
c© 2005 by Alejandra Garrido. All rights reserved.

PROGRAM REFACTORING IN THE PRESENCE OF PREPROCESSOR
DIRECTIVES

BY

ALEJANDRA GARRIDO

Licenciada, Universidad Nacional de La Plata, 1997
M.S., University of Illinois at Urbana-Champaign, 2000

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

Urbana, Illinois

PROGRAM REFACTORING IN THE PRESENCE OF PREPROCESSOR

DIRECTIVES

Alejandra Garrido, Ph.D.
Department of Computer Science

University of Illinois at Urbana-Champaign, 2005
Ralph Johnson, Adviser

The C preprocessor is heavily used in C programs because it provides useful and

even necessary additions to the C language. Since preprocessor directives are not

part of C, they are removed before parsing and program analysis take place, during

the phase called preprocessing. In the context of refactoring, it is inappropriate to

remove preprocessor directives: if changes are applied on the preprocessed version

of a program, it may not be possible to recover the un-preprocessed version. This

means that after refactoring, all the source code would be contained in a single unit,

targeted to a single configuration and without preprocessor macros.

This thesis describes a novel approach to preserve preprocessor directives during

parsing and program analysis, and integrate them in the program representations.

Furthermore, it illustrates how the program representations are used during refactor-

ing and how transformations preserve preprocessor directives.

Additionally, the semantics of the C preprocessor are formally specified, and the

results of implementing this approach in a refactoring tool for C, CRefactory, are

presented.

iii

To Federico, Juan and Manuel,

who teach me what life is about.

iv

Acknowledgements

This project would not have been possible without the support of many people. I

would like to sincerely thank my advisor, Ralph Johnson, for his constant guidance

and support, and invaluable help during my entire career. Also thanks to my com-

mittee members, José Meseguer, Samuel Kamin and Mehdi Harandi, who guided me

and encouraged me.

Many thanks to Ira Baxter, who wisely pointed me in the direction of the hardest

problem I should concentrate on, and reviewed several papers of this project.

Thanks to John Brant, for helping me in several opportunities with the problems

of the C preprocessor, refactoring and his invaluable parser generator, SmaCC. Also

thanks to the Software Architecture Group, specially Brian Foote who advertised my

research in several opportunities. Thanks to Mark Hills for helping me with Maude.

I would like to thank all my friends, those back in Argentina and all the wonderful

people I met in Urbana, who supported me and shared good and bad times.

I thank my parents for always being there for me. Their love, their encouragement

and their belief in my abilities through graduate school and maternity were essential

to my survival.

My husband deserves at least as much credit as I do for this project. He made

it all possible. From his constant encouragement and feedback in all aspects of this

project, to his absolute dedication towards our children that turned him into the

amazing father that he is. Our children, Juan and Manuel, are the most extraordinary

gifts that God could give us. Thanks also to them for their patience during stressful

v

times and for brightening every day of my life.

Finally, I thank God for granting me the skills and opportunities that made this

possible, and blessing my life with the best family I could think of.

vi

Table of Contents

List of Tables. x

List of Figures. xi

Chapter 1 Introduction. 1

1.1 Background . 2
1.1.1 Software evolution . 2
1.1.2 Refactoring . 3

1.2 The C Preprocessor and the Problems it Brings to Refactoring 4
1.3 Motivation . 7
1.4 CRefactory: a Refactoring Tool for C 8
1.5 Contributions . 10

Chapter 2 Related Work . 12

2.1 Program Analysis and Understanding Tools 12
2.2 Related Refactoring and Transformation Tools 16

2.2.1 Refactoring Browser . 16
2.2.2 Xrefactory . 17
2.2.3 DMS . 18

2.3 Refactoring for C++ . 20

Chapter 3 The C Preprocessor . 22

3.1 An Introduction to Maude . 23
3.2 Behavior of Cpp . 27
3.3 File Inclusion Directive . 29
3.4 Macro Definition Directive . 31

3.4.1 Differences between Cpp macros and C functions 37
3.5 Conditional Compilation Directives 39

Chapter 4 Pseudo-Preprocessing in CRefactory . 44

4.1 The Need for Pseudo-Preprocessing 45
4.2 The Input of P-Cpp . 47
4.3 Handling File Inclusion . 49
4.4 Handling Macros . 55
4.5 Handling Conditional Directives . 62

4.5.1 Representation of conditions 65

vii

4.5.2 Conditions as labels . 69
4.5.3 Problem with conditional directives: Incomplete syntactic units 73
4.5.4 Recognizing incomplete Cpp conditionals 74
4.5.5 Conditional Completion Algorithm 78
4.5.6 Pretty-printing of Cpp conditionals 87

4.6 Reusing Representations . 88

Chapter 5 Program Representations that Integrate C and Cpp 94

5.1 Abstract Syntax Tree . 95
5.2 Symbol Table . 100
5.3 The Program Repository . 106
5.4 Queries Answered by the Program Repository 108
5.5 Updating the Program Model . 113

Chapter 6 Applying Refactoring . 116

6.1 Handling File Inclusion During Refactoring 117
6.2 Handling Macros During Refactoring 118

6.2.1 Scope of refactoring . 118
6.2.2 Different contexts calling the same macro 119
6.2.3 A macro referring to different uses of the same name 120
6.2.4 Use of concatenation in macro bodies 121
6.2.5 Macros affecting code movement 122
6.2.6 Scope of refactoring of a macro definition 122
6.2.7 Replacement of macro parameters 122
6.2.8 Parentheses around macro arguments 123

6.3 Handling Conditional Directives During Refactoring 125
6.3.1 Multiple definitions for a program entity 125
6.3.2 Conditionals affecting code movement 125

6.4 Refactorings on C Code . 126
6.4.1 Delete unreferenced variable 127
6.4.2 Rename variable . 130
6.4.3 Move variable into structure 134
6.4.4 Other refactorings on C code 137

6.5 Refactorings on Cpp Directives . 139
6.5.1 Add file and #include . 140
6.5.2 Remove file and #include . 141
6.5.3 Rename macro . 141
6.5.4 Rename macro parameter . 142
6.5.5 Remove condition . 143
6.5.6 Complete Cpp conditional . 144

Chapter 7 Quantitative Evaluation of CRefactory. 146

7.1 Results on rm . 146
7.2 Results on Flex . 148
7.3 Results on linux/init/main.c . 149

viii

7.4 Results on Directory linux/init/ . 152

Chapter 8 Conclusions . 154

8.1 Summary of Contributions . 154
8.2 Lessons Learned by Implementing CRefactory 155
8.3 Limitations . 158
8.4 Future Work . 159

Appendix A Maude Specification of Cpp . 161

Appendix B Maude Specification of P-Cpp. 171

Appendix C C Grammar with Cpp extensions . 179

Appendix D Source Code of Examples . 193

References . 202

Author’s Biography . 207

ix

List of Tables

4.1 Syntactic constructs of the C grammar that macro definitions should
not break . 49

4.2 Data in a CppConditionalDescriptor 78

5.1 C syntactic constructs allowed in between Cpp directives 96
5.2 Types of entries in CRefactory’s symbol table 102
5.3 Attributes that distinguish a CRFunctionEntry from a CRProgramFunction107

6.1 Refactorings for the C language . 127
6.2 Refactorings on preprocessor directives 139

7.1 Metrics on rm . 147
7.2 Metrics on Flex . 149
7.3 Metrics on init/main.c . 150
7.4 Metrics on linux-2.6.7/init/ . 152

x

List of Figures

1.1 Original and refactored versions of function “rm option init” 9

2.1 Error in Extract Function Refactoring 18
2.2 Example of a DMS transformation rule 19

3.1 Specification of the functional module TOKEN 24
3.2 Basic elements of Cpp syntax . 26
3.3 State of Cpp during preprocessing . 27
3.4 High-level view of Cpp’s behavior . 29
3.5 Syntax of the #include directive . 30
3.6 Addition of include directories to CPP-STATE and CPP-SEMANTICS 30
3.7 Semantics of the #include directive 31
3.8 Syntax of the #define directive . 32
3.9 Specification of macro definitions and the macro table 33
3.10 Semantics of the #define directive . 33
3.11 Extension of module LINE-SEQ-SEMANTICS to handle macro calls 34
3.12 Semantics of macro expansion . 36
3.13 A function definition and its macro counterpart 37
3.14 Example of the use of conditional directives 40
3.15 Syntax of conditional directives . 41
3.16 Final version of CPP-STATE . 42
3.17 Semantics of conditional directives 43

4.1 A source code and its preprocessed version 45
4.2 Conditional directives breaking a statement 46
4.3 A macro call that may prevent correct parsing 47
4.4 Specification of sort CRConfiguration 48
4.5 Example of Include Dependencies Graph 51
4.6 Specification of Locations and the Include Dependency Graph 52
4.7 State of P-Cpp during preprocessing 53
4.8 Semantics of P-Cpp with file inclusion 54
4.9 Macro expansion and token labelling 56
4.10 Layers in the representation of a token’s position 57
4.11 A macro with multiple definitions . 57
4.12 Macro table entry for a macro with two definitions 57
4.13 Expansion of a macro call that binds to multiple definitions 58
4.14 A macro and a C symbol defined with the same name 58

xi

4.15 Expansion of a symbol defined as a macro and a C language element 59
4.16 Specification of a macro definition and a macro table 60
4.17 Semantics of P-Cpp with macro definitions 62
4.18 Multiple definitions for type pointer 62
4.19 Example of incompatible conditions 64
4.20 Condition associated with a point in the source code 66
4.21 Example of exception of Definition 2 67
4.22 Example of multiple definition for ‘NSEC PER SEC’ 68
4.23 Specification of conditions . 71
4.24 Semantics of P-Cpp upon conditional directives 72
4.25 Incomplete syntactic units . 73
4.26 Specification of P-Cpp’s pushdown automata 76
4.27 Pseudo-code for first pass of P-Cpp 79
4.28 Cases of the Conditional Completion Algorithm 80
4.29 Case 1 of completing conditionals . 81
4.30 Case 2 of completing conditionals . 81
4.31 Case 4 of completing conditionals . 82
4.32 Case 5 of completing conditionals . 83
4.33 Case 6 of completing conditionals . 84
4.34 Case 7 of completing conditionals . 85
4.35 Pseudo-code of completeConditional 86
4.36 Pseudo-code of completeConditionalBranch 87
4.37 Pseudo-code for pretty-printing . 88
4.38 Example of include dependencies revisited 89
4.39 Additions to P-Cpp’s specification to allow reuse of representations . 91
4.40 Different definition of a macro depending on the order of file inclusion 92
4.41 Entry for a macro whose definition depends on the order of file inclusion 93

5.1 Grammar productions for statement and Cpp directives 97
5.2 Abstract syntax tree with Cpp directives as nodes 98
5.3 Abstract syntax tree after conditional completion 99
5.4 Abstract syntax tree with labels for macro expansion 100
5.5 Symbol table entry for a variable and a macro with the same name . 101
5.6 Hierarchy of CRSymbolTableEntry and attributes of each class 102
5.7 Uses of a symbol binding to more than one definition 104
5.8 Example of visibility with #include directives 105
5.9 Hierarchy of CRProgramModule and attributes of each class 106
5.10 Pseudo-code for finding definitions binding to a use 109

6.1 Macro referring to different definitions of a variable 119
6.2 Macro referring to different uses of a name 121
6.3 Macro using concatenation prevents renaming 121
6.4 Parenthesis needed around a macro argument to preserve behavior . . 123
6.5 Presence of parentheses prevents substitution with macro call 124
6.6 Example where introducing a macro call changes program behavior . 124

xii

6.7 Presence of comma prevents substitution with macro call 124
6.8 Extract function with conditional directives 126
6.9 Preconditions of Delete Variable . 128
6.10 Performing Delete Variable . 129
6.11 Preconditions of Rename Variable . 131
6.12 Performing Rename Variable . 132
6.13 Preconditions of Move Variable Into Structure 135
6.14 Performing Move Variable Into Structure 136
6.15 Rules for Remove Condition . 144

xiii

Chapter 1

Introduction

Refactoring has become a well-known technique for transforming code in a way that

preserves behavior [1; 2]. Refactorings may be applied manually, although manual

code manipulation is error prone and cumbersome. Developers and maintainers need

tools to make automatic refactorings. There is currently extensive literature on refac-

toring object-oriented programs and some very good tools for refactoring Smalltalk

and Java code [1–7]. However, refactoring tools for C with full support for prepro-

cessor directives have not yet appeared, even when there is a vast amount of systems

written in C for which a refactoring tool would be tremendously beneficial [8].

One of the main obstacles to building a refactoring tool for C programs is that

these programs have a mix of two languages: pure C and preprocessor directives.

Preprocessor directives obey the syntax of Cpp: the C preprocessor. Since the syntax

of Cpp is different than the syntax of C, it is necessary to evaluate and remove prepro-

cessor directives, i.e., preprocess a program, before it can be compiled. However, it is

inappropriate for a refactoring tool to preprocess a program: if refactorings are applied

on the preprocessed version, it may not be possible to recover the un-preprocessed

source code with preprocessor directives and macro calls. The preprocessed program

becomes unmaintainable [8; 9].

Refactoring C with preprocessor directives poses two main research challenges.

1

On the one hand, a specialized infrastructure is needed to parse, represent, analyze

and transform source code that has a mix of C and Cpp. On the other hand, new

precondition and execution rules must be defined for refactorings to preserve behavior

in the presence of Cpp directives. We have addressed these challenges by constructing

CRefactory, a refactoring tool for C with full support for preprocessor directives.

This chapter is organized as follows: firstly, it presents a background on software

evolution and refactoring. Secondly, it outlines Cpp directives and the problems they

bring to refactoring. Thirdly, it describes the motivation for this work. Fourthly,

it gives an example of a program that has been refactored with CRefactory, so the

reader can have a glimpse of the outcome of this work before embarking on the details.

Finally, it lists the contributions of this research.

1.1 Background

1.1.1 Software evolution

Software systems must always adapt to changing environments. This is a rule of

software evolution, proposed back in the seventies by Manny Lehman as the law of

“Continuing Change” [10]. System requirements are transformed or new ones are

elicited. Designers are challenged to create and maintain highly reusable components

that accommodate to evolving requirements. Code is often rewritten to reflect new

functionality or new designs. Moreover, systems experience “Continuing Growth” to

maintain user satisfaction [11].

Unless changes are carefully incorporated, code that is constantly modified is in

danger of becoming unmaintainable and buggy. This is supported by Lehman’s laws

of “Increasing complexity” (“As a program is evolved its complexity increases unless

work is done to maintain or reduce it” [10]) and “Declining Quality” (“Programs

will be perceived as of declining quality unless rigorously maintained and adapted

2

to a changing operational environment” [12]). Code is also degraded when different

people work on it, coding under pressure and without elegance or documentation,

without proper planning, design, impact analysis or regression testing. Many systems

eventually reach a point where it is easier to throw them away and rewrite them than

to make a single change in requirements. As a result, companies are wasting money,

time and resources and cannot keep up with good software quality.

It is imperative that before incorporating changes in functionality, the code is

reshaped and reorganized in ways that make it more open to changes, easier to read

and easier to maintain, in short, more reusable.

1.1.2 Refactoring

The concept of program transformation has evolved from that of “software restruc-

turing” [13], in which local changes are automatically applied by some rules usually

in batch mode, to that of “refactoring” [2; 7], where users expect an interactive tool

that can apply changes in small steps while they browse or even edit their code.

Refactoring allows improving the design of the code, making it more reusable and

flexible to subsequent semantic changes. Refactoring is a disciplined process, so that

changes do not affect program behavior and consequently, tests are not violated. A

refactoring does not affect program behavior, or in other words, a refactoring preserves

program behavior, when the versions of the program before and after refactoring are

semantically equivalent. That is, the mapping of input to output values remains the

same [2]. A typical example of a refactoring is the renaming of a variable. A complex

example of refactoring is the application of a design pattern [14].

The Software Architecture Group at the University of Illinois at Urbana-Champaign

has been researching on refactoring for a long time ([2; 6; 7; 15–19]). William Opdyke

and Ralph Johnson were the first to coin the term “refactoring” [17]. Turning research

into practice, Don Roberts and John Brant built the first successful refactoring tool

3

for the Smalltalk language [7].

Research on refactoring has spread, and well-known refactoring techniques have

been catalogued as step-by-step recipes to help maintainers with a manual process [1].

However, most of the literature about refactoring is concentrated on object-oriented

languages like Smalltalk or Java and transformations in the inheritance hierarchy

([1; 14; 20]).

A non object-oriented language like C calls for a different set of refactorings mean-

ingful to its imperative, pointer-and-struct based nature. In an earlier work [16], we

have proposed a catalog of refactorings for the C language that were implemented in

a prototype tool. Since then we have aimed at adding full support for Cpp directives

in refactoring.

This thesis and related publications ([8; 9; 21]) add refactorings for Cpp directives

and specify necessary changes for existing C refactorings to account for the presence

of directives. We believe that our results will not only foster the development of

future refactoring tools for C, but also the analysis of code with Cpp directives.

1.2 The C Preprocessor and the Problems it Brings

to Refactoring

C is a relatively “low level” language and as such, it allows the programmer to do low

level manipulation of objects like characters, numbers and addresses [22]. Moreover,

C provides several language facilities by means of a preprocessor, often known as Cpp.

The C preprocessor enhances C in many ways, as it allows the definition of constants,

the abbreviation of repetitive or complicated constructs, the manipulation of types as

first class objects, program configuration with conditional compilation and partition

of programs in multiple files, among plenty of other uses.

Ernst, Badros and Notkin analyze and categorize different uses of Cpp directives

4

from several publicly-available C software packages [23]. Their paper emphasizes that

Cpp is heavily used in C programs since it provides for significant flexibility, but its

ability to perform arbitrary source code manipulations complicate the understanding

of C programs by programmers and tools. Stroustrup also recognizes that “Occasion-

ally, even the most extreme uses of Cpp are useful, but its facilities are so unstructured

and intrusive that they are a constant problem to programmers, maintainers, people

porting code, and tool builders” [24].

Preprocessing occurs before compilation, transforming a program by a series of

textual replacements. These replacements include removing comments, converting the

input file into a sequence of tokens (tokenization), executing directives and expanding

macros [25]. Preprocessor directives start with ‘#’ and their syntax is completely

independent of the syntax of the C language [26].

Cpp provides the following directives:

#include Allows the inclusion of header files. It causes Cpp to scan the specified

file as input before continuing with the rest of the current file.

#define Allows the definition of macros. A macro is a text fragment which has been

given a name. This directive causes Cpp to substitute all occurrences of the

macro name by its replacement text.

#if, #ifdef, #ifndef, #elif, #else, #endif Allows for conditional inclusion based

on configuration settings. It instructs the preprocessor to evaluate a condition

during compilation and depending on that value, select whether or not to in-

clude a piece of code in the output.

#line Modifies the preprocessor’s value of the current file name and line number

that it provides to the compiler.

#error Causes Cpp to report a fatal error. The text following the directive name

is used in the error message. This directive usually appears inside conditional

5

compilation directives to detect a combination of configuration parameters that

are inconsistent.

#pragma This directive is the method specified by the C standard for providing

additional information to the compiler, beyond what is conveyed in the language

itself. The action specified is implementation-dependent.

The heavy use of Cpp directives in C programs and the complexity that they add

to program understanding call for tools that correctly deal with Cpp as well as C.

Moreover, a refactoring tool cannot apply transformations on the preprocessed version

of a program or the un-preprocessed version may be irrecoverable, as will be described

in Chapter 4.

In order to handle Cpp directives in a refactoring tool, there are two main problems

that need to be solved. Firstly, the syntax of Cpp must be integrated with the

syntax of C to be able to parse C programs and create representations of them. As

Chapter 4 will show, seamless integration of both languages is not possible, so a

special preprocessing is needed that does not remove Cpp directives but transforms

conditional directives and expands macro calls to allow for syntax integration. This

is called pseudo-preprocessing.

Secondly, file inclusion, macros and conditional compilation directives introduce

additional problems during the application of refactorings. For example, file inclusion

extends the scope of global entities while conditional directives restrict scope to some

part of the program; the same macro may refer to different program entities depending

on the context of each individual macro call; macros may use concatenation to produce

the name of an entity; conditional directives usually introduce different definitions for

the same name. These problems and others are described in detail in Chapter 6, and

their solution is specified for some refactorings in the form of new preconditions and

transformation rules.

6

Currently, there are no refactoring tools, not even analysis tools for C that handle

the C preprocessor completely and correctly. Languages like Smalltalk and Java

with mature refactoring support do not have to deal with this problem because these

languages do not require a preprocessor, so the same source code is the input to the

parser and the refactoring engine. Chapter 2 reviews existing program analysis tools

for the C language and refactoring tools for Smalltalk, C and C++.

1.3 Motivation

We are specially motivated by the lack of refactoring tools for C that handle prepro-

cessor directives completely and correctly.

A few years ago we were involved in a project with a flight management system

written in C that had new requirements. The system was so poorly maintained that

they were about to start from scratch. The man-machine interface subsystem had

three major problems: code duplication, poor data structures and global access to

variables. Refactoring was crucial before any change in functionality could be applied.

Unfortunately, there was no refactoring tool that could help us in the process. We

wrote some Emacs scripts to do the simplest renamings and manipulated the code by

hand.

From this experience our goal became to develop a refactoring tool for C. The

first step towards that goal was to create a catalog of refactorings for the C language

and to implement some of them, as renaming of different symbols and grouping of

variables in a structure [16]. Then we realized it was critical to support preprocessor

directives, for the reasons previously described.

While trying to add support for Cpp directives we found that they were not only an

obstacle for refactoring tools, but for analysis or program understanding tools, which

have been ignoring the problem and provide information on the preprocessed version

7

of a program. This information is therefore only partial, applicable for example to a

single program configuration.

Our goal was as such extended to come up with a a general methodology to deal

with C and Cpp simultaneously, and to construct representations of C programs with

preprocessor directives.

1.4 CRefactory: a Refactoring Tool for C

CRefactory has been implemented in VisualWorks SmalltalkTM . The refactoring

engine mimics the design of the Smalltalk Refactoring Browser [7]. To load a program,

CRefactory needs to know the source files, include directories, read-only directories

(those that contain non-modifiable files, like standard library headers), command

line macros, false conditions and incompatible conditions. CRefactory processes all

possible program configurations simultaneously by considering all Cpp conditional

branches to be potentially true, except for those that the user specifies in the input

as having “false conditions”. Moreover, the space of all possible configurations is

calculated by producing all combinations of configuration variables. The user may

force some combinations to be discarded by specifying “incompatible conditions” in

the input. This is described in detail in Chapter 4.

