolado \(E'' d(0) \), a partir de la variación temporal de la tensión terminal del generador, suponiendo la extinción previa del régimen subtransitorio y la desaparición de la saturación:

\[
E'' d(0) e^{-\frac{\varphi q(0)}{\varphi q(0')}} = \sqrt{\frac{U_t(0)}{\omega}}^2 - E_{fd}^2
\]

Aplique logaritmo natural a la (44) se obtiene \(E'' d(0) \) y T'q0

\[
E'' d(0) + iq' L'q = \sqrt{\frac{U_t(0)}{\omega}}^2 - E_{fd}^2
\]

Con \(E'' d(0) \) y la \((20) \) se obtiene \(L' q \):

\[
L' q = \frac{E'' d(0) - \sqrt{\frac{U_t(0)}{\omega}}^2 - E_{fd}^2}{i_q}
\]

Para el caso de las máquinas de Agua del Cajón, tipo brushless, se dieron por conocidos los parámetros de eje directo de los generadores, y se reajustaron los valores de \(Kc, Kd, T_d \) de la excitación con el ensayo de eje directo. Para obtener los parámetros estimados iniciales \(Kc, Kd \), se parte de las curvas tensión de campo \((E_{fd}) \) en función de la corriente de excitación \((Ife) \) para el rotor a circuito abierto y el rotor cargado con la resistencia de su bobinado \((Rf) \). Para el diagrama en bloque de la Figura 3, se pueden obtener las siguientes relaciones:

- La función \(F_e = 1 - 0,577 ln \), en estado permanente el valor de \(I_n \) es menor que \(0,433 \), es general menor que este valor y la relación es siempre menor que uno.
- En estado permanente \(E_{fd} \) es igual a \(Ife \), es igual a \(Vfe \) (corriente de excitación de \(Ife \)).
- \(1 - F_0 = 1 + 0,577 Kc \).
- En por unidad en estado permanente, \(L' q \) cargada con la resistencia del rotor resulta:

\[
\frac{E_{fd} re}{Fe} = \frac{Ife re}{Kd + Vfe}
\]

Si se expresa la ecuación (21) en unidades:

\[
\frac{E_{fd} re}{Fex} = \frac{Ife re}{Kd + Rf}
\]

\[
E_{fd} base = E_{fd} re + E_{fd base}
\]

\[
Kex = \frac{Ife re}{Vfe}
\]

- De la \((22) \) se obtiene la siguiente relación:

\[
0,577 Kc + Kd = \frac{Ife re}{E_{fd re}}
\]

Donde \(Ife \) y \(E_{fd} \) se obtienen de la curva tensión de campo cargada con la resistencia del rotor.

En los ensayos de ejes de cuadratura \(q' \), se produjo una variación en la tensión de campo de la máquina. No variará la corriente de campo \((Vfe-Ife) \). En estas condiciones se asume que se tienen excitado el eje \(q \). Se obtiene \(E_{fd} \) en función de las curvas de vacío dadas por el fabricante.
La función $F_{ex} = 1.577i_n$, en estado permanente, ya que el valor de i_n es mayor que 0.433 pues K_c resulta en un valor menor que este valor y la relación $I_{fd}/V_{p.u.}$ es siempre menor que uno.

- En estado permanente E_{fd} es igual a I_{fd} en por unidad y V_{e}, es igual a $V_{p.u.}$ (corriente de excitación I_{fe}) en por unidad.

- $F_{ex} = 1.577 K_c$

- En por unidad en estado permanente, para la excitación cargada con la resistencia del rotor resulta:

$$\frac{E_{fd}}{F_{ex}} = I_{fd} / K_d = V_{fe} / V_{p.u.}$$

Si se expresa la ecuación (21) en unidades físicas resulta:

$$\frac{E_{fd}}{F_{ex} \cdot E_{fb} \cdot K_d} = \frac{I_{fe} \cdot K_c}{E_{fd} \cdot E_{fb}}$$

$E_{fb} = Tensión de campo base$

$I_{fe} = I_{fd} / R_f$

$K_c = \frac{R_c}{R_f}$

- De la (22) se obtiene la siguiente relación que permite estimar K_d y K_c.

$$0.577 \cdot K_c + K_d = \frac{I_{fe} \cdot K_c}{E_{fd}} - 1$$

Donde I_{fe} y E_{fd} se obtienen de la curva de la excitación cargada con la resistencia del rotor.

En los ensayos de ejes de cuadratura q, se trató de no tener variaciones en la tensión de campo de la excitación V_{r} y que no variara la corriente de campo de esta excitación ($V_{fe} = I_{fe}$). En estas condiciones se asegura que solo se tiene excitado el eje q. Se obtiene E_{fd} a partir del V_{r} medido y los valores correspondientes, obtenidos de las curvas de vacío dadas por el fabricante.
La Figura 4 y 5 corresponde a una máquina de polos saliente, y la 6 y 7 a una de rotor liso, la 8 y 9 a una máquina tipo de rotor liso con excitación tipo brushless. La magnitud Vm es el flujo medido (VA/0), y V es el flujo modelado. Efpm es la tensión de campo medida, ifpm es la corriente de campo medida y ifd es la modelada. La máquina tipo brushless, la magnitud Vm es la tensión de campo de la excitación medida, ife es la corriente de campo de la excitación modelada, ife la corriente de campo de la excitación medida y ifd es la tensión de campo del generador principal modelada. El eje de abscisas es el tiempo expresado en segundos. El eje de ordenadas se expresa en por unidad de las variables graficadas. En algunos casos para apreciar mejor, alguna magnitud se dibujó un segundo eje a la derecha indicando la magnitud que representa.

7. Conclusiones

En general, si bien no se pudieron lograr las condiciones ideales de ensayo, la obtención de parámetros resultó tal que se observó una buena concordancia entre las mediciones reales y los resultados obtenidos de los modelos. Las modificaciones realizadas incluyeron la aplicación del método de la Ref. [3], consistió en registrar la tensión de campo ya que no se puede asegurar la constancia de la misma por distintos motivos y alimentar el modelo numérico con esta para ajustar los parámetros estimados inicialmente. La estimación inicial también se incluyó el efecto de la saturación.

La obtención de la frecuencia a partir de la onda sinusoidal de tensión (o medición de la misma) es estrictamente necesaria, pues la variación de ésta durante las pruebas es muy importante, sobre todo en los recaudos de eje q (potencia activa relativamente importante), para poder lograr el flujo (salida del modelo).

La obtención de los valores iniciales de P y Q a partir de los registros de la tensión y corriente estáticas alternas permite una muy buena precisión en estos valores. Último resultado se obtiene en la determinación del valor eficaz de la tensión terminal.

Las salida de los modelos resultan más próximas a los resultados de los ensayos en las pruebas de eje directo que en las pruebas de eje en cuadratura.

La aplicación de este método resultó muy satisfactoria para los ensayos de las máquinas con excitación tipo brushless.

En general los modelos elegidos para cada una de las máquinas resultaron aceptablemente satisfactorios para su representación.

8. Referencias