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Abstract.

The phase diagram of a frustrated spin-S zig-zag ladder is studied through different

numerical and analytical methods. We show that for arbitrary S, there is a family of

Hamiltonians for which a fully-dimerized state is an exact ground state, being the

Majumdar-Ghosh point a particular member of the family. We show that the system

presents a transition between a dimerized phase to a Néel-like phase for S = 1/2,

and spiral phases can appear for large S. The phase diagram is characterized by

means of a generalization of the usual Mean Field Approximation (MFA). The novelty

in the present implementation is to consider the strongest coupled sites as the unit

cell. The gap and the excitation spectrum is analyzed through the Random Phase

Approximation (RPA). Also, a perturbative treatment to obtain the critical points is

discussed. Comparisons of the results with numerical methods like DMRG are also

presented.

PACS numbers: 05.30.Rt,03.65.Aa,03.67.Ac
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1. Introduction

In physics, exact results have been proved to be extremely useful both from a conceptual

point of view as well as for practical reasons, as references to check approximated

methods that we use to solve more realistic models, for which the exact solution is

not available. For example, for S = 1, the exact ground state (GS) of the AKLT model

[1] has been very important in the confirmation of Haldane’s prediction [2]. In this

context, quantum spin ladders (QSL) represent a special scenario to obtain analytical

results and have played an important role in the past few years[3, 4, 5, 6, 7, 8, 9, 10, 11].

These systems are interesting from the theoretical point of view as examples of one

dimensional correlated quantum systems, that can be used to study quantum phase

transitions related to the existence of a spin gap. The case of the two-leg zig-zag

ladder is one of the most famous examples of frustrated spin models and highlights the

role played by frustration, describing a number of quasi-one dimensional compounds

like Cs2CuCl4[12], KCuCl3[13], TlCuCl3[13] and NH4CuCl3[14]. For this reason, the

ladders with zig-zag couplings between quantum spin chains has received much attention

[15, 16, 17, 18, 19].

In the zig-zag ladder, frustration reduces anti-ferromagnetic correlations and the

tendency towards Néel order, which would lead to a dimerized phase. A particularly

useful example of an exact result in QSL corresponds to the exact GS of the Majumdar-

Ghosh Model (MGM)[20], consisting on a translational, SU(2) invariant spin S = 1/2

chain with a particular relation between the first and second neighbor couplings. This

model presents a degenerated ground state, spanned by two non-orthogonal fully-

dimerized states (i.e. a state that can be written as a product of singlet states between

contiguous sites).

The aim of this work is to generalize the result for the MGM in two ways. On

the one hand, we show that there is a larger family on the two-legs zig-zag frustrated

Quantum Spin Ladder (QSL) which also presents as its exact GS a fully-dimerized state.

On the other hand, we show that this region exists also for systems with larger local

spin S. Then, we discuss how the large S limit arise on this model, washing up the

dimerized phase and recovering the Néel order, predicted by a semi-classical expansion.

[10, 9, 11]

The paper is organized as follows. In the next section, we discuss the details of

the model and we show, for every value of the local spin S, the existence of a fully-

dimerized ground state along a continuous line in the parameter space. In section 3 we

show, by means the usual variational MFA based on individual spins, how to obtain

an upper bound to the region where the fully-dimerized state is the true ground state

of the system. Also we present a generalization to MFA which captures the main

features of the dimerized phase. In section 4 analytical expressions for the gap, the

elementary excitations of the model as well as the localization of the boundaries of

the dimerized region are obtained through the Random Phase Approximation (RPA)

formalism developed on previous works [21, 22]. Then, a discussion of the limitations
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of the technique and how they can be overcome through perturbative corrections is

presented. Section 5 is devoted to conclusions and perspectives.

2. Special features of the model

We consider the following Heisenberg model on a two legs spin-S zig-zag ladder

H =
N
∑

i=1

J(i)~S2i−1 · ~S2i + J ′(i)~S2i · ~S2i+1

+ J2(i)~S2i · ~S2(i+1) + J
′

2(i)
~S2i−1 · ~S2(i+1)−1 (1)

which also can be seen as a spin chain with next-nearest neighbors (NNN) interactions

(See Fig 1). In Eq. (1), ~Si is a vectorial spin-S operator on site i with components

Sx
i , S

y
i and Sz

i ; N represents the number of “rungs” on the ladder and J(i), J ′(i), J2(i)

and J ′
2(i) are bond dependent coupling constants as they are depicted in Fig. 1 . As

we are interested on the frustrated regime, we will consider only the case where all the

couplings are positive (all the interactions are anti-ferromagnetic). Note that this model

includes the case of systems which breaks the translational symmetry, including the case

with “disordered couplings”

This family of Hamiltonians interpolates among several well known systems. If J ′(i)

or J2(i) and J
′
2(i) vanish, the lattice is non frustrated and it can be analyzed by different

means. In particular, for J ′(i) = J(i) = J (J being a site independent value) and ∀i

J2(i) ≡ 0, the system is reduced to an isotropic Heisenberg chain which can be solved

exactly for spin 1/2 using the Bethe ansatz[23], and which has been extensively studied

[8, 24]. The GS of this systems presents quasi long range order (QLRO) correlations,

related to the logarithmic violation of area laws on its entanglement entropy[25, 26].

On the other hand, if ∀i J
′(i) = 0 and J2(i) = J(i) = J , the system is reduced

to a Heisenberg two-leg ladder. Taking J/J2 → 0 we have two decoupled Heisenberg

chains, for which at S = 1/2 are gapless. It was predicted [27] that for S half-integer

and J ′ = 0 the spin-gap would vanish only at J/J2 = 0. Then, for half-integer local

spin, the ladder would always be in gaped regime in contrast to the more familiar case

of the Nearest Neighbor Heisenberg model (corresponding to J ′ = J and J2 = 0) which

is gapless.

Interestingly, in the special case where J2(i)+J
′

2(i) = J ′(i), we can determine the GS

of the system for a given range of 0 ≤ J2(i), J
′

2(i) < J ′(i) < J
′

c, where the upper bound

J
′

c depends of the spin strength. For S = 1
2
and 2J

′

2(i) = 2J2(i) = J ′(i) = J(i) = J this

GS becomes degenerate and corresponds to the GS of the MGM[20].

2.1. Dimerized ground state

If ∀i 0 < J(i), J ′(i), J2(i), J
′

2(i), the system becomes frustrated, which in general implies

a complex structure of the GS and its excitation. In this case some of the usual

techniques used to deal with this kind of problems may fail at zero temperature.
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Figure 1. (Color Online) Two different cartoons for the zig-zag ladder. Top: 1D

chain with second neighbors couplings. Bottom: ladder with zig-zag couplings.