This section provides some examples on the kind of refactorings that can be applied

in the current version of CRefactory. The case study used is rm, the “remove file”

utility in Unix platforms. The input to CRefactory required a single source file: rm.c,

although loading the program included 94 header files. Only one of these headers is

changed by the refactorings listed below: remove.h, which is in the same directory as

rm.c. Appendix D lists the source code of files rm.c and remove.h in their original

versions and their final versions after refactoring.

The list of refactorings applied were the following:

8

1. Rename ‘x’ in function ‘rm_option_init’ to ‘opts’.

This refactoring is local to function ‘rm_option_init’, of which ‘x’ is a param-

eter. All preconditions pass so the refactoring executes successfully. Figure 1.1

shows the original version of the function on the left and the refactored version

on the right.

static void
rm_option_init (struct rm_options *x)
{
 x->unlink_dirs = 0;
 x->ignore_missing_files = 0;
 x->interactive = 0;
 x->recursive = 0;
 x->root_dev_ino = NULL;
 x->stdin_tty = isatty (STDIN_FILENO);
 x->verbose = 0;
}

Original version

static void
rm_option_init (struct rm_options *opts)
{
 opts->unlink_dirs = 0;
 opts->ignore_missing_files = 0;
 opts->interactive = 0;
 opts->recursive = 0;
 opts->root_dev_ino = NULL;
 opts->stdin_tty = isatty (STDIN_FILENO);
 opts->verbose = 0;
}

Refactored version

Figure 1.1: Original and refactored versions of function “rm option init”

2. Rename ‘x’ in function main to ‘opts’.

This refactoring is local to function ‘main’ and has no interference with the

previous refactoring. All preconditions pass and the refactoring executes suc-

cessfully. See the refactored version of rm.c in Appendix D.

3. Rename macro ‘LC_ALL’ to ‘LOCALE_ALL’.

In this case, the user selects the call to macro ‘LC_ALL’ in function ‘main’ and

chooses to rename it. This refactoring is not valid because ‘LC_ALL’ is defined

in file /usr/include/locale.h, a library header whose directory has been set as

read-only. For that reason, the preconditions of this refactoring fail and return

the appropriate error without changing the code.

4. Rename structure field ‘unlink_dirs’ to ‘unlink_directories’.

The user selects a reference to ‘unlink_dirs’ in function ‘main’. This is a

field of the structure with type ‘struct rm_options’ defined in file ‘remove.h’.

The refactoring is valid and its scope is global. It changes the two uses of

9

‘unlink_dirs’ in file rm.c (one in function ‘rm_option_init’ and the other in

function ‘main)’ and the structure definition in file remove.h.

5. Add variable ‘preserve_root’ as a field of structure ‘rm_options’.

This refactoring has the same scope as the previous one. It adds ‘preserve_root’

as a field in the definition of ‘struct rm_options’ in file remove.h. It removes

the definition of ‘preserve_root’ from function ‘main’ in rm.c and warns the

user that its initialization is lost in this step. The user needs to take care of

adding the initialization for the new field in function ‘rm_option_init’. Also,

the refactoring replaces the uses of the variable by uses of the structure field.

Appendix D shows the source code of rm.c and remove.h after the previous refactorings

have been applied and the initialization of the new field ‘preserve_root’ has been

added to function ‘rm_option_init’.

Although not used in this example, other refactorings currently implemented

in CRefactory are: ‘Rename Function’, ‘Delete Unreferenced Variable’, ‘Change to

Pointer’ (adding a level of indirection) and ‘Change from Pointer’ (removing a level

of indirection). A discussion of these and other refactorings applicable on C programs

appears in Chapter 6.

1.5 Contributions

The contributions of this research are:

• A formal specification of the C preprocessor (Chapter 3).

• A new method for preprocessing that does not remove preprocessor directives

but prepares the source code for parsing (Chapter 4).

• Design of program representations that integrate C and Cpp (Chapter 5).

10

• The identification of problems posed by Cpp in refactoring (Chapter 6, Sections

6.1 to 6.3).

• Specification of the new preconditions and transformation rules for some refac-

torings, which solve the problems identified (Chapter 6, Section 6.4).

• A catalog of refactorings for Cpp directives (Chapter 6, Section 6.5).

• Measurements on the program representations when loading a few case studies

(Chapter 7).

• A refactoring tool for C: CRefactory.

11

Chapter 2

Related Work

The ability to represent and analyze preprocessor directives as part of a C program is

not only necessary for a C refactoring tool but it is also a highly desirable feature for

a program analysis or program understanding tool. There is a considerable number

of program analysis and program understanding tools for C, although few of them

recognize the importance of preprocessor directives and provide some support for

them. The first section of this chapter reviews some of these tools.

As mentioned in Chapter 1, there is no refactoring tool for C with full support for

preprocessor directives. Nevertheless, there is a transformation tool and a refactoring

tool that handle directives to some degree. They are presented in the second section

of this chapter. That section also describes the Refactoring Browser for Smalltalk,

since its design had a substantial influence on CRefactory.

Last but not least, the third section reviews refactoring approaches for C++.

2.1 Program Analysis and Understanding Tools

Program analysis tools extract information from the source code and construct useful

representations or reports to improve program understanding. They also support

metrics, testing and re-engineering.

12

There is a considerable number of tools that perform static program analysis

on preprocessed C code. Except for a few cases, these tools do not include any

information of preprocessor directives. Examples of program analysis tools for pure

C language are: Cscope [27], the Combined C Graph [28], GENOA [29], Rigi [30],

CStar [31].

The GENOA framework [29] implements a specification language to generate code

analyzers. Genoa reuses an existing parser for a given programming language that

outputs a parse tree. The scripting language of GENOA allows analysis functions by

traversing parse tree data structures built by such parsers. Genoa was used to create

GEN++, a meta-case tool for creating C++ source analysis tools [32]. As existing

C parsers do not save information about preprocessor directives, no analysis can be

performed on them.

Rigi [30] uses existing parsers to extract software artifacts and store them as

graph structures. Subsystems are semi-automatically identified in the graph to build

multiple layered hierarchies of abstraction.

Program slicing is a different analysis technique based on the control and data flow

information. Weiser defined a “program slice” as the set of statements that do not

affect or influence a given variable [33]. Weiser discovered that computing program

slices can be very useful when debugging. However, experiments showed that slices

are often too large to be generally useful. Recent studies aimed at improving the

calculation of pointer analyses to reduce the slice size [34; 35]. Program slicing is

supported by various tools like the Star Diagram [31; 36], which provides a hierarchical

representation of references to chosen variables or data structures, and the Wisconsin

Program-Slicing Tool [37].

Let us now turn into some tools and approaches that allow a partial analysis of

Cpp directives. We briefly describe the following: CIA [38], “Understand for C++”

[39], PCp3 [40], LCLint [41], Parsing Minimization technique [42], Ghinsu [43], XML

13

tagging technique [44] and GUPRO [45].

CIA [38] stores information on macros such as the lines where they are defined,

and the functions or global variables that refer to them. CIA stores all the informa-

tion in a database, which allows users to define their own queries and reports. The

disadvantage of CIA is that it is not customizable, since the type of information it

looks for is fixed.

The commercial tool “Understand for C++” [39] provides some analysis data such

as calls/caller cross-referencing and metrics for C++ code. It may show includes/

included-by trees. It can also report information on macros, such as where they are

declared and where they are used. However, the user must specify which macros

should be used in the analysis and their definition. Parses appear to be based on a

single-preprocessor pass that the user must configure.

The framework PCp3 [40] allows the analysis of C source code with preprocessor

directives by providing “hooks” in the preprocessor or in the parser. That is, the

code is preprocessed but the user can define callbacks in the Perl scripting language,

making use of those hooks in the preprocessor. PCp3 can provide useful information

about Cpp directives. However, the program representations that PCp3 can produce

would still be based on a single configuration and so be inappropriate for refactoring.

Tools like LCLint [41] operate on unprocessed source code to detect bugs in typical

C programs including preprocessor directives. LCLint uses approximate parsing, i.e.,

it constructs an approximate model of the source code’s appearance to a compiler.

These tools are therefore inappropriate for program analysis that requires exact or

conservative information [40].

Somé and Lethbridge argue that program understanding tools should provide

information about each configuration in which an entity can be considered [42]. They

propose some heuristics to detect the configurations that can be parsed in the same

pass, therefore minimizing the number of passes needed. This approach may still be

14

exponential for large programs. Our approach, instead, is to come out with a single

representation of the program’s source code, which includes the code for all possible

configurations but still can be parsed in a single pass.

Livadas and Small [43] argue that preprocessor directives, especially macros, can

complicate maintenance because program analysis results cannot be reflected back

in the un-preprocessed source code. Their paper describes a preprocessor developed

for the Ghinsu environment that captures several mappings between preprocessed

tokens and their counterparts in the original source code. These mappings are then

maintained in Ghinsu’s internal representations and allow the tool to highlight the

results of program analysis in the original source code.

Cox and Clarke [44] present a fine-grained approach where they markup every

character in the preprocessor output with the history of preprocessor replacements

from which it was derived. This provides an exact mapping of preprocessed characters

to the un-preprocessed source code, by way of XML tags. The drawbacks of this

approach are that it works on a single configuration at a time and that it takes up

considerable space. We found out that tagging at the level of each individual character

is not necessary. The paper does not address the issues of representing the tagged

output in other program representations like the abstract syntax tree.

Kullbach and Riediger [45] present a similar approach where the preprocessor gen-

erates, besides the usual Cpp output, a representation that maintains original source

coordinates, conditionals and macro replacements. Their program understanding tool

called GUPRO can then display the source code with unexpanded macros (folded

macros) or expand them one level at a time (macro unfolding).

15

2.2 Related Refactoring and Transformation Tools

Although catalogs of refactorings are helpful, manual code manipulation is error prone

and cumbersome. A program of more than ten thousand lines of code may even

make manual manipulation unfeasible. Therefore, maintainers need tools to make

automatic refactorings. Many people now think that refactoring tools are going to

make a big impact in the software engineering process [46].

Tools for refactoring Java code are improving. Good examples are jFactor [5],

IDEA [47] and Eclipse [3]. Yet the model for refactoring tools is the Refactoring

Browser (RB) for Smalltalk [7], which is described next. We found a refactoring tool:

Xrefactory [48; 49] and a transformation tool: DMS [50], which handle C and provide

some level of preprocessor awareness. They are described in subsequent sections.

2.2.1 Refactoring Browser

The Refactoring Browser is integrated in the Smalltalk development environment

and allows for powerful and fast refactorings that guarantee to preserve behavior

[4]. As Martin Fowler says, not many people use Smalltalk, but “the Refactoring

Browser makes one thing very clear. Tool support for refactoring is both possible and

valuable.” [46].

The Refactoring Browser and the philosophy behind it have been major influences

for CRefactory. As described in our previous work [16], we share the same goals of

having an interactive, fast and usable tool, that users can trust to perform their

refactorings. Moreover, CRefactory’s transformation engine has the same design as

its counterpart in RB. In both tools, refactorings are executed in two steps: check the

preconditions and apply the transformation. Preconditions are checked by querying

a “program model” [51], or as we call it, a “program repository”, which is populated

during compilation and updated during refactoring. Preconditions are represented by

16

“Condition objects” that can be composed and know how to check their truth value.

Applying the transformation consists of another two steps: first, rewrite the ab-

stract syntax tree by way of a parse tree rewriter and second, create change objects

that update the “program model”. These change objects have the capability of im-

plementing “undo”. The program model, however, looks very different in both cases,

mainly because Smalltalk and C are so dissimilar. Moreover, the program model

comes for free in any Smalltalk environment, while we had to implement the program

model for C.

2.2.2 Xrefactory

The tool Xrefactory from Xref-Tech comes as a plug-in for Emacs and XEmacs [48].

The advantage of Xrefactory is that it allows the user to apply refactorings on the

un-preprocessed code, and provides some support for macros. Current refactorings

include renaming, function extraction, insertion, deletion and moving of parameters.

Renaming is also possible on macros and macro parameters. When renaming a symbol

used inside a macro’s body, the macro’s body is changed accordingly. Moreover, if

the macro refers to more than one definition of the symbol depending on the context,

the tool warns the user of the possible problem. However, the tool does not seem to

handle macro concatenation during renaming, since it returns an internal error during

the refactoring. Furthermore, when we tried renaming a macro that was undefined

later on, the tool changed the name in the #define directive, but it did not change

the name in the #undef.

Xrefactory does not work correctly during Extract Function, in the case where

there are different definitions for a macro in the place where the new function goes.

Figure 2.1 shows a sample code on the left, on which we applied extract function of

the selected piece. The code on the right is the result of the refactoring. Behavior

was not preserved by the refactoring, since the code on the left initialized x to 1 and

17

printed ‘1’, whereas the refactored code on the right initializes x to 2 and prints ‘2’.

#define M 1

int main() {
undef M
define M 2
 int x = M;
 printf(“Value of x: %d”, x);
 ...
}

#define M 1

void newFunction()
{
 int x = M;
 printf(“Value of x: %d”, x);
}

int main() {
undef M
define M 2
 newFunction();
 ...
}

Figure 2.1: Error in Extract Function Refactoring

Xrefactory also provides some support for file inclusion. For example, renaming a

global symbol worked correctly when the symbol was used in a source file but defined

in a header file. However, the tool reported an internal error in the case of two source

files using a symbol defined in a header file. Moreover, when we tried renaming a

library function (printf, defined in “stdio.h”), the tool changed the source file without

warning that it was breaking the code because it could not change the header file.

Xrefactory can handle more than one configuration at a time. The user must

specify the possible configurations, after which the program is processed multiple

times and multiple representations result, one for each specified configuration [49].

Although this is a significant improvement over refactoring tools that work on a single

configuration, this approach still cannot scale up to any medium size program with

10 or more configuration variables.

2.2.3 DMS

The tool DMS, an acronym for “Design Maintenance System”, is being constructed

at Semantics Designs, Inc. with the vision of supporting the whole development and

maintenance cycle [52]. With that vision, DMS provides a very general infrastructure

that includes a generalized compiler for context-free grammars, program representa-

18

tions that include ASTs and symbol tables, an attribute evaluator to define analysis

functions on the ASTs and a transformation engine. This transformation engine uses

a database of pre-defined rules, which can also be augmented, and applies classic

compiler optimizations [50]. Figure 2.2 shows an example of a DMS rewrite rule [52].

The transformation engine can also remove dead code branches from preprocessor

conditionals tied to a discontinued system configuration [53].

default domain C.
rule auto_inc(v:lvalue):
 statement->statement =
 “\v = \v+1;” rewrites to “\v++;”
 if no_side_effects(v) .

Figure 2.2: Example of a DMS transformation rule

The advantage of DMS over Xrefactory is that it can handle multiple configura-

tions processing the program a single time. DMS is able to parse conditional directives

by allowing them at certain, predefined places in the grammar. With this approach,

DMS can parse 85% of un-preprocessed C files [53]. DMS can also parse macro calls,

without expanding them, when they appear in predefined places and contain complete

syntactical units.

DMS also provides a type checking tool based on a symbol table in which the type

of each symbol is conditioned by an expression [54]. This is similar to CRefactory’s

symbol tables.

When the CRefactory project was in the early stages, we considered using DMS as

its infrastructure. The idea was appealing since we only had to build the refactoring

engine on top of it. We decided against it for two main reasons:

• We envisioned a tool without restrictions on the content or the placement of

macros and other preprocessor directives;

• DMS can apply transformations on batch mode. It does not include a graphical

interface. A refactoring tool needs to be interactive, allowing the user to choose

19

which refactoring to apply on which piece of code. Our goal is to support

interactive code manipulation through smaller refactorings that are selected by

the user with a drop-down menu while visualizing the code.

2.3 Refactoring for C++

Since C++ is an extension of C, both languages are highly related. Moreover, C++

still uses the C preprocessor. Therefore, the contributions of this thesis should be

directly applicable to C++.

The first work on refactoring for C++ comes from William Opdyke [2]. His dis-

sertation describes several refactorings in terms of the preconditions that they should

satisfy to preserve behavior. Except for the refactorings on classes and inheritance

hierarchies, the others provide the basis for our refactorings. Our work enhances the

preconditions of Opdyke’s refactorings to support preprocessor directives. His thesis

also list the analysis functions necessary to check for preconditions, so they become

the starting point for CRefactory’s analysis functions.

The other work on refactoring of C++ comes from Tokuda and Batory [20]. The

refactorings they propose, however, apply to the class diagrams of an application

rather than to source code, and do not provide support for preprocessor directives.

Their refactorings are more high-level, like the application of a design pattern.

There are two commercial tools that advertise refactoring support but do not

appear to include the preprocessor. Ref++ is a refactoring plug-in for Visual Stu-

dio.net [55], and it is “only for native C++ source code”. SlickEdit is a C++ editor

that includes some refactorings, including Extract Method [56]. The user supplies

configuration values so it works for a single configuration.

Yet another related area of research is that of transforming C code into C++.

Fanta and Rajlich propose a tool-set to find potential classes in a C program and

20

restructure the code into classes [57]. However, their tool preprocesses the C code first,

so transformations are applied on a single configuration at a time. They propose to

discover all configuration variables by examining the code, apply the transformations

on each configuration separately and recombine the results into a single output [58].

This solution is not only very expensive but is also impractical for a large system. The

Linux kernel (version 2.6.7) has about 1,672 binary-valued configuration variables.

The number of possible configurations is huge. Even a small program like Flex, with

less than 20K lines of code among 21 files, has 5 configuration variables with binary

value, which make up a space of 25 possible configurations.

21

Chapter 3

The C Preprocessor

The C language depends on its preprocessor for many useful features. The C prepro-

cessor (Cpp) lets programmers divide the program into manageable parts, customize

the code for different platforms or C dialects and define constants and constructs that

can be used on any data type. Cpp is controlled by special commands called prepro-

cessor directives. Preprocessor directives start with ‘#’ and their syntax is completely

independent of the syntax of the C language [26]. In fact, Cpp is often used with

other languages, such as Fortran or C++.

Preprocessing occurs as a separate phase before compilation. During preprocess-

ing, the program is transformed as a series of textual replacements and tokenized, as

described in the following steps.

1. The source code of the input file is read into memory and broken into lines.

Comments are removed.

A line is the unit of processing for Cpp. The only structure that Cpp assumes

for a C program is that it is a sequence of lines. A line can be continued by

placing a backslash character at the end. Cpp removes backslash characters

and merges continued lines into one.

Comments in standard C begin with ‘/*’ and end with the first subsequent

occurrence of ‘*/’.

22

2. The source code is converted into a sequence of preprocessing tokens (tokeniza-

tion).

In this step, Cpp works as a scanner, separating the source code into tokens

[25]. Preprocessing tokens are the same as C language tokens with a few excep-

tions: they include file names and Cpp directives, they can be concatenated by

the ‘##’ operator, white spaces separate tokens and C keywords are treated as

plain identifiers (see [25] for a complete list of exceptions).

3. Directives are executed and macros are expanded.

A Cpp directive is a line that starts with ‘#’ followed by the directive name.

The execution of directives causes the inclusion of header files, the definition of

macros, the exclusion of tokens depending on configuration conditions, warnings

or error reporting and changes in line numbering for the compiler. This results

in a new sequence of tokens, which is the output of Cpp to the compiler.

This chapter defines the syntax and semantics of Cpp, using the Maude specifi-

cation language [59]. This specification will help to understand how the syntax of

Cpp will be integrated into the syntax of C and how Cpp’s behavior can be mimicked

without removing its directives. Appendix A contains the complete listing of Cpp’s

specification. This specification is divided into a series of Maude modules, each giving

semantics to a particular language feature, similar to the approach taken by Roşu in

his Programming Language Design class [60].

3.1 An Introduction to Maude

This section presents the specification of the basic elements of Cpp’s syntax: tokens

and lines. As described in the introduction of this chapter, Cpp structures a C

program as a sequence of lines. A line is either a Cpp directive or a sequence of

tokens ending in carriage return. The specification of tokens and lines is used to

23

introduce the syntax and key concepts of Maude, although we recommend the official

Maude documentation [61–63] for a detailed description of Maude and its logical

foundations.

Maude is an executable specification language that models systems and the actions

within those systems [60; 63]. The key concept of Maude is a module. A module is a

set of definitions that represent an algebra, i.e., a collection of sorts and the operations

on these sorts. Cpp’s specification uses functional modules, which add equations for

the algebra to satisfy, yielding an equational theory [61].

Figure 3.1 shows a Maude functional module called TOKEN. This module specifies

tokens and token sequences. The parenthesized numbers at the left of the figure are

not part of the module specification but provide line numbering for easy reference in

the detailed explanation that follows.

(1) fmod TOKEN is

(2) protecting IDENTIFIER .

(3) sorts Token TokenSequence .

(4) subsorts Identifier < Token < TokenSequence .

(5) op nil : -> TokenSequence .

(6) op __ : TokenSequence TokenSequence -> TokenSequence [assoc id: nil] .

(7) endfm

Figure 3.1: Specification of the functional module TOKEN

A functional module starts with the keyword fmod and ends with endfm. Inside

the module, statements are separated by periods, which should have white spaces

before and after.

Module TOKEN expands on a previously defined module called IDENTIFIER. For

this reason, line 2 in Fig. 3.1 imports module IDENTIFIER by using the keyword

protecting, which can also be abbreviated with pr. Another way of importing

a module is by using the keyword extending or ex, which is used to change the

meaning of the imported module [63].

Sorts are declared with the keywords sort or sorts, depending on whether there

is one sort, or more than one sort, being declared. In line 3 of Fig. 3.1, two sorts are

24

being declared: Token and TokenSequence.

The set of declared sorts can be partially ordered by a subsort relationship. The

keywords subsort or subsorts and the “<” character are used for this purpose.

The subsort relationship s ≤ s′ is interpreted semantically by the subset inclusion

As ⊆ As′ between the sets As and As′ of data elements associated to s and s′ in

an algebra A [61]. In line 4 of Fig. 3.1, the expression Identifier < Token means

that an Identifier is a Token and a Token can be an Identifier or something else (the

sort Identifier is defined in the module IDENTIFIER; see Appendix A). Moreover,

the expression Token < TokenSequence says that a Token is also a TokenSequence (a

token sequence with just one element). This is the way to express in Maude that a

TokenSequence is composed of Tokens.

