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Abstract: A rapidly growing area of modern pharmaceutical research is the prediction of 
aqueous solubility of drug-sized compounds from their molecular structures. There exist 
many different reasons for considering this physico-chemical property as a key parameter: 
the design of novel entities with adequate aqueous solubility brings many advantages to 
preclinical and clinical research and development, allowing improvement of the 
Absorption, Distribution, Metabolization, and Elimination/Toxicity profile and 
“screenability” of drug candidates in High Throughput Screening techniques. This work 
compiles recent QSPR linear models established by our research group devoted to the 
quantification of aqueous solubilities and their comparison to previous research on  
the topic.  
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1. Introduction 
 

Nowadays it is generally recognized that an ideal drug, besides being pharmacologically active, 
should additionally possess certain features regarding its bioavailability and its toxicological profile 
[1-5]. Absorption, Distribution, Metabolization, and Elimination/Toxicological (ADME/Tox) in silico 
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filters constitute widely employed tools to determine whether it is probable or not for a drug candidate 
to reach its site of action or elicit toxic effects at its therapeutic dose. Moreover, modern approaches 
developed in the pharmaceutical industry for a rational molecular design have moved the ADME/Tox 
evaluations to the early stages of drug development, where an optimal activity of the compound is 
sought [6].  

The degree of absorption of a substance depends simultaneously on dose, solubility, and 
permeability, and the exploration of large databases containing orally bioavailable drugs led to the 
formulation of the widely-used Lipinski “rule of five” for compounds absorbed through the 
gastrointestinal barrier via passive diffusion [7]. These simple rules state that oral bio-availability is 
likely to occur if at least three of the following rules are obeyed: molecular weight below 500; no more 
than five hydrogen bond donors and less than 10 hydrogen bond acceptors; and a calculated logarithm 
of the partition coefficient of the compound between water and octanol (log P) below 5.  

The empirical conditions to satisfy Lipinski´s rule and display good oral bioavailability involve a 
balance between the aqueous solubility of a compound and its ability to diffuse passively through the 
different biological barriers. Aqueous solubility governs both the rate of dissolution of the compound 
and the maximum concentration reached in the gastrointestinal fluid. However, excessively polar 
compounds would result problematic at the stage of passing through the various biological barriers. 
Furthermore, it is known that aqueous solubility constitutes an important parameter in Medicinal 
Chemistry for the following reasons: soluble compounds are associated to shorter metabolization and 
elimination times, thus leading to lower probability of adverse effects and bioaccumulation [1,2,8], and 
most pre-clinical tests involve solubilization of the drug being tested in hydrophilic solvents [9,10]. 
Accurate activity measurements can be obtained only if the substance is sufficiently soluble (above the 
detection limit of the assay). Otherwise, an active compound may appear to be inactive due to 
insufficient solubility rather than inadequate potency [4,5].  

The aqueous solubility of a given chemical entity can be obtained by experimental determination, 
although this usually presents some difficulties [2,3]. The traditional “shake flask” assay for measuring 
solubility is an equilibrium (thermodynamical) assay in which the solid is mixed vigorously with an 
aqueous buffer for a long period of time. This approach requires a fairly large amount of sample (1 – 2 
mg) and is time-demanding (24 – 72 hours or more to do properly). Kinetic solubility measurements, 
in miniaturized methods such as Nephelometry [11], require little starting material but involve a 
reliable DMSO stock solution and multiple repeats to achieve accuracy. Furthermore, kinetic and 
thermodynamic solubility measurements are not interchangeable: they rely on fundamentally different 
physical properties to assess solid-state and solvation interactions and thus should be approached and 
interpreted with both caution and a detailed understanding of their strengths and limitations [12]. 
Obviously, it is not feasible to measure the solubility when no samples of compounds are available, 
while the times required for these assays are not compatible with the new High Throughput  
Screening technologies.  

