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Abstract: We review here the difference between quantum statistical treatments and
semiclassical ones, using as the main concomitant tool a semiclassical, shift-invariant
Fisher information measure built up with Husimi distributions. Its semiclassical character
notwithstanding, this measure also contains abundant information of a purely quantal nature.
Such a tool allows us to refine the celebrated Lieb bound for Wehrl entropies and to discover
thermodynamic-like relations that involve the degree of delocalization. Fisher-related thermal
uncertainty relations are developed and the degree of purity of canonical distributions,
regarded as mixed states, is connected to this Fisher measure as well.
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1. Introduction

A quarter of century before Shannon, R.A. Fisher advanced a method to measure the information
content of continuous (rather than digital) inputs using not the binary computer codes but the statistical
distribution of classical probability theory [1]. Already in 1980 Wootters pointed out that Fisher’s
information measure (FIM) and quantum mechanics share a common formalism and both relate
probabilities to the squares of continuous functions [2].
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The present review draws materials from much interesting work that is reported recently and
devoted to the physical applications of Fisher’s information measure (see, for instance, [1, 3–6]).
Frieden and Soffer [3] have shown that Fisher’s information measure provides one with a powerful
variational principle—the extreme physical information—that yields most of the canonical Lagrangians
of theoretical physics [1, 3]. Additionally, FIM has been shown to provide an interesting characterization
of the “arrow of time”, alternative to the one associated with Boltzmann’s entropy [7, 8]. Thus,
unravelling the multiple FIM facets and their links to physics should be of general interest. The Legendre
transform structure of thermodynamics can be replicated as well, without any change, if one replaces the
Boltzmann–Gibbs–Shannon entropy S by Fisher’s information measure I . In particular, I possesses the
all important concavity property [5], and use of the Fisher’s measure allows for the development of a
thermodynamics that seems to be able to treat equilibrium and non-equilibrium situations in a manner
entirely similar to the conventional one [5]. Here, the focus of our attention will be, following [9], the
thermal description of harmonic oscillator (HO).

The semiclassical approximation (SC) has had a long and distinguished history and remains today a
very important weapon in the physics armory. It is indeed indispensable in many areas of scientific
endeavor. Also, it facilitates, in many circumstances, an intuitive understanding of the underlying
physics that may remain hidden in extensive numerical solutions of Schrödinger’s equation. Although
the SC-approach is as old as quantum mechanics itself, it remains active, as reported, for example, in [10]
and [11].

Our emphasis in this review will be placed on the study of the differences between (i) statistical
treatments of a purely quantal nature, on the one hand, and (ii) semiclassical ones, on the other. We will
show that these differences can be neatly expressed entirely in terms of a special version, to be called Iτ ,
of Fisher’s information measure: the so-called shift-invariant Fisher one [1], associated to phase space.
Additionally Iτ is a functional of a semiclassical distribution function, namely, the Husimi function
µ(x, p). The phase space measure Iτ will be shown to help to (1) refine the so-called Lieb-bound [12]
and (2) connect this refinement with the delocalization in phase space. The latter can, of course, be
visualized as information loss. Iτ will also be related to an interesting semiclassical measure that was
early introduced to characterize the same phenomenon: the Wehrl entropy W [12],

W = −kB⟨ ln µ ⟩µ (1)

for which Lieb established the above cited lower bound W ≥ 1, which is a manifestation of the
uncertainty principle [13]. kB is the Boltzmann’s constant. Henceforth we will set kB = 1, for the
sake of simplicity.

For the convenience of the reader, in the following section we describe some fundamental aspects of
the HO canonical-ensemble description from a coherent states’ viewpoint [9], the Husimi probability
distribution function, and the Wehrl information measure.
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2. Background Notions

2.1. HO’s coherent states

In [9] the authors discuss quantum-mechanical phase space distributions expressed in terms
of the celebrated coherent states |z⟩ of the harmonic oscillator, eigenstates of the annihilation
operator â [14, 15], i.e.,

â|z⟩ = z|z⟩ (2)

with z a complex combination of the phase space coordinates x, p

z =
x

2σx

+ i
p

2σp

(3)

where σx = (h̄/2mω)1/2, σp = (h̄mω/2)1/2, and σxσp = h̄/2.
Coherent states span Hilbert’s space, constitute an over-complete basis and obey resolution of

unity [15]

∫ d2 z

π
|z⟩⟨z| =

∫ dx dp

2πh̄
|x, p⟩⟨x, p| = 1 (4)

where the differential element of area in the z−plane is d2z = dxdp/2πh̄ and the integration is carried
out over the whole complex plane.