Operations are declared using the keyword op followed by the name of the oper-

ation, then a colon, then the sorts of the arguments, then an arrow, and then the

sort of the result. Maude understands both prefix and mixfix notation for opera-

tions. When declaring an operation with mixfix notation, the underscore character

is used to specify the places for the arguments. Lines 5 and 6 in Fig. 3.1 define two

operations, which are actually constructors of a TokenSequence. Line 5 defines nil as

the empty TokenSequence and line 6 defines the concatenation of TokenSequences, by

juxtaposition. This means that TokenSequences are concatenated by placing a white

space in between.

The declaration of the operation in line 6 has something else after the sort of the

result: equational attributes. A binary operation in Maude can be declared to satisfy

some equational axioms like associativity (with the keyword assoc), commutativity

(with the keyword comm), identity with respect to an identity element (keyword id),

etc. In line 6, the concatenation of TokenSequences is declared to be associative and

to have nil as its identity element.

Let us now turn into the specification of Lines. Figure 3.2 shows two more

25

functional modules. The module CPP-DIR-SYNTAX declares the sort CppDirec-

tive. Module LINE-SEQ-SYNTAX extends CPP-DIR-SYNTAX and TOKEN and

declares the sorts Line and LineSeq (a line sequence). A detailed description follows

the figure.

fmod CPP-DIR-SYNTAX is

sort CppDirective .

endfm

fmod LINE-SEQ-SYNTAX is

pr CPP-DIR-SYNTAX . pr TOKEN .

sorts Line LineSeq .

subsorts CppDirective < Line < LineSeq .

op nilLS : -> LineSeq .

op __ : LineSeq LineSeq -> LineSeq [assoc id: nilLS] .

op _cr : TokenSequence -> Line .

op _\‘cr_ : TokenSequence Line -> Line .

vars TS1 TS2 : TokenSequence .

eq TS1 \ cr TS2 cr = (TS1 TS2) cr .

endfm

Figure 3.2: Basic elements of Cpp syntax. A Cpp directive, a line and a line sequence

The purpose of having module CPP-DIR-SYNTAX is to define the super-sort of all

Cpp directives once, and then import it in the modules for each individual directive,

where each such module declares a subsort of CppDirective.

Inside LINE-SEQ-SYNTAX, the subsort relations specify that a Line may be a

CppDirective and that a LineSeq is composed of Lines. The operation nilLS constructs

an empty LineSeq. The next operation defines the concatenation of LineSeqs in the

same way as the concatenation of TokenSequences, with empty juxtaposition syntax.

The operation cr (representing a carriage return) applied to a TokenSequence also

constructs a Line as seen by Cpp. The last operation in the module defines the

concatenation of two subsequent lines with the backslash character.

The new features in module LINE-SEQ-SYNTAX are variable declarations and

equations. Variables are declared with the keywords var or vars, followed by the

variable name(s), a colon and the sort to which the variable(s) belong. Equations

define the properties that the operations should satisfy. Equations start with the

26

keyword eq followed by two expressions separated by an “=” character. The equation

in the figure shows how the operation \ works to concatenate two lines.

3.2 Behavior of Cpp

This section gives a high-level view of the behavior of Cpp over Lines and LineSeqs

(line sequences). The specific behavior of Cpp with file inclusion, macro definition

and conditional compilation directives will be described in subsequent sections. The

other directives are not relevant in this research, since they do not cause problems in

refactoring.

In order to describe the behavior of Cpp, it is first necessary to define its state. The

state of Cpp is a data structure that contains information about each directive that

has been processed, (e.g., macro definitions, truth value of current Cpp conditional

branch, etc.) and where the output is incrementally built. The state will change as

Cpp consumes input tokens and produces output tokens. Fig. 3.3 shows a preliminary

version of module CPP-STATE; other elements will be added when specific Cpp

directives are described. For example, include directories will be added to support

#include, a macro table will be added for #define and the final version in Fig. 3.16

will add a few more elements to support conditionals.

fmod CPP-STATE is

pr TOKEN .

sorts CppState CppStateAttribute .

subsort CppStateAttribute < CppState .

op empty : -> CppState .

op _,_ : CppState CppState -> CppState [assoc comm id: empty] .

op outputStream : TokenSequence -> CppStateAttribute .

endfm

Figure 3.3: State of Cpp during preprocessing

The sort CppState describes the state of Cpp during preprocessing, as a set of

attributes, where attributes are defined as operations on the data they store. The sort

of attributes is CppStateAttribute. An empty CppState is constructed by the operation

27

empty. A comma concatenates CppStateAttributes to form a CppState. Specifying ‘,’

as an associative and commutative operation, with empty as the identity element,

defines CppState as amultiset [61]. Defining the state as a multiset of attributes allows

us to abstract away from the concrete order and number of attributes when defining

operations on the state. The only attribute described in Fig. 3.3 is outputStream.

It stores the TokenSequence that Cpp builds as it preprocesses the input and that it

returns at the end of preprocessing.

Cpp’s behavior is defined in terms of the operation state, which given some input

and a CppState, modifies the state accordingly. The operation state on a LineSeq

and a CppState applies the operation state to each line in the sequence subsequently,

modifying the CppState each time. The operation state when the first argument is

a single Line processes each token on the line. Moreover, the modules defining the

semantics of each Cpp directive will add their own behavior for the state operation.

The external interface of Cpp is defined with an operation called preprocess, which

given a file name, reads the line sequence of the file, constructs the initial CppState

and applies the operation state on them. Figure 3.4 presents the high-level view of

Cpp’s semantics, with definitions for the operations preprocess and state.

Module CPP-DIR-SEMANTICS defines the signature of the operation state when

the input is a CppDirective. Modules defining the behavior of specific directives will

provide equations to define this operation.

Module LINE-SEQ-SEMANTICS defines the state operation on a LineSeq. If the

input is a line with no tokens, or if it is an empty LineSeq, the state is unmodified.

If the input is a single Line (second equation), the first token is consumed and is

appended to the outputStream. Note that in this equation, S represents the subset

of all other attributes in the state apart from outputStream. The semantics on a

non-empty LineSeq is to apply the state operation to each Line in turn.

Module CPP-SEMANTICS defines two operations: preprocess and returnOutput.

28

fmod CPP-DIR-SEMANTICS is pr CPP-DIR-SYNTAX .

pr CPP-STATE .

op state : CppDirective CppState -> CppState .

endfm

fmod LINE-SEQ-SEMANTICS is pr LINE-SEQ-SYNTAX .

pr CPP-DIR-SEMANTICS .

op state : LineSeq CppState -> CppState .

var L : Line . var LS : LineSeq . var S : CppState .

eq state(nil cr, S) = S .

eq state((T TS) cr, (outputStream(O), S)) = state(TS cr, (outputStream(O T), S)) .

eq state(nilLS, S) = S .

eq state(L LS, S) = state(LS, state(L, S)) .

endfm

fmod CPP-SEMANTICS is pr CPP-SYNTAX .

pr HELPING-OPS . ex LINE-SEQ-SEMANTICS .

op preprocess : String -> TokenSequence .

op returnOutput : CppState -> TokenSequence .

var Name : String . var S : CppState . var O : TokenSequence .

eq preprocess(Name) = returnOutput(state(readFile(Name), outputStream(nil))) .

eq returnOutput(outputStream(O), S) = O .

endfm

Figure 3.4: High-level view of Cpp’s behavior

The preprocess operation is the external interface of Cpp, as described above. It re-

turns the outputStream at the end of processing by applying the operation returnOut-

put to the final state. The operation readFile is defined in module HELPING-OPS in

Appendix A.

3.3 File Inclusion Directive

The #include directive allows programmers to divide the program into smaller, more

manageable parts, and tie common declarations together [22]. Included files are

usually called header files. The name of the file to be included is denoted after

the #include keyword with one of three possible forms: “filename” (which usually

denotes a header file in the same package or subsystem), <filename> (to refer to

library or standard implementation files) or a macro call that expands to one of the

previous forms (the latter are called “computed includes” [25]). Figure 3.5 shows

the Maude specification of the syntax of #include. The module MACRO-CALL-

SYNTAX can be found in Appendix A.

29

fmod INCLUDE-SYNTAX is

ex CPP-DIR-SYNTAX .

pr IDENTIFIER . pr MACRO-CALL-SYNTAX .

sorts IncludeDir FileName .

subsort IncludeDir < CppDirective .

op <_> : Identifier -> FileName .

op #include_cr : FileName -> IncludeDir .

op #include_cr : String -> IncludeDir .

op #include_cr : MacroCall -> IncludeDir .

endfm

Figure 3.5: Syntax of the #include directive

The #include directive causes Cpp to process the contents of the specified file

before continuing with the rest of the current file, as if those contents had appeared in

place of the #include directive. Cpp appends the output resulting from the included

file to the output already generated and then appends the output that comes from

the text after this directive [25; 26].

Cpp also accepts as input the directories where it should search for included

files. These are called “include directories”. This requires us to change the external

interface of the preprocess operation to accept a list of include directories as input

(in module CPP-SEMANTICS), and it also requires a new CppStateAttribute to store

these directories (in module CPP-STATE). The new versions of these modules appear

in Figure 3.6.

fmod CPP-STATE is

...

pr STRINGS . --- defines StringSet

op includeDirs : StringSet -> CppStateAttribute .

endfm

fmod CPP-SEMANTICS is pr CPP-SYNTAX .

pr HELPING-OPS . ex LINE-SEQ-SEMANTICS .

op preprocess : String StringSet -> TokenSequence .

op returnOutput : CppState -> TokenSequence .

var Name : String . var S : CppState . var IDirs : StringSet . var O : TokenSequence .

eq preprocess(Name, IDirs)

= returnOutput(state(readFile(Name), (includeDirs(IDirs), outputStream(nil)))) .

eq returnOutput(outputStream(O), S) = O .

endfm

Figure 3.6: Addition of include directories to CPP-STATE and CPP-SEMANTICS

Figure 3.7 shows the semantics of the #include directive in the case that the file

30

name is specified as a String. The other cases are very similar (see Appendix A). The

behavior in this case is to leave the outputStream unmodified (which is not even shown

in the equation but is part of the state S), read in the lines of the included file using

the operation readFile and apply the operation state on those lines and on the current

state. The operation readFile is defined in module HELPING-OPS (see Appendix A)

and simulates reading a file into memory. Module HELPING-OPS actually adds a

couple of equations that feed some example lines to the operation readFile for a simple

test case.

fmod INCLUDE-SEMANTICS is pr INCLUDE-SYNTAX .

ex CPP-DIR-SEMANTICS . pr HELPING-OPS .

var FN : String . var S : CppState . var SS : StringSet .

eq state(#include FN cr, (includeDirs(SS), S))

= state(readFile(FN, SS), (includeDirs(SS), S)) .

endfm

Figure 3.7: Semantics of the #include directive

If a given file is included more than once in a compilation unit, Cpp processes

the file completely each time. The reason is that macros may have changed from the

previous inclusion of the file.

3.4 Macro Definition Directive

The #define directive is used to define macros. A macro associates a name with an

arbitrary fragment of C code [25]. The name of a macro may be any valid identifier.

The replacement text ends with an end of line that has not been preceded by a

backslash character, and cannot contain another Cpp directive.

The scope of a macro definition starts right after its #define and ends with the

compilation unit. A macro may be undefined through the #undef directive followed

by the macro name. This directive reduces the scope of the macro.

Macros with parameters are called function-like macros. A function-like macro is

invoked by writing its name, a left parenthesis, the actual argument list as comma-

31

separated sequences of expressions and a right parenthesis. Figure 3.8 shows the

syntax of the #define and #undef directives.

fmod DEFINE-SYNTAX is

ex CPP-DIR-SYNTAX . pr TOKEN .

sorts MacroDefDir MacroUndefDir .

subsort MacroDefDir MacroUndefDir < CppDirective .

op #define__cr : Identifier TokenSequence -> MacroDefDir .

op #define_‘(_‘)_cr : Identifier IdentifierList TokenSequence -> MacroDefDir .

op #undef_cr : Identifier -> MacroUndefDir .

endfm

Figure 3.8: Syntax of the #define directive

When Cpp encounters a #define directive, it creates an entry in a macro ta-

ble that associates the given name with its replacement text. Figure 3.9 shows the

specification for macro definitions (module MACRO-DEF) and for the macro table

(module MACRO-TABLE). The figure only presents the signatures of these modules

but the complete specification can be found in Appendix A.

Module MACRO-DEF defines sort MacroDef to represent macro definitions, with

two constructors for them, with or without parameters. This module will be extended

when the semantics of macro calls is described, with operations that return the macro

expansion. Module MACRO-TABLE defines sort MacroTable as a set of [Identifier :

MacroDef], which represents a pair [macro name, macro definition].

The macro table has to be added to the CppState, since it will get built and

used during preprocessing. The CppStateAttribute added for that purpose is called

macroTbl. Since Cpp also accepts command line macros as input, the macroTbl

attribute is initialized with those macros (see Appendix A).

Upon a #define directive, Cpp creates a MacroDef and appends it to the macro

table. Upon a #undef directive, Cpp removes the MacroDef for it from the macro

table. Figure 3.10 presents the module DEFINE-SEMANTICS, with the behavior of

Cpp upon a macro definition without parameters (first equation), with parameters

(second equation) and upon the un-definition of a macro (third and fourth equations).

The module has one conditional equation, specified with the keyword ceq. Conditional

32

fmod MACRO-DEF is

pr TOKEN .

sort MacroDef .

op name_replText_ : Identifier TokenSequence -> MacroDef .

op name_params_replText_ : Identifier IdentifierListp TokenSequence -> MacroDef .

op name : MacroDef -> Identifier .

op hasArgs : MacroDef -> Bool .

endfm

fmod MACRO-TABLE is

pr MACRO-DEF .

sort MacroTable .

op empty : -> MacroTable .

op [_:_] : Identifier MacroDef -> MacroTable .

op __ : MacroTable MacroTable -> MacroTable [assoc comm id: empty] .

op _[_] : MacroTable Identifier -> MacroDef .

op _[_<-_] : MacroTable Identifier MacroDef -> MacroTable .

op isMacro : Identifier MacroTable -> Bool .

op isMacroWithArgs : Identifier MacroTable -> Bool .

op isMacroWithoutArgs : Identifier MacroTable -> Bool .

op remove : MacroDef MacroTable -> MacroTable .

endfm

Figure 3.9: Specification of macro definitions and the macro table

equations are only applied if the condition they specify is true. In this module, a

symbol is removed from the macro table with #undef only if the symbol was previously

defined as a macro. If the condition of the conditional equation is not true, the

following equation in the module will be applied, since it has the attribute [owise],

meaning “otherwise”, i.e., if the condition of the previous equation is false, apply the

current equation.

fmod DEFINE-SEMANTICS is pr DEFINE-SYNTAX .

ex CPP-DIR-SEMANTICS .

var I : Identifier . var TS : TokenSequence . var MT : MacroTable .

var S : CppState . var IdL : IdentifierList .

eq state(#define I TS cr, (macroTbl(MT), S))

= macroTbl([I : (name I replText TS)] MT), S .

eq state(#define I (IdL) TS cr, (macroTbl(MT), S))

= macroTbl([I : (name I params (IdL) replText TS)] MT), S .

ceq state(#undef I cr, (macroTbl(MT), S))

= macroTbl(remove(MT[I], MT)), S if isMacro(I, MT) .

eq state(#undef I cr, (macroTbl(MT), S)) = macroTbl(MT), S [owise] .

endfm

Figure 3.10: Semantics of the #define directive

While Cpp tokenizes each input line and upon each identifier, it searches its macro

table for a macro with that name. If it finds the name in the macro table, and if

the macro does not reference itself directly or indirectly, Cpp replaces the identifier

33

(and arguments if it has) by the replacement text after the appropriate argument

substitution. Figure 3.11 shows the additional equations of operation state in mod-

ule LINE-SEQ-SEMANTICS, which handle macro calls in the TokenSequence of a

line. There are three CppStateAttributes involved in these equations. Two of them

have been already introduced: the current macro table (macroTbl), to check if the

next token is the name of a macro, and the outputStream. A new state attribute,

curMacroCalls, is needed to check if a macro references itself directly or indirectly, in

which case the inner reference is not macro expanded. The attribute curMacroCalls is

a list of macro names (an IdentifierList) whose expansion is currently being processed.

Moreover, some way is needed to remove a macro name from curMacroCalls when Cpp

finishes processing its expansion. For this purpose the specification uses the token

’## (which can never occur in this context) to mark the end of a macro expansion.

Therefore, when the next token in the input is a ’## (first and second equations),

the behavior is to remove the top of curMacroCalls. When a macro call is expanded

(fourth and fifth equations), a ’## token is placed at the end of the expansion and

the macro name is inserted at the beginning of curMacroCalls.

fmod LINE-SEQ-SEMANTICS is ...

vars TS O AS : TokenSequence . var I : Identifier . var IL : IdentifierList . var T : Token .

var S : CppState . var MT : MacroTable . var MC : MacroCall .

eq state((’## TS) cr, (curMacroCalls((I, IL)), S))

= state(TS cr, (curMacroCalls((IL)), S)) .

eq state((’## TS) cr, (curMacroCalls((I)), S)) = state(TS cr, (curMacroCalls(()), S)) .

ceq state((T TS) cr, (macroTbl(MT), curMacroCalls(ILP), outputStream(O), S))

= state(TS cr, (macroTbl(MT), curMacroCalls(ILP), outputStream(O T), S))

if not(isMacro(T, MT)) or (T in ILP) .

ceq state((T ’‘(AS ’‘) TS) cr, (macroTbl(MT), curMacroCalls(ILP), S))

= state((expandWithTSArgs(MT[T], toTokenSeqList(AS)) ’## TS) cr,

(macroTbl(MT), curMacroCalls(cons(T, ILP)), S))

if isMacroWithArgs(T, MT) .

ceq state((T TS) cr, (macroTbl(MT), curMacroCalls(ILP), S))

= state((expand(MT[T]) ’## TS) cr, (macroTbl(MT), curMacroCalls(cons(T, ILP)), S))

if isMacroWithoutArgs(T, MT) .

endfm

Figure 3.11: Extension of module LINE-SEQ-SEMANTICS to handle macro calls

When a call to a function-like macro is encountered, the token sequence that

represents the arguments (AS in Fig. 3.11) needs to be separated into individual

34

arguments. For this purpose, the operation toTokenSeqList is applied to convert AS

into a TokenSeqList, which is a list of ‘;’ separated TokenSequences, one for each

argument. Module TOKEN-TO-ARG (see Appendix A) defines sort TokenSeqList

and the operation toTokenSeqList.

While it is easier to read module LINE-SEQ-SEMANTICS from the bottom up,

the current order of equations dictates the correct precedence with which equations

should be matched by Maude’s matching algorithm.

The replacement text of a macro may call other macros and for this reason Cpp

needs to repeatedly re-scan the macro expansion for more instances of macros to

expand. That is the reason why the macro expansion is inserted at the front of the

input and not directly appended to the output stream. Similarly, macro arguments

may also contain macro calls, but these calls are expanded only after the containing

macro has been expanded. In this sense, the semantics of macro expansion can be

compared to “call-by-name” parameter passing style. Note that this semantics follows

the ANSI-C convention for macro expansion [26]. In contrast with this, GCC’s version

of Cpp expands macro calls in arguments before they are substituted into the macro

body [25].

The following describes the semantics of macro expansion, to define the operations

expand and expandWithTSArgs in module MACRO-DEF. Cpp macro substitution is

quite complex and may lead to unexpected results. See [26] and [25] for a complete

list of rules on macro substitution and common pitfalls.

The replacement text of macros may use two special operators: the stringification

operator ‘#’ and the concatenation operator ‘##’. When a macro parameter is im-

mediately preceded by ‘#’, Cpp converts the parameter name into a string constant.

When a macro body contains a ‘##’ operator, Cpp pastes together or concatenates

the tokens surrounding the ‘##’ token. Figure 3.12 shows the equations in module

MACRO-DEF that implement macro expansion.

35

fmod MACRO-DEF is

...

op expand : MacroDef -> TokenSequence .

op expandWithTSArgs : MacroDef TokenSeqList -> TokenSequence .

op ex-recTS : IdentifierListP TokenSequence TokenSeqList -> TokenSequence .

op dquote : -> Qid .

var N : Identifier . var TS : TokenSequence . vars T T2 : Token .

var PL : IdentifierList . var TSL : TokenSeqList .

ceq expandWithTSArgs(name N params PL replText TS, TSL) = nil if (size(PL) =/= size(TSL)) .

eq expandWithTSArgs(name N params PL replText TS, TSL) = ex-recTS(PL, TS, TSL) [owise] .

eq ex-recTS(PL, nil, TSL) = nil .

eq ex-recTS(PL, ’# T TS, TSL) = dquote elemAtTS(pos(T, PL), TSL) dquote

ex-recTS(PL, TS, TSL) .

ceq ex-recTS(PL, T ’## T2 TS, TSL) = qid(string(T) + string(T2)) ex-recTS(PL, TS, TSL)

if not(T in PL) and not(T2 in PL) .

ceq ex-recTS(PL, T ’## T2 TS, TSL) = qid(string(elemAtTS(pos(T, PL), TSL)) + string(T2))

ex-recTS(PL, TS, TSL)

if (T in PL) and not(T2 in PL) .

ceq ex-recTS(PL, T ’## T2 TS, TSL) = qid(string(T) + string(elemAtTS(pos(T2, PL), TSL)))

ex-recTS(PL, TS, TSL)

if not(T in PL) and (T2 in PL) .

eq ex-recTS(PL, T ’## T2 TS, TSL) = qid(string(elemAtTS(pos(T, PL), TSL)) +

string(elemAtTS(pos(T2, PL), TSL))) ex-recTS(PL, TS, TSL) [owise] .

ceq ex-recTS(PL, T TS, TSL) = T ex-recTS(PL, TS, TSL) if not(T in PL) .

ceq ex-recTS(PL, T TS, TSL) = elemAtTS(pos(T, PL), TSL) ex-recTS(PL, TS, TSL) if (T in PL) .

endfm

Figure 3.12: Semantics of macro expansion

The operation expandWithTSArgs uses the auxiliary operation ex-recTS, a recur-

sive operation that traverses all tokens in the body of the macro, replacing formal

parameters by arguments. If the macro body is empty (nil) the expansion is the nil

token sequence (first equation of ex-recTS). A ’# in front of a token “stringifies” the

token, using the constructor dquote that represents a double quote (second equation

of ex-recTS). The next four equations deal with token concatenation, for every com-

bination where the involved tokens are or are not parameters of the macro. These

equations use the concatenation operator provided for Strings (+), so the involved

tokens are first transformed into Strings (using the operation string), concatenated

with + and then converted into tokens again (by using the operation qid). When

stringification or concatenation are not involved and the first token is not a parame-

ter (previous to last equation), the token is just returned followed by the expansion

of the rest of the tokens in the macro body. When the next token is a parameter (last

equation), it returns the corresponding argument, followed by the rest of the expan-

36

sion. To obtain the corresponding argument, the operation pos (defined in module

IDENTIFIER) is used to get the position of the parameter in the formal parameter

list, while the operation elemAtTS (defined in module TOKEN-TO-ARG) returns the

argument at that position from the list of arguments.