However, for J ′(i) = J2(i) + J
′

2(i) < J(i), the Hamiltonian (1) presents a factorized

eigenstate which corresponds to the GS for J ′S ≪ mini J(i). To see it, we can rewrite

the Hamiltonian in terms of local operators on each rung:

H = − S(S + 1)
∑

i

Ji +

+
∑

i

Ji
J2
i

2
+
∑

i

J2(i) + J
′

2(i) + J ′(i)

4
~Ji · ~Ji+1 +

+
∑

i

J ′(i) + J2(i)− J ′
2(i)

4
~Ki · ~Ji+1 −

−
∑

i

J ′(i) + J ′
2(i)− J2(i)

4
~Ji · ~Ki+1 +

+
∑

i

J2(i) + J
′

2(i)− J ′(i)

4
~Ki · ~Ki+1 (2)

where

~Ji = ~S2i + ~S2i−1 (3)

~Ki = ~S2i − ~S2i−1 . (4)

~Ji is the total angular momentum of the rung i, and ~Ki is another set of local vectorial

observable which completes the full local Lie algebra relevant to the problem. Its

components close the following Lie algebra:

[Jµ,Jν ] = iǫµνηJη (5a)

[Jµ,Kν ] = iǫµνηKη (5b)
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[Kµ,Kν ] = iǫµνηJη (5c)

where ǫµνη is the fully antisymmetric Levi-Civita symbol and i =
√
−1 is the imaginary

unit. If we set the constraints

J ′(i) = J2(i) + J ′
2(i) , (6)

the last term in (2) vanishes and the state

|dimer〉 =
N
⊗

i=1

|singlet〉 with (7)

|singlet〉 = 1√
2S + 1

S
∑

m=−S

(−1)m+S| −m〉|m〉 (8)

results an eigenstate of H with energy Edim = −JNS(S + 1), due to ~Ji|singlet〉i = 0.

Noteworthy, this result is valid for any value of the local spin magnitude S.

The state (7) has not a classical analog in terms of individual classical magnetic

moments, corresponding to a phase with a characteristic quantum behavior: a dimerized

phase. In this phase, despite the spin-spin correlations vanish between non continuous

sites, there could exist correlations between pairs of its elementary excitations. Another

characteristic of this order is that there is a spin gap which prevents the occurrence of a

spontaneous breaking in the global SU(2) symmetry. However, the determination of the

gap can be a non-simple task. Although the dimerized GS may remains stable when we

change the couplings maintaining the constraint (6), the excited states strongly depend

on the values of the local couplings.

The few systems where an exact GS can be obtained have played a very important

role in quantum magnetism. For example, we can cite the exact GS of the AKLT point

[1] which has been very important in the confirmation of Haldane’s prediction [2] that

the spectrum of an integer-S spin chains is gaped. In the present model, the dimerized

eigenstate is surprisingly robust. For example we can change the couplings J(i), J ′(i)

and J2(i) in Hamiltonian (1) and, preserving the constraints (6), the dimerized state

is still an eigenstate; this is a very important property inside the regions where this

eigenstate is the GS of the system: since excited states are strongly dependent of the

distribution of couplings, we can change the distribution of couplings in order to reduce

the gap. A similar property of the AKLT model can be exploited for spin 1. In fact a

very interesting question is if it there exists some coupling distribution that makes the

system gapless. The advantage of this system is that its robust GS is present over a

extended region of the very large parameter space for any value of the local spin. Since

the excited states in the general case can be very complicated, a such study of the many

possible excited states deserves a separate publication. In order to obtain a qualitative

picture, in the present manuscript we focus mainly on the restricted case of the uniform

ladder J(i) = J , J ′(i) = J ′ and J2(i) = J ′
2(i) = J2, where J , J

′ and J2 are positive

and site-independent numbers. Besides, to avoid boundary effects, we will restrict to

the case of periodic boundary conditions and N even. Under these assumptions, we
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Figure 2. (Color Online) GS energy relative to the energy of the dimerized state

EGS/Edim − 1 as a function of J ′/J over the line J2 = J ′/2 for different spin values in

a 2N = 40 sites system. The results was calculated through the DMRG method (see

Appendix A). The border of the shaded region (dashed line) corresponds to the mean

field result (16).

can easily show that the |dimer〉 state in Equation (8) is a true GS of the system if the

condition

J ′ = 2J2 <

{

J S = 1
2

J
S+1

S ≥ 1
(9)

is provided. To see this, we can write the Hamiltonian (1) in a more convenient way:

H =
1

2

2N
∑

i=1

hi

with

hi =
J ′

2

[

(~Si−1 + ~Si + ~Si+1)
2 − ~S2

i − ~S2
i−1 − ~S2

i+1

]

+

+
δJ

2

[

(~Si + ~Si−(−1)i)
2 − ~S2

i − ~S2
i−(−1)i

]

(10)

where δJ = J − J ′. From this decomposition we can see that the GS energy per rung is

EGS

N
≥ min

l≤2S, l∈Z
J ′

2
(|S − l|)(|S − l|+ 1) +

δJ

2
l(l + 1)− (J +

J ′

2
)S(S + 1),

where the right hand side corresponds to the minimum eigenvalue of all the hi terms.

When the condition (9) is satisfied, this lower bound coincides with the energy associated

to the state |dimer〉 and hence, it is a GS. Moreover, due to for J > J ′ there is

not any other state which minimizes all the hi at a time and hence, this GS results
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non-degenerated. Equation (9) represents a sufficient condition for the existence of the

dimerized GS, but the true range of couplings where this state is a real GS can be larger.

In Figure 2 the relative energy EGS/Edim − 1 as a function of J ′/J over the line J2 =
J ′

2

for a 2N = 40 sites system with different local spin values is depicted. This quantity

vanishes when the energy of the system is equal to the energy of the dimerized eigenstate.

We can see that for a given spin S, the values of J ′ where EGS/Edim−1 becomes different

from zero are larger than the values predicted in Eq. (9). Dashed line corresponds to the

single site mean field result discussed in the next Section, corresponding to the large S

limit. In Section 4 we show that for large S the next to leading order is proportional to

S−1. In the next section we will show also that if J ′/J >
√

2/S there is a fully factorized

state (the mean field state) which has energy lower than the dimerized eigenstate. This

allow us to obtain an upper bound value for the transition coupling Jc(S), whereas Eq.

(9) represents a lower bound.

In Figure 3 we show the relative energy calculated by DMRG as a function of J2
for different values of S. Upper panel corresponds to J ′ = 0.6 where the systems with

S = 1/2 and S = 1 reach the fully-dimerized GS at the J2 = J ′/2 = 0.3J point. We can

observe in the figure that, for this two cases, the curves come together at that point,

whereas the curves corresponding to S = 3/2 and S = 2 have a lower energy (which

corresponds to a larger relative energy). Lower panel in Fig. 3 corresponds to J ′ = 0.8

where just the S = 1/2 system reaches the dimerized GS.

3. Mean Field Treatment

One of the most elementary but versatile approach to approximate the GS of interacting

systems is through the well known mean field approximation. This approximation can

be expressed in terms of a variational approach over the family of product states of each

individual component of the system. Essentially, it consists on neglecting correlations

between fluctuations associated to the different components. The resulting state can be

considered classical in several ways. To begin with, as it does not present entanglement

between components, it does not support quantum correlations between components.