This background explains the great interest of developing theoretical models to predict aqueous 
solubility directly from structure. Consequently, a high number of theoretical models have been 
proposed in the past to predict aqueous solubilities, ranging from the early studies of Amidon et al. in 
1975 [9] to several approaches including thermodynamic calculations, Group Contribution Methods 
and Quantitative Structure-Property Relationships (QSPR) [8,13-16]. 
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2. Some Different in silico Methods for Solubility Estimation 
 

The simplest definition for aqueous solubility (S, mol·L-1) in a given solvent is the maximum 
amount of the most stable crystalline form of the compound that can remain in solution in a given 
volume of the solvent at a given temperature and pressure under thermodynamic equilibrium [12]. This 
equilibrium balances the energy of the intermolecular interactions between solvent and solute 
molecules against the energy of solvent and solute molecules interacting intramolecularly with each 
other. For an ionizable compound, solubility without reference to pH and ionization constant pKa is 
meaningless, while for any compound under analysis the specific solid state (amorphous or crystalline 
state) and solvent/s used is central for determining the solubility. It is also possible to distinguish 
different precise definitions of the term solubility [1]. 

The interaction between water and drug has been intensively studied previously and reviewed in 
ref. [2]. A typically employed empirical method to estimate solubility is based on easily obtained 
measurements, combining log P and melting point (MP) data by using the “General Solubility 
Equation” (GSE) [17-19]. Surprisingly, despite of its relative simplicity this equation has impressive 
accuracy as demonstrated in several studies [20-22], and this fact has led to the proposal of improved 
versions of the GSE model for adjusting large data sets of compounds [23-26]. The log P parameter 
provides an estimate of the strength of the interaction of the compound with water, while most 
common log P estimation programs are fragment based and empirical, such as CLOGP (Daylight 
Chemical Information Systems) and ACD/logD (Advanced Chemistry Development, Inc.). The main 
drawback of this method appears when it involves compounds having very high melting points (the 
sample decomposes before melting) or very low or very high log P values [15,27]. Other empirical 
methods were also reported, although sharing the common disadvantage that all of them require the 
experimental measurement of some terms defined in the equation [28,29].  

The energetics of a compound in water can be assessed through a model of solvation, by resorting 
to Molecular Simulation in a statistical thermodynamical-like approach. Jorgensen and Duffy [30] 
employed Monte Carlo simulation with solute embedded in a bath of rigid water molecules to derive 
cohesive properties that can be used to predict solubility. However, this sort of calculations is quite 
computationally demanding for each different solute. A completely different approach to simulation is 
the Cellular Automata [31], were solvent and solute are represented by cells on a grid while their 
movements are governed by their immediate neighbors and a set of transition rules. The occupancy 
patterns of the cells change at each step, and many steps are involved. Such a kind of simulation offers 
intriguing insights into the dissolution process, i.e. formation of mobile cavities within the solid solute, 
but is not as useful as Monte Carlo in quantitative work. An alternative to the simulation of a large 
ensemble of particles focuses on a single solute molecule that is modeled in more detail, being based 
on electronic structure methods of Quantum Mechanics. Within this framework the solvent, which 
polarizes the molecule and is itself polarized by the solute, can be approximated as a continuous 
dielectric (Cramer-Truhlar approach) [32]. An alternative modeling of the solvent embeds both solute 
and solvent in a perfect conductor to calculate their polarization charge densities in the COSMO-RS 
(COSMOlogic GmbH and Co. KG) quantum chemical approach, leading to a chemical potential for 
the system that enables to estimate the solubility [33]. Despite of this, Quantum Mechanics methods 
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are much slower than Monte Carlo simulations and result unsuitable for the analysis of large datasets 
of compounds. Table 1 summarizes different classes of methods to predict aqueous solubility data [1].  

Table 1. Methods for predicting aqueous solubilities. 