3.4.1 Differences between Cpp macros and C functions

It is useful to analyze the differences between a function-like macro and a C function.

Although this may not be a complete list, we have found the following interesting

differences that should be considered during refactoring. The function definition f1

and its macro counterpart M1, which appear in Figure 3.13, will help as running

examples in this section.

void f1(int *x, Stype st) {
x = st.x;

}

#define M1(x, st) x = st.x

Figure 3.13: A function definition and its macro counterpart

Semantics of parentheses. If a function name appears without being followed by

parentheses, like in ‘a = f1;’, the semantics are those of taking the address of

the function. If a reference to a function-like macro appears without subsequent

parentheses, it does not represent a call to the macro nor its address, it is just

left alone as an identifier.

Inlining. Macros are inlined at the place of the call at compile time, which does not

occur with functions.

Scoping Rules. All C functions are global to the compilation unit in which they

are defined. Macros are also global to the compilation unit but its scope may

be restricted by the presence of #undef directives in their scope. Moreover, a

37

function definition may be exported to a different compilation unit through the

linker by using the C language keyword extern. Macros cannot be exported in

this fashion because Cpp does not recognize the extern keyword.

Parameter typing. In a function definition, all parameters need to be typed, as

we see in Figure 3.13, and typing rules are strictly enforced at compile time.

Therefore, if the same functionality is needed for different types of arguments,

different functions must be defined. In the case of macros, parameters are not

typed, so the same macro definition may be used for different types. In this

context, macros are similar to C++ templates.

Parameter replacement. When a macro is expanded, every occurrence of a pa-

rameter name in the macro body is replaced by its actual argument, no matter

whether the name has a different use. In the example of Figure 3.13, the two

occurrences of ‘x’ in the body of M1 are replaced by the first argument of calls to

M1, even when in the syntax of C, the second ‘x’ refers to a structure field. Both

occurrences of ‘x’ are the same for the preprocessor. This does not happen in

the case of functions, which are parsed according to C syntax. In the example,

the second occurrence of ‘x’ in the body of f1 will take the value of the structure

field instead of the value of parameter ‘x’.

Argument evaluation. The C language supports call-by-value and call-by-reference

parameter passing styles. In the case of call-by-value, function arguments are

evaluated right before the actual call takes place, and the resulting value of

evaluating each argument is passed to the function call. Instead, macro argu-

ments are first replaced literally in the macro body at compile time and their

evaluation is delayed until they are used at run-time. Consequently, macro ar-

guments are evaluated each time they occur in the macro body instead of just

one time as in function calls. This semantics can be compared to call-by-name

38

parameter passing, in which argument evaluation is delayed until their values

are needed [64]. For this reason, parentheses surrounding macro parameters in

macro bodies become very important, as each parameter may be replaced by a

complicated sequence of tokens instead of by a single value as with functions.

Self-reference. If a function has a reference to itself in its definition, the function

is considered recursive and it will call itself every time the self-reference is

encountered. In the case of a macro, a self-reference in the macro body is not

recursively expanded, i.e., the self-reference does not constitute a macro call.

3.5 Conditional Compilation Directives

Conditional compilation directives define separate code branches, which are included

or excluded from the final compilation unit depending on the value of conditions

evaluated by Cpp [22].

Conditional directives are mainly used to configure a program for different plat-

forms. A configuration can be defined as the initial value of macros (a.k.a. configu-

ration variables) that Cpp receives as input to preprocess a program. With this, a

configuration determines which single branch of each preprocessor conditional will be

present in the output of Cpp. Others consider this output of Cpp, the preprocessed

code, to be a configuration. The definitions are isomorphic but we generally refer to

the first.

Most projects written in C are highly configurable. For example, Flex [65] has less

than 20K lines of code among 21 files, but has 5 configuration variables that make up

a space of 25 possible configurations. The Linux kernel (version 2.6.7) has about 1,672

configuration variables with binary value. The number of possible configurations is

huge.

Conditional directives are also used to have a separate version of the program

39

with debugging or testing code, for commenting, if the condition is always false and

they are also used in conjunction with macros as “include guards”, i.e., to prevent

multiple inclusions of the same file.

A conditional directive is one of the following: #if, #ifdef, #ifndef, #elif,

#else or #endif. The #if, #ifdef and #ifndef directives start a Cpp conditional

construct, creating its first branch. The #elif and #else directives create additional

branches on the Cpp conditional and the #endif ends the construct. The source

text inside a branch may include other preprocessor directives. Consequently, Cpp

conditionals can also be nested. Figure 3.14 shows an example taken from the file

“compiler.h” in the Linux kernel (version 2.6.7).

#ifndef __ASSEMBLY__
#if __GNUC__ > 3
include <linux/compiler-gcc+.h>
#elif __GNUC__ == 3
include <linux/compiler-gcc3.h>
#elif __GNUC__ == 2
include <linux/compiler-gcc2.h>
#else
error Sorry, your compiler is too old/not recognized.
#endif
#endif

Figure 3.14: Example of the use of conditional directives

The #if and #elif tokens are followed by a constant expression that can only be

composed of the following:

• integer or character constants;

• arithmetic and logical operators, except for assignments, sizeof, comma, incre-

ment or decrement operators or casts expressions;

• macros;

• “defined id” or “defined (id)” expressions, which evaluate to 1 if id has been

defined as a macro or 0 otherwise;

40

• identifiers that are not macros, which are replaced by 0 after macro expansion

and cannot be function calls.

The lines “#ifdef id” and “#ifndef id” are abbreviations of “#if defined id” and

“#if !(defined id)” respectively.

Figure 3.15 shows the specification of the syntax of conditional directives. Mod-

ule COND-EXP-SYNTAX defines sort CondExp, which represents the condition that

follows #if and #elif. Note that the operation e had to be defined as a wrapper

over integers so we could modify the attributes of the operations defined on CondExp

values. The complete list of operations allowed for sort CondExp can be found in

Appendix A. Module COND-DIR-SYNTAX defines sort CondDir to represent condi-

tional directives.

fmod COND-EXP-SYNTAX is

pr IDENTIFIER . pr INT .

sort CondExp .

subsort Identifier < CondExp .

op e : Int -> CondExp .

endfm

fmod COND-DIR-SYNTAX is ex CPP-DIR-SYNTAX .

pr ALL-COND-EXP-SYNTAX .

sort CondDir .

subsort CondDir < CppDirective .

op #if_cr : CondExp -> CondDir .

op #ifdef_cr : Identifier -> CondDir .

op #ifndef_cr : Identifier -> CondDir .

op #elif_cr : CondExp -> CondDir .

op #else‘cr : -> CondDir .

op #endif‘cr : -> CondDir .

endfm

Figure 3.15: Syntax of conditional directives

Upon a Cpp conditional, Cpp evaluates the expressions after the #if, #ifdef,

#ifndef and #elif directives until the first one is found to be true. It then passes on

the text inside that branch to the output and discards the previous and the remaining

conditional branches. If the value of all expressions is false and there is a #else line,

the text inside the #else branch is the one passed on to the output.

To specify this semantics, three new state attributes must be added: skip is a

boolean value to distinguish when Cpp is scanning the true branch of a conditional

41

from the state in which Cpp is skipping the tokens in a false branch; nestLevelOf-

Skipped is the depth of nesting of conditionals that are being “skipped”; branchTaken

is another boolean value that tells whether a branch from the current conditional has

already been taken, in which case all the other branches will be skipped disregarding

their conditions. Figure 3.16 shows the final version of module CPP-STATE will all

necessary CppStateAttributes.

fmod CPP-STATE is

pr MACRO-TABLE . pr TOKEN . pr STRINGS .

sorts CppState CppStateAttribute .

subsort CppStateAttribute < CppState .

op empty : -> CppState .

op _,_ : CppState CppState -> CppState [assoc comm id: empty] .

op includeDirs : StringSet -> CppStateAttribute .

op macroTbl : MacroTable -> CppStateAttribute .

op curMacroCalls : IdentifierList -> CppStateAttribute .

op skip : Bool -> CppStateAttribute .

op nestLevelOfSkipped : Nat -> CppStateAttribute .

op branchTaken : Bool -> CppStateAttribute .

op outputStream : TokenSequence -> CppStateAttribute .

endfm

Figure 3.16: Final version of CPP-STATE

Module LINE-SEQ-SEMANTICS has to be updated once again to process lines

and tokens only when the state attribute skip is not true. See Appendix A for the

final version.

Figure 3.17 shows module COND-DIR-SEMANTICS with the behavior of Cpp on

the conditional directives #if, #else and #endif (the behavior of #elif is similar to

#else and can be found in the extended version of this module in Appendix A). There

are three cases of the operation state for each conditional directive. For example, in

the first equation, when Cpp is “not skipping” the tokens in a false branch, and a

#if directive is found with a condition that evaluates to true, Cpp continues in “not

skipping” mode (i.e., the value of skip continues to be false) but the value of the

state attribute branchTaken turns true, meaning, a branch in the current conditional

(the one starting with this directive) has been taken. As another case, in the third

equation, when Cpp is “skipping”, meaning, is in the false branch of a conditional,

42

the appearance of a #if maintains Cpp in skipping mode, no matter what condition

follows the #if. The value of the attribute nestLevelOfSkipped is incremented because

the depth of nesting of conditionals being “skipped” turns one more. The operation

evalB is used to evaluate the truth value of the expression in a conditional directive,

given the current macro table. This operation is defined in module COND-EXP-

SEMANTICS (see Appendix A).

fmod COND-DIR-SEMANTICS is pr COND-DIR-SYNTAX .

ex CPP-DIR-SEMANTICS .

pr ALL-COND-EXP-SEMANTICS .

var CE : CondExp . var N : Nat . var B : Bool . var AMT : MacroTable . var S : CppState .

--- Case 1 of #if: Not skipping -> Not skipping

ceq state(#if CE cr, (macroTbl(AMT), skip(false), branchTaken(false), S))

= macroTbl(AMT), skip(false), branchTaken(true), S if evalB(CE, AMT) = true .

--- Case 2 of #if: Not skipping -> Skipping

ceq state(#if CE cr, (macroTbl(AMT), skip(false), nestLevelOfSkipped(0), branchTaken(false), S))

= macroTbl(AMT), skip(true), nestLevelOfSkipped(1), branchTaken(false), S

if evalB(CE, AMT) = false .

--- Case 3 of #if: Skipping -> Skipping

eq state(#if CE cr, (skip(true), nestLevelOfSkipped(N), branchTaken(B), S))

= skip(true), nestLevelOfSkipped(N + 1), branchTaken(false), S .

--- Case 1 of #else: Not skipping -> Skipping

eq state(#else‘cr, (skip(false), nestLevelOfSkipped(0), S))

= skip(true), nestLevelOfSkipped(1), S .

--- Case 2 of #else: Skipping -> Skipping

eq state(#else‘cr, (skip(true), nestLevelOfSkipped(N), branchTaken(true), S))

= skip(true), nestLevelOfSkipped(N), branchTaken(true), S .

--- Case 3 of #else: Skipping -> Not skipping

eq state(#else‘cr, (skip(true), nestLevelOfSkipped(1), branchTaken(false), S))

= skip(false), nestLevelOfSkipped(0), branchTaken(true), S .

--- Case 1 of #endif: Not skipping -> Not skipping

eq state(#endif‘cr, (skip(false), branchTaken(true), S))

= skip(false), branchTaken(false), S .

--- Case 2 of #endif: Skipping -> Skipping

ceq state(#endif‘cr, (skip(true), nestLevelOfSkipped(N), S))

= skip(true), nestLevelOfSkipped(N - 1), S if N > 1 .

--- Case 3 of #endif: Skipping -> Not Skipping

eq state(#endif‘cr, (skip(true), nestLevelOfSkipped(1), branchTaken(true), S))

= skip(false), nestLevelOfSkipped(0), branchTaken(false), S .

endfm

Figure 3.17: Semantics of conditional directives

43

Chapter 4

Pseudo-Preprocessing in

CRefactory

The previous chapter described how Cpp evaluates and removes preprocessor direc-

tives. The preprocessing step is necessary to be able to compile a program and

execute it, since Cpp directives are not part of the C language. However, prepro-

cessing a program makes the results be specific to a single configuration and loses

information about macros and file dependencies. Although this problem has been

recognized and various approaches have been explored, none of the approaches are a

complete solution.

Refactoring requires a complete solution to this problem. A refactoring tool cannot

use Cpp for two main reasons:

1. The preprocessed version of the code may be unmanageable for a user to visu-

alize and change. Imagine a program conveniently divided into 100 files, which

Cpp would merge into a single piece, with only the code for a single configura-

tion and all macros expanded.

2. If changes are applied to the preprocessed version of a program, it may be

impossible to recover the corresponding un-preprocessed version (which would

44

mean the developer would be stuck with a single file instead of having the 100

pieces, working for a single configuration, with no macros in it) [8].

Fig. 4.1 shows an example of un-preprocessed source code on the left and the result

of preprocessing it on the right. If the variable errStatus is renamed to error, it

is not possible to translate the right-hand side back into the un-preprocessed source

code.

#define ST(VAR) VAR##Status

int main() {
 int errStatus;
 ...
 switch (x)
 case 0: ST(complete) = 1;
 case 1: ST(err) = 1;
 ...
}

int main() {
 int errStatus;
 ...
 switch (x)
 case 0: completeStatus = 1;
 case 1: errStatus = 1;
 ...
}

Figure 4.1: A source code and its preprocessed version. The macro ‘ST’ receives
one parameter and applies concatenation of its parameter with the string ‘Status’

Moreover, changing the code once it has been targeted to a specific configuration

isolates that code from all the rest: if the changed code is merged back, the source

code for other configurations may not compile anymore, or the behavior may be

altered.

Therefore, it is not acceptable to have the refactoring tool work on a single config-

uration of a program, nor to lose any Cpp directives. A refactoring tool must ensure

that program behavior is preserved for all possible configurations.

4.1 The Need for Pseudo-Preprocessing

One solution would be to avoid preprocessing at all and have the parser and seman-

tic analyzer deal directly with Cpp directives. However, it is not possible to apply

this solution without introducing ambiguities in the grammar or being too restric-

tive. Conditional compilation directives and macro calls often “break” statements.

45

A conditional compilation directive or macro call breaks a statement when it pro-

duces a fragment of C code that is not a complete syntactic unit. Figure 4.2 shows

a case where the preprocessor conditional produces the start of an if-statement and

its condition, but not its compound statement. In another example the preprocessor

conditional could produce half the condition, or the last half of the condition and the

first half of the compound statement, or only the compound statement. In theory,

the C grammar could be extended to handle all these situations, but the resulting

grammar would be very large and ambiguous.

 dep->changed = !dir_file_exists_p (name, "");
#ifdef VMS
 if (dep->changed && strchr (name, ':') != 0)
#else
 if (dep->changed && *name == '/')
#endif
 {
 freerule (rule, lastrule);
 ...
 }

Figure 4.2: Conditional directives breaking a statement. This piece of code was
extracted from file “rule.c” in the source code of make-3.80

Macros cause a similar problem and are harder to fix by changing the gram-

mar, because a macro may represent any arbitrary fragment of C code. Fig. 4.3

shows an example where parsing cannot proceed without making various assump-

tions. ERROR_EXIT is a function-like macro. Without expanding ERROR_EXIT at its

calls, the parser cannot answer: is the third if-statement inside the second if? Is

there an else branch for the second if which is not closed and so includes the third

if? Is the last ‘}’ token closing something that was opened inside ERROR_EXIT?

Since we do not want CRefactory to be too restrictive in the kind of macros

it accepts or the placement of directives, CRefactory cannot parse the input di-

rectly. Instead, CRefactory needs to “partially” preprocess the input, in a way that

does not remove directives but makes the input parseable. We call this “pseudo-

preprocessing”. We have developed a pseudo-preprocessor, called P-Cpp, which

46

 if ((fp_target = fopen(ptarget, "r")) != NULL)
 {
 fgets(old_line, buffer_size, fp_target);
 if (fclose(fp_target) != 0)

ERROR_EXIT(ptarget);
 if (!strcmp(line, old_line))

is_same = 1;
 }

Figure 4.3: A macro call that may prevent correct parsing. This piece of code was
extracted from file “split-include.c” in linux-2.6.7.

tokenizes the input and executes directives as Cpp does, but does not remove direc-

tives from the tokenized output. Instead, it constructs tokens and other represen-

tations of Cpp directives. P-Cpp does not merge included files but tokenizes them

separately and creates a representation of file dependencies. It expands macro calls

but labels the tokens in the expansion so that the call can be traced back and recon-

structed. Moreover, P-Cpp places conditional directives in the tokenized output so

that they do not break syntactical units of the C grammar, labelling the tokens so

the original form can be reconstructed.

The next section describes the input of P-Cpp. The following sections explain the

behavior of P-Cpp with each of the directives: #include, #define and conditional

directives. We use Maude in this chapter not to specify the full behavior of P-Cpp,

but to precisely describe some of the important differences between the semantics of

P-Cpp and Cpp, given the same Cpp syntax specified in Chapter 3. Appendix B has

the Maude snippets in this chapter plus a few more details.

4.2 The Input of P-Cpp

P-Cpp receives as input a CRConfiguration, an object composed of the following fields:

• The names of all source files that compose the program. This differs from Cpp,

which receives a single source file as input.

47

• Include directories (same as Cpp).

• Read-only directories, which contain files that cannot be modified.

• Command line macros (same as Cpp).

• A list of conditions that should be considered always false, which will be de-

scribed in Section 4.5.

• A list of incompatible conditions, again to be described in Section 4.5.

Figure 4.4 shows the Maude specification of sort CRConfiguration and its compo-

nents. The directories that are read-only are specified with a ‘*’ as the first character

of the directory name in the includeDirs set.

fmod CONFIG is

pr STRINGS .

sort CRConfiguration .

op fileNames_includeDirs_commandLineMacros_falseConds_incompatConds_ :

StringSet StringSet StringSet StringSet StringSet -> CRConfiguration .

endfm

Figure 4.4: Specification of sort CRConfiguration. It represents the input of P-Cpp

With respect to the source code that P-Cpp expects as input, P-Cpp does not

make any assumptions about the placement of conditional directives in the input

lines. However, P-Cpp does assume that #include directives appear in between

statements or declarations and that #define directives only occur in between five

possible syntactic constructs, which are listed in Table 4.1. Note that a #include or

a #define may appear inside a compound statement, as long as it does not break any

statement inside the compound statement. These are the only places we have found

these directives in open source code packages, so we believe this assumption about

the kind of input that CRefactory accepts is not too restrictive.

Let CppInput be the set of programs that Cpp accepts as input. Then, the

programs accepted by P-Cpp are a subset of well-formed programs of CppInput called

48

Table 4.1: Syntactic constructs of the C grammar that macro definitions should not
break

Statement
Declaration
Structure field
Enumerator value
Array initializer value

WFCppInput. The set WFCppInput excludes C programs that have #include

breaking statements or declarations and #define directives breaking the syntactic

construct of Table 4.1. Additionally, WFCppInput excludes C programs with files

that start or end with half a statement or have only a part of a Cpp conditional

construct, i.e., each file must be parseable on its own.

Moreover, Section 4.5 will show how P-Cpp manipulates conditional directives so

that its output conforms to the format of the CRefactory parser (CRParser). The

input that CRParser expects is a set WF0CppInput such that

CppInput ⊃ WFCppInput ⊃ WF0CppInput

The set WF0CppInput excludes C programs that have any Cpp directives break-

ing the syntactic constructs of Table 4.1. Moreover, the source code of programs

in WF0CppInput do not have macro calls, so it is also the job of P-Cpp to expand

macros. Appendix C shows the complete extended grammar accepted by CRParser.

Note that this grammar also supports some GCC extensions like assembler instruc-

tions and statement expressions [66].

4.3 Handling File Inclusion

The behavior of Cpp with #include directives is to merge all files into a single

compilation unit, i.e., Cpp produces a single stream of tokens, no matter how many

files compose the given program. This behavior is not appropriate for a refactoring

49

tool. Programmers divide programs into several files to increase readability, ease

maintenance and increase code reuse. Merging all files into a single unit defeats all

those good reasons, which are also the goals of refactoring.

P-Cpp produces a separate output stream of tokens for each file. Representing each

file separately eases analysis, transformation and pretty-printing. The representation

of a file is called ProgramFile. Since the source code that appears after the #include

line depends on the declarations of the file being included, it is still necessary to

process the included file before continuing with the rest of the code in the current

file, just as Cpp would. For this purpose, P-Cpp maintains a stack of ProgramFiles

being processed, and pushes a new ProgramFile on the stack as it finds #include

directives. The output tokens that P-Cpp creates are appended to the output stream

of the ProgramFile at the top of the stack.

P-Cpp also maintains a stack of the source code of each file whose processing has

been paused by a file inclusion directive. The elements in the input stack correspond

one-to-one with the elements in the stack of ProgramFiles, except for the ProgramFile

at the top whose line sequence is currently being processed (and so has not been

stacked).

Since each file is represented separately, it is necessary to model the relationships

or dependencies among files. The best representation of file dependencies is a graph,

which we call Include Dependencies Graph (IDG). The nodes in this graph are

ProgramFiles and the edges represent #include dependencies. Specifically, there is

an edge in the graph from Program File ‘A’ to Program File ‘B’ if ‘B’ includes ‘A’.

The exact position at which the #include directive occurs is important when

calculating the definitions reaching a certain line of code. Moreover, file inclusion may

be conditional, if the #include directive occurs inside a Cpp conditional. Therefore,

edges in the IDG are labelled with the position at which the file is included and the

condition under which it is included. Fig. 4.5 shows a simple example of an IDG.

50

#if C1
#include “A.h”
...

#include “B.h”
...

#if C2
#include “A.h”
...

#include “B.h”
#include “C.h”
...