Another reason to consider it as a “classical limit” is related to the particular form of

the interacting terms in typical Hamiltonians, which consist of bilinear forms on the

generators of the local algebras. In particular, for spin systems, it leads to solutions

of the mean field problem in the form of a product of spin coherent states. These can

be represented, in the same way that classical magnetic moments, as a set of arrows of

fixed length, each one on a different site. Besides, the optimum state coincides with the

optimum self-consistent configuration of the classical model. erv

Now, suppose that we try to approximate the GS over the fully-dimerized region

with such product state. There, the exact GS is a product of consecutive singlet states.

For the spin S ladder, the maximum overlap of this state with a product state is

1/(
√
2S + 1)N , attained for a Néel-type state |Neel〉 =

⊗N
i=1(| ↑〉| ↓〉). In this way,

when the system is in a true dimerized phase, there is no classical state which gives
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Figure 3. (Color Online) GS energy relative to the dimerized energyEdim as a function

of J2 for different values spin values for J ′ = 0.6J (Top panel) and J ′ = 0.8J (Bottom

panel), calculated through DMRG in a 2N = 40 sites system. On the top panel we

can appreciate how at the line J ′ = 2J2 the energy corresponds to the dimerized phase

for S = 1/2 and S = 1, but results lower (higher values of the relative energy) for

S = 3/2 and S = 2. On the Bottom panel, the results for J ′ = 0.8J are depicted.

For this value, the dimerization is only reached for S = 1/2. Besides, we can observe

that the deviation from the energy of the dimerized phase grows up with the local spin

magnitude and with the value of J ′.

a faithful representation of the dimerized state: moreover, the overlap with the exact

state vanishes exponentially with the size of the system.

This is not surprising, since it is known that mean field approaches are not extremely

reliable in dealing with quasi-one-dimensional systems. On the other hand, if we observe

that for a certain region the energy associated to the MF state is lower than the fully-

dimerized state, we will have shown that on that region the fully-dimerized state is not

the true ground state. This fact allow us in the next paragraphs to establish an upper

bound to the interval of values of the coupling constants where the fully-dimerized state

is the true GS of the system. Hence, as we will see later, the classical limit comes
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in an unexpected way, through a level crossover which eliminates the dimerized phase

for large enough J ′ or S. In the remainder of this section we discuss how to arrive to

analytical expressions of the “classical limit” solution, and its particularities. Besides,

we propose a way to generalize the mean field solution in a suitable way to deal with

dimerized phases which becomes exact over the fully-dimerized line. Then, at the end

of this section, we come back to the question of the classical limit and how the classical

solution appears. The issue of the stability of both kind of solutions are discussed in

the next section.

3.1. “Classical” (S → ∞) phase diagram

The GS of the “classical” model can be known by studying a unit cell, as composed by

two magnetic moments with fixed magnitude. This approach is equivalent to look for

an variational approximation over the family of product states of fully polarized spin

states

|MF〉classical =
N
⊗

i=1

|~s2 i−1〉|~s2 i〉 . (11)

Besides, because the Hamiltonian that we are considering is linear on each local

spin projection operators, this approach is completely equivalent to a full mean field

treatment. In this way, the problem is reduced to find the angles determining the

directions of all local spins, which can be found by numerical methods, for instance, in a

self-consistent way. To allow us to go forward in an analytical description, we can reduce

the problem by looking for solutions over a subfamily with certain symmetries. A first

reasonable assumption is that the states that we are looking for are symmetrical under a

reflection with respect to the plane xz, which is a symmetry of the Hamiltonian. For this

reason, we can expect that there were a solution with all the states |~si〉 polarized in that

plane‡. A second assumption is that ∀i the angle between ~sk and ~sk+2 is constant, due

to the global translational symmetry. The resulting family corresponds to the planar

spiral states

|θφ〉spiral =
2N
⊗

j=1

|ϕj〉 , ϕj+1 = θ j − (−1)j
φ

2
(12)

being |ϕ〉 = exp(−iϕSy)| →〉 the local coherent state polarized along the direction

~s = (cos(ϕ), 0, sin(ϕ)). The energy Esep[θ, φ] = 〈θφ|H|θφ〉 is hence given by

Esep(θ, φ)

NS2
=J cosφ+ J ′ cos(θ−φ) + 2J2(cos θ) . (13)

Looking for the extremes of this function we obtain the following energies

Esep(0, π)

NS2
= 2J2 − J − J ′ (14a)

‡ For finite systems, a numerical analysis shows that in general, the energy can be lowered if we allow

the magnetic moments to move sightly away from the plane.
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Esep(π, 0)

NS2
= J − J ′ − 2J2 (14b)

Esep(π, π)

NS2
= J ′ − J − 2J2 (14c)

Esep(θ̃, φ̃)

NS2
= J cos φ̃+ J ′ cos(θ̃ − φ̃) + 2J2 cos θ̃ (14d)

where

cos θ̃ =
JJ ′

8J2
2 − J

2J ′ −
J ′

2J
(15a)

cos φ̃ =
J2J

′

J2
− J2
J ′ −

J ′

4J2
. (15b)

Phases corresponding to energies Esep(π, π) and Esep(0, π) are labeled as (π, π) and

(0, π) respectively, and corresponds to two different Néel orders. The phase with energy

Esep(θ̃, φ̃) is a spiral phase (see Fig. 4 ).

If we consider now the case of J ′ = 2J2, cos(θ̃) → − J ′

2J
, φ̃ → 2(π − θ̃) and the

energy results

Esep → −JNS2

(

1 +
1

2

(

J ′

J

)2
)

. (16)

We can make two observations about it. On the one hand, we can see that for

(J ′/J)2 > 2
S
the energy of this mean field is lower than the associated to the dimerized

state, which suggests to identify the “classical limit” with the “large S limit”. On the

other hand, for small spin, we can observe that this state is a very rough approximation

to the true GS in several ways: First of all, for S ≤ 1, Esep−EGS

EGS
≈ 1, in a way that does

not allow us to consider the difference as an small correction over the mean field result.

Other symptom of the in-accurateness of the approximation is related to the lack of

similarity between the true GS and the optimum spiral state. In order to quantify this

difference, we can compute the Fidelity [28] between the density matrix of any pair of

spins. The fidelity is defined as

F [ρ1, ρ2] = Tr
√√

ρ2ρ1
√
ρ2 (17)

(see Appendix B) where ρ1,2 are two different density matrices. For pure states

(ρi = |ψi〉〈ψi|), this quantity is reduced to the absolute value of the overlap between

both states F [|ψ1〉|ψ2〉] = |〈ψ1|ψ2〉|. In the dimer state, the density matrix of any pair

of spins is given by

ρ
(dimer)
ij =

{

|singlet〉〈singlet| in the same rung
1

(2s+1)2
otherwise.

while for the spiral state

ρ
(spiral)
ij = |φi, φj〉〈φi, φj|

which leads to the fidelities

F [ρ
(dimer)
ij , ρ

(spiral)
ij ] =







sin2S(
|φ̃|
2
)

(2S+1)
in the same rung

1
(2S+1)

otherwise
≤ 1

2
. (18)
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Figure 4. (Color Online) Top: Phase diagram corresponding to the classical limit.

