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Abstract— This paper presents the development of a flexible tool 
for the calculation of the state matrix A of the power system. 
This program is called SIAM (Sistema Informático para Análisis 
Modal - Computational System for Modal Analysis). The state 
matrix is obtained from the load flow solution data and from the 
dynamic model parameters employed. The detailed models of 
synchronous machines, automatic voltage regulators and power 
system stabilizers are linearized for the calculation. To evaluate 
the method proposed, there is a comparison of results between 
SIAM and a commercial program for a reference case 
published. 
 
Index Terms —– Inter-area oscillation – Modal Analysis - Mode 
Oscillation – Power system stability - Small Signal Stability. 

I. INTRODUCTION 

The modal Analysis determines the eigenvalues or modes 
of oscillation of the system, expressed in terms of their 
frequency and damping. For modal analysis, the system state 
matrix A is required. This matrix is composed by the partial 
derivatives of the state variables referred to each other [1]. 

In studies carried out over the Argentinean interconnected 
power system (SADI-SIP), the state matrix is obtained from 
the same nonlinear models used for transient stability studies 
[2]-[3]. The dynamic model database is managed by the 
transmission system operator (CAMMESA) and is available 
only for the commercial program PSS/E (hereinafter referred 
as Commercial Program - CP). This implies some limitations 
to perform specific analysis on the power system. 

For more flexibility, a program under MATLAB was 
developed to build and to process the state matrix, instead of 
the specific module on the CP package. This program was 
called SIAM. 

SIAM was developed to obtain a more versatile tool for 
studies of small signal stability. This tool can be used not only 
to calculate the eigenvalues and eigenvectors, but also to 
obtain the participation factors, mode shape, controllability 
and observability indices such as the residues. These features 
allow the design of different control strategies to avoid 
instabilities. 

This program has the additional advantage of being able to 
perform the analysis based on a load flow solution without the 
need to migrate all data to any new software. In this case it is 
used a specific CP, but it could be used with any other. 
Additionally to the load flow solution data, it only needs to 

know the dynamic model parameters employed. The actual 
version of SIAM contains more than 100 types of standard and 
user developed models to represent the synchronous machine 
(SM), Automatic Voltage Regulator (AVR) and Power 
System Stabilizer (PSS). New models cloud be include easily. 

Another advantage of the SIAM is the analytical method 
of derivative calculation, which allows the use of highly 
nonlinear models with a bounded mistake. When the 
incremental method is used (step-type disturbance on the state 
variables for the derivative computation), there are greater 
errors which could spoil the analysis. This is due the high 
gains and the existence of nonlinearities. 

II. DIFFERENTIAL-ALGEBRAIC MODEL 

A. Description 

The dynamic behavior of a power system can be described 
by a set of nonlinear differential equations called Differential-
Algebraic Equations (DAE) shown in (1): 
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where f represents the dynamic characteristic of the system 
components, while g represents the nonlinear network 
equations. The state variables xd belong to generator models 
and control elements in the system, such as AVR and PSS. For 
this analysis, the algebraic variables xa are the injected 
currents (Îg) by the generators and the voltages on each node 
(Û=Uejθ).  

The h function represents the output behavior and u are the 
independent inputs. Both, h and u are considered null for this 
first analysis. At the same time, g consists of two functions, 
one describing the link between the generator stator and the 
grid (g1) and another corresponding to the relations between 
network nodes (g2). These two functions are call Stator 
Equations and Network Equations respectively [4]. With these 
assumptions, (1) can be described as (2): 
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The f function contains the fields and mechanic equations 
of the SM according to the desired degree of detail. Also, f 
included the differential equations of the AVR and PSS [1], 
[4]-[6].  
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Functions g1 and g2 are given for the i-th bus by: 

 
( ) ( )

( )( ) ( )

2
1

2 0

ii

i

jj
i i qi di i

j

i i di qi

g U e j e

R jX I jI e

πδθ

πδ

ψ ψ ω −

−

′′ ′′= − − + +

′′+ + + =
  (3) 