The coherent state |z⟩ can be expanded in terms of the states of the HO as follows

|z⟩ =
∞∑

n=0

|⟨z|n⟩|2 |n⟩ (5)

where |n⟩ are eigenstates of the HO Hamiltonian whose form is Ĥ = h̄ω [â†â + 1/2] and we have

|⟨z|n⟩|2 =
|z|2n

n!
e−|z|2 (6)

2.2. HO-expressions

We write down now, for future reference, well-known quantal HO-expressions for, respectively, the
partition function Z, the entropy S, the mean energy U , the mean excitation energy E, the free energy
F = U − TS, and the specific heat C [16]

Z =
e−βh̄ω/2

1 − e−βh̄ω
(7)

S = β
h̄ω

eβh̄ω − 1
− ln(1 − e−βh̄ω) (8)

U =
h̄ω

2
+ E (9)

E =
h̄ω

eβh̄ω − 1
(10)

F =
h̄ω

2
+ T ln(1 − e−βh̄ω) (11)
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C =

(
βh̄ω

eβh̄ω − 1

)2

eβh̄ω (12)

2.3. Husimi probability distribution

In the wake of a discussion advanced in [17], we will be mainly concerned with building
“Husimi–Fisher” bridges. It is well-known that the oldest and most elaborate phase space (PS)
formulation of quantum mechanics is that of Wigner [18, 19]. To every quantum state a PS function
(the Wigner one) can be assigned. This PS function can, regrettably enough, assume negative values so
that a probabilistic interpretation becomes questionable. Such limitation was overcome, among others,
by Husimi [20]. In terms of the concomitant Husimi probability distributions, quantum mechanics can
be completely reformulated [21–24]. This phase space distribution has the form of

µ(x, p) ≡ µ(z) = ⟨z|ρ̂|z⟩ (13)

where ρ̂ is the density operator of the system and |z⟩ are the coherent states (see, for instance, [25] and
references therein). The function µ(x, p) is normalized in the fashion

∫ dx dp

2πh̄
µ(x, p) = 1 (14)

For a thermal equilibrium case ρ̂ = Z−1e−βĤ , Z = Tr(e−βĤ) is the partition function, β = 1/T , with
T being the temperature. Specializing things for the HO of frequency ω, with eigenstates |n⟩ associated
to the eigenenergies En = h̄ω (n + 1/2), one has

⟨z|ρ̂|z⟩ =
1

Z

∑
n

e−βĤ |⟨z|n⟩|2 (15)

with |⟨z|n⟩|2 given by Equation (6), and the normalized Husimi probability distribution is

µ(z) = (1 − e−βh̄ω) e−(1−e−βh̄ω)|z|2 (16)

2.4. Wehrl entropy

The Wehrl entropy is defined as [12]

W = −
∫ dx dp

2πh̄
µ(x, p) ln µ(x, p) (17)

where µ(x, p) is the “classical” distribution function (13) associated to the density operator ρ̂ of the
system. The uncertainty principle manifests itself through the inequality W ≥ 1, which was first
conjectured by Wehrl [12] and later proved by Lieb [13]. Equality holds if ρ̂ is a coherent state. After
integration over all phase space, turns out to be [9]

W = 1 − ln(1 − e−βh̄ω) (18)
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3. Fisher’s Information Measure

Let us consider a system that is specified by a physical parameter θ, while x is a real stochastic variable
and fθ(x), which in turn depends on the parameter θ, is the probability density for x. An observer makes
a measurement of x and estimates θ from this measurement, represented by θ̃ = θ̃(x). One wonders how
well θ can be determined. Estimation theory [26] asserts that the best possible estimator θ̃(x), after a very
large number of x-samples is examined, suffers a mean-square error e2 from θ that obeys a relationship
involving Fisher’s I , namely, Ie2 = 1, where the Fisher information measure I is of the form

I(θ) =
∫

dx fθ(x)

{
∂ ln fθ(x)

∂θ

}2

(19)