File B.h
File D.c

File C.h File E.c

Program
File ‘A.h’

Program
File ‘B.h’

Program
File ‘C.h’

Program
File ‘E.c’

Program
File ‘D.c’

8, C1

15,
 True

25, C2

1,
True

1, True

Figure 4.5: Example of Include Dependencies Graph

The example in Figure 4.5 shows that file “E.c” indirectly includes two copies of

file “A.h”. This is common, and Chapter 3 explained that the behavior of Cpp is

to preprocess the file every time it is included. On the contrary, P-Cpp does not

need to process a file more than once. Upon a #include directive, P-Cpp checks if

the file is already in the IDG. If it is not, P-Cpp adds a node in the IDG for the

file and the corresponding edge, processes the file and builds a representation of that

file that is stored in the file’s node. If the file has been previously included, it is

not necessary to process it again but P-Cpp can reuse the representations already

generated. Specifically, it will gather all the macros that have been defined in that

file and the files it includes (which are its predecessors in the IDG). Therefore, in

the case of file inclusion, P-Cpp works more efficiently than Cpp reusing previously

generated representations. Section 4.6 will show how P-Cpp reuses representations,

after macros and conditional directives are discussed.

The formal specification of how P-Cpp handles file inclusion starts in Figure 4.6.

The figure shows module LOC specifying Locations, module CR-TOKEN and mod-

ule INCLUDE-DEP-GRAPH. P-Cpp represents Locations in the source code as a

pair: the file name and the character offset in that file. Module CR-TOKEN de-

fines CRToken and CRTokenStream. Output tokens created by P-Cpp are of sort

CRToken and streams of CRTokens are of sort CRTokenStream. Subsequent sections

will show how CRTokens get labelled with macro calls and conditions. The module

51

CONDITIONS will be described in detail in Section 4.5. It defines the sort Cp-

pCondition that represents a condition associated with enclosing Cpp conditionals.

Module INCLUDE-DEP-GRAPH defines the sorts: ProgramFile, ProgramFileStack,

IncludeDepGraph, IdgEdge and IdgEdgeList. A ProgramFile is represented by the name

of the file, the output token stream that P-Cpp creates to represent it, the edges to

the files that include it directly (successor edges) and the edges to the files it includes

(predecessor edges). Subsequent sections in this chapter will add other elements to

the representation of a ProgramFile.

fmod LOC is

pr STRING . pr NAT .

sort Location .

op nilLoc : -> Location .

op file_offset_ : String Nat -> Location .

endfm

fmod CR-TOKEN is pr TOKEN .

pr MACRO-DEF . pr CONDITIONS .

sort CRToken . sort CRTokenStream .

subsort CRToken < CRTokenStream .

op value_ : Token -> CRToken .

op value_macroCalls_cond_ : Token MacroCallStack CppCondition -> CRToken .

op empty : -> CRTokenStream .

op __ : CRTokenStream CRTokenStream -> CRTokenStream [assoc id: empty] .

endfm

fmod INCLUDE-DEP-GRAPH is

pr CR-TOKEN . pr CONDITIONS . pr LOC .

sorts ProgramFile ProgramFileStack IncludeDepGraph IdgEdge IdgEdgeList .

subsort ProgramFile < IncludeDepGraph .

subsort ProgramFile < ProgramFileStack .

subsort IdgEdge < IdgEdgeList .

op empty : -> IncludeDepGraph .

op __ : IncludeDepGraph IncludeDepGraph -> IncludeDepGraph [assoc comm id: empty] .

op nil : -> ProgramFileStack .

op _;_ : ProgramFileStack ProgramFileStack -> ProgramFileStack [assoc id: nil] .

op dest_pos_under_ : ProgramFile Location CppCondition -> IdgEdge .

op nil : -> IdgEdgeList .

op _,_ : IdgEdgeList IdgEdgeList -> IdgEdgeList [assoc id: nil] .

op name_tokenStream_includingFiles_includedFiles_ :

String CRTokenStream IdgEdgeList IdgEdgeList -> ProgramFile [ctor] .

op programFile : String -> ProgramFile [ctor] .

op includes : IncludeDepGraph String -> Bool .

op addEdgeFrom_to_at_under_ : ProgramFile ProgramFile Location CppCondition -> ProgramFile .

op name : ProgramFile -> String .

op appendOutputToken : ProgramFile CRToken -> ProgramFile .

endfm

Figure 4.6: Specification of Locations and the Include Dependency Graph.

Like Cpp, P-Cpp’s behavior is defined in terms of an operation state, which takes

some input and the state of P-Cpp and modifies the state accordingly. The state

52

of P-Cpp is represented with sort PcppState, which is also a multiset of state at-

tributes of sort PcppStateAttribute. Figure 4.7 shows a preliminary version of module

PCPP-STATE with the definition of sorts PcppState and PcppStateAttribute and the

operations that represent each attribute. The state attribute represented by input-

Stack is the stack of source code lines of each file whose processing has been paused

by a file inclusion directive. The sort for this stack (LineSeqStack) is defined in mod-

ule LINE-SEQ-STACK (see Appendix B). The attribute given by fileNames has the

names of all source files that compose the program, received as input in the initial

CRConfiguration (Fig. 4.4). The attribute represented with includeDirs is the same

as in Cpp, stores the include directories received as input parameter. The attribute

given by macroTbl is also similar to Cpp. The other new attributes are the Include

Dependency Graph (idg), the stack of ProgramFiles being processed (curPF), the

stack of current conditions to label IDG edges (curCond) and the current location

(curLoc). The specification of P-Cpp does not show how curLoc is updated but it is

trivial: the file name is always the name of the ProgramFile at the top of curPF and

the offset is incremented as characters are consumed from the input. The sort for

attribute curCond will be described in Section 4.5.

fmod PCPP-STATE is

pr LINE-SEQ-STACK . pr INCLUDE-DEP-GRAPH . pr MACRO-TABLE . pr STRINGS .

pr CONDITIONS .

sorts PcppState PcppStateAttribute .

subsort PcppStateAttribute < PcppState .

op empty : -> PcppState .

op _,_ : PcppState PcppState -> PcppState [assoc comm id: empty] .

op inputStack : LineSeqStack -> PcppStateAttribute .

op fileNames : StringSet -> PcppStateAttribute .

op includeDirs : StringSet -> PcppStateAttribute .

op idg : IncludeDepGraph -> PcppStateAttribute .

op curPF : ProgramFileStack -> PcppStateAttribute .

op macroTbl : MacroTable -> PcppStateAttribute .

op curCond : CondStackStack -> PcppStateAttribute .

op curLoc : Location -> PcppStateAttribute .

endfm

Figure 4.7: State of P-Cpp during preprocessing

Finally, Figure 4.8 shows the semantics of P-Cpp with the file inclusion directive.

53

Module PCPP-DIR-SEMANTICS shows the signature of the operation state, and

module INCLUDE-SEMANTICS has two definitions of that operation. The first is

applied when the file to be included has not been processed yet (it is not in the IDG)

and the second is for the case that it has been processed.

fmod PCPP-DIR-SEMANTICS is pr CPP-DIR-SYNTAX .

pr PCPP-STATE .

op state : CppDirective PcppState -> PcppState .

endfm

fmod INCLUDE-SEMANTICS is pr INCLUDE-SYNTAX .

ex PCPP-DIR-SEMANTICS . pr HELPING-OPS .

var FN : String . var LS : LineSeq . var LSS : LineSeqStack . var Dirs : StringSet .

vars PF PF’ : ProgramFile . var IDG : IncludeDepGraph . var PFS : ProgramFileStack .

var LO : Location . var S : PcppState . var MT : MacroTable .

var CS : CondStack . var CSS : CondStackStack .

ceq state(#include FN cr LS, (inputStack(LSS), includeDirs(Dirs), idg(PF IDG),

curPF(PF ; PFS), curCond(CS ; CSS), curLoc(LO), S))

= state(readFile(FN, Dirs), (inputStack(LS ; LSS), includeDirs(Dirs),

idg((addEdgeFrom programFile(FN) to PF at LO under condFromStack(CS)) PF IDG),

curPF(programFile(FN) ; appendOutputToken(PF, value qid("#include" + FN)) ; PFS),

curCond(nil ; CS ; CSS), curLoc(update(LO)), S))

if includes(IDG, FN) == false .

ceq state(#include FN cr, (idg(PF’ PF IDG), curPF(PF ; PFS), macroTbl(MT),

curCond(CS ; CSS), curLoc(LO), S))

= idg((addEdgeFrom PF’ to PF at LO under condFromStack(CS)) PF IDG),

curPF(appendOutputToken(PF, value qid("#include" + FN)) ; PFS),

macroTbl(MT macrosDefInPredsOf(PF’)), curCond(CS ; CSS), curLoc(LO), S

if name(PF’) == FN .

endfm

Figure 4.8: Semantics of P-Cpp with file inclusion

If the file to be included (FN) has not been processed, then its source code is read

using readFile, which returns the LineSeq representing the file. The LineSeq of FN

will be preprocessed next and the LineSeq LS that followed the #include directive is

pushed on top of the inputStack, to be processed after FN. A new node for FN and a

new edge from it to the current ProgramFile PF are added to the idg. Although we

still cannot describe the state attribute curCond, the reader can infer from Fig. 4.8

that it is implemented as a stack, and each element of this stack corresponds to each

ProgramFile in curPF. The element at the top of the stack (CS), which represents the

current condition in file PF, is used to label the edge from the node for FN to PF. The

program file for FN is pushed on top of the current program file stack (curPF). Finally,

54

a new token is appended to the output stream of PF with the token resulting from

the string (“#include” + FN) as value.

The second state operation in INCLUDE-SEMANTICS takes care of the case that

the file to be included is already in the IDG (node PF’). The source code of the file

is not pushed on the input stack because there is no need to process the source code

again (more on this will come in Section 4.6, where this operation is reviewed and

refined). A new edge is added from the included file PF’ to the including file PF.

The token representing the file inclusion line is appended to the output stream of PF.

Finally, the macros defined in PF’ and all the files it includes (its predecessors in the

IDG) will be added to the current macro table (macroTbl) by invoking the function

macrosDefInPredsOf, again, to be described in Section 4.6.

4.4 Handling Macros

Handling macros has two parts: macro definitions and macro calls. P-Cpp handles a

#define like Cpp, by creating an entry for the macro definition in its macro table.

A Macro Definition entry in P-Cpp’s macro table contains data about the location

of the definition, the location of its #undef if it has one, and references to all calls

to the macro. The exact location where a macro is defined and undefined is used

to calculate its scope during analysis. Unlike Cpp, P-Cpp creates a token for the

#define line in the tokenized output. The token that represents the #define line

has a reference to the Macro Definition object (see Fig. 4.9).

Macro calls may appear anywhere in the code and may represent any part of a

statement or sequence of statements, so they need to be expanded for parsing to work.

Like Cpp, P-Cpp expands macro calls, replacing them in the output by the tokens

in the expansion. The difference is that P-Cpp represents a macro call with a Macro

Call object and labels each token in the macro expansion with that object. Figure

55

4.9 shows an example of the tokens generated by P-Cpp. The top level of the figure

shows a piece of source code with a macro definition and a macro call. The middle

level of the figure has the stream of output tokens, with the first token representing

the macro definition and the last three tokens representing the expansion of the macro

call. The token for the macro definition has a reference to the Macro Definition entry

in the bottom layer and the tokens in the macro expansion have a reference to the

Macro Call object. Moreover, the Macro Definition and the Macro Call reference each

other.

#define ER1 errstatus = 1
...
If (bottom < 0)
 ER1;

Macro definition if. . . (bottom)< 0 errstatus = 1

Name: ‘ER1’
Def: ‘#define ER1 errstatus = 1
DefLoc: file nn offset xx

Args : --
Loc: file ff offset yy

a Macro Definition
a Macro Call

Figure 4.9: Macro expansion and token labelling

If a token comes from the expansion of nested macro calls, the token is labelled

with all macro call objects in the sequence that created it, starting with the innermost

macro call and ending with the outermost. This introduces layers in the represen-

tation of token positions. The offset of a token that comes from the expansion of

nested macro calls is actually a collection of relative offsets inside the nested macro

expansions. Figure 4.10 shows an example of the position of a token ‘b’ that is in the

expansion of a macro ‘M1’, which is in turn called from a macro ‘M2’. The call to ‘M2’

is assumed to be at offset 59 in the file.

Another issue with macro definitions results from the interaction with conditional

56

Position of token ‘b’ in the
expansion of the macro call

in line 4

1 #define M1 (b + 35)
2 #define M2 int a = M1
3
4 M2 ;

2 in M1

9 in M2

59 in file

Figure 4.10: Layers in the representation of a token’s position

directives. Macro definitions often occur inside the branches of a Cpp conditional,

with a different definition of the same macro name in each branch. Figure 4.11 shows

an example of a macro BO_EXBITS with two definitions.

#ifdef __LITTLE_ENDIAN
#define BO_EXBITS 0x18UL
#elif defined(__BIG_ENDIAN)
#define BO_EXBITS 0x00UL
#endif

Figure 4.11: A macro with multiple definitions. Each definition is under a different
branch of a Cpp conditional

P-Cpp considers all branches of Cpp conditionals simultaneously. Therefore, the

macro table created by P-Cpp may have more than one definition for the same macro

name. Macro definitions with the same name are distinguished by the condition

associated with the enclosing conditional branch. Figure 4.12 shows the entry for

macro BO_EXBITS in the macro table.

BO_EXBITS

Def: ‘#define BO_EXBITS 0x18UL’
DefLoc: file nn offset xx

Guarding condition :
defined(__LITTLE_ENDIAN)

Def: ‘#define BO_EXBITS 0x00UL’
DefLoc: file nn offset yy

Guarding condition :
defined(__BIG_ENDIAN)

Figure 4.12: Macro table entry for a macro with two definitions

Since macros can have multiple definitions, a macro call may bind to more than

57

one definition. Specifically, a macro call MC that occurs under a condition CMC ,

binds to the macro definition under the same condition CMC , or, if there is no such

definition, it binds to a list of macro definitions MDL such that

∀ MD ∈ MDL : compatible(guardingCondition(MD), CMC)

Two conditions are compatible when one is not the logic negation of the other one

and they do not appear in the list of incompatible conditions provided by the initial

configuration (Section 4.5 describes incompatible conditions).

When a macro call binds to multiple macro definitions, it will have more than

one possible expansion. P-Cpp solves this problem by expanding the macro call to a

Cpp conditional, with one branch for each possible macro expansion [9]. Figure 4.13

shows an example of the expansion of a call to BO_EXBITS.

b = BO_EXBITS >> H / X;

b =
#ifdef __LITTLE_ENDIAN
 0x18UL
#elif defined(__BIG_ENDIAN)
 0x00UL
#endif
 >> H / X;

Figure 4.13: Expansion of a macro call that binds to multiple definitions

A harder problem with the interaction of macros and conditionals is that a given

symbol may be a macro under a particular conditional branch and a C language

element in another branch. Figure 4.14 shows an example that has been extracted

from file “dep.h” in the source code of make-3.80. The symbol dep_name is defined as

a macro in one branch of the Cpp conditional and as a function in the other branch.

#ifndef iAPX286
#define dep_name(d) ((d)->name == 0 ? (d)->file->name : (d)->name)
#else
extern char *dep_name ();
#endif

Figure 4.14: A macro and a C symbol defined with the same name

58

As with the case of multiple macro expansions, when P-Cpp finds a use of a

symbol like dep_name, it introduces a Cpp conditional with a branch for the macro

expansion and a branch for the symbol alone, as shown in Figure 4.15. The problem

is, how does P-Cpp know that a symbol is defined in a way other than a macro, if it

only stores macros? The answer is that P-Cpp keeps a set of symbols that have been

defined as C language elements. Knowing that a symbol is both a language element

and a macro allows P-Cpp to expand it with a Cpp conditional for both possibilities.

p =
#ifndef iAPX286
 ((dep)->name == 0 ? (dep)->file->name : (dep)->name)
#else
 dep_name (dep)
#endif
;

p = dep_name(dep);

Figure 4.15: Expansion of a symbol defined as a macro and a C language element.
The box at the top shows a statement taken from the source code of make-3.80. The
box at the bottom shows the expanded form of the statement

Similarly to the specification of Cpp, a macro definition in P-Cpp’s formal spec-

ification is represented with the sort MacroDef and the macro table with the sort

MacroTable. However, a MacroDef in P-Cpp’s specification has more information

than its counterpart in Cpp: besides the name it also saves the whole text of the

definition, its location, the condition under which this definition occurs, the list of

calls to this macro and the location of its #undef if it has one.

Figure 4.16 shows the specification of macro definitions (module MACRO-DEF)

and the macro table (module MACRO-TABLE). Except for two operations, the figure

shows the signature of operations but their equations can be found in Appendix B.

Note that in MACRO-TABLE, the map is from an Identifier to a MacroDefList, i.e.,

there may be more than one macro with the same name, which are gathered in the

same MacroDefList. To retrieve a specific MacroDef from the macro table, not only the

59

fmod MACRO-DEF is

pr STRINGS . pr DEFINE-SYNTAX . pr MACRO-CALL-SYNTAX . pr LOC . pr CONDITIONS .

sorts MacroDef MacroDefList MacroCallDescr MacroCallDescrList MacroCallStack .

subsort MacroDef < MacroDefList .

subsort MacroCallDescr < MacroCallDescrList .

subsort MacroCallDescr < MacroCallStack .

op nil : -> MacroDefList .

op _,_ : MacroDefList MacroDefList -> MacroDefList [assoc comm id: nil] .

op nil : -> MacroCallDescrList .

op _;_ : MacroCallDescrList MacroCallDescrList -> MacroCallDescrList [assoc comm id: nil] .

op nil : -> MacroCallStack .

op __ : MacroCallStack MacroCallStack -> MacroCallStack [assoc id: nil] .

op name_def_defLoc_condition_calls_undefLoc_ :

Identifier MacroDefDir Location CppCondition MacroCallDescrList Location -> MacroDef [ctor] .

op macroDefs_args_loc_ : MacroDefList StringList Location -> MacroCallDescr [ctor] .

op name : MacroDef -> Identifier .

op hasArgs : MacroDef -> Bool .

op guardCond : MacroDef -> CppCondition .

op expand : MacroDef -> TokenSequence . --- idem Cpp

op expandWithArgs : MacroDef ArgList -> TokenSequence . --- idem Cpp

op expandWithTSArgs : MacroDef TokenSeqList -> TokenSequence . --- idem Cpp

op undef : MacroDef Location -> MacroDef .

op addCall : MacroDef MacroCallDescr -> MacroDef .

op findWithGuardCond : MacroDefList CppCondition -> MacroDef .

op addCallToAll : MacroDefList MacroCallDescr -> MacroDefList .

op expandMacroCall : MacroCallDescr -> TokenSequence .

op expMC-rec : MacroDefList -> TokenSequence .

var M : MacroDef . var L : Location . var MDL : MacroDefList .

eq expandMacroCall(macroDefs M args nil loc L) = expand(M) .

eq expandMacroCall(macroDefs (M , MDL) args nil loc L)

= ’#if tokenize(guardCond(M)) ’cr expand(M) ’cr

expMC-rec(MDL)

’#endif ’cr .

eq expMC-rec(nil) = nil .

eq expMC-rec(M , MDL) = ’#elif tokenize(guardCond(M)) ’cr expand(M) ’cr

expMC-rec(MDL) .

endfm

fmod MACRO-TABLE is pr MACRO-DEF .

sort MacroTable .

op empty : -> MacroTable .

op [_:_] : Identifier MacroDefList -> MacroTable .

op __ : MacroTable MacroTable -> MacroTable [assoc comm id: empty] .

op _[_] : MacroTable Identifier -> MacroDefList .

op _[_under_] : MacroTable Identifier CppCondition -> MacroDef .

op _[_<-_] : MacroTable Identifier MacroDefList -> MacroTable .

op isMacro : Identifier MacroTable -> Bool .

op remove : MacroDef MacroTable -> MacroTable .

endfm

Figure 4.16: Specification of a macro definition and a macro table

60

name is needed but also the condition under which it applies. This is achieved with

the operation [under]. Consequently, a Macro Call object (represented with sort

MacroCallDescr) may be associated with a MacroDefList, such that the condition under

which the call occurs is compatible with the conditions of all associated MacroDefs.

Some of the operations on a MacroDef are: guarCond, returning the condition

that guards the macro definition; expand and expandWithArgs, which behave exactly

like their counterparts in Cpp (see Chapter 3); findWithGuardCond, which is used by

MacroTable to implement the operation [under] and addCallToAll, which adds the

same MacroCallDescr to all MacroDefs in the first argument.

The figure shows the equations for the operation expandMacroCall for the case

when the call has no arguments. The first equation is for the case when there is only

one associated macro definition, so the operation expand is invoked on that macro

definition. The second equation applies when there is more than one macro definition

associated with the macro call. In that case, and as explained before, the macro call

is expanded to a conditional directive with one branch for each possible expansion.

The operation expMC-rec is used to create the intermediate #elif branches.

Macro tables are used inside each ProgramFile, to describe the macros defined in a

given file, and in PCppState, to maintain the active macro definitions. The state also

maintains a stack of current macro calls, to label the tokens that come from macro

expansion. This PcppStateAttribute is called currMacroStack and its value is of sort

MacroCallStack, which is also defined in module MACRO-DEF.

Finally, Figure 4.17 shows the semantics that P-Cpp gives to a #define directive,

adding the new macro definition to the macro table.

61

fmod DEFINE-SEMANTICS is pr DEFINE-SYNTAX .

ex PCPP-DIR-SEMANTICS .

var I : Identifier . var TS : TokenSequence . var PF : ProgramFile .

var PFS : ProgramFileStack . var MT : MacroTable . var CSS : CondStackStack .

var S : PcppState . var L : Location .

eq state(#define I TS cr, (curPF(PF ; PFS), macroTbl(MT), curCond(CSS), curLoc(L), S))

= curPF(appendOutputToken(PF, value qid("#define")) ; PFS),

macroTbl([I : (name I def (#define I TS cr) defLoc L condition

condFromStackStack(CS ; CSS))] MT),

curCond(CSS), curLoc(update(L)), S .

--- similarly for a macro with arguments

endfm

Figure 4.17: Semantics of P-Cpp with macro definitions

4.5 Handling Conditional Directives

Chapter 3 described how Cpp selects a single branch of each Cpp conditional con-

struct, discarding conditional directives and the code in the other branches. This

behavior of Cpp is not appropriate for a refactoring tool. First, the preprocessed

version of a Cpp conditional looks quite different from the source code, since only

the code under a single branch remains. Second, applying complex refactorings like

“Extract Function”, which moves code around, can make it too difficult to recognize

the original placement of Cpp conditionals.