 
( ) ( )2

2

1

0

πδθ

θ θ α

− −

− −

=

= − + + −

− =∑

ii

i k ik

jj
i i di qi Li Li

n
j j j

i k ik
k

g U e I jI e P jQ

U e U e Y e
  (4) 

where ψ”d and ψ”q are the dq components of sub-transient 
flux, R is the stator resistance, X” is the sub-transient 
reactance, I d  and I q  are the dq components of the current, δ is 
the rotor angle, PG i+jQ G i  = U ie

jθ i (I d i - j I q i )e - j ( δ i -π / 2 )  is 
the power injected by the generator in the i-th bus, ω is the 
rotor speed, Yi ke jα i k  is the i-k element from the admittance 
matrix of the system, and n is the number of buses. PLi and QLi 
are the active and reactive load power demanded in the i-th 
bus, which could be nonlinear functions of the bus voltage. 

B. System Linearization 

If (2) is linearized for a given operating point, and written 
in matrix form, the DAE full matrix result: 
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Full matrix is formed by sub-matrices. The first row of (5) 
represents the linearized expression of the f function from (2). 
The sub-matrices A, B1 and B2 describe how the state variables 
and algebraic variables affect the derivatives for each state 
variable. Those are computed analytically based on each 
specific model. At the same time, each of these matrices is 
composed of m sub-matrices, independent from each other, 
which represent the linearized models used for the dynamic 
representation of each plant [4], [7]-[8]. A and B1 are diagonal 
matrices while B2 is an sparse matrix. The sub-matrices shape 
of A, B1 and B2 are shown in (6). 
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The second and third row of (5) represent the linearized 
expressions of the functions g1 and g2 from (2), respectively. 
The matrices C1 and D1 are diagonal while C2, D3 and D2 are 
sparse matrices. The matrix D4 is known as the Jacobian of the 
network and its elements are the derivative expressions of the 
active and reactive power, respect to the module and voltage 
angle. 

The system state matrix (Asyst) is obtained from (5) by 
eliminating the algebraic variables. The mathematic model is 
reduced to (7): 

 Δ = Δ& systx A x   (7) 

The modal analysis is performed based on the state matrix 
(Asyst) from which the eigenvalues (λ) and eigenvectors (right 
eigenvector V and left eigenvector W) are calculated. 

III. COMPUTATIONAL IMPLEMENTATION 

In order to calculate the coefficients of the different sub-
matrices, it is necessary to have information regarding the load 
flow solution of the case under analysis. These results are 
obtained in the CP environment. Prior to data collection, all 
generators must be converted to current sources with output 
impedance equal to the stator impedance and the loads must 
be converted to: constant admittance, current or power in 
whichever proportion [9]. 

The general structure of the calculation method of the 
DAE full matrix is described in Figure 1. 

Data from the CP is entered to SIAM. In the first step 
the program sorts the data from the load flow solution and 
incorporates the dynamic model parameters for each SM and 
the control elements, such as AVR and PSS. At this point, 
SIAM already has all data necessary for constructing the DAE 
full matrix. The assembly of this is done by computing the 
sub-matrices: A, B1, B2, C1, C2, D1, D2, D3 corresponding to 
the m generation buses. Also, the Jacobian (matrix D4) of the 
network is calculated [4]. 

When the DAE full matrix is ready, the state matrix (Asyst) 
is obtained from this. The eigenvalues (λ) and eigenvectors are 
calculated, as well as the frequency and damping of the modes 
obtained [1]. 

IV. MODE SHAPE, PARTICIPATION FACTORS, 
CONTROLLABILITY AND OBSERVABILITY INDICES  

A. Mode shape 

The right eigenvector vi is known as mode shape 
corresponding to λi. For a given eigenvalue, the mode shape is 
very useful for identifying a group of coherent generators in a 
multi-machine system [1], [8]. 