This “best” estimator is called the efficient estimator. Any other estimator must have a larger
mean-square error. The only proviso to the above result is that all estimators be unbiased, i.e., satisfy
⟨θ̃(x)⟩ = θ. Thus, Fisher’s information measure has a lower bound, in the sense that, no matter
what parameter of the system we choose to measure, I has to be larger or equal than the inverse of
the mean-square error associated with the concomitant experiment. This result, I e2 ≥ 1, is referred
to as the Cramer–Rao bound [1, 27]. A particular I-case is of great importance: that of translation
families [1, 4], i.e., distribution functions (DF) whose form does not change under θ-displacements.
These DF are shift-invariant (à la Mach, no absolute origin for θ), and for them Fisher’s information
measure adopts the somewhat simpler appearance [1]

I =
∫

dx f(x)

{
∂ ln f(x)

∂x

}2

(20)

Fisher’s measure is additive [1]: If x and p are independent, variables, I(x + p) = I(x) + I(p).
Notice that, for τ ≡ (x, p) (a point in phase-space), we face a shift-invariance situation. Since in
defining z in terms of the variables x and p, these are scaled by their respective variances, the Fisher
measure associated to the probability distribution µ(x, p) will be of the form [4]

Iτ =
∫ dx dp

2πh̄
µ(x, p)A (21)

with

A = σ2
x

[
∂ ln µ(x, p)

∂x

]2

+ σ2
p

[
∂ ln µ(x, p)

∂p

]2

(22)

Given the µ-expression (16), Iτ becomes

Iτ = 1 − e−βh̄ω (23)

which, immediately yields

Iτ e2
|z|(β, ω) = 1; (CR bound reached) (24)

We realize at this point that the Fisher measure built up with Husimi distributions is to be best
employed to estimate “phase space position” |z|. Further, efficient estimation is possible for all
temperatures, a rather significant result. Comparison with Equation (18) allows one now to write
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W = 1 − ln(Iτ ) ⇒ W + ln(Iτ ) = 1 (25)

Since both W and Iτ are positive-definite quantities, (25) tells us that they are complementary
informational quantities, thus if one of them gains, the other loses. Following Anderson et al. [9]
let us now analyze the high and low temperatures limits. Given the form (23), when the temperature
goes to zero (β → ∞), Iτ ≈ 1, its maximum possible value, since we know that the ground state will
be the only one to be populated. If, on the other hand, the temperature tends to infinity (β → 0), then
Iτ ≈ βh̄ω and tends to zero, because we know beforehand that, in the limit, all energy levels will be
populated in uniform. The uniform distribution is that of maximum ignorance [28–31]. The range of Iτ

is 0 ≤ Iτ ≤ 1, that of W is 1 ≤ W ≤ ∞, as we can see in Figure 1. Using Iτ together with Equation (7)
we notice that

Iτ =
e−βh̄ω/2

Z
(26)

so that it coincides with the canonical ensemble probability for finding the system in its ground state.

Figure 1. Fisher (Iτ ) and Wehrl (W ) information measures vs. T (in h̄ω units) for
HO-Husimi distribution.
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4. Fisher, Thermodynamics’ Third Law, and Thermodynamic Quantities

Consider now the general definition (19) of Fisher’s information measure in terms of the DF µ(x, p)
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Iβ =
∫ dx dp

2πh̄
µ(x, p)

(
∂ ln µ(x, p)

∂β

)2

(27)

with θ ≡ β is the parameter to be estimated. Since

∂ ln µ(x, p)

∂β
=

h̄ω

eβh̄ω − 1
[1 − (1 − e−βh̄ω) |z|2] (28)

one readily ascertains that (i) the µ-mean value of (28) vanishes and (ii)

Iβ =

(
h̄ω

eβh̄ω − 1

)2

(T = [0,∞] → Iβ = [0,∞]) (29)

which, in view of (12), entails

Iβ =
e−βh̄ω

β2
C (30)

Reflection upon the Iβ-range (29) might led one to conclude that it constitutes a Fisher manifestation
of thermodynamics’ third law. Not only Shannon’s measure but also Fisher’s (for the HO, at least)
vanishes at zero temperature. Replacing now (23) and (29) into the entropy expression (8) we
immediately arrive at the relation

S = β
√

Iβ − ln Iτ (31)