The gray region corresponds to the spiral phase, the regions (π, π) and (0, π) correspond

to colinear phases. Bottom: Cartoon of the classical configurations corresponding to

the regions in the phase diagram of the bottom panel.

These low values of fidelity indicate a very poor accuracy in the estimation of some mean

values provided by MFA. A typical way to improve these results consists in implementing

a symmetry restoration over the mean field results§:

|SRMF〉 =
∫

RΩ|MF〉dµΩ (19)

§ Here we assume that the true GS is non-degenerate, and hence, is SU(2) invariant, belonging to the

jT = 0 sector.
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where dµΩ is the normalized invariant measure of SU(2) and RΩ is a given global

rotation. The state |SRMF〉 is then the projection of the |MF〉 over an eigenspace of

the total angular momentum operator J2
t , built as a coherent superposition of all other

states obtained by global rotations[29]. In finite size systems (N, S < ∞) a suitable

choice of the representation of RΩ leads to reduce the energy associated to |SRMF〉
slightly below the mean field result.

The local state of a given subsystem A is obtained as the partial trace over the

complementary subsystem Ā:

ρA = TrA|SRMF〉〈SRMF| (20a)

=

∫∫

RA
Ωρ

spiral
A (RA

Ω′)†wA[Ω,Ω
′]dµΩdµΩ′ (20b)

ρspiralA = |spiral〉〈spiral|A (20c)

wA[Ω,Ω
′] = 〈spiral|(RĀ

Ω′)†RĀ
Ω |spiral〉Ā (20d)

Notice that the integrand in (20b) is not hermitian, but the integral is it. For large

S or nĀ, wA[Ω,Ω
′] → δ(Ω− Ω′) (see Appendix C) and hence‖

ρSRA →
∫

RA
Ωρ

spiral
A (RA

Ω)
†dµΩ .

Due that the energy depends on the pairs local states, it implies that the symmetrized

state in the large N limit has the same energy than the spiral one.

Exploiting the structure of the state, we can rewrite the local statistical operator

as ρSRA =
∑

j p
A
j Π

A
j where ΠA

j is the projector over the total spin in A and pAj =

〈spiral|ΠA
j |spiral〉.

In order to check the accuracy of the approximation, we will consider the state of

the subsystem defined by a pair of spins inside a same rung ρrung. In the top panels

of Figure 5, F [ρexrung, ρ
SRMF
rung ] is depicted for different S = 1/2, 1, 3/2 and 2, over the line

J ′ = 2J2, as a function of J ′ (left) and over the line J ′ = 0.6J as a function of J2
(right)¶. On the bottom panels, the corresponding fidelities to the local singlet state

are depicted. On the one hand, we observe that over the dimerizing line J ′ = J2/2

the fidelity between the exact and the SRMF state is reduced as the spin grows up,

and is sightly decreasing, up to the point in which the |dimer〉 ceases to be the GS.

At this point, the fidelity gives a jump, and start to increase with J ′. On the other

hand, we observe that if we move crossing the dimerizing line with constant J ′/J , the

fidelity with respect on the SRMF local state has a minimum in those cases for which

the system reach dimerization (for the J ′ = 0.6J case, S = 1/2, 1), whereas when the

dimerization is not reached, (for J ′ = 0.6J , S = 3/2, 2) the behavior is the opposite.

At the same time, the fidelity with the singlet state falls of up to a value of 0.5, and

continues decreasing with J ′.

‖ This result also corresponds to average the reduced state over all possible mean field solutions. It

can also be derived through a path integral approach as the Static Path Approximation[30].
¶ In this case, the reference values for the local density matrices were obtained by means of the Lanczos

method for numerical exact diagonalization (see Appendix A).
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Figure 5. Fidelities between the exact and the approximate local strong coupled pairs

states in the local mean field approximation + symmetry restoration (Top) and to the

singlet state (Bottom) over the line J ′ = 2J2 (Left) and J2 = 0.6J (Right) for different

values of S. We can appreciate that for some J
′

c the fidelity of the exact local state

and the singlet state is drastically reduced. In the left panels, we can observe that

as for small J ′ the local state match exactly with the singlet state, being this state

poorly approximated by a product state. For larger J ′, the local state change sharply,

becoming in the spiral state in a good approximation. In the right panels, the behavior

of the fidelities with J2 for J ′ = 0.6J is depicted. We can see that the dimerized region

around the J ′ = J2 line becomes sharper as the spin grows up, and then the local state

moves away the dimerization for S larger than the critical value.

3.2. Composite unit cell mean field approach for the S = 1/2 case

As we say before, the “classical” mean field is not suitable to represent the system in a

dimerized phase. In particular, for S = 1/2, we know that the exact solution corresponds

to such a phase for 2J2 − J ′ = 0 and J ′ < J . In this way, a better starting point to

improve the mean field approximation is to choose as the unit cell those pairs of spins

coupled by the stronger interaction. For instance, if J > J2, J
′, we will look for mean

field solutions of the form

|MFpair〉 =
N
⊗

i=1

|αi〉 (21)

where |αi〉 ∈ H2 i−1 ⊗H2 i. In order to simplify the further discussion, we introduce the

parameter γ = 2J2−J
J

S(S+1)
3/4

which, together with J ′, determines each point in the phase

diagram. For γ = 0, the lowest energy mean field state is obtained for |αi〉 = |singlet〉,
and coincides with the “exact” GS (7). For small enough |γ| we can expect that the true

ground state results similar to the dimer state. To drive the mean field optimization

problem to a simpler form, we will restrict a little bit the family, but in a way that it
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Figure 6. (Color Online) Landscape of the fidelity of the exact local state against

the singlet state for S = 1/2 (Top,Left), S = 1 (Bottom,Left), S = 3/2 (Top,Right),

and S = 2 (Bottom,Right). The dashed red line corresponds to |2J2−J
′|

J
= 0. We can

appreciate how the region where the local state is near to the singlet state is reduced

as the spin grows up. Besides, we can observe that the width of the region around the

line |2J2−J
′|

J
= 0 where the dimerization exists is nearly constant (as is predicted by

RPA) but becoming slightly more narrow as we approach to J ′
c
.

still contains both the spiral ordered “classical” state as well the dimerized state. This

can be achieved by setting |αi〉 = (R(θ))i|α1〉 with R(θ) a fixed planar rotation. Also,

due to the global rotational symmetry, we can choose |α1〉 as an state with total spin

〈~J〉 polarized in the x direction, and both local spin mean values laying on the xz plane.