 
Figure 1. General structure of the calculation method. 
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B. Participation Factor 

Any arbitrary element vki in V can be seen as contribution 
of the i-th mode in the k-th state variable, i.e. activity of the i-
th mode in the k-th state variable. On the other hand wik 
corresponds to the weight of the contribution of the k-th sate 
variable to i-th mode. The product of vki and wik is, however, a 
dimensionless measure known as participation factor [1]. The 
most generic definition of participation factor is given as: 

 ki ki ikp v w=   (8) 

C. Controllability index 

For the case of an SVC, with susceptance Bsvc, which is 
placed at bus i, the reactive power injected into de bus (Qsvc), 
the most basic model is given by: 

 2
svci svci iQ B U=   (9) 

Considering only variations of Bsvci and linearizing (9): 

 2
svci i svciQ U BΔ = Δ   (10) 

If (5) is reduced by elimination of the algebraic variable Îg, 
it can be rewritten as: 
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The second equation of (11) represents the power balances 
of the system, combining this with (10) provides: 

 ˆ0 svcC x D U H B= Δ + Δ + Δ   (12) 

where matrix H contains partial derivatives of power balances 
equation at all the buses with respect to the susceptance of the 
SVC. Substituting (12) into (11) and eliminating the algebraic 
variables ΔÛ, result: 
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The controllability index of SVC placed at the i-th bus to 
the k-th mode can be defined as given in (14). 

 'T
ki k iCI w h=   (14) 

where wk is the left eigenvector of matrix A’ corresponding to 
the k-th mode [1], [8], [10]. 

D. Observability index 

If the output function h from (1) is considered and it is 
linearized, result: 

 systx A x

y F x

Δ = Δ

Δ = Δ

&
  (15) 

Bus voltage, line power, line current, etc. could be chosen 
as output signal yi and could be used as controller inputs. 

The observability index of the k-th mode in the i-th output 
is defined as: 

 ik i kOI f v=   (16) 

where fi is the i-th row vector of F and vk is the right 
eigenvector of matrix Asyst corresponding to the k-th mode [1], 
[8], [10]. 

V. NUMERICAL EXAMPLE 

The effectiveness of the proposed method was tested on 
16-machines and 68-buses system [5]-[8]. This is a reduced 
order equivalent of New England Transmission System 
(NETS) and the New York Power System (NYPS). There are 
nine generators in NETS area and three in NYPS area. The 
three neighboring utilities are represented as three equivalent 
large generators #14, #15 and #16. Single line diagram of this 
system is shown in Figure 2. 

This system was analyzed using the proposed method and 
its results were compared with those obtained from the 
commercial program, which is widely recognized worldwide. 

Each SM was modeled to have three damper windings and 
one field winding. The first eight generators have DC 
excitation, while machine #9 was equipped with fast 
excitation. Machine #9 has also a speed input PSS. 

These model characteristics were implemented using the 
generator model GENROU (IEEE Generator Model 2.2) [5], 
DC exciter model IEEET1 (IEEE Type DC1A), static exciter 
model ESST1A (IEEE Type ST1A) and PSS model IEEEST 
(IEEE Type PSS1A) [6], all from CP IEEE standard library 
[6].All loads are considered of constant power. 

 
Figure 2. 16-machines and 68-buses system. 
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A. Oscillation modes 

A 700 MW flow between NETS and NYPS was assumed. 
This was performed by adjusting the load and generation in 
both areas. 

As it was explained before, the resolution of the load flow 
is performed in the CP environment. 

Subsequently, the state matrix was calculated by two 
methods, using SIAM and the activity ASTR through module 
program for dynamic studies from CP. 

SIAM provides directly the eigenvalues of the system, 
while the matrix obtained by the CP must be post-processed 
using another module, which is included in the CP package. 

The activity ASTR calculates the state matrix by applying 
a percentage perturbation to each state variable to obtain its 
derivative. When the models are nonlinear, this method is very 
sensitive to the amplitude chosen for the perturbation. 

According to the experience obtained in different studies 
carried out over the Argentinean power system, a value of 1% 
results adequate. This value prevents large excursions of the 
state variables, or very small excursions that are lost in the 
numerical noise. 

Figure 3 shows the eigenvalues obtained by the analytical 
method in the SIAM and by the incremental method in the CP. 

The oscillation frequency and damping of the most 
important modes (damping < 10%) obtained by both programs 
are shown in TABLE I. 