The HO entropy can be expressed as the sum of two terms: one associated with the Fisher information
Iβ and the other with the Fisher information for translation families Iτ corresponding to the phase space
variables (x, p). Using Equation (7) we also have

ln Iτ = −β
h̄ω

2
− ln Z = −(βEgs + ln Z) (32)

with Egs denoting the ground state energy. Thus,

S = β

(
h̄ω

2
+
√

Iβ

)
+ ln Z (33)

which is to be compared to the well known canonical ensemble general expression connecting S and the
mean energy U [16]

S = ln Z + βU (34)

we see that Iβ is related to the excited spectrum contribution to U while Iτ is to be linked to the partition
function. We will look now for a new connection between Fisher’s measures Iτ and Iβ . From (29) it is
possible to rewrite Iβ in the form

Iβ ≡
(

h̄ω e−βh̄ω

1 − e−βh̄ω

)2

(35)

and therefore

Iτ

√
Iβ = h̄ ω e−βh̄ω = − ∂

∂β
(e−βh̄ω) (36)
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i.e., the product on the left hand side is the β-derivative of the Boltzmann factor (constant energy-wise)
at the inverse temperature β. In other words, Iτ

√
Iβ measures the β-gradient of the Boltzmann factor.

Equation (23) implies, via Equations (7) to (12), that the quantal HO expressions for the most
important thermodynamic quantities can be expressed in terms of the semiclassical measure Iτ . For
this end we define the semiclassical free energy

Fsc = T ln Iτ (37)

which is the semiclassical contribution to the HO free-energy F = h̄ω/2 + Fsc. Therefore, the
thermodynamic quantities can be expressed as follows

Z =
e−βh̄ω/2

Iτ

(38)

E = h̄ω
1 − Iτ

Iτ

(39)

S = βh̄ω
1 − Iτ

Iτ

− Fsc

T
(40)

C = (βh̄ω)2 1 − Iτ

I2
τ

(41)

which shows that the semiclassical, Husimi-based Iτ−information measure does contain purely quantum
statistical information. Furthermore, since from Helmholtz’ free energy F , we can derive all of the HO
quantal thermodynamics [16], we see that the the HO-quantum thermostatistics is, as far as information
is considered, entirely of semiclassical nature, as it is completely expressed in terms of a semiclassical
measure. We emphasize thus the fact that the semiclassical quantity Iτ contains all the relevant
HO-statistical quantum information.

5. HO-Semiclassical Fisher’s Measure

5.1. MaxEnt approach

All the previous results are exact. No reference whatsoever needs to be made to Jaynes’ Maximum
Entropy Principle (MaxEnt) [31] up to this point. We wish now to consider a MaxEnt viewpoint. It
is shown in [14] that the HO-energy can be cast as the sum of the ground-state energy h̄ω/2 plus the
expectation value of the HO-Hamiltonian with respect to the coherent state |z⟩, which is the sum of the
ground-state energy plus a semiclassical excitation energy E . One has for the semiclassical excitation
HO-energy e(z) at z [14]

e(z) = ⟨z|H|z⟩ − h̄ω/2 = h̄ω|z|2, i.e.,
Eν = h̄ω⟨|z|2⟩ν (42)

where the last expectation value is computed using the distribution ν(z). This semiclassical excitation
energy Eµ is given, for a Husimi distribution µ, by [25]
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Eµ = ⟨e(z)⟩µ =
h̄ω

Iτ

(43)

Note now that, from Equation (16), we can conveniently recast the HO-expression for µ into the
Gaussian fashion

µ(z) = Iτ e−Iτ |z|2 (44)

peaked at the origin. The probability density µ of Equation (44) is clearly of the maximum entropy [31].
As a consequence, it proves convenient, at this stage, to view Iτ in the following light. The

semiclassical form of the entropy S has exhaustively been studied by Wehrl. It is the (cf. 1) Shannon’s
information measure evaluated with Husimi distributions [12]. Assume we know a priori the value
Eν = h̄ω⟨|z|2⟩ν . We wish to determine the distribution ν(z) that maximizes the Wehrl entropy under this
Eν−value constraint. Accordingly, the MaxEnt distribution will be [31]

ν(z) = e−λoe−η E(z) (45)

with λo the normalization Lagrange multiplier and η the one associated to Eν . According to MaxEnt
tenets we have [31]

λo = λo(η) = ln
∫ d2z

π
e−η h̄ω|z|2 = − ln (η h̄ω) (46)

Now, the η−multiplier is determined by the relation [31]

− Eν =
∂λo

∂η
= −1

η
(47)

If we choose the Fisher-Husimi constraint given by Equation (43), this results in η = Iτ/h̄ω and from
Equation (46) we get λo = − ln Iτ , i.e., e−λo = Iτ , and we consequently arrive to the desired outcome

ν(z) = Iτ e−Iτ |z|2 ≡ µ(z) (48)

We have thus shown that the HO-Husimi distributions are MaxEnt-ones with the semiclassical
excitation energy (43) as a constraint. It is clear from Equation (48) that Iτ plays there the role of
an “inverse temperature”.