With these assumptions, we can face in a analytical way the mean field problem for the

S = 1/2 case: in such a case, we have to consider a two-parameter and a one-parameter

families:

|α1[ζ, φ, τ ]〉 = cos(
ζ

2
)(sin(φ/2)|singlet〉+ cos(φ/2)i|y〉)− eiτ sin(

ζ

2
)|z〉(22a)
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|α2[ζ ]〉 = sin(
ζ

2
)i|x〉+ cos(

ζ

2
)|〉 (22b)

where |µ〉 (µ = x, y, z) are the states such that J2|µ〉 = 2|µ〉 and Jµ|µ〉 = 0, and ζ , φ, τ

and θ are parameters ranging on 0 ≤ ζ < π
2
, 0 ≤ φ < π, −π/2 ≤ τ ≤ π/2,−π < θ < π.

We can disregard the second family (Eq. (22b)) because for it, the local spin mean

values vanishes, so that the energy always reach its minimum at ζ = 0, case contained

in the first family, corresponding to the |singlet〉 state.
As regards the first family (Eq. (22a)), it is easy to verify that τ does not modifies

the internal energy of the pair, but just the magnitude of the local spin mean values.

For this reason, the optimum state always belongs to the subset τ = 0. The remaining

parameters have a direct interpretation: the local mean field spin values have equal

magnitudes |〈~Si〉| = sin(ζ)
2

, being φ the angle between them. With this parametrization,

the separable case in Eq. (11) is obtained for ζ = π/2 whereas for ζ = 0 the |singlet〉 is
recovered. For the general case, the variational energy is given by

EMFpair
[θ, ζ, φ]

JN/4
= cos(φ) + cos(ζ)(cos(φ)− 1) +

+ sin2(ζ)(γ cos(θ) + 2J ′ cos(θ − φ

2
) cos(

φ

2
)) . (23)

For ζ = π/2, the previous expression is reduced to (13), corresponding to a factorized

state, but is easy to check that the minima of (13) does not correspond to global

minimum for (23). For |γ| < 1, the true minimum is attained for ζ = 0, φ = π,

corresponding to the dimerized state (7), with energy EMFpair
[θ, ζ, φ] = Edimer = −3

4
JN ,

which means that we can expect a dimerized phase in all this region.

On the other hand, for |γ| > 1, but keeping |J ′| < J the minimum is attained for

φ = π, cos(θ) = −γ
|γ| and cos(ζ) = 1

|γ| , with energy EMFpair
[θ, ζ, φ] = −1

4
JN( 1

|γ| + 1+ |γ|).
This phase is characterized by a breaking of the SU(2) symmetry but, differently to the

large S prediction, this phase results colinear instead of spiral. Another difference is

related with the degree of symmetry breakdown: for |γ| & 1, the difference between the

the local states associated to the corresponding mean field state and such obtained by

the symmetry projection method discussed before are not very important. On the other

hand, as |γ| grows, the mean field becomes near to the single site mean field result, for

which the symmetry projection is required.

3.3. Generalization to the Spin S case and classical limit arising

For S > 1/2, the fully analytical treatment discussed in the previous paragraph is not

feasible anymore, because the local basis grows as S2. For small S we can try to solve

the full mean field equation numerically by a self-consistent treatment or any other high

dimension optimization method. However, in order to look for analytical solutions, we

can search it in a reasonable reduced family. Probably, a good starting point is given by

the family of states generated by the singlet state and a general fully factorized spiral

state (12). Up to a global rotation, the most general local state in this family is given
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by

|ψζ,τ,φ,〉 = N (cos(ζ/2)|singlet〉+ sin(ζ/2)eiτ |φ〉) (24)

with N−1 =
√

1− sin(ζ) cos(τ) sin2S(φ/2)√
2S+1

. Indeed, the solution for the pair mean field in

the S = 1/2 case always belongs to this family. The energy associated to this family of

states is given by

EMFpair
[θ, φ, ζ, τ ]

N 2
= Edimer (cos

2(ζ/2) + sin(ζ)(N 2 − 1)) +

+ sin2(ζ/2)Esep[θ, φ] (25)

being EESP[θ, φ] the energy associated to the fully separable spiral state defined in (13).

For S ≤ 3/2, over the line J ′ = 2J2 the energy is always optimized for the fully-dimerized

state, while for S ≥ 2, the optimum value is attained at the fully factorized classical state

for J ′ > J ′
c = 2J/S, what can be see as a first order phase transition. This result could

sound disappointing: a direct mean field treatment, even if we consider the complex cell

proposed here, is not able to reproduce the transition between the dimerized and the

spiral phases. However, examining the behavior of the fidelities between the exact state

and the single site mean field + symmetry restoration (see Fig 5), we observe that at

least locally, after the transition the local state of the strong correlated pairs tends to

the mean field result, including the cases for which the pair mean field solution predicts

dimerization. In this way, we can not expect to obtain a better mean field solution by

exploring a larger family, leading to understand it as a genuine collective full quantum

effect, coming from the quantum corrections to the correlation energy on the excited

states. This point will be discussed more detailedly in the next section.

4. Low-lying excitations around the dimerized phase and gap estimation

In the previous sections, we have discussed the structure of the GS of the system for

both S = 1/2 and S ≫ 1 near the line 0 < J ′ = 2J2 < J . Then, we saw that for S = 1/2

the system is exactly dimerized, evolving to a Néel ordered state as we move away this

line while, for the large S case, the system presents spiral order. In this section we will

complete this picture analyzing the low-lying elementary excitations of this system, as

well the behavior of its pair correlations. Also, we are interested into determine in which

way quantum fluctuations corrects the energy of the excited states from the mean field

result, leading to the crossover observed through the exact diagonalization.

Any of the previous mean field approximations to the GS are always limited by

the the lack of quantum correlation in the variational ansatz among the different

components, which was essential to make the problem tractable. However, always

looking for analytical results, we can improve the approximation in many ways. If

what we are looking for is just a better approximation to the GS energy, a perturbative

expansion on the couplings could be feasible. On the other hand, if we want to look for

the energy spectrum or estimate correlations, perturbative theory becomes cumbersome.

A more handsome way to get all at the same time is through the Random Phase
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Approximation (RPA)[29, 22]. When is applied to obtain the GS, this approximation

consists on a generic prescription to build a “Gaussian” approximation to the GS[22]

starting from a mean field state, which implies a certain kind of approximated bosonic

mapping. Indeed, it corresponds to the approximate local bosonic map:

|0〉 → |0〉i,bos (26a)

|α〉〈0|i → a
†
α,i (26b)

|α〉〈α|i → a
†
α,iaα,i (26c)

|0〉〈0| → 1−
∑

α

a
†
α,iaα,i (26d)

being |0〉i the GS of the local mean field Hamiltonian and |α〉 its excited states. It is

straightforward to check that this map preserves the mean values of any commutator

of two operators over the mean field state. In the next paragraphs we will consider the

RPA treatment built over the single site and the two sites mean field state. Finally, we

analyze the correction to the gap and the critical point localization over the line γ = 0

through a perturbative treatment.