The greatest percentage error in frequency appear for 
mode 1 (1.49 %) and for damping in mode 2 (9.8 %). Despite 
the percentage damping error is high, the absolute error is just 
about 0.0047. 

As it can be seen from the numerical example, when it is 
used the state matrix obtained from SIAM, the results obtained 
are similar to those achieved with the CP. The small 
differences in the results of both programs are due to the 
method used to obtain the state matrix, analytical versus 
incremental. 

 
Figure 3. Eigenvalues obtained by both method. 

B. Participation Factor 

The participation factors for all modes listed in TABLE I 
were computed using the expression (8). Also, the 
participation factors for the same modes were obtained from 
the CP. As example, TABLE II shows the results for three 
modes. The values were normalized to the major. 

TABLE I. MODES WITH DAMPING ≤ 10%. 

 
TABLE II: PARTICIPATION FACTORS. 

 

C. Mode shape 

The mode shape of the mode 1 (0.365 Hz) was obtained from 
its right eigenvector. The eigenvector elements corresponding 
to machine angle are shown in Figure 4-(a). This shows two 
clusters of generators oscillating against each other. The first 
group corresponds to all generators from NEST and NYPS 
areas and the second group corresponds to the equivalent 
generators #14, #15 and #16. This is an inter-area oscillation 
and the major participants are the machines #13, #15, #14 and 
#16 as is shown in TABLE II. 

Figure 4-(b) shows the mode shape of the mode 5 (1.0776 
Hz). The eigenvector elements corresponding to machine 
angle. There are two clusters of generators oscillating against 
each other. The first group corresponds to the generators #2 
and #3 from NEST and the second group corresponds to the 
generators #4, #5, #6 and #7 from the same area. This is an 
inter-unit oscillation. 

The mode shape of the mode 13 (1.881 Hz) was obtained 
from its right eigenvector. The eigenvector elements 
corresponding to machine angle are shown in Figure 4-(c). 
This shows the #11 generator oscillating against the rest of the 
system. This is a local oscillation. 
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(a) 

 
(b) 

 
(c) 

Figure 4. Mode shape of: (a) mode 1, (b) mode 5 and (c) mode 13. 

Computing the participation factors and observing the 
mode shape of each mode it is possible to determine that: the 
modes 1, 2, 3,4 and 9 are inter-area oscillations, the modes 5, 
6, 7, 8, 10, 11 and 12 are inter-unit oscillations and the mode 
13 are local oscillations [11]. 

D. Controllability and Observability Indices 

The controllability indices are performed for all modes and 
listed in the TABLE III. Those are computed for an SVC in all 
bus locations of the study system, which is normalized with 
respect to the highest index. 

The highest indices for each mode are shown in the 
TABLE III. For mode 1, it can be seen that the highest index 
corresponds to the bus 40. This bus is the arrival of the tie line 
that links NYPS with Area 3. If the indices are analyzed, the 
bus 40 has higher indices too for mode 2 (2nd) and mode 4 
(1st). This means that an SVC located in this bus could help to 
control these three modes. 

TABLE III: CONTROLLABILITY INDEX FOR AN SVC. 

 

The observability indices for the bus voltages are 
performed for all modes and listed in the TABLE IV. Although 
the variations respect to the mean value are greater in line 
power, the bus voltages could be chosen as controller inputs 
due to the these signals have greater observability indices were 
the SVC could be installed. 

TABLE IV: OBSERVABILITY INDEX FOR BUS VOLTAGES. 

 

VI. CONCLUSIONS 

SIAM was developed to compute the DAE system full 
matrix of a power system and to obtain its eigenvalues and 
eigenvectors with this matrix. 

SIAM only need as input the data from load flow solution 
and the dynamic model parameters. These inputs can be 
obtained from any CP used for stability studies. 

SIAM was tested with a well known benchmark (16-
machines and 68-buses system). 

The differences between result obtained from a CP and 
SIAM are negligible, not only in the mode frequency but also 
in its damping. 

Additionally, the availability of the DAE system full 
matrix in SIAM environment allows additional calculations 
such as controllability and observability indices. This 
availability is very important to formulate control strategies 
and to find optimal location of devices such as FACTS. 
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