Description Requirements Speed 
Methods based on other 
experimental physico-chemical 
properties 

log P, MP, etc. 
Tens to hundreds 
compounds per day 

Methods using 3D parameters 
depending on molecular 
stereochemistry 

Optimized 3D structure, 
Monte Carlo, quantum 
chemical calculations 

Tens to tens of thousands 
compounds per day 

Fragmental and atom-type based 
methods using 1D or 2D 
parameters 

Molecule as a smile, 2D 
graph 

Million of compounds per 
day 

 
Among the different existing techniques for estimating different physical and thermodynamic data 

of interest, Group Contribution Methods (GCM) [34-36] are easy to apply, relying solely on the sum of 
contributions of each molecular structure fragment to the aqueous solubility. The basic assumption of 
this approach is the transferability concept for a group; if this hypothesis does not hold, then GCM can 
be corrected with experimental data when available to achieve better predictions. The methods 
proposed by Nirmalakhandan et al. [37], Suzuki et al. [38], Kuhne et al. [39], Lee et al. [40], and 
Klopman et al. [14,41] belong to this category. Among all these methods, only Klopman’s method is a 
pure and general group contribution model without using additional experimental parameters.  

Although GCM have a simple and practical implementation, some common drawbacks of this 
methodology are the following: a) they require a large data set to obtain a contribution of each 
functional group; b) in its basic form (without corrections) it cannot model isomeric structures; c) they 
may contain a “missing fragment” problem, which means that if a compound contains a missing 
fragment which can be defined by the group contribution model, its aqueous solubility cannot be 
precisely predicted; d) there are not always measured data available to extend these methods to strange 
compounds such as molecules containing fused aromatic rings or to organometallic compounds. Since 
the final estimated GCM value assigned to the aqueous solubility of a compound involve that it change 
from the solid phase to a new one (liquid), this makes it harder to separate the contributions of 
individual parts of the molecule to the whole process. Nevertheless, GCM is a fast method  
for estimating aqueous solubility on large data sets of compounds and can produce reasonably  
accurate results. 
 
3. Predicting Solubility through Linear Regression Based QSPR-QSAR 
 

In the realms of the Quantitative Structure Property-Activity Relationships theory (QSPR-QSAR), a 
physicochemical or biological property of a compound is assumed to be a unique consequence of its 
molecular structure [42-44]. Therefore, a model is employed to predict the property by means of 
structural descriptors or numerical variables that capture different constitutional, topological, 
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geometrical or electronic characteristics of the molecular structure in consideration. These molecular 
descriptors can be readily calculated through mathematical formulae obtained from several theories, 
such as the Chemical Graph Theory, Information Theory, Quantum Mechanics, etc. [45,46] The 
hypotheses involved in QSPR-QSAR analyzes have proven in the past to function quite well for a wide 
spectrum of properties/activities of interest. 

QSPR-QSAR models enable property estimation for substances that have yet not been tested for 
different reasons, such as instability, toxicity, or simply because their measurement requires too much 
time. In terms of economy, these studies allow the rational use of the available resources present in the 
laboratory or even a plant, avoiding performing expensive and unnecessary experimental 
determinations. With respect to their moral aspects, the QSPR-QSAR analyses applied to Toxicology 
have achieved great importance in the virtual screening of the toxic potential of compounds before 
their synthesis [47], and thus represent an effective alternative that reduces animal testing in biological 
assays. In drug discovery, both the prediction with QSAR-QSPR of ADMET properties [48] and the 
oral bioavailability of compounds [49,50] were conveniently addressed. Finally, from the theoretically 
point of view, the model can illuminate the mechanisms of physicochemical properties or biological 
activities of the compounds. 

It is well known that a single descriptor is unable to carry all the structural information of a 
molecule, and one has to search for the best descriptors among the more than a thousand available in 
the literature, that are the most representative/descriptive parameters for the particular modeled 
property [51-53]. There exist various standard statistical methods that constitute a common practice for 
QSPR-QSAR model design, such as linear: Multivariable Linear Regression (MLR) [54], Principal 
Component Analysis (PCA) [55], Genetic Algorithms [56], Replacement Method [57], and non-linear 
methods: Artificial Neural Networks (ANN) [58], or Support Vector Machines [59]. The main 
advantage of developing linear models compared to non-linear ones is the fact that the former suffer 
less from the over-fitting (over-training) problem [60,61], they are more general and can transparently 
reveal the effect of the structural variables present in the model upon the property being modeled, thus 
making it possible to suggest cause/effect relationships. 
 