Lastly but most importantly, changing the code once it has been targeted to a

specific configuration isolates that code from all the rest: if the changed code is

merged back, the source code for other configurations may not compile anymore or

the behavior may be altered. As an example, consider Figure 4.18, which shows a

piece of code from file “alloca.c” in the source code of GNU make (version 3.80),

where the type pointer has two alternative declarations.

#if __STDC__
typedef void *pointer;
#else
typedef char *pointer;
#endif

Figure 4.18: Multiple definitions for type pointer

62

Suppose the code in Figure 4.18 is preprocessed in a configuration where STDC

evaluates to true, so the second declaration of pointer is discarded. On the prepro-

cessed code the user chooses to rename pointer to ptr, and changes are merged back

in the un-preprocessed source code. There would be one declaration for ptr and one

for pointer. If now the program is compiled with a configuration in which STDC

is false, all the references to ptr will cause a compiler error because the declaration

will be for type pointer, not ptr.

Therefore, we claim that:

A refactoring in the presence of Cpp conditionals is correct (i.e., preserves

behavior) if and only if it is correct for all possible system configurations.

This means that all outputs generated by Cpp for each possible system configuration

should be analyzed and refactored together.

One way to represent all possible configurations of a program would be to com-

pute all possible combinations of configuration variables, apply Cpp on the program

multiple times, one for each combination, and recombine the results of analyzing each

configuration. This is the approach used by Xrefactory [49] and by Fanta and Rajlich

[58]. However, this approach is very expensive even for a small-sized program. On

the one hand, computing all possible configurations is very difficult [42]. Somé and

Lethbridge studied the alternative of computing the possible configurations by trial

and error, i.e., try to parse until it fails, applying heuristics to minimize the number

of parses needed [42]. On the other hand, even if all possible configurations can be

computed, recombining the result of ' 10 configurations would be very complex and

expensive, two things that interactive refactoring tools must avoid [7]. In the case of a

large system like the Linux Kernel, with 1,672 configuration variables, this approach

is completely unfeasible.

Our approach, instead, is to process all configurations simultaneously, producing

a single tokenized representation for each file, and from there, a single AST inte-

63

grating all possible configurations for each file [9]. This solution creates a compact

representation and in principle it could handle programs as large as the Linux kernel

(although we have not tested the whole kernel at this time).

To process all branches of Cpp conditionals, P-Cpp considers the conditions in

all branches to be potentially true. P-Cpp does not even evaluate the conditions.

Nevertheless, the user may specify some conditions to be always false, causing P-

Cpp to ignore the Cpp conditional branches with that condition. Examples of false

conditions would be “0” used for commenting out code, or something like “defined

cplusplus”, which requires a different parser (a C++ parser). Then, except for those

listed by the user, each conditional directive is analyzed considering that its condition

is potentially true.

Besides false conditions, the user can also specify pairs of incompatible conditions.

Incompatible conditions are those that cannot be true at the same time. For example,

Figure 4.19 shows two pieces of code from two files of the Linux kernel. The file on

the left defines memcpy as a macro, whereas the file on the right defines memcpy as a

function. The problem is that the file on the right includes the file on the left early

on, so when it comes to the definition of memcpy as a function, the tool will do macro

expansion on the name of the function.

#ifdef CONFIG_X86_USE_3DNOW

#define memcpy(t, f, n) \
(__builtin_constant_p(n) ? \
 __constant_memcpy3d((t),(f),(n)) : \
 __memcpy3d((t),(f),(n)))

#ifndef __HAVE_ARCH_MEMCPY
extern void * memcpy(void *,const void *,__kernel_size_t);
#endif

In asm-i386/string.h

In linux/string.h

Figure 4.19: Example of incompatible conditions

To prevent this, conditions “defined CONFIG X86 USE 3DNOW” and “not defined

HAVE ARCH MEMCPY” are declared as incompatible in the initial configuration.

64

Both pieces of code will be processed, but the two definitions for memcpy will not

clash.

Even though conditions are not evaluated, they do need to be represented for

various reasons, for example, to compare them with the false conditions and to label

IDG edges and macro definitions. The next section describes the representation of

conditions.

4.5.1 Representation of conditions

We can say that every point in the source code, i.e., a character, has an associated

condition or guarding condition. To describe the condition at each point in the source

code (in Definition 2), it is first necessary to describe the condition associated with a

conditional directive (in Definition 1). Those two definitions are as follows.

Definition 1: Condition associated with a conditional directive

A conditional directive CD, which creates a branch in a Cpp conditional construct

PC, has an associated condition C, which is defined as follows:

• If CD is #if exp, C = exp.

• If CD is #ifdef id, C = defined(id); similarly, if CD is #ifndef id, C =

¬defined(id).

• If CD is #elif exp, then C = ¬C1 ∧ ¬C2 ∧ ... ∧ ¬Ci−1 ∧ exp, where C1 is

the condition of the first conditional directive in PC and C2 to Ci−1 are the

conditions associated with the previous #elif directives in PC, if any.

• If CD is #else, C = ¬C1 ∧ ¬C2 ∧ ... ∧ ¬Cn−1, where C1 is the condition of the

first conditional directive in PC and C2 to Cn−1 are the conditions associated

with each intermediate #elif directives in PC, if any.

65

Definition 2: Condition guarding each point in the source code

Every point P in the source code is guarded by a condition C, where C is defined

as follows:

• If P is not inside a Cpp conditional, i.e., it is at level 0 when counting the

nesting of conditionals, C = true.

• If P is in the branch created by a conditional directive CD so that P is at level

1 (meaning CD is not inside the branch of another Cpp conditional), C is the

condition associated with CD, as defined in Definition 1.

• If P is in the branch created by a conditional directive CD so that P is at level

l, C = C1 ∧ ... ∧ Cl where Cl is the condition associated with CD and each Ci

from 1 to l − 1 is the condition associated with the conditional directive that

encloses P at level i.

For example, the condition associated with the point at the start of token pointer

in Figure 4.20 is (¬defined(GNUC) ∧ ¬defined(alloca) ∧ STDC).

#if !defined (__GNUC__)

#ifndef alloca

#if __STDC__
typedef void *pointer;

Figure 4.20: Condition associated with a point in the source code

There is one exception to Definition 2. Figure 4.21 shows a piece of code with a

macro definition for NSEC_PER_SEC under condition ¬defined(NSEC PER SEC).

Later on, in the same file, or another one, there is a reference to NSEC_PER_SEC

to initialize variable xtime under condition defined(NSEC PER SEC). Is that

reference a call to macro NSEC_PER_SEC? It should be, because Cpp’s behavior would

be: if the macro is not defined, then define it; then, if the macro is defined, use

it. However, the behavior of P-Cpp described in Section 4.4 will not consider that

66

reference as a macro call and NSEC_PER_SEC would be an undefined symbol. The

reason is that the condition at that reference to NSEC_PER_SEC is the negation of the

condition at the definition (therefore the conditions are incompatible).

#ifndef NSEC_PER_SEC
#define NSEC_PER_SEC (1000000000L)
…
…
#ifdef NSEC_PER_SEC
extern int xtime = TICK_NSEC / NSEC_PER_SEC;

Figure 4.21: Example of exception of Definition 2

P-Cpp has some heuristics that solve this problem: a definition for a macro M

that is under condition ¬defined(M), cancels out the condition ¬defined(M). More

precisely, a definition for a macro M at a point in the code where, by Definition 2,

the guarding condition is

C = C1 ∧ ... ∧ Ci−1 ∧ ¬defined(M) ∧ Ci+1 ∧ ... ∧ Cn

causes P-Cpp to remove the condition ¬defined(M) from C, so that the new condi-

tion guarding the tokens in that Cpp conditional branch will be

C ′ = C1 ∧ ... ∧ Ci−1 ∧ Ci+1 ∧ ... ∧ Cn

To understand how the heuristics work, let us expand on the example of Figure

4.21, adding other definitions for NSEC_PER_SEC under other conditions. The new

example in Figure 4.22 occurs often in real code, where each definition usually appears

in different header files.

The expansion for the call to NSEC_PER_SEC in the last line that appears in Fig.

4.22, will be a Cpp conditional with three branches, one for each possible expansion

of NSEC_PER_SEC. The condition associated with each branch in the macro expansion,

according to Definition 1, will be:

• MIPS

67

#if MIPS
#define NSEC_PER_SEC (9999999999L)
#endif
...
#if i386
#define NSEC_PER_SEC (9999999000L)
#endif
...
#ifndef NSEC_PER_SEC
#define NSEC_PER_SEC (1000000000L)
#endif
…
#ifdef NSEC_PER_SEC
extern int xtime = TICK_NSEC / NSEC_PER_SEC;

Figure 4.22: Example of multiple definition for ‘NSEC PER SEC’

• ¬MIPS ∧ i386

• ¬MIPS ∧ ¬i386

The condition associated with the last branch models the situation correctly: if the

other conditions are both false, it means NSEC_PER_SEC was not defined before, and

that is the condition under which this definition was created.

To model the conditions of conditional directives, CRefactory has a class hierar-

chy rooted at AbstractCppCondition. There is a special parser for conditions, Cpp-

ConditionParser, used by P-Cpp to create instances of the classes in the hierarchy of

AbstractCppCondition. One of the subclasses is CppCondition, which represents the

constant expression that follows a #if or a #elif. Another class is CppDefinedCon-

dition, which represents a “defined” condition. The class CppNotCondition represents

a “not” or ¬ operator. Finally, the condition for a token at level 0 is represented by

CppTrueCondition, while the condition for a token at level l (l > 0) is represented by

CppAndCondition, which “ands” the nested conditions from level 1 to l.

For example, the condition associated with the start of token pointer in Figure

4.20 translates in CRefactory’s representation to:

68

CppAndCondition(

CppAndCondition(

CppNotCondition(CppDefinedCondition(GNUC)),

CppNotCondition(CppDefinedCondition(alloca))),

CppCondition(STDC))

4.5.2 Conditions as labels

Cpp conditionals are often used to select between alternative files to include in the

compilation unit. For this reason, and as explained in Section 4.3, edges in the Include

Dependency Graph are labelled with the condition under which the file inclusion

occurs, which is the condition at the point where the #include directive starts.

Moreover, Cpp conditionals are also used to provide alternative definition for the

same macro. Figure 4.11 showed an example. As explained in Section 4.4, entries

in the macro table are labelled with the condition under which the macro definition

occurs, which is the condition at the point where the #define directive starts (note

that the condition cannot change half way in the macro definition, since a conditional

directive cannot appear inside it).

Other elements that can have alternative definitions thanks to conditional direc-

tives are C program elements, such as variables or functions, as the case of type

pointer in Figure 4.18. However, P-Cpp does not create the symbol table as it does

with the macro table, since creating the symbol table is the task of the semantic an-

alyzer that runs after parsing and AST construction. Nevertheless, P-Cpp generates

the necessary information for the semantic analyzer to construct the symbol table

with the condition that guards each symbol definition, by labelling each token in the

tokenized output with the condition under which it applies. The condition associated

with a token is the condition at the point where the token starts. Note that the

condition at the point where a token starts remains the same until the token ends,

i.e., it cannot change half-way within a token.

69

In order to label IDG edges, macros and tokens with their guarding condition,

P-Cpp needs to keep track of the current condition at each point in a file, for every

file being preprocessed. The representation of the current condition inside a file is

implemented with a stack, called Current Condition Stack. Upon a conditional

directive, P-Cpp parses the condition associated with it, creates a “Condition” object

from the hierarchy of AbstractCppCondition to represent it, and pushes this object into

the Current Condition Stack. Then, P-Cpp uses the conjunction of Condition objects

in the Current Condition Stack to label each token inside the branch. Conditions are

popped from the stack upon the next conditional directive in the same Cpp conditional

or upon a #endif.

The Current Condition Stack of each ProgramFile being preprocessed is stored

in a stack, called curCond, which makes it a stack of stacks of Condition objects.

Each element of curCond corresponds one-to-one with the elements in the stack of

ProgramFiles.

Figure 4.23 shows the module CONDITIONS that specifies the conditions created

by P-Cpp upon a conditional directive. All subclasses in the hierarchy of AbstractCp-

pCondition are represented with a single sort: CppCondition. The other sorts defined

in the module are CondStack, which is the sort of the Current Condition Stack for

each Program File; CondStackStack, which is the stack of CondStacks for all Program

Files being preprocessed; CondSet, to represent the set of false conditions that the

user specifies in the input to P-Cpp; CondPair and CondPairSet, which are used to

represent pairs of incompatible conditions, again listed by the user in the input to

P-Cpp (see Section 4.2).

Module CONDITIONS contains the equation for the predicate compatible holding

between two conditions, as described in Section 4.4 in the context of macro expansion.

The third argument of this predicate is the set of incompatible conditions, constructed

from the user input. The operation isNegationOf returns true if the first argument is

70

fmod CONDITIONS is

pr ALL-COND-EXP-SYNTAX .

sorts CppCondition CondStack CondStackStack CondSet CondPair CondPairSet .

subsort CppCondition < CondStack .

subsort CondStack < CondStackStack .

subsort CppCondition < CondSet .

subsort CondPair < CondPairSet .

op condition : CondExp -> CppCondition [ctor] .

op trueCondition : -> CppCondition [ctor] .

op _and_ : CppCondition CppCondition -> CppCondition .

op _isNegationOf_ : CppCondition CppCondition -> Bool .

op compatible : CppCondition CppCondition CondPairSet -> Bool .

op nil : -> CondStack .

op _;_ : CondStack CondStack -> CondStack [assoc id: nil] .

op nil : -> CondStackStack .

op _;_ : CondStackStack CondStackStack -> CondStackStack [assoc id: nil] .

op empty : -> CondSet .

op __ : CondSet CondSet -> CondSet [assoc comm id: empty] .

op _in_ : CppCondition CondSet -> Bool .

op <_;_> : CppCondition CppCondition -> CondPair [ctor] .

op empty : -> CondPairSet .

op __ : CondPairSet CondPairSet -> CondPairSet [assoc comm id: empty] .

op _in_ : CondPair CondPairSet -> Bool .

op condFromStack : CondStack -> CppCondition .

op condFromStackStack : CondStackStack -> CppCondition .

op tokenize : CppCondition -> TokenSequence .

vars C C’ : CppCondition . var Incomp : CondPairSet . var S : CondStack .

eq compatible(C, C’, Incomp) = not (C isNegationOf C’) and not (< C ; C’ > in Incomp) .

eq condFromStack(nil) = trueCondition .

eq condFromStack(C ; nil) = C .

eq condFromStack(trueCondition ; S) = condFromStack(S) .

eq condFromStack(C ; S) = C and condFromStack(S) .

endfm

Figure 4.23: Specification of conditions

the logical negation of the second, like defined(M) with ¬defined(M).

Moreover, Fig. 4.23 shows the equations for operation condFromStack, which

returns the condition that will label a token, given a CondStack that represents the

Current Condition Stack.

Figure 4.24 shows a partial version of module COND-DIR-SEMANTICS, which

specifies the behavior of P-Cpp for a #if directive. The equations in module COND-

DIR-SEMANTICS use five PcppStateAttributes: falseConds is the set of false condi-

tions specified by the user; curCond represents the stack of Current Condition Stacks;

skip and nestLevelOfSkipped have the same purpose they had in the state of Cpp (see

Fig. 3.16) and curPF is the stack of ProgramFiles currently being processed (intro-

duced in Section 4.3). The equations are described after the figure.

71

fmod COND-DIR-SEMANTICS is pr COND-DIR-SYNTAX .

ex PCPP-DIR-SEMANTICS . pr COND-EXP-SEMANTICS .

var CE : CondExp . var FC : CondSet . var CS : CondStack . var CSS : CondStackStack .

var S : PcppState . var N : Nat . var PF : ProgramFile . var PFS : ProgramFileStack .

--- Case 1 of #if: Not skipping -> Not skipping

ceq state(#if CE cr, (falseConds(FC), curCond(CS ; CSS), skip(false), curPF(PF ; PFS), S))

= falseConds(FC), curCond((eval(CE) ; CS) ; CSS), skip(false),

curPF(appendOutputToken(PF, value ’#if macroCalls nil cond condFromStack(CS)) ; PFS), S

if not(eval(CE) in FC) .

--- Case 2 of #if: Not skipping -> Skipping

eq state(#if CE cr, (skip(false), nestLevelOfSkipped(0), S))

= skip(true), nestLevelOfSkipped(1), S [owise] .

--- Case 3 of #if: Skipping -> Skipping

eq state(#if CE cr, (skip(true), nestLevelOfSkipped(N), S))

= skip(true), nestLevelOfSkipped(N + 1), S .

endfm

Figure 4.24: Semantics of P-Cpp upon conditional directives

The equation for Case 1 uses the operation eval on a CondExp, which instead

of actually evaluating the condition (as Cpp would) creates a representation of CE

as a CppCondition (see Appendix B). This equation will be applied as long as the

CppCondition resulting from CE is not in the set of false conditions. In that case

the branch for this conditional directive is processed and the CppCondition is pushed

on top of curCond. Moreover, a token representing the #if line is appended to the

ProgramFile at the top of curPF. The token will have as value the quoted identifier

’#if (note that this is a simplification but the whole directive line is actually stored

in the token). The token will also have the condition resulting from the Current

Condition Stack (curCond) as condition label (cond field in CRToken).

The other two equations are for the case that the branch of the conditional direc-

tive is not processed, either because the associated condition was in the set of false

conditions (case 2 in Fig. 4.24) or because the enclosing conditional was already being

skipped (case 3).

Figure 4.24 also shows that P-Cpp leaves conditional directives in the tokenized

output, as it does with the other directives.

There is one more problem with conditional directives that is actually the hardest

to solve. Our solution to this problem is the key of CRefactory’s novel approach to

representing C programs with Cpp directives. The next section describes the problem

72

and gives a high-level view of the solution, and following sections describe the solution

in detail.

4.5.3 Problem with conditional directives: Incomplete syn-

tactic units

The main problem with conditional directives is that they usually “break” statements

and other C constructs. The problem can also be stated in the following way: the

branches created by Cpp conditionals are usually syntactically incomplete, i.e., they

do not contain complete syntactical units. Figure 4.25 shows an example from file

“rule.c” in make-3.80, where the branches of the Cpp conditional contain only the

start of the if statement, i.e., the branches are not complete syntactical units and

cannot be parsed together.

#ifdef VMS
 if (dep->changed && strchr (name, ' :') != 0)
#else
 if (dep->changed && *name == ' /')
#endif
 {
 freerule (rule, lastrule);
 …
 }

Figure 4.25: Incomplete syntactic units

Allowing conditional directives at any point in each C grammar production is not

viable, as it would result in a large and ambiguous grammar. The tool DMS solves

this problem by restricting conditional directives to appear at certain places in the

grammar, and manually modifying the code that does not comply [53]. This solution

is simple but not scalable to large, open-source projects. We do not want to restrict

the places where conditional directives can occur.

Our solution consists of manipulating conditional directives in the internal repre-

sentation of the code, so that each conditional directive appears only in between the

73

C constructs listed in Table 4.1, i.e., at the same level as statements or declarations,

structure field declarations, enumeration values or array initializer values. The gen-

eral idea is to complete the branches of a Cpp conditional with the text that precedes

and/or follows the conditional, until each branch is syntactically complete, i.e., until

it can be parsed independently of the other branches. With this transformation of

conditionals, CRefactory is able to obtain a single representation of the source code

for all possible system configurations, so the CRefactory parser then works in a single

pass.

The process of completing conditionals is accomplished in two passes of P-Cpp

through the source code. In the first pass, P-Cpp tokenizes the input and recognizes

incomplete Cpp conditionals, creating descriptors that contain information of how

to complete them. In the second pass, incomplete conditionals are completed by

applying the Conditional Completion Algorithm. This algorithm moves and

copies tokens as stated by the descriptors created in the first pass. After this second

pass all Cpp conditionals are complete syntactical units, i.e., they can be integrated

in the C grammar and the source code can now be parsed.

4.5.4 Recognizing incomplete Cpp conditionals

A Cpp conditional is considered complete when its branches enclose a whole syntactic

construct, or a whole list of them, from the constructs that appeared in Table 4.1. To

recognize if a conditional is incomplete, P-Cpp needs to distinguish the tokens that

mark the beginning and end of each of those constructs. While P-Cpp tokenizes the

input in the first pass through the source code of a file, P-Cpp works as a pushdown

automaton, keeping track of each recognized syntactic construct by maintaining a

state stack, similar to what a parser would do, but only for the constructs in Table

4.1.

We will use Maude’s rewrite rules to describe the possible states and transitions

74

of P-Cpp while it recognizes syntactic construct in the first pass. These rewrite rules

are specified in a system module, which describes states as constructor operations and

transitions with rewrite laws. Figure 4.26 shows the system module PCPP-FIRST-

PASS with the states and transitions possible for P-Cpp.

The system module PCPP-FIRST-PASS first imports the functional module TO-

KEN specified in the syntax of Cpp (Chapter 3). The beginning or end of syntactic

constructs are represented with the sort Constr. All possible Constrs are listed as

Constr constructors. For example, the constructor inConstruct represents a statement

or declaration and endOfConstruct represents the end of it. The constructor inFor

represents the first part of a for-statement: the keyword “for” plus the expressions in-

side parentheses. The distinction of “for” from other statements was made to prevent

confusing the use of ‘;’ inside the expressions of a for statement (where conditional di-

rectives are not allowed) with the use of ‘;’ as a statement separator. The constructor

inFor takes a natural number as parameter that counts the number of open paren-

theses. Similarly, inInitializer, which represents an array or struct initializer, takes a

natural number as parameter that counts the number of open braces. Only when

those numbers get to 0 has the construct ended. The sort ConstrStack represents

the stack of opened syntactic constructs. The sort Input-ConstrState is then a pair of

TokenSequence, the input tokens, and ConstrStack, the current opened constructs.