The preceding argument suggests that we are tacitly envisioning the existence of a quantity TW (the
inverse of η) associated to the Wehrl measure that we here extend to extreme. This Wehrl temperature
TW governs the width of our Gaussian Husimi distribution. On account of

µ(z) = Iτ e−(Iτ /h̄ω) h̄ω|z|2 = Iτ e−Eµ/TW (49)

which entails

TW =
h̄ω

Iτ

(50)

and it is easy to see from the range of Iτ that the range of values of TW is then h̄ω ≤ TW ≤ ∞. Due to
the semiclassical nature of both W and µ, TW has a lower bound greater than zero.



Entropy 2009, 11 981

5.2. Delocalization

The two quantities W and Iτ have been shown to be related, for the HO, according to Equation (25).
Since the Wehrl temperature TW yields the width of our Gaussian Husimi distribution, we can conceive
of introducing a “delocalization factor” D

D =
TW

h̄ω
(51)

The above definition leads to the relation

W = 1 + ln TW − ln h̄ω = 1 + ln D (52)

As stressed above, W has been constructed as a delocalization measure [12]. The preceding
considerations clearly motivate one to regard the Fisher measure built up with Husimi distributions
as a “localization estimator” in phase space. The HO-Gaussian expression for µ (44) illuminates the
fact that the Fisher measure controls both the height and the spread (which is ∼ [2Iτ ]

−1). Obviously,
spread is here a “phase-space delocalization indicator”. This fact is reflected by the quantity D

introduced above.
Thus, an original physical interpretation of Fisher’s measure emerges: localization control. The

inverse of the Fisher measure, D, turns out to be a delocalization-indicator. Differentiating Fisher’s
measure (23) with respect T , notice also that

dIτ

dT
= − h̄ω

T 2
e−βh̄ω (53)

so that Fisher’s information decreases exponentially as the temperature grows. Our Gaussian distribution
loses phase-space “localization” as energy and/or temperature are injected into our system, as reflected
via TW or D. Notice that (52) complements the Lieb bound W ≥ 1. It tells us by just how much
W exceeds unity. We see that it does it by virtue of delocalization effects. Moreover, this fact can
be expressed using the shift-invariant Fisher measure. We will now show that D is proportional to the
system’s energy fluctuations.

5.3. Second moment of the Husimi distribution

The second moment of the Husimi distribution µ(z) is an important measure to ascertain the “degree
of complexity” of a quantum state (see below). It is a measure of the delocalization-degree of the Husimi
distribution in phase space (see Reference [32] for details and discussions). It is defined as

M2 =
∫ d2z

π
µ2(z) (54)

that, after explicit evaluation of M2 from Equation (44) reads

M2 =
Iτ

2
(55)

Using now (52) we conclude that

M2(D) =
1

2 D
(56)
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Thus, our energy-fluctuations turn out to be

∆µe =
h̄ω

Iτ

= h̄ω D (57)

with (∆µe)
2 = (E2)µ − E2

µ. As a consequence, we get

D =
∆µe

h̄ω
(58)

An important result is thus obtained: the delocalization factor D represents energy-fluctuations
expressed in h̄ω−terms. Delocalization is clearly seen to be the counterpart of energy fluctuations.

6. Thermodynamics-Like Relations

Let us now go back to Equation (37) and revisit the entropic expression. It is immediately realized
that we can recast the entropy S in terms of the quantal mean excitation energy E and the delocalization
factor D as

E

T
= S − ln D (59)

i.e., if one injects into the system some excitation energy E, expressed in “natural” T units, it is
apportioned partly as heat dissipation via S and partly via delocalization. More precisely, the part
of this energy not dissipated is that employed to delocalize the system in phase space. Now, since
W = 1 − ln Iτ = 1 + ln D, the above equation can be recast in alternative forms, as

S =
E

T
+ ln D =

E

T
− ln Iτ ; or (60)

W = 1 + S − E

T
(61)

implying

W − S 7→ 0 for T 7→ ∞ (62)

which is a physically sensible result and

W − S 7→ 1 for T 7→ 0 (63)

as it should, since S = 0 at T = 0 (third law of thermodynamics), while W attains there its Lieb’s lower
bound of unity.

One finds in Equation (60) some degree of resemblance to thermodynamics’s first law. To reassure
ourselves on this respect, we slightly changed our underlying canonical probabilities µ, multiplying it
by a factor δF = random number/100. Specifically, we generated random numbers according to the
normal distribution and divided them by 100 to obtain the above factors δF . This process leads to new
“perturbed” probabilities P = µ+δµ, conveniently normalized. With them we evaluate the concomitant
changes dS, dE (we do this 50 times, with different random numbers in each instance). We were then
able to numerically verify that the difference dS − βdE ∼ 0. The concomitant results are plotted in
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Figure 2) Since, as stated, numerically dS = (1/T ) dE, this entails, from Equation (60), dIτ/Iτ ≃ 0.
The physical connotations are as follows: if the only modification effected is that of a change δµ [16] in
the canonical distribution µ, this implies that the system undergoes a heat transfer process [16] for which
thermodynamics’ first law implies dU = TdS. This is numerically confirmed in the plots of Figure 2.
The null contribution of ln Iτ to this process suggests that delocalization (not a thermodynamic effect,
but a dynamic one) can be regarded as behaving (thermodynamically) like a kind of “work”.

Figure 2. Numerical computation results for the HO: changes dU and dIτ vs. dS that
ensue after randomly generating variations δpi in the underlying microscopic canonical
probabilities pi.
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Now, since (a) Iτ = 1 − e−βh̄ω, and (b) the mean energy of excitation is E = h̄ω/(exp (βh̄ω) − 1),
one also finds, for the quantum-semiclassical difference (QsCD) S − W the result

W − S = 1 − Iτ−1
Iτ

ln(1 − Iτ ) = F1(Iτ ) (64)

Moreover, since 0 ≤ F1(Iτ ) ≤ 1, we see that, always, W ≥ S, as expected, since the semiclassical
treatment contains less information than the quantal one. Note that the QsCD can be expressed
exclusively in Fisher’s information terms. This is, the quantum-semiclassical entropic difference S −W

may be given in Iτ−terms only. Figure (3) depicts S, βE, and ln D vs. the dimensionless quantity
t = T/h̄ω. Accordingly, entropy is apportioned in such a way that
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• part of it originates from excitation energy and

• the remaining is accounted for by phase space delocalization.

A bit of algebra allows one now to express the rate of entropic change per unit temperature increase as

dS

dT
= β

dE

dT
= β C = h̄ω

1

T

dD

dT
, (65)

entailing

C = h̄ω
dD

dT
(66)

Figure 3. S, ln D, and βE as a function of t = T/h̄ω.
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In the case of the one dimensional HO we see that the specific heat measures delocalization change
per unit temperature increase. Also, dE/dT ∝ dD/dT , providing us with a very simple relationship
between mean excitation energy changes and delocalization ones.

dE

dD
= h̄ω (67)
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7. On Thermal Uncertainties

Additional considerations are in order with regards to thermal uncertainties, that express the effect
of temperature on Heisenberg’s celebrated relations (see, for instance [6, 33–35]). We use now a result
obtained in [9] (Equation (3.12)), where the authors cast Wehrl’s information measure in terms of the
coordinates’ variances ∆µx and ∆µp, obtaining

W = ln
{

e

h̄
∆µx ∆µp

}
(68)

In the present context, the relation W = 1 − ln Iτ allows us to conclude that [17]

Iτ ∆µx ∆µp = h̄ (69)

which can be regarded as a “Fisher uncertainty principle” and adds still another meaning to Iτ : since,
necessarily, ∆µx ∆µp ≥ h̄/2, it is clear that Iτ/2 is the “correcting factor” that permits one to reach the
uncertainty’s lower bound h̄/2, a rather interesting result.

Phase space “localization” is possible, with Husimi distributions, only up to h̄ [14]. This is to be
compared to the uncertainties evaluated in a purely quantal fashion, without using Husimi distributions,
and in particular with a previous result in [17]. With the virial theorem [16] one can easily ascertain
in [17] that

∆x ∆p =
h̄

2

eβh̄ω + 1

eβh̄ω − 1
(70)

together with (69) yields

∆µx ∆µp =
2 ∆x ∆p

1 + e−βh̄ω
(71)

Thus We see that, as β → ∞, ∆µ ≡ ∆µx ∆µp is twice the minimum quantum value for ∆x∆p,
and ∆µ → h̄, the “minimal” phase-space cell. The quantum and semiclassical results do coincide at
very high temperature though. Indeed, one readily verifies [17] that Heisenberg’s uncertainty relation,
as a function of both frequency and temperature, is governed by a thermal “uncertainty function” F that
acquires the aspect

F (β, ω) = ∆x ∆p =
1

2

[
∆µ +

E

ω

]
(72)

Coming back to results derivable within the present context, we realize here that F can be recast as

F (β, ω) =
1

2

[
h̄ D +

E

ω

]
(73)

so that, for T varying in [0,∞], the range of possible ∆x ∆p-values is [h̄/2,∞]. Equation (73)
is a “Heisenberg–Fisher” thermal uncertainty relation (for a discussion of this concept see, for
instance, [6, 33, 34]).

F (β, ω) grows with both E and D. The usual result h̄/2 is attained for minimum D and zero excitation
energy. As for dF/dT , one is able to set F ≡ F (E, D), since 2dF = h̄dD + ω−1dE. Remarkably
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enough, the two contributions to dF/dT are easily seen to be equal and dF/dT → (1/ω) for T → ∞.
One can also write (

∂F

∂D

)
E

=
h̄

2
;

(
∂F

∂E

)
D

=
1

2ω
(74)

providing us with a thermodynamic “costume” for the uncertainty function F that sheds some new light
onto the meaning of both h̄ and ω. In particular, we see that h̄/2 is the derivative of the uncertainty
function F with respect to the delocalization factor D. Increases dF of the thermal uncertainty function
F are of two types

• from the excitation energy, that supplies a C/ω contribution and

• from the delocalization factor D.

8. Degrees of Purity Relations

8.1. Semiclassical purity

The quantal concept of degree of purity of a general density operator ρ̂ is expressed via Tr ρ̂2 [36, 37].
Its inverse, the so-called participation ratio

R =
1

Tr ρ̂2
(75)

is particularly convenient for calculations [38]. It varies from unity for pure states to N for totally mixed
states [38]. It may be interpreted as the effective number of pure states that enter a quantum mixture.
Here we will consider the “degree of purity” dµ of a semiclassical distribution, given by

dµ =
∫ d2z

π
µ2(z) ≤ 1 (76)

Clearly, dµ coincides with the second moment of the Husimi distribution (44) given by Equation (54),
i.e.,

dµ = M2 =
Iτ

2
(77)

Using now (52) we relate the semiclassical degree of purity to the delocalization factor and to the
Wehrl temperature TW

dµ =
1

2 D
=

TW

2h̄ω
(78)

and also to our semiclassical energy-fluctuations (57)

dµ =
h̄ω

2∆µe
(79)

Since h̄ω ≤ TW ≤ ∞, the “best” purity attainable at the semiclassical level equals one-half.



Entropy 2009, 11 987

8.2. Quantal purity

For the quantum mixed HO-state ρ̂ = e−βH/Z, where H is the Hamiltonian of the harmonic oscillator
and the partition function Z is given by Equation (7) [16], we have a degree of purity dρ̂ given by (see
the detailed study by Dodonov [35])

dρ̂ =
e−βh̄ω

Z2

∞∑
n=0

e−2βh̄ωn (80)

leading to

dρ̂ = tanh(βh̄ω/2) (81)

where 0 ≤ dρ̂ ≤ 1. Thus, Heisenberg’ uncertainty relation can be cast in the fashion

∆x ∆p =
h̄

2
coth(βh̄ω/2) (82)

where ∆x and ∆p are the quantum variances for the canonically conjugated observables x and p [35]

∆x ∆p =
h̄

2

1

dρ̂

(83)

which is to be compared to the semiclassical result that was derived above (cf. 71).
We relate now the degree of purity of our thermal state with various physical quantities both in its

quantal and semiclassical versions. Using Equations (71) and (77) we get

dµ =
Iτ

2
= (1 − dµ) dρ̂ (84)

which leads to

dρ̂ =
dµ

1 − dµ

=
Iτ

2 − Iτ

dµ =
dρ̂

1 + dρ̂

(85)

such as clearly shows that (i) dµ ≤ dρ̂, and (ii) for a pure state, again, its semiclassical counterpart has a
degree of purity equal 1/2.

Additionally, on account of Equation (69), on the one hand, and since the semiclassical degree of
purity reads dµ = Iτ/2, on the other one, we are led to an uncertainty relation for mixed states in terms
of dµ, namely,

∆µx ∆µp =
h̄

2

1

dµ

(86)

that tells us just how uncertainty grows as participation ratio R = 1/dµ augments. Equation (86) is
of semiclassical origin, which makes it a bit different from the one that results form a purely quantal
treatment (see [35], Equation (4)). Moreover, notice how information concerning the purely quantal
notion of purity dρ̂ is already contained in the semiclassical measure Iτ .
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Figure 4. Semiclassical purity dµ vs. T/hν.
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We appreciate the fact that R increases as delocalization grows, a quite sensible result. Figure (4)
depicts dµ(T ), a monotonously decreasing function, which tells us that degree of purity of a mixed state
acts here as a thermometer, and allows then to assign a T−value to any of our mixed states.

Also, using once again the result dµ = Iτ/2 together with the uncertainties just derived we see that
βh̄ω = − ln (1 − Iτ ). Thus, we can rewrite Equation (64) in the following form

W − S = 1 + βh̄ω
2dµ − 1

2dµ

= 1 + βh̄ω
dρ̂ − 1

2dρ̂

(87)

which casts the difference between the quantal and semiclassical entropies in terms of the degrees of
purity. From Equation (87) we can also give the quantal mean excitation energy E in terms of dµ

using (38)

E =
h̄ω

2

1 − 2dµ

dµ

=
h̄ω

2

1 − dρ̂

dρ̂

(88)

9. Conclusions

We have explored in this review connections between canonical ensemble quantities and two Fisher
information measures, associated to the estimation of phase-space location (Iτ ) and temperature (Iβ).
Our most important result is, perhaps, to have shown that there exists a “Fisher-associated” third law of
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thermodynamics (at least for the HO). From a pure information-theoretic viewpoint, we have, obtained
significant results, namely,

1. a connection between Wehrl’s entropy and Iτ (cf. Equation (25)),

2. an interpretation of Iτ as the HO’s ground state occupation probability (cf. Equation (26)),

3. an interpretation of Iβ proportional to the HO’s specific heat (cf. Equation (30)),

4. the possibility of expressing the HO’s entropy as a sum of two terms, one for each of the above
FIM realizations (cf. Equation (31)),

5. a new form of Heisenberg’s uncertainty relations in Fisher terms (cf. Equation (73)),

6. that efficient |z|-estimation can be achieved with Iτ at all temperatures, as the minimum
Cramer–Rao value is always reached (cf. Equation (24)).

Our statistical semiclassical treatment yielded, we believe, some new interesting physics that we
proceed to summarize. We have, for the HO,

1. established that the semiclassical Fisher measure Iτ contains all relevant statistical quantum
information,

2. shown that the Husimi distributions are MaxEnt ones, with the semiclassical excitation energy E
as the only constraint,

3. complemented the Lieb bound on the Wehrl entropy using Iτ ,

4. observed in detailed fashion how delocalization becomes the counterpart of energy fluctuations,

5. written down the difference W−S between the semiclassical and quantal entropy also in Iτ−terms,

6. provided a relation between energy excitation and degree of delocalization,

7. shown that the derivative of twice the uncertainty function F (βω) = ∆x∆p with respect to I−1
τ is

the Planck constant h̄,

8. established a semiclassical uncertainty relation in terms of the semiclassical purity dµ, and

9. expressed both dµ and the quantal degree of purity in terms of Iτ .

These results are, of course, restricted to the harmonic oscillator. However, this is such an important
system that HO insights usually have a wide impact, as the HO constitutes much more than a mere
example. Nowadays it is of particular interest for the dynamics of bosonic or fermionic atoms contained
in magnetic traps [39–41] as well as for any system that exhibits an equidistant level spacing in the
vicinity of the ground state, like nuclei or Luttinger liquids. The treatment of Hamiltonians including
anharmonic terms is the next logical step. We are currently undertaking such a task. To this end
analytical considerations do not suffice, and numerical methods are required. The ensuing results will be
published elsewhere.
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