4.1. Random phase approximation over the spiral mean field solution

If we start from a single site mean field, RPA scheme (26) always leads to the local

approximate bosonization

Sx′

i →
√
2S

bi + b
†
i

2
(27a)

S
y′

i →
√
2S

bi − b
†
i

2i
(27b)

Sz′

i → S(1− b
†
ibi/S) (27c)

where Sµ′

i are the components of local spin operator in an intrinsic basis (x′, y, z′) chosen

in a way that the local spin polarization points in the z′ direction. This bosonization

leads to a spin wave-like Hamiltonian

HSW = Esep −
TrΛ

2
+

1

2

(

z z†
)

H (z
z†
)

with z = b1, . . .b2N a “vector” of bosonic operators, Λ = diag(ε
(MF)
i ) a diagonal matrix

with elements equal to the local mean field Hamiltonian excitation energies, and H a

matrix with the block form

H =
(

Λ+∆+

∆−

∆−

Λ+∆+

)

.

For the translational invariant coplanar mean field case (Eq. 12), we can diagonalize

the quadratic form analytically: starting with the Fourier transform,

b̃k,j =
1√
N

N
∑

i=1

e−
i2π
N

kib2i+j
j∈{0,1}
k∈{0,...,N−1}
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we can rewrite the Hamiltonian as

H = Esep −Nλ+
1

2

N−1
∑

k=0

(

z̃k z̃
†
N−1−k

)

Hk

(

z̃k

z̃
†
N−1−k

)

where

λ = εi = S|J cos(φ) + J ′ cos(θ − φ) + 2J2 cos(θ))|
and

Hk =

(

λ+∆+
k ∆−

k

∆−
k λ+∆+

k

)

(28)

with ∆±
k blocks defined by

∆+
k =

(

2J2 cos(k) cos
2 (θ/2) J cos2 (φ/2) + J ′e−ik cos2

(

θ−φ
2

)

J cos2 (φ/2) + J ′eik cos2
(

θ−φ
2

)

2J2 cos(k) cos
2 (θ/2)

)

S

∆−
k = −

(

2J2 cos(k) sin
2 (θ/2) J sin2 (φ/2) + J ′e−ik sin2

(

θ−φ
2

)

J sin2 (φ/2) + J ′eik sin2
(

θ−φ
2

)

2J2 cos(k) sin
2 (θ/2)

)

S

Now, by means a canonical transformation we diagonalize each Hk. We can recover the

excitation energies in terms of invariants of the Hk matrices:

ω±(k) =

√

tr(MHk)2 ±
√

(tr(MHk)2)2 − 16 detHk

2

Zero modes arise when detHk = 0. This happens always for k = 0 and k = θ̃,

corresponding to Goldstone modes associated global rotations around the global y axes

or an axes over the global xy plane respectively.

4.2. Random phase approximation over the fully-dimerized pair mean field

Around the line γ = 0, we know that for S = 1/2 the mean field state is always the

dimerized state (7), and that, for small enough J ′, there is always a region for which this

result holds for any spin S. To obtain the RPA Hamiltonian associated to this mean

field solution is useful to start from the expression (2). Due to the structure of the

Hamiltonian, the relevant local basis for this problem is given by (|singlet〉, |x〉, |y〉, |z〉)
where |µ〉 =

√

3/4
S(S+1)

Kµ|singlet〉. Using the algebraic properties of the Kµ operators

defined in (4) we can check that this is an orthonormalized basis. Following the RPA

prescription (Eq. (26)) we obtain the approximate bosonic map:

|0〉 → |singlet〉 (29a)

Ki,µ →
√

S(S + 1)3/4(ai,µ + a
†
i,µ) (29b)

Ji,µ → 0 (29c)

J2
i,µ → a

†
i,µai,µ . (29d)
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It leads to the bosonized Hamiltonian

H → Edimer +
∑

µ

hbos
µ

with

hbos
µ = J

∑

i

[

a
†
µ, iaµ, i+

+
γ

4
(a†

µ, i + aµ, i)(a
†
µ, i+1 + aµ, i+1)

]

(30)

This is, in this approximation the system is mapped to three decoupled bosonic

systems with first neighbor quadratic interactions. For γ = 0, the systems become

decoupled, due to the fact that the mean field state corresponds to a true GS. For

general γ, the excitation energies of any of hbos
µ are given by

ωk = J

√

1− γ cos

(

2π

N
k

)

. (31)

The correction to the ground state energy is hence given by

∆ERPA,dimer

Edimer
=

3

2

(

1−
√
1 + γE( 2

1+γ−1 ) +
√
1− γE( 2

1−γ−1 )

π

)

(32)

where E(x) =
∫ π/2

0

√

1− x sin2(u)du is the Elliptic Integral of second kind.

In Figure 7 the exact (dots), mean field (solid line) and the RPA results (dashed

lines) based on simple and double unit cells for the E/Edimer ratio over the line J
′ = 0.6J

are depicted for the spin S = 1/2 and S = 1 cases, over a 2N = 40 sites periodic chain.

We can appreciate that the RPA correction over the single site mean field (blue dashed

line) improves significativelly the bare mean field result, but it is not able to give an

accurate description of its behavior over the dimerized region. However, through the

double unit cell MF+RPA approach (purple dashed lines) we found a very accurate

description which matches the exact result over the point J2 = J ′/2 = 0.3J . Outside

of the region where the fully-dimerized mean field is stable, the single site approach

becomes closer to the exact result, in agreement with the observed behavior of the

fidelity between the exact ground state and the mean field state (5).

An interesting point is that the bosonized Hamiltonian is stable if |γ| < 1. It give us

a different way to determine the region where the dimerized state is stable when we move

in the parameter space keeping J ′/J constant: as the local spin grows up, the width

around the γ = 0 line where the system presents dimerization is reduced as ≈ 1/S2.

This estimation is approximately what we can appreciate in the Fig 6. However, from

the same figure we can also see that the prediction of a width independent of J ′/J is not

completely fulfilled: this difference seems to be related with the inability of this method

to detect the crossing level over the γ = 0 line.
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Figure 7. (Color Online) Exact, mean field and RPA results for the ratio E/|Edimer|
over the line J ′ = 0.6J for a spin S = 1/2 (left) and S = 1 (right) over a 2N = 40

spin chain. Isolated dots corresponds to the exact result.

4.3. Higher order corrections and gap estimation over the γ = 0 line

As we say in the previous paragraph, RPA is not able to detect correctly the phase

transition due the fact that for γ = 0 all corrections vanish, predicting a constant

finite gap ∆ε = J . An elementary way to understand the behavior of the gap and

the structure of the excited state consists in develop it as a perturbative expansion.

A practical way to do it is again to start from the expression (2) for the Hamiltonian

around J ′ = J2 = 0. Due the large degeneration on each energy subspace, the first

step for a perturbative expansion is to choose a suitable basis for each subspace. To

do this, we begin by observing that both unperturbed and full Hamiltonian commutes
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with the total angular momentum operator J2
T =

∑

i,j
~Si · ~Sj − 2NS(S + 1), so we can

split the problem on each total momentum sector. A second observation comes form

the fact that the spectrum on each site is controlled by the local total momentum J2
i .