Rewrite laws represent allowed transitions between Input-ConstrStates. Maude’s

rewrite laws are declared with the keyword rl followed by the name of the law in

brackets. The transition between states is denoted with the symbol “=>”. A condi-

tional rewrite rule is declared with the keyword crl and takes a condition at the end,

just like conditional equations. Some of the rewrite laws in module PCPP-FIRST-

PASS are:

startComp. When the top of the ConstrStack is anything except inStruct, the ap-

pearance of an open brace makes P-Cpp push inCompositeStmt and endOfCon-

75

mod PCPP-FIRST-PASS is

pr TOKEN .

sorts Constr ConstrStack Input-ConstrState .

subsort Constr < ConstrStack .

op inConstruct : -> Constr [ctor] .

op endOfConstruct : -> Constr [ctor] .

op inCompositeStmt : -> Constr [ctor] .

op inEnum : -> Constr [ctor] .

op inEnumElem : -> Constr [ctor] .

op endOfEnumElem : -> Constr [ctor] .

op inFor : Nat -> Constr [ctor] .

op inInitializer : Nat -> Constr [ctor] .

op inInitValue : -> Constr [ctor] .

op endOfInitValue : -> Constr [ctor] .

op inStruct : -> Constr [ctor] .

op nil : -> ConstrStack [ctor] .

op __ : ConstrStack ConstrStack -> ConstrStack [assoc id: nil] .

op <_;_> : TokenSequence ConstrStack -> Input-ConstrState [ctor] .

vars X X2 : Token . var TS : TokenSequence . var P : Constr . var S : ConstrStack . var N : Nat .

crl [startComp] : < ’‘{ TS ; P S > => < TS ; endOfConstruct inCompositeStmt S >

if P =/= inStruct .

rl [endComp] : < ’‘} TS ; inCompositeStmt S > => < TS ; endOfConstruct S > .

rl [startEnum] : < ’enum TS ; S > => < TS ; inEnum S > .

crl [stayEnum] : < X TS ; inEnum S > => < TS ; inEnum S > if (X =/= ’‘{) and (X =/= ’‘}) .

rl [startEnumValues] : < ’‘{ TS ; inEnum S > => < TS ; inEnumElem inEnum S > .

crl [stayEnumValue] : < X TS ; inEnumElem S > => < TS ; inEnumElem S >

if (X =/= ’‘,) and (X =/= ’‘}).

rl [endEnumValue] : < ’‘, TS ; inEnumElem S > => < TS ; endOfEnumElem S > .

crl [startEnumValue] : < X TS ; endOfEnumElem S > => < TS ; inEnumElem S > if X =/= ’‘} .

rl [endEnumValues] : < ’‘} TS ; inEnumElem S > => < ’‘} TS ; S > .

rl [endEnumValues2] : < ’‘} TS ; endOfEnumElem S > => < ’‘} TS ; S > .

rl [endEnum] : < ’‘} TS ; inEnum S > => < TS ; inConstruct S > .

rl [startFor] : < ’for TS ; S > => < TS ; inFor(0) S > .

crl [stayFor] : < X TS ; inFor(N) S > => < TS ; inFor(N) S > if (X =/= ’‘() and (X =/= ’‘)) .

rl [forOpenPar] : < ’‘(TS ; inFor(N) S > => < TS ; inFor(s(N)) S > .

crl [forClosePar] : < ’‘) TS ; inFor(s(N)) S > => < TS ; inFor(N) S > if (N =/= 0) .

rl [endFor] : < ’‘) TS ; inFor(1) S > => < TS ; inConstruct S > .

rl [startInit] : < ’‘= ’‘{ TS ; S > => < TS ; inInitializer(0) S > .

crl [stayInit] : < X TS ; inInitializer(0) S > => < TS ; inInitializer(0) S >

if (X =/= ’‘{) and (X =/= ’‘}) .

rl [startInitValues] : < ’‘{ TS ; inInitializer(0) S > => < TS ; inInitValue inInitializer(1) S > .

crl [stayInitValue] : < X TS ; inInitValue S > => < TS ; inInitValue S >

if (X =/= ’‘,) and (X =/= ’‘{) and (X =/= ’‘}).

rl [stayInitValue2] : < ’‘{ TS ; inInitValue inInitializer(N) S >

=> < TS ; inInitValue inInitializer(s(N)) S > .

crl [stayInitValue3] : < ’‘} TS ; inInitValue inInitializer(s(N)) S >

=> < TS ; inInitValue inInitializer(N) S > if (N =/= 0) .

rl [endInitValue] : < ’‘, TS ; inInitValue S > => < TS ; endOfInitValue S > .

crl [startInitValue] : < X TS ; endOfInitValue S > => < TS ; inInitValue S > if X =/= ’‘} .

rl [endInitValues] : < ’‘} TS ; inInitValue inInitializer(0) S > => < ’‘} TS ; S > .

rl [endInitValues2] : < ’‘} TS ; endOfInitValue inInitializer(0) S > => < ’‘} TS ; S > .

rl [endInit] : < ’‘} TS ; inInitializer(0) S > => < TS ; inConstruct S > .

rl [startStruct] : < ’struct TS ; endOfConstruct S > => < TS ; inStruct S > .

crl [startStruct2] : < ’struct TS ; P S > => < TS ; inStruct P S > if (P =/= endOfConstruct) .

crl [stayStruct] : < X TS ; inStruct S > => < TS ; inStruct S > if (X =/= ’‘{) and (X =/= ’‘}) .

rl [startField] : < ’‘{ TS ; inStruct S > => < TS ; endOfConstruct inStruct S > .

rl [endStruct] : < ’‘} TS ; inStruct S > => < TS ; inConstruct S > .

rl [endConst] : < ’‘} TS ; endOfConstruct S > => < ’‘} TS ; S > .

crl [startConstr] : < X X2 TS ; endOfConstruct S > => < X2 TS ; inConstruct S >

if (X =/= ’enum) and (X =/= ’for) and not (X == ’‘= and X2 == ’‘{) and (X =/= ’struct)

and (X =/= ’‘{) and (X =/= ’‘}) .

crl [stayConstr] : < X X2 TS ; inConstruct S > => < X2 TS ; inConstruct S >

if (X =/= ’enum) and (X =/= ’for) and not (X == ’‘= and X2 == ’‘{) and (X =/= ’struct)

and (X =/= ’‘{) and (X =/= ’‘}) .

rl [endConstr] : < ’; TS ; inConstruct S > => < TS ; endOfConstruct S > .

endm

Figure 4.26: Specification of P-Cpp’s pushdown automata

76

struct at the top of the stack. While in a composite statement, inConstruct

and endOfConstruct are at the top of the stack to represent inner statements or

declarations.

startEnum. The token ’enum makes P-Cpp consume the token and push inEnum

(an enumerator construct) at the top of the ConstrStack.

startEnumValues. When inEnum is at the top of the stack, the open brace makes

P-Cpp push inEnumElem (the start of an enumerator value) in the stack.

endConstr. Simple statements and declarations finish with a ‘;’ so the appearance

of this token makes P-Cpp replace inConstruct by endOfConstruct at the top of

the ConstrStack.

With this representation of states, a Cpp conditional is complete if and only if its

branches start and end when the top of the ConstrStack is endOfConstruct. Con-

versely, if a Cpp conditional starts while inConstruct is at the top of the stack, the

Cpp conditional is set to have a bad start. Moreover, if a Cpp conditional ends when

the top of the stack is inConstruct, the Cpp conditional has a bad ending.

When P-Cpp encounters conditional directives in this first pass, it creates de-

scriptors for them. These descriptors contain enough information to fix incomplete

conditionals in the second pass. Some of the information in a CppConditionalDescrip-

tor appears in Table 4.2. CppConditionalDescriptors form a tree that represents the

nesting of conditionals.

Figure 4.27 shows the pseudo-code for how P-Cpp creates and sets the attributes

of CppConditionalDescriptors and CppConditionalBranchDescriptors.

In the pseudo-code, the objects that represent constructs in the construct stack

(sort Constr in Fig. 4.26) have two attributes: startPosition and condsWBadEnding.

The attribute startPosition stores the source code position at which the construct

started. This value is used to set the field startPosShouldBe of CppCondition-

77

Table 4.2: Data in a CppConditionalDescriptor

startPosition The position where the Cpp conditional starts
in the current file

endPosition The position where it ends
badStart True if the Cpp conditional has a bad start
badEnding True if it has a bad ending
startPosShouldBe The position where the Cpp conditional should start

to be complete
endPosShouldBe The position where the Cpp conditional should end

to be complete
branches A sequence of CppConditionalBranchDescriptors

alDescriptors of conditionals that start in the middle of the construct. The at-

tribute condsWBadEnding holds a list of CppConditionalDescriptors of condition-

als that break the current construct. Later on, when P-Cpp finds the end of the

current construct, it sets the value endPosShouldBe of all descriptors in the list

condsWBadEnding to be the current position.

4.5.5 Conditional Completion Algorithm

Once the tree of CppConditionalDescriptors has been created, the Conditional Com-

pletion Algorithm is run to fix incomplete conditionals. The Conditional Comple-

tion Algorithm applies a behavior-preserving transformation to the tokenized version

of the source code that turns incomplete conditionals into complete ones. The algo-

rithm works moving and copying tokens as dictated by the CppConditionalDescriptors.

The Conditional Completion Algorithm works by matching each Cpp conditional

with one of seven cases that it can handle. The seven cases are in two major categories:

non-overlapping conditionals and overlapping conditionals. The non-overlapping are

the first three cases, which apply when a Cpp conditional may or may not have nested

Cpp conditionals inside its branches (children) but when being completed, it will not

overlap with another conditional (sibling). The overlapping cases are the last four,

which apply when there is overlap, meaning that sibling conditionals break the same

78

case (current token = #if, #ifdef or #ifndef) {
desc := new CppConditionalDescriptor.
desc . startPosition := current position.
If(top(contrStack) = endOfConstruct)

desc . badStart := false

else {
desc . badStart := true.
desc . startPosShouldBe := (top(constrStack)).startPosition.

} }
case (current token = #elif or #else){

branch := new CppConditionalBranchDescriptor.
branch . startPosition := current position.
Add branch to branches of current Cpp conditional.

}
case (current token = #endif) {

desc := current Cpp conditional.
desc . endPosition := current position.
If(top(constrStack) = endOfConstruct)

desc . badEnding := false.
else {

desc . badEnding := true.
Add desc to (top(constrStack)) . condsWBadEnding.

} }
case (current token marks beginning of construct) {

Push corresponding Constr into constrStack with
newState . startPosition := current position.

}
case (current token marks end of current construct) {

For each desc ∈ ((top(constrStack)) . condsWBadEnding) {
desc . endPosShouldBe := current position. }

Push appropriate Constr into constrStack

}

Figure 4.27: Pseudo-code for first pass of P-Cpp

syntactic construct. Although some cases may be considered simple variations of

another, the distinction of different cases inside each category allows the algorithm

to specialize and improve the performance on individual cases.

Figure 4.28 depicts the seven cases that the Conditional Completion Algorithm

can handle. For each case, the figure represent a statement with a grayed rectangle,

and a Cpp conditional with the letter ‘E’ (each leg of the letter is a conditional

directive and the space between legs has the code inside a branch). This does not

mean that the Cpp conditional can only have two branches, on the contrary, there is

no limit on the number of branches. The small ‘E’s inside a bigger one mean that the

79

Cpp conditional represented by the bigger E can have children (inner conditionals).

In Case 4, each Cpp conditional is represented by a block letter ‘C’ because they can

only have one branch.

3) Bad start and bad end1) Bad start 2) Bad end

7) Overlap w/
next cond. First
w/ children

5) Next condbreaks
inner statement

4) Next condhas
same condition
Both one branch

6) Overlap w/
next cond. First
w/o children

Figure 4.28: Cases of the Conditional Completion Algorithm

Following is a description of each of the seven cases.

Case 1 The Cpp conditional PC, which is at level of nesting i, starts in the middle of

a syntactic construct. PC may or may not have children (other Cpp conditionals

inside its branches). There is no other Cpp conditional at level i breaking the

same syntactic construct.

In this case, PC has a bad start and breaks a syntactic construct in two parts,

with the first part of the construct being at level i− 1. The tokens in the first

part of the construct are moved and copied to the beginning of each branch in

PC, as shown in Figure 4.29.

If PC has children, the tokens in the first part of the broken construct are

80

moved to the innermost child, appending the tokens between Cpp conditionals

in the path to the innermost child, if there were any.

for (
#if BY_ROW
 i=0; i<R; i++)
 s+=a[i];
#elif BY_COL
 j=0; j<C; j++)
 s+=a[j];
#endif

#if BY_ROW
 for (i=0; i<R; i++)
 s+=a[i];
#elif BY_COL
 for (j=0; j<C; j++)
 s+=a[j];
#endif

Figure 4.29: Case 1 of completing conditionals

Case 2 The Cpp conditional PC, which is at level of nesting i, ends in the middle

of a syntactic construct. PC may or may not have children. There is no other

Cpp conditional at level i breaking the same syntactic construct.

In this case, PC has a bad ending and breaks a syntactic construct in two parts,

with the second part of the construct being at level i − 1. The tokens in the

second part of the construct are moved and copied to the end of each branch in

PC. If the conditional does not have an #else line, one is added with the text

that completes the Cpp conditional. See the example in Figure 4.30.

If PC has children, the tokens in the second part of the broken construct are

moved to the innermost child, after the tokens between Cpp conditionals in the

path to the innermost child, if there were any.

#ifdef __STDC__
const
#endif
char * msg;

#ifdef __STDC__
const char * msg;
#else
char * msg;
#endif

Figure 4.30: Case 2 of completing conditionals

Case 3 The Cpp conditional PC, which is at level of nesting i, starts in the middle of

a syntactic construct and ends in the middle of the same or another construct.

81

PC may or may not have children. There is no other Cpp conditional at level i

breaking the same syntactic constructs as PC.

This is the combination of cases 1 and 2. First the start of the conditional is

completed as in case 1. Then, its end is completed as in case 2.

Case 4 The Cpp conditional PC1 is at level of nesting i, it has a single branch

with condition C and ends in the middle of a syntactic construct (it has a bad

ending). The second part of the statement is in another Cpp conditional PC2

at the same level i, having a single branch with the same condition C (PC2 has

a bad start). Neither PC1 nor PC2 have children.

An example of this case appears to the left of Figure 4.31. In this case, PC1

is combined with PC2 to form a single Cpp conditional. Before the #endif for

PC1, P-Cpp adds the text in between both Cpp conditionals plus the text in

the matching branch of PC2. Then an #else line is added with the text that

was in between the Cpp conditionals, as shown to the right of in Figure 4.31.

#ifdef _COORD
struct Point {
#endif
 int x;
 int y;
#ifdef _COORD
};
#endif

#ifdef _COORD
struct Point {
 int x;
 int y;
};
#else
 int x;
 int y;
#endif

Figure 4.31: Case 4 of completing conditionals

Case 5 The Cpp conditional PC1, which is at level of nesting i, has a bad ending

and may or may not have a bad start. The next conditional at the same level i,

PC2, has at least a bad start and when being complete, will become the child of

PC1. Neither PC1 nor PC2 have children.

Figure 4.32 shows an example where the first conditional breaks the while state-

ment and the second conditional breaks the assignment statement inside the

82

body of the while. In this case, the next conditional is completed inside the

stream of tokens that complete the end of the current conditional.

while (
#if _C1
 n != 0
#else
 (n – 2) != 0
#endif
) {
 n = n
#if _C2
 - 3 ;
#else
 / 2 ;
#endif
}

#if _C1
 while (n != 0) {
if _C2
 n = n - 3 ;
else
 n = n / 2 ;
endif
}
#else
 while ((n – 2) != 0) {
if _C2
 n = n - 3 ;
else
 n = n / 2 ;
endif
#endif
}

Figure 4.32: Case 5 of completing conditionals

Case 6 The Cpp conditional PC1, which is at level of nesting i, breaks a syntactic

construct (it either has a bad start or a bad ending or both). The next conditional

at the same level i, PC2, breaks the same construct than PC1. PC1 does not

have children and PC2 may have. PC2 may also be in Case 5 or Case 6 with

its next conditional.

This case is common once macros have been expanded by P-Cpp, and there are

two or more macro calls in the same statement, each macro call binding to more

than one definition. In the case that PC1 and PC2 come from the expansion of

the same macro, there is no need to make all combinations. P-Cpp combines

PC1 and PC2 in a single Cpp conditional.

Figure 4.33 shows an example of Case 6. The second conditional (PC2) becomes

nested in each branch of the first one (PC1), and gets completed inside each

branch of PC1. The tokens that complete the start of PC2 inside each branch

B of PC1, are the tokens that complete the start of PC1, plus the tokens in

83

the branch B plus the tokens in between both conditionals. This creates all

combinations of conditions in PC1 and PC2.

if (a !=
#if _C1
 0
#else
 1
#endif
&& a !=
#if _C2
 b
#else
 c
#endif
) {
 f1(a); }

#if _C1
if _C2
if (a != 0 && a != b) {
 f1(a); }
else
if (a != 0 && a != c) {
 f1(a); }
endif
#else
if _C2
if (a != 1 && a != b) {
 f1(a); }
else
if (a != 1 && a != c) {
 f1(a); }
endif
#endif

Figure 4.33: Case 6 of completing conditionals

Case 7 The Cpp conditional PC1, which is at level of nesting i, breaks a syntactic

construct (it either has a bad start or a bad ending or both). The next conditional

at the same level i, PC2, breaks the same construct than PC1. PC1 has children

and PC2 may have children. That is, PC2 is in case 6 with PC1’s children.

PC1’s children may be in Case 5 or Case 6 among them.

This case also appears between Cpp conditionals that P-Cpp introduces with

macro expansions.

Figure 4.34 shows an example. The first Cpp conditional (PC1) and the last

one (PC2) break the same if-else construct. Since PC1 has a child (PC1.1), PC2

becomes nested in each branch of PC1.1. That is, Case 7 is solved by applying

Case 6 between PC1’s children and PC2. The figure shows the tokens inside

PC1.1 and PC2 in bold font, to help the reader visualize all four combinations

when the conditionals get completed.

These seven cases are the ones we have found in our case studies (open source pack-

ages). Note that Case 4 is actually a variation of Case 6, specialized for the case

84

if (
#if _C3
 a != 0) a++;
#else
b !=

#if _C1
0

#else
1

#endif
) b++;
#endif
else
#if _C2

b--
#else

c++
#endif
;

#if _C3
 if (a != 0) a++;
#else
if _C1
if _C2

if (b != 0) b++;
 else b--;
else

if (b != 0) b++;
 else c++;
endif
else
if _C2

if (b != 1) b++;
 else b--;
else

if (b != 1) b++;
 else c++;
endif
endif
#endif

Figure 4.34: Case 7 of completing conditionals

that the conditions in both conditionals are the same. The case not supported by the

Conditional Completion Algorithm is a variation of Case 5, where the conditionals

may have children. We have never encountered this situation in practice.

The description of the cases above gives an overview of how the Conditional Com-

pletion Algorithm works in each case. What follows is a detailed description.

Figure 4.35 has the pseudo-code for function completeConditional in the the Con-

ditional Completion Algorithm. Function completeConditional receives a CppCondi-

tionalDescriptor, desc, as parameter. It first checks if the Cpp conditional that desc

represents has a bad start (Case 1), and if so it calculates the tokens that complete

the start of the conditional. Second, the function checks if desc is in Case 6 with the

next conditional (nextDesc), that is, if the Cpp conditionals represented by desc and

nextDesc break the same construct. In this case, the next conditional is completed in

each branch of the current conditional, creating this way all combinations. Following

conditionals are checked recursively for intersections with the previous ones.

If desc is not in Case 6 with nextDesc, the function checks if they fall in Case 7.

If so, each child of desc is completed as in Case 6 with nextDesc.

If the next conditional does not break the same construct (is not in Case 6 or 7

85

completeConditional(desc: CppConditionalDescriptor)
{

if (desc . badStart) {
desc . tokensCompletingStart := tokens from desc . startPosShouldBe

to desc . startPosition. }
nextDesc := nextConditional(desc).
if (isCase6(desc, nextDesc))

for each branch ∈ desc . branches

Complete nextDesc inside branch.
else if (isCase7(desc, nextDesc))

for each branch ∈ desc . branches

for each childDesc ∈ children(desc, brach)
Complete childDesc as case 6 with nextDesc.

else {
if (desc . badEnding) {

if (¬ isCase4(desc, nextDesc) ∧¬ isCase5(desc, nextDesc)) {
desc . tokensCompletingEnd := tokens from desc . endPosition

to desc . endPosShouldBe.}
else if (isCase4(desc, nextDesc))

Compute ending in next conditional.
else if (isCase5(desc, nextDesc))

Complete nextDesc inside desc . tokensCompletingEnd.
}
for each branch ∈ desc . branches

completeConditionalBranch(desc, branch).
}

}

Figure 4.35: Pseudo-code of completeConditional

with desc), and if the conditional that desc represents has a bad ending (Case 2), the

function calculates the tokens that complete the end of the conditional. Here it is

also possible that the next conditional is in Case 4 or in Case 5 with desc. In Case 5,

the next conditional is completed inside the stream of tokens that complete the end

of the current conditional.

After the tokens that complete the start and the end of each incomplete conditional

have been calculated, P-Cpp actually moves and copies those tokens, while it labels

them, in each branch of the conditional. Figure 4.36 shows the pseudo-code for how

P-Cpp completes each branch. The basic idea is that the tokens that complete the

start of the conditional are moved to the beginning of the first branch and copied to

the beginning of the other branches. If the conditional has a bad ending, the tokens

86

that complete the end of the conditional are moved to the end of the last branch

and copied to the end of the other branches. Tokens are labelled accordingly so this

manipulation can be reversed as described in the next section.

completeConditionalBranch(desc, branchDesc)
{

if (desc . badStart)
if (isFirstBranch(desc, branchDesc)) {

Move desc . tokensCompletingStart to beginning of branch while
labelling these tokens as ‘moved forward’.}

else {
Copy desc . tokensCompletingStart to beginning of branch while

labelling these tokens as ‘copied’. }
for each childDesc ∈ children(desc, brachDesc)

completeConditional(childDesc).
if (desc . badEnding)

if (isLastBranch(desc, branchDesc))
Move desc . tokensCompletingEnd to end of branch while labelling

these tokens as ‘moved backwards’.
else

Copy desc . tokensCompletingEnd to end of branch while labelling
these tokens as ‘copied’.

}

Figure 4.36: Pseudo-code of completeConditionalBranch

4.5.6 Pretty-printing of Cpp conditionals

Pretty-printing is not the job of P-Cpp, but we include this section here to explain how

the labelling that P-Cpp does on tokens actually works at the time of pretty-printing

a Cpp conditional to reverse the completion of the conditional.