4. The Proposal of Descriptors Based on Lipinski Rules for Modeling Aqueous Solubilities 
 

One of our recent QSPR studies analyzing aqueous solubilities employs MLR for establishing the 
connection between the solubility values of 148 heterogeneous organic chemicals and their molecular 
structure, represented through a new set of physically interpretable descriptors [62]. The correct 
representation of the molecular structure of drug like compounds through molecular descriptors in 
every QSPR-QSAR study is of crucial importance. The set of descriptors introduced here is 
characterized by involving in a single number several of the parameters described by the Lipinski rules 
[7]. The proposed Lipinski based descriptors are based on combinations of the detour index (dd) from 
Chemical Graph Theory (derived as the half sum of the elements of the Detour Matrix - DD) [63] 
together with molecular features such as the number of H donors (D), the number of H acceptors (A) 
and the number of heteroatoms (H) present in the structure: 

1.0
/

+
=

D
ddDD  

A
ddAD =/  

DA
ddBD
+

=/  
H
ddHD =/  (1)
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where the 0.1 term in the D/D definition is introduced only to prevent dividing by zero, considering 
that several of the studied compounds do not have any H donor functional group.  

The above descriptor definitions take into consideration many literature reports which demonstrate 
linear, polynomial and exponential correlations between dd and the boiling point of alkanes, 
cycloalkanes and aromatic compounds [64-68]. Since the boiling point of compounds from 
homologous series usually correlates well with molecular weight (MW), we have investigated the 
relationship between the dd and the MWs of the 148 compounds used for the present study. Inspection 
of the correlation between dd and MW pushed us to explore possible relationships between the square 
and cubic roots of dd and the MW. It is noticeable that cubic root of dd, in the first place, and square 
root of dd, in the second, display quite better linear correlations with the molecular weight of the 148 
structures (R = 0.932 and R = 0.918, in that order). This is an indication of very good correlation, 
specially noticing the structural diversity of the dataset.  

It is clear then that the Detour Index may be an appropriate descriptor to explain the differences in 
the aqueous solubility values that could be explained through the molecular weight of compounds. It 
can also characterize other molecular properties such as the degree of ramification and cyclization. 
However, there are a lot of examples of compounds that, although sharing the same graph and 
therefore the same dd value, have very different solubilities because of the other three parameters 
included in Lipinski´s rule (number of H donor and acceptors and log P). To answer this issue we have 
included A, B (= A + D), and H in the new descriptor’s definition. We also considered the square and 
cubic roots of the four descriptors above (D/D1/2, D/D1/3, D/A1/2, D/A1/3, D/B1/2, D/B1/3, D/H1/2, and 
D/H1/3), based on the better correlation between the squares and cubic roots of dd and MW compared 
to that between dd and MW. The physicochemical meaning of these descriptors is immediate. MW is 
directly correlated with dd, and the solubility tends to decrease, in homologous series, when MW 
increases. The more H donor and acceptors present in the molecule the more water soluble the 
compound will be. If no H donor or acceptor is present in the molecule, the water solubility would be 
jeopardized or even non existent (as is the case of alkanes). Therefore, the defined descriptors will take 
high values in compounds with slight aqueous solubility, while they will tend to infinite in  
non-soluble compounds.  

We proceeded to search for a QSPR solubility model that minimizes the S parameter subjected to 
the condition of combining at least one of the proposed molecular descriptors reflecting the Lipinski 
rules together with those calculated with the Dragon software [69]. The application of the Replacement 
Method (RM) variable subset selection technique [57,70,71] to the available pool with D = 1,367 
descriptors leads to an optimal relationship over 100 compounds that, in terms of the best predictive 
power of the equation measured via the calibration and the l-n%-o parameters [72] and the least 
number of variables involved, contains six molecular descriptors of different type: 

log10Sol = 2.786(±0.3) + 0.0479(±0.02) RDF040e + 0.285(±0.07) C-006 – 5.639(±0.7) 
H3p + 0.00389 (±0.001) D/A – 0.231(±0.04) D/B1/2 + 0.00988(±0.002) QXXe  (2) 

N = 100, R = 0.880, S = 0.858, F = 53.091, p < 10-4, 
Rloo = 0.853, Sloo = 0.911, Rl-10%-o =,0.820, Sl-10%-o = 1.006. 

where the absolute errors of the regression coefficients are given in parentheses and R is the correlation 
coefficient, F is the Fisher ratio and p is the significance of the model. Quite good estimations can be 
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achieved with this QSPR model in many cases, considering the heterogeneous nature of the training set 
of molecules extracted from Merck Index 13th [73]. About 99% of these compounds are “drug-like”, 
satisfying Lipinski´s rule.  

Equation (2) involves different molecular descriptors that can be classified as follows: two of the 
proposed absorption-based descriptors: D/A and D/B1/2; a Radial Distribution Function (RDF): 
RDF040e, RDF-4.0/weighted by atomic Sanderson electronegativities [74]; a GETAWAY descriptor: 
H3p, H autocorrelation of lag 3/weighted by atomic polarizabilities [75]; an Atom-Centred Fragment: 
C-006, the number of CH2RX functional groups [X: heteroatom (O, N, S, P, Se or halogens), R: any 
group linked through carbon] [76]; and a geometrical descriptor: QXXe, Qxx COMMA2 
value/weighted by atomic Sanderson electronegativities [77]. A next step in the present analysis was to 
further validate the predictive power of the QSPR solubility model found by predicting the log(Sol) 
values in a test set containing 48 organic compounds, thus demonstrating that it is possible to achieve 
good estimations in many situations.  
 
5. A QSPR Designed upon a Balanced Aqueous Solubility Data Set 
 

It has been pointed out that solubility modeling efforts have suffered from some basic concerns, 
among them: training sets that are not drug-like, lack of structural diversity, unknown experimental 
error, incorrect tautomers or structures, neglect of ionization and crystal packing effects, over-
sampling of compounds with low molecular weight and range in solubility data that is not 
pharmaceutically relevant [2,4]. Another study conducted by our research group [78] tries to answer 
some of the previous issues, since it is developed from a structural diverse training set composed by 
drug-like compounds with more than half the dataset presenting solubility values below 1 mg·mL-1. 
Note that low solubility compounds are actually the ones one would like to be able to predict 
accurately, since they have higher probability of presenting difficulties in pre-clinic and clinic assays 
and formulation stages. Therefore, the QSPR Theory was employed for analyzing the aqueous 
solubility exhibited at 298 K by 145 diverse drug-like organic compounds. The molecular set was split 
into a 97-compound training set (train) and a 48-compounds test set (val), selecting the members of 
each set in such a way to share similar structural characteristics of the compounds. Additionally, an 
external molecular set (test set 21) that was not involved during the model design, and composed of 21 
well-known compounds found in many solubility prediction papers, was also employed [2,14], in order 
to further examine the model’s validation. 

In this work, most of the drugs that comprise the training and test sets meet several drug-likeness 
criteria. More than 99% of the data set observes the Lipinski-rule criteria for estimating drug oral 
bioavailability [7], while more than 93% fulfill the Veber et al. rule [79]. More than 99% of the dataset 
also meets more general criteria for evaluating drug-likeness extracted from several recent 
publications: [80-82] 100 ≤ molecular weight ≤ 800 g·mol-1; log P ≤ 7; number of H bond acceptors ≤ 
10; number of H bond donors ≤5; rotatable bonds ≤15; halogen atoms ≤7; alkyl chains ≤ (CH2)6CH3; 
no perfluorinated chains: CF2CF2CF3; no large rings (i.e. with more than seven members); no presence 
of atoms other than C, O, N, S, P, F, Cl, Br, I, Na, K, Mg, Ca or Li and; presence of at least one N or O 
atom. Moreover, low molecular weight compounds are not over-represented in this molecular set. All 
the molecular structures are drawn in Figure 1. 
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Figure 1. Balanced data set of molecular structures under analysis. Training Set 1-97 Test 
Set 98-145.  
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Figure 1. Cont. 
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Figure 1. Cont. 
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The structural diversity of the training set is assessed through calculation of the average Tanimoto 

intermolecular distances (based on atom pairs) for all the possible pairs of structures that could be 
derived from the training set. For this purpose the PowerMV software provided by the National 
Institute of Statistical Sciences was used [83]. According to the results, the average Tanimoto 
intermolecular distance for the training set is 0.781 with a S of 0.412, which confirms the high 
structural diversity of the training set. Figure 2 shows a histogram representing the distribution of the 
166 aqueous solubilities under study, which suggests that the experimental sample is normally 
distributed over more than four logarithmic units and can thus be employed in regression analysis. 

The initial conformations of the drug compounds are obtained by means of the “model build” 
modulus of the HyperChem package [84]. After that, the structures of the compounds are firstly pre-
optimized with the Molecular Mechanics Force Field (MM+) procedure included in the Hyperchem, 
and the resulting geometries are further refined by means of the Semi-Empirical Method PM3. More 
than a thousand DRAGON [69] theoretical descriptors are simultaneously explored including 
definitions of all classes, by means of the linear variable subset selection approach Replacement 
Method (RM) [57, 70, 71]. The application of the RM method on the training set of 97 heterogeneous 
drugs leads to the following satisfactory three-descriptors relationship: 



Int. J. Mol. Sci. 2009, 10             
 

 

2570

log 0.435( 0.03) ( 1 ) 0.503( 0.06) ( )10
                     0.0767( 0.01) ( 060 ) 2.970( 0.3)

Sol X sol MLOGP

RDF u

= − ± ⋅Ω − ± ⋅Ω +

± ⋅Ω + ±
 (3) 

Ntrain = 97, Ntrain/d = 32.333, R = 0.871, S = 0.903, Rloo = 0.849, Sloo = 0.971,  
Rl-10%-o = 0.809, Sl-10%-o = 1.090, p < 10-4, Nval = 48, Rval = 0.848, Sval = 0.899 

Figure 2. Normal distribution of the experimental log10Sol values under analysis (N = 166). 

 
 
The QSPR derived does not incorporate redundant structural information, as it involves orthogonal 

descriptors [85]. This model includes two calibration outliers with a residual exceeding the value 2S = 
1.806: compounds 15 (acibenzolar-S-methyl, 1.902) and 91 (etofenprox, -2.545), while no one of the 
training compounds exceed the value 3S = 2.709; the presence of these outliers may be attributed 
exclusively to be a pure consequence of the limited number of structural descriptors participating in 
Eq. (3), since this model haa a high ratio of number of observations to number of parameters  
(N/d = 32.333).  

The predictive power of the QSPR is satisfactory, as revealed by its stability upon the inclusion or 
exclusion of compounds, as measured by the loo parameters Rloo = 0.849 and Sloo = 0.971, and by the 
more severe test of higher percentage of compounds exclusion Rl-10%-o = 0.809 and Sl-10%-o = 1.090. 
These results are in the range of a validated model: Rl-n%-o must be greater than the value of 0.50, 
according to the specialized literature [86]. Furthermore, the predictive capability of the so established 
equation is demonstrated by its performance in the test set val, leading to Rval = 0.848 and Sval = 0.899. 
Finally, after analyzing 5,000,000 cases for y-randomization [87], the smallest S value obtained using 
this procedure was 1.650, a poorer value when compared to the one found considering the true 
calibration (S = 0.903). In this way, the robustness of the model could be assessed, showing that the 
calibration was not a fortuitous correlation and therefore results in a structure-activity relationship. 

As can be appreciated from the derived QSPR, different definitions of descriptors are needed to 
correctly represent the structures for the drug-like heterogeneous compounds. After a proper 
standardization [88] of the orthogonal descriptors present in Equation (3), it is feasible to assign a 
greater importance to those variables that exhibit larger absolute standardized coefficients. The most 
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important structural factor of the model is the topological descriptor X1sol, the solvation connectivity 
index chi-1 proposed by Zefirov and Palyulin in 1991 [89]. It has the following general formula when 
calculated for hydrogen- and fluorine-depleted molecular graphs: 

∑+= 2/1
1

)...(
...

)2/1(
kji

kjim ZZZ
Xmsol

δδδ
  (4) 

where m is the order of index; summation is over all sub-graphs of order m; kji δδδ ...  are connectivities 
of vertexes of sub-graph; and kji ZZZ ...  are coefficients characterizing the atom size, which coincide to 

the number of the period in the Periodic Table. The second important descriptor involved in Eq. (3) 
corresponds to MLOGP, the Moriguchi octanol-water partition coefficient [90]: this reveals that a 
compound’s hydrophobicity plays a crucial role in explaining the aqueous solubility data. Finally, the 
contribution of a 3D-Radial Distribution Function [74] RDF060u helps to improve the predictive 
power of the QSPR. Such a kind of molecular descriptor defined for an ensemble of atoms may be 
interpreted as the probability distribution of finding an atom in a spherical volume of certain radius, 
incorporating different types of atomic properties in order to differentiate the nature and contribution 
of atoms to the property being modelled. For the case of RDF060u, the sphere radius is of 6.0 
angstroms and no atomic property is employed, thus characterizing the molecular size.  

The application of the developed structure-property relationship to the classical test set 21, whose 
data are considered “unknown” and that do not participate during the model development (as is the 
case of test set val), leads to a square root mean quadratic residual (rms) of 1.202. The statistical 
quality achieved on this test set is comparable to that obtained by the previously reported models for 
aqueous solubilities in Table 2, and the main advantage here is that only three molecular descriptors 
are employed to model the physical property, leading to a favorable ratio N/d = 7. This equation results 
in a superior predictive quality than that obtained by the GCM of Klopman (rms = 1.213) involving 34 
parameters [14], and also outperforms the MLR of Yan (rms = 1.286) using 40 parameters [91]. 

Table 2. Performance of different linear methods applied on the same 21-test set compounds. 

Lead 
author Method Type of 

descriptors 
Number of 
parameters rms N/d Reference Year

Klopman GCM 2D Substructures 34 1.213 0.62 [14] 1992 
Yan MLR 3D Descriptors 40 1.286 0.53 [91] 2003 
Hou GCM Atomic 78 0.664 0.27 [92] 2004 

Huuskonen MLR Topologicals 30 0.810 0.70 [93] 2000 
Duchowicz MLR Dragon 3 1.202 7.00 this study 2008 

 
To conclude the present analysis, the chemical information encoded by only three theoretical 

molecular descriptors of the one-, two-, and three- types participating in a linear QSPR model enabled 
to explain the variation of the experimental aqueous solubilities in a satisfactory extent, and allowed a 
proper characterization of structurally heterogeneous drug-like organic compounds from both the 
training and test sets. The QSPR designed involved molecular descriptors that have a quite  
direct interpretation, and this relationship proved to have general applicability. The statistical 
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parameters of the proposed model compare fairly well with others published previously based on the 
GCM methodology. 

 
4. Conclusions 
 

In this review we have analyzed the possibility of establishing quantitative structure-aqueous 
solubility relationships for drug-like compounds, and compared our recently developed linear QSPR 
method with others reported in the literature. Such kinds of linear equations are demonstrated to work 
quite well both for the training and validation stages of the model, and can in principle be used for the 
in silico prediction of physicochemical properties. Two different strategies can be adopted for 
correlating the structure and the solubility of compounds: (a) the proposal of novel descriptors posing 
some kind of physical interpretation, as it is the case for the Lipinski’s “rule of five” descriptors taking 
into account the bio-availability of drugs, or (b) the use of any kind of constitutional, topological, 
geometrical, or electronic descriptors for adjusting to the experimental solubility data. In both cases, it 
results of considerable importance the appropriate selection of a balanced set of chemical compounds 
that considers structural diversity, known experimental errors, correct tautomers or structures, 
consideration of ionization and crystal packing effects, range in solubility data that is pharmaceutically 
relevant, and that avoid the over-sampling of compounds with low molecular weight. 
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