As we are looking for the behavior of the GS, we can limit to consider state with global

total momentum jT = 0 or jT = 1, due that sectors with larger jT involve states with

unperturbed energies three times bigger than the gap associated to the unperturbed

Hamiltonian. It allows us to consider just local excitations on the ji = 1 sector. Finally,

another symmetry in the Hamiltonian is related with the translational invariance. A

suitable basis for the relevant subspace is hence given by B =
⋃

j,ε,k Bj,ε,k where ε is

the (unperturbed) energy associated to a given sector (relative to Edimer). An explicit

expression for Bj,ε,k is given by

Bj,ε,k ε = 0 ε = J ε = 2J ε = 3J . . .

j = 0 {|dimer〉} − {|j, k〉} {|lm, k〉} . . .

j = 1 − {|µ, k〉} {|jη, k〉} . . . . . .

. . . − − . . . . . . . . .

(33)

with

|µ, k〉 =
∑

i

e−iik

√
NN

Kµ,i|dimer〉 (34a)

|j, k〉 =
∑

i

e−iik

√
3NN 2

Ki ·Ki+j|dimer〉 (34b)

|jη, k〉 =
∑

i,µ,ν

e−iikǫµνη√
2NN 2

Kµ,iKν,i+j|dimer〉 (34c)

|lm, k〉 =
∑

i,µνη

e−iikǫµνη√
6NN 3

Kµ,i−lKν,iKη,i+m|dimer〉 (34d)

being N =
√

S(S+1)
3/4

, 1 ≤ j ≤ N/2, 1 ≤ m, l ≤ N/3, and µ, ν, η = x, y, z. Before

giving the expressions for the corrections to the spectrum, we are going to give an

interpretation of the interaction terms in (2) in terms of its action on each sector. On

the one hand, the quadratic terms in Jµ,i acts over states with excitations on contiguous

sites i “rotating” both local excitations, and preserving the number of excitations (i.e.,

connecting states just on the same sector). Because it annihilates pairs of contiguous

singlets, it has no effect on the sector with ε = J and on any state with excitations on

non-contiguous sites. In this way, this term is diagonalized exactly on each subspace

Bj,ε by the basis given in (34a). On the other hand, the bilinear terms in Jµ,i and Kν,j

creates (or destroys) excitations over empty sites, depending on the occupation of its

neighbor sites, and hence, connecting contiguous sectors with the same jT . Because

it does not connect states inside the same sector, all its contribution shows at second

order.

Defined the basis, we are ready to evaluate the corrections on each sector. Of

course, the sector B0,0 corresponds to an eigenspace on the full γ = 0 line, with fixed

energy Edimer. Now we will see the effect on the other sectors. In particular, we will
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look for the new GS on the sectors jT = 0 and jT = 1, considering unperturbed states

with up to two excitations, i.e on the subspace generated by B1,J and B0,2J .

B0,2,k On this subspace, both interaction terms in (2) contributes to correct the

energy. To analyze the corrections to the spectrum in this subspace, we will consider

three different cases: |1, k〉, |2, k〉, and |j > 2, k〉. The energy (relative to Edimer)

associated to states with two contiguous excitations evolves as

∆E|1,k〉
J

= 2− J ′

J
− S(S + 1)

3/4

cos2(k/2)

2

(

J ′

J

)2

(35a)

∆E|2,k〉
J

= 2− S(S + 1)

3/4

1

4

(

J ′

J

)2

(35b)

∆E|j>2,k〉
J

= 2− S(S + 1)

3/4

1

2

(

J ′

J

)2

(35c)

B1,1,k. This sector corresponds to states with a single excitation. As the quadratic

term in Ji vanishes, at leader order the effect of the interaction is to mix this state with

states in the B1,2,k sector. At second order, the energy of the corresponding state is

given by
∆E|µ,k〉
J

= 1− S(S + 1)

3/4

(

J ′

J

)2
cos2(k/2)

2

which results three times degenerated, as we can expect from the SU(2) symmetry.

At second order, the GS on both B0,2,k and B1,1,k sectors becomes equal at J ′ = J ,

regardless S. However, at J ′ = J
√

3/2
S(S+1)

the GS on the jT = 1 sector reach Edimer,

becoming (on this approximation) the GS of the full system. However, this is not the

end of the story: numerical results show that the true GS after the phase transition

does not belong to the jT = 1 but to the jT = 0 sector. For S ≥ 1 we can reproduce

this result and improve the approximation to the phase transition point by taking into

account the JiJi+1 interaction terms exactly. It leads to the following expressions for

the GS on each sector:

∆E|1,0〉
J

= 2− J ′

J
− S(S + 1)

3/4

1/2

1− J ′

J

(

J ′

J

)2

(36a)

∆E|µ,0〉
J

= 1− S(S + 1)

3/4

1

2(1− J ′

2J
)

(

J ′

J

)2

(36b)

According to this result, the transition is reached at

J
′

o = J

√

1 + 4S(S+1)
3/4

− 3

S(S+1)
3/4

− 2
(37)

≈ J

2

√

3/4

S(S + 1)
− 2 +O2(1/S) (38)

on the JT = 0 sector. Although for S = 1/2 this expression predicts an non-existent

transition at J ′ = 0.76J , for S ≥ 1 gives a reasonable approximation (see Fig 8).
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Figure 8. (Color Online) Estimation of the critical value of J ′/J over the line J ′ = 2J2
as a function of S. The exact points were obtained by Lanczos diagonalization for a

lattice with N = 6 rungs. Largest deviations are observed for S = 1/2, for which the

exact critical point belongs to a non-perturbative regime. As the local spin S grows,

the critical value of J ′ moves inside the perturbative regime.

The fail for the S = 1/2 case can be attributed to the fact that at J ′/J ≈ 0.8,

higher order perturbative corrections competes with the correction in the denominator.

For larger S, the transition point moves away to a region for which the expansion

results accurate. As regard the true structure of the ground state, we should note that

in the neighborhood of the transition point, any state with approximately localized

but “diluted” pair excitations coupled at jexc = 0 gives a similar value for the energy,

reducing the possibility to obtain an accurate description of the GS by this way. This

feature also explains why MFA+RPA fails to reproduce the structure of the GS around

this point: as we approach to the critical point, quantum correlations between rungs

are no longer weak, and this approximation ceases to be valid [22].

5. Summary and discussion

In the present paper, the general SU(2) invariant quantum spin-S Heisenberg model

on the zig-zag ladder was investigated. A sufficient condition for the existence of a

fully-dimerized exact eigenstate was demonstrated for a wide subfamily of such systems

and, for the translational invariant case, a sufficient condition for this fully-dimerized

eigenstate be the true ground state was established. Besides, by means of a combination

of numerical and analytical techniques, the existence of this phase for a general value of

the local spin was proven, showing that the region in the parameter space corresponding

to the dimerized phase is reduced as the magnitude of the local spin grows.

In this regard, unlike the typical picture of the classical limit as a gradual reduction

of the width of the quantum fluctuations, here it arises as a sudden reduction of those
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fluctuations, related to a level crossing between two structurally different states, the

dimerized (full-quantum) and a spiral (semi-classical) states.

Analytical results was achieved by a generalization of the variational Mean Field

Approximation consisting in enlarging the size of the unit cell and study by means a

full quantum treatment. Through the RPA formalism, we was able to describe small

changes on the gap around the fully-dimerized line. However, this treatment was not

able to detect changes on the gap along the factorizing line. The explanation of why

it is in this way arises from a perturbative analysis: there is a region in which the GS

consists on excitations with non Gaussian correlations. A possible way to overcome this

problem consists on generalize the perturbative treatment over the RPA approximated

GS, technique that we are currently on development.

We have postponed the study of multipartite entanglement, time evolution of the

system and energy excitations for a forthcoming work. In particular, the study of excited

states in the general case where different couplings distribution can be studied is a very

interesting topic that deserves a careful study.
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Appendix A. Numerical methods

For low values of S, suitable numerical methods have been developed in order to find the

GS and its correlations. If also 2N log(2S + 1) can be considered small enough, we can

evaluate both the GS and excited states and its energies through Arnoldi-like techniques

for sparse linear systems [31], which allow us to recover all the relevant observables of

the system. On the other hand, because the size of the eigenvalue problem grows as

exp(2N log(2S + 1)), we are in hard troubles if we want to analyze by this method the

large N and large S behavior of the system.

On the other hand, if we are interested just on the structure of the GS, methods

bases on Density Matrix Renormalization Group (DMRG) provide an efficient way to

explore the large N limit. However, the performance of this method is spoiled when we

are working with systems near a critical point, especially if we consider a not too small

S case. This is due to the fact that DMRG is based on the assumption that the local

subsystems are not too entangled among them in its exact GS, in order to obtain an

efficient and accurate description in terms of an small number of states, by looking for a

suitable set of local state basis[32, 33, 34]. In particular, this is true for spin 1/2 (1-D)

chains with local or quasi-local interactions if we are not too close to a critical point.

Another limitation of this technique is related with the fact that excited states do not

satisfy the hypothesis of small inter-site entanglement, which limits the possibility to
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study quantities like the gap and the structure of the excited states with this technique.

In the present work, we use the Lanczos method as the reference method. However,

in those cases when we need larger chains we take advantage of the DMRG method. In

both cases, we use the ALPS platform [35]. Also, when we need to access to different

local states (for instance, in order to evaluate fidelities), we have used a patch developed

in our group for the ALPS code + allowing to access to this functionality.

Appendix B. Properties of the Fidelity

The Fidelity is a measure of closeness between quantum states, defined as

F [ρ, ρ′] = Tr
√

ρ1/2ρ′ρ1/2 (B.1)

which for pure states is reduced to the absolute value of its overlap:

F [|α〉, |β〉] = ‖〈α|β〉]‖ (B.2)

This measure is related to the Bures Angle

Φ[ρ, ρ′] = arccos(F [ρ, ρ′]) (B.3)

which defines a metric structure over the set of statistical operators.

If two states have a fidelity near to 1, any observable evaluated on any of these

two states must give similar expectation values. On the other hand, for states with low

fidelity there is always a projective measure which can distinguish between them with

a high probability of success.

We can relate the fidelity of the reduced local states to the global ones by the

inequalities

F [|α〉, |β〉] ≤ F [|α〉A, |β〉A] (B.4)

F [|α〉, |β〉] ≤
√

F [|α〉A, |β〉A]F [|α〉Ā, |β〉Ā] (B.5)

It means that despite a pair of global states would have a small fidelity, they can

represent similar subsystem states. For instance, in certain contexts the mean field

state can reproduce with good accuracy the behavior of local observables but could fail

when we look for pair correlations.

Appendix C. Evaluation of wA[Ω,Ω
′]

To evaluate explicitly wA[Ω,Ω
′] for the planar spiral case, we will observe first that

wA[Ω,Ω
′] =

∏

i∈Ā

〈ϕi|Rα~n|ϕi〉

+ The patch can be downloaded from:

http://mauricio-matera.blogspot.com.ar/2014/03/information-theory-patch-for-alps.html

http://mauricio-matera.blogspot.com.ar/2014/03/information-theory-patch-for-alps.html
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where Rα~n = R
†
Ω′RΩ is the composition of both rotations, which results in a rotation of

an angle α around the ~n direction. Now, if the |ϕi〉 are polarized on the ~nϕi
direction,

we can evaluate explicitly ea ch 〈ϕi|Rα~n|ϕi〉 as

〈ϕi|Rα~n|ϕi〉 = (cos(α)− i~n · ~nϕi
sin(α))2S

Now we have to consider two different cases. On the one hand, if we suppose that

|MF〉 is an spiral state, as ~n is a fixed versor but ~nϕi
is changing, for almost all i on

a contiguous block, ~n · ~nϕi
< 1. In this way, |〈ϕi|Rα~n|ϕi〉| = 1 = const if and only if

α = 0. For small α we get,

wA[Ω,Ω
′] ≈ cos2SNĀ(α) exp(−i2SN〈~n · ~nϕi

〉Ā)

where NĀ is the number of sites in Ā and 〈~n · ~nϕi
〉Ā is the mean value of the products

over the sites in Ā. This quantity vanishes if 〈~n ·~nϕi
〉Ā is a large set of contiguous sites.

On the other hand, if the state on the subsystem Ā is near enough to a Néel state,

there is another possibility: because we can choose ~n in a way that |~n · ~nϕi
| = 1, the

family of rotations such that Rα~n corresponds to a rotation around the magnetization

axes has all finite weights

wA[Ω,Ω
′] ≈ δ[Ω̃, Ω̃′] exp

(

−i2Sα
∑

i

~n · ~nϕi

)

where Ω̃ and Ω̃′ means as representatives of the equivalence classes defined by R†
ΩRΩ′ =

Rα,~nϕ
.

In this way, the integral in (20b) is reduced to an integral over every pair of rotations

which differs in a rotation around the polarization axes. It can be decomposed as:

ρSR
′

A → ρSRA +

∫

RA
Ω∆ρA(R

A
Ω)

†dµΩ .

where

∆ρA ∝
(
∫

e−i2Sα
∑

i ~n·~nϕiRA
α,~nϕ

dα

2π

)

ρNeel
A + h.c.

If
∑

i ~n · ~nϕi
= 0, ∆ρA ∝ ρSRA and the result does not change. On the other hand, if

∑

i ~n · ~nϕi
= ±1, the parenthesis results proportional to the projector over the local

(Sz)total(A) = ±2S. In a global Néel state, this projector is orthogonal to any subspace

and then the contribution to the local state vanishes.
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