The pretty-printer is a visitor of the abstract syntax tree (AST). It prints the leaf

nodes of the AST according to the tokens they represent and the tokens’ labels. The

pretty-printer uses two queues: ifsQueue stores the start directive of Cpp condition-

als with bad start. These start directives go later in the output, after the tokens

that have been moved forward to complete the first branch. The other queue is the

movedBackQueue, and this one is for nodes representing tokens that have beenmoved

backwards to complete the end of a conditional. The nodes in the movedBackQueue

87

are printed after the #endif of the current conditional. Nodes that represent copied

tokens are not printed. Figure 4.37 shows the pseudo-code for pretty-printing a leaf

node that does not come from macro expansion.

pretty-print(node)
{

case(node represents #if, #ifdef or #ifndef)
if ((assocCppConditional(node)).badStart)

queue(ifsQueue, node).
else Print node.

case (label(node) ‘not moved’ or ‘moved forward’)
Check if top(ifsQueue) should be printed.
Print node.

case (label(node) = ‘copied’)
/* do nothing */

case (node represents #elif or #else)
Print node.

case (label(node) = ‘moved backwards’)
queue(movedBackQueue, node).

case (node represents #endif) {
Print node.
Print all nodes in movedBackQueue }

}

Figure 4.37: Pseudo-code for pretty-printing

For Cases 4, 5, 6 and 7 of the Conditional Completion Algorithm, where inde-

pendent conditionals get combined and the conditionals do not come from macro

expansion, the pretty-printing algorithm is more complex. For instance in Case 6,

the pretty-printer requires two more queues. The middleQueue stores the tokens that

have been labelled as ‘moved forward’ by the second conditional but that go after

the end of the first conditional (i.e., in the middle of both conditionals). The sec-

ondCondQueue stores the ‘not moved’ tokens that belong to the second conditional.

Further details of these cases are not provided because they hardly appear in practice.

4.6 Reusing Representations

This section finally explains in detail how P-Cpp reuses previously generated repre-

sentations. Let us first review the example of Figure 4.5, repeating it here but adding

88

the code for file “A.h”, with a conditional macro definition. Figure 4.38 shows the

example.

#if C1
#include “A.h”
...

#include “B.h”
...

#if C2
#include “A.h”
...

#include “B.h”
#include “C.h”
...

File B.h
File D.c

File C.h File E.c

Program
File ‘A.h’

Program
File ‘B.h’

Program
File ‘C.h’

Program
File ‘E.c’

Program
File ‘D.c’

8, C1

15,
 True

25, C2

1,
True

1, True

#if X
#define M1 …

File A.h

Figure 4.38: Example of include dependencies revisited

Consider the case when P-Cpp’s current program file stack (curPF in the specifica-

tion) has the following program files: (“A.h” ; “B.h” ; “E.c”) and P-Cpp is processing

the macro definition in “A.h”. The condition guarding the definition of macro M1 at

this point is:

CppAndCondition(CppCondition(C1), CppCondition(X))

and that is the condition with which M1 is added to the active macro table of P-Cpp

(macroTbl in the specification).

Let us suppose that P-Cpp processes a file every time it is included. Now consider

the second case when P-Cpp’s current program file stack has the following program

files: (“A.h” ; “C.h” ; “E.c”) and P-Cpp is processing the macro definition in “A.h”.

The condition guarding the definition of macro M1 this time is:

CppAndCondition(CppCondition(C2), CppCondition(X))

and P-Cpp’s macro table should be updated with this new condition for M1.

If instead of preprocessing file “A.h” again, P-Cpp wants to reuse the represen-

tation for “A.h”, it needs to know the macros defined in “A.h” so it can reinsert

89

them in the macro table. Therefore, the ProgramFile for “A.h” has another attribute:

macrosDefined, which stores the macros defined in “A.h”. However, which condition

should label macro M1 inside the ProgramFile for “A.h”? It should be the current con-

dition inside “A.h”, represented by the Current Condition Stack, (CppCondition(X)

in the example). The condition of the inclusion of file “A.h” is stored in the edge from

“A.h”, as shown in Fig. 4.38. When macros are reinserted in the active macro table

of P-Cpp, the guarding condition of each one is the conjunction of the conditions of

all predecessor edges in the path to the file and the condition inside the file. The

complete specification of this process appears in Figure 4.39. The figure shows op-

erations and equations in different modules that make possible to reuse ProgramFile

representations.

With this strategy, P-Cpp works more efficiently than Cpp minimizing the number

of times a file is processed, by reusing the representation of a file instead of rebuilding

it each time it is included.

There is one exception to reusing the representation already created for a file and

that is when the definition of macros that the file calls (if any) are not the same than

the previous time the file was preprocessed. If the macros called by the file changed,

the tokenization of macro expansions will differ. This may happen when an included

file F calls macros defined in the file that includes F prior to the #include F line.

Although this is considered bad practice, Cpp allows it because of the copy-and-paste

style in which file inclusion is implemented. Figure 4.40 shows an example with set

of files and their source code.

In the example of Figure 4.40, the file “A.h” calls macro BO_EXBITS, which is

defined in file “B.h” before the include for “A.h”. Moreover, there is a file “C.h”

with a different definition of macro BO_EXBITS, and “C.h” also includes “A.h” after

the macro definition. There is also a file “X.c” that includes both “B.h” and “C.h”.

Assuming var1 is only assigned to in “A.h”, the value of var1 in the code of “X.c”

90

fmod DEFINE-SEMANTICS is

...

var I : Identifier . var TS : TokenSequence . var PF : ProgramFile .

var MT : MacroTable . var CS : CondStack . var CSS : CondStackStack . var L : Location .

var S : PcppState . var PFS : ProgramFileStack .

eq state(#define I TS cr, (curPF(PF; PFS), macroTbl(MT), curCond(CS; CSS), curLoc(L), S))

= curPF(addMacroDefinition(appendOutputToken(PF, ...),

(name I def (#define I TS cr) defLoc L condition condFromStack(CS))) ; PFS),

macroTbl([I : (name I def (#define I TS cr) defLoc L

condition condFromStackStack(CS ; CSS))] MT),

curCond(CS ; CSS), curLoc(update(L)), S .

endfm

fmod INCLUDE-SEMANTICS is

...

ceq state(#include FN cr, (idg(PF’ PF IDG), curPF(PF ; PFS), macroTbl(MT),

curMacroStack(MCS), curCond(CS ; CSS), curLoc(LO), S))

= idg((addEdgeFrom PF’ to PF at LO under condFromStack(CS)) PF IDG),

curPF(appendOutputToken(PF,

value qid("#include" + FN) macroCalls MCS cond condFromStack(CS)) ; PFS),

macroTbl(MT macrosDefInPredsOf(PF’)), curMacroStack(MCS), curCond(CS ; CSS), curLoc(LO), S

if name(PF’) == FN .

endfm

fmod INCLUDE-DEP-GRAPH is

...

op macrosDefInPredsOf : ProgramFile -> MacroTable .

op macrosDefIn : IdgEdgeList -> MacroTable .

var FN : String . var TS : CRTokenStream . vars Suc Pred : IdgEdgeList . var MD : MacroTable .

var PF : ProgramFile . var L : Location . var C : CppCondition .

eq macrosDefInPredsOf(name FN tokenStream TS includingFiles Suc includedFiles Pred

macrosDefined MD) = MD macrosDefIn(Pred).

eq macrosDefIn(nil) = empty .

eq macrosDefIn(((dest PF pos L under C), Pred))

= andConditionToAll(macrosDefInPredsOf(PF), C) macrosDefIn(Pred) .

endfm

fmod MACRO-TABLE is

...

op andConditionToAll : MacroTable CppCondition -> MacroTable .

var N : Identifier . var L : MacroDefList . var MT : MacroTable . var C : CppCondition .

eq andConditionToAll(([N : L] MT), C) = [N : andGuardCondToAll(L, C)] andConditionToAll(MT, C) .

endfm

fmod MACRO-DEF is

...

op andGuardCondToAll : MacroDefList CppCondition -> MacroDefList .

op andGuardCond : MacroDef CppCondition -> MacroDef .

vars C C’ : CppCondition . var M : MacroDef . var MDL : MacroDefList . var N : Identifier .

var D : MacroDefDir . vars L UL : Location . var MCL : MacroCallDescrList .

eq andGuardCondToAll(nil, C) = nil .

eq andGuardCondToAll((M , MDL), C) = andGuardCond(M, C) , andGuardCondToAll(MDL, C) .

eq andGuardCond(name N def D defLoc L condition C calls MCL undefLoc UL, C’)

= name N def D defLoc L condition (C and C’) calls MCL undefLoc UL .

endfm

Figure 4.39: Additions to P-Cpp’s specification to allow reuse of representations

91

/*** FILE A.h ***/
#define MAX_LFS_FILESIZE 0x7fffffffffffffff

int var1 = BO_EXBITS;

/*** FILE B.h ***/
#undef BO_EXBITS
#define BO_EXBITS 0x18UL

#include “A.h”
int var2 = MAX_LFS_FILESIZE;

/*** FILE C.h ***/
#undef BO_EXBITS
#define BO_EXBITS 0x00UL

#include “A.h”

/*** FILE X.c ***/

#include “B.h”
/* code that uses var1 */

#include “C.h”
/* other code that uses var1 */

Figure 4.40: Different definition of a macro depending on the order of file inclusion

that follows the #include “B.h” line is 0x18UL. However, the value of var1 after the

#include “C.h” line is 0x00UL.

P-Cpp solves this situation by modifying the macro table slightly and preprocess-

ing the file again. When a file F is processed for the first time, P-Cpp saves the

current macro table at the start of F, in an attribute of the ProgramFile for F called

activeMacrosAtStart. Then, when P-Cpp finds a #include F line again, it checks if

the current definition of macros that F calls (if any) are the same than the previous

time F was preprocessed (i.e., it compares the current macro table with the macros

in activeMacrosAtStart inside the representation of F). If the macro definitions are the

same, no further work is necessary, as F has been already tokenized correctly. How-

ever, if the macro definitions differ, P-Cpp adds all conflicting macro definitions to

the macro table and distinguishes them by labelling each macro with a CppInclude-

PathCondition, a fabricated condition that names the file that contains the definition.

The macro table for the example of Figure 4.40 would look as shown in Figure 4.41.

P-Cpp then pseudo-preprocesses F again so the tokenization reflects the new possible

macro expansions.

92

BO_EXBITS

Def: ‘#define BO_EXBITS 0x18UL’
Uses: ...

Guarding condition :
defined in ‘’B.h’’

Def: ‘#define BO_EXBITS 0x00UL’
Uses: ...

Guarding condition :
defined in ‘’C.h’’

Figure 4.41: Entry for a macro whose definition depends on the order of file inclusion

Therefore, even when this problem occurs, P-Cpp works around it to obtain a sin-

gle representation of each file, which integrates all possible configurations, all possible

macro expansions and all possible orders in which the inclusion of a file may happen.

93

Chapter 5

Program Representations that

Integrate C and Cpp

This chapter describes the program representations that CRefactory creates. These

representations integrate C program elements, like variables and functions, with Cpp

directives and macro calls.

The set of these representations is called the program model. While this chapter

describes CRefactory’s program model, the next chapter will show how the model

can be used to analyze the preconditions of refactorings and execute refactorings in

the presence of preprocessor directives, preserving the un-preprocessed source code.

A C program is composed of a set of files. CRefactory’s representation of a C

program is an Include Dependency Graph (IDG), where each node represents a file and

each edge represents an inclusion dependency. The IDG was described in the previous

chapter (Section 4.3) because its nodes and edges are constructed by P-Cpp. More-

over, for each IDG node (a Program File), P-Cpp creates a tokenized representation.

After pseudo-preprocessing, there is a component in CRefactory called CRProcessor

that takes the output of P-Cpp and builds, for each Program File in the IDG, an ab-

stract syntax tree and a symbol table [9]. These are the two main data structures

used during refactoring.

94

Furthermore, abstract syntax trees and symbol tables are indexed by a Program

Repository that can be queried during refactoring. This chapter first describes the

structure of abstract syntax trees and symbol tables. The Program Repository and its

components are next presented, with the list of queries that the Program Repository

understands. The last section of the chapter talks about the algorithms that update

the program model after a refactoring.

5.1 Abstract Syntax Tree

Abstract syntax trees (ASTs) are simple but powerful representations of programs.

Although there are more complex program representations, such as program depen-

dency graphs (PDGs) [36], they are complex and require considerable time to build

[6]. For refactoring tools to be useful, speed is very important. ASTs provide suf-

ficient information to implement powerful and fast refactorings, as demonstrated by

the Refactoring Browser [7].

In the same spirit as the Refactoring Browser and the majority of refactoring tools

[51], CRefactory uses the AST of a program not only to perform analysis of the code

but also to transform it. That is, refactorings execute by replacing nodes in the AST.

This approach differs from the one taken by Xrefactory where analysis is performed

on the AST but replacing occurs in the source text [49]. We believe that our approach

is more scalable for complex refactorings.

Since refactorings are performed on ASTs, the trees must include information of

Cpp directives if the goal is to refactor them together with the rest of the C code. For

example, it is necessary to know if an AST node derives from a macro expansion or

if it belongs to a specific branch of a Cpp conditional. As far as we know, this thesis

is the first publication that approaches the construction of ASTs including complete

information of Cpp directives.

95

ASTs are constructed during parsing, by attaching a script to each grammar pro-

duction that creates nodes representing that production [67]. Therefore, the grammar

must have productions for Cpp directives, so nodes can be created to represent them.

We have extended the grammar for the C language with productions for Cpp di-

rectives. As described in the previous chapter, the extended grammar allows Cpp

directives in between the syntactic constructs that appear in Table 5.1.

Table 5.1: C syntactic constructs allowed in between Cpp directives

Statement
Declaration
Structure field
Enumerator value
Array initializer value

The tokenized representation that P-Cpp creates has Cpp directive lines repre-

sented with a single token. For example, the token that represents a conditional

directive stores, besides the directive keyword and its source code position, the con-

dition associated with it. Therefore, Cpp directives are terminals in the grammar

specification.

Figure 5.1 shows the grammar productions for a statement, a controlLine (i.e.,

a Cpp directive), a macroDirective and a conditionalDirective. The figure uses

standard grammar notation, where each grammar production names the non-terminal

represented, then a semi-colon, and then the different alternatives separated by a ‘|’

character. Terminals of the grammar are surrounded by angle brackets. The scripts

that create AST nodes appear in between curly braces. They have Smalltalk code

that creates a node, listing the node’s class name first and a message that sets the

token on the node. The expression ‘1’ represents the first element in the right-hand

side of the production.

Appendix C shows the complete extended grammar accepted by CRParser, the

96

CRefactory parser. CRefactory uses SmaCC [68], a parser generator for Smalltalk,

to generate CRParser from the grammar specification.

statement

: labeledStatement

| compoundStatement

| expressionStatement

| selectionStatement

| iterationStatement

| jumpStatement

| controlLine ;

controlLine

: <INCLUDE>

{CRControlIncludeNode token: ’1’}

| macroDirective

| conditionalDirective

| <OTHER_DIRECTIVE>

{CRControlOtherNode token: ’1’} ;

macroDirective

: <DEFINE>

{CRControlDefineNode token: ’1’}

| <UNDEF>

{CRControlUndefineNode token: ’1’} ;

conditionalDirective

: <CONDITIONAL_START_IF>

{CRControlConditionalStartIfNode token: ’1’}

| <CONDITIONAL_START_IFDEF>

{CRControlConditionalStartIfdefNode token: ’1’}

| <CONDITIONAL_ELIF>

{CRControlConditionalElifNode token: ’1’}

| <CONDITIONAL_ELSE>

{CRControlConditionalElseNode token: ’1’}

| <CONDITIONAL_END>

{CRControlConditionalEndNode token: ’1’} ;

Figure 5.1: Grammar productions for statement and Cpp directives

Figure 5.2 shows some source code with Cpp directives and the resulting AST.

The use of colors in the figure represents the condition that labels a node. Light

gray is used in the subtree rooted at Declaration to represent the node label: Cp-

pDefinedCondition(X86 PC9800), while dark gray is used to label node CppDefine

with CppNotCondition(CppDefinedCondition(X86 PC9800)) (see Subsection 4.5.1 for a

specification of Condition objects).

Figure 5.2 also shows that the AST does not represent the nesting of Cpp condi-

tional constructs, i.e., the nodes inside a Cpp conditional branch are at the same level

as the node for the conditional directive that starts the branch. Although we could

have added Cpp conditional constructs to the C grammar, the added complexity was

97

TranslationUnit

CppIfdef
X86_PC9800

Declaration

Specifiers Declarator

Identifier
CLOCK_TICK_RATE

CppElse
! defined

X86_PC9800

CppDefine
CLOCK_TICK_RATE

1189200

CppEndif

#ifdef X86_PC9800
 extern int CLOCK_TICK_RATE;
#else
define CLOCK_TICK_RATE 1189200
#endif

Storage-
ClassSpec

extern

BasicTypeSpec
int

Figure 5.2: Abstract syntax tree with Cpp directives as nodes

not needed. Having the nodes for conditional directives and the conditions that label

the nodes in one branch is sufficient for our purposes. Nevertheless, if Cpp conditional

constructs were needed, they are represented in the tree of CppConditionalDescriptors

created by P-Cpp (see Subsection 4.5.4).

Figure 5.3 shows the AST resulting from some source code with a Cpp conditional

that had to be completed by P-Cpp. The only node labelled with the condition

CppDefinedCondition(STDC) is the one corresponding to the only token that was

inside the Cpp conditional before completion. That is, the completion of conditionals

does not scramble the correct labelling of nodes with conditions.

Conditions are not the only labels for AST nodes. As explained in Chapter 4,

macro calls cannot be directly represented in the grammar, and they need to be

expanded. Tokens resulting from macro expansion are labelled by P-Cpp with a

reference to the macro call they come from. Since AST nodes representing terminals

know their tokens, they “inherit” their tokens’ labels. Figure 5.4 shows the AST

98

TranslationUnit

CppIfdef
__STDC__

Declaration

Specifiers Declarator

Identifier
msg

CppElse
! defined

__STDC__

CppEndif

#ifdef __STDC__
 const
#endif
char * msg;

#ifdef __STDC__
 const char * msg;
#else
 char * msg;
#endif

TypeQualifier
const

BasicTypeSpec
char

Pointer
*

Declaration

Specifiers

BasicTypeSpec
char

...

Figure 5.3: Abstract syntax tree after conditional completion

resulting from a piece of code with a macro call. The piece of code is the same as

in Figure 4.9, which showed the tokenization of the macro call expansion. Figure 5.4

shows the same Macro Definition and Macro Call objects that appeared in Fig. 4.9,

and how AST nodes refer to them. The figure also shows that the node representing

the macro definition (a CppDefine node) refers to the Macro Definition object.

Turning to the implementation of the AST, all nodes belong to the hierarchy of

ProgramNode. There are 81 subclasses of ProgramNode, that is, 81 different types of

nodes, although 4 of them are abstract classes: AbstractExpressionNode, StatementN-

ode, DeclarationSpecifier and CppControlNode (for Cpp directives).

There are different classes that can traverse ASTs, which follow the “Visitor”

design pattern [69]. These classes belong to the hierarchy of ProgramNodeVisitor.

One of the subclasses is the ASTInfoCollector, which constructs the symbol tables

and populates the Program Repository. Another class is the CRFormatter, which

pretty-prints the ASTs.

99

a Macro Definition a Macro Call

#define ER1 errstatus = 1
...
If (bottom < 0)
 ER1;

Name: ‘ER1’
Def: ‘#define ER1 errstatus = 1
DefLoc: file nn offset xx

Args : --
Loc: file ff offset yy

TranslationUnit

IfStatementCppDefine
ER1

BinaryExpression

Identifier
bottom

Operator
<

ConstExp
0

AssignmentExp

Identifier
errstatus

Operator
=

ConstantExp
1

ExpressionStmt

Figure 5.4: Abstract syntax tree with labels for macro expansion

5.2 Symbol Table

A symbol table records the identifiers declared in a program scope and their attributes

[70]. In CRefactory, symbol tables are instances of the class CRSymbolTable. Symbol

tables are constructed by an ASTInfoCollector, a visitor of the AST. There is one

symbol table for each ProgramFile in the IDG with the global definitions in that file,

i.e., the definitions that occur in the file scope, outside any function. There is also

a symbol table for each nested scope inside a file. That is, there is a symbol table

associated with each function and each block inside a function. There is also a global

symbol table for external symbols, i.e., variables and functions declared in two or

more files that can be linked together [26]. Scopes will be discussed further in the

next section.

A symbol table looks exactly like a macro table, but with different kinds of entries.

As shown in Chapter 4, conditional directives may introduce multiple definitions for

100

the same symbol (see Figure 4.18). Like the macro table, each entry in CRefactory’s

symbol table can point to more than one definition, and definitions for the same

symbol are distinguished by their guarding condition, i.e., the condition under which

the definition applies. Aversano et al. propose a similar symbol table with multiple

entries, although the entries in their symbol table are labelled with configuration

parameter values instead of guarding conditions [54].

Chapter 4 also mentioned the problem of having a symbol defined as both a macro

under a Cpp conditional branch and as a C language element in another branch or

another Cpp conditional (Figure 5.2 showed an example). This implies that the

symbol table must allow entries for macro definitions as well as C language elements.

For example, the symbol table entry for symbol CLOCK_TICK_RATE in the code of

Figure 5.2 looks as in Figure 5.5 below.

CLOCK_TICK_RATE

Specs: ‘extern’, ‘ int’
DefLoc: file nn offset xx

Guarding condition :
CppDefinedCond(X86_PC9800)

Def: ‘#define CLOCK_TICK_RATE...’
DefLoc: file nn offset yy

Guarding condition:
CppNot(CppDefined(X86_PC9800))

CRVariableEntry

CRMacroEntry

Figure 5.5: Symbol table entry for a variable and a macro with the same name

Table 5.2 lists the different kinds of entries in CRefactory’s symbol tables. The

table also shows the names of the classes that represent symbol table entries. These

classes belong to the hierarchy rooted at CRSymbolTableEntry.

A CRStructEntry is used to represent both structures and unions. The fields of

a structure or union are stored in a separate symbol table inside their CRStructEn-

try, since the enclosing structure creates a different name space for its fields [26].

Conversely, enumeration constants are not stored within their enumerated type be-

cause they have the same scope and name space as the enumerated type. All other

101

Table 5.2: Types of entries in CRefactory’s symbol table

Kind of entry Class that represents it

Variable CRVariableEntry
Function CRFunctionEntry
Structure CRStructEntry
Enumerated type CREnumEntry
Enumeration constant CREnumConstEntry
Label CRLabelEntry
User-defined type CRUserDefinedType
Macro definition CRMacroEntry

typedef declarations that are not structures or enumeratives are represented with

class CRUserDefinedType.

The attributes that are stored for each type of symbol table entry appear in Figure

5.6. The figure shows the hierarchy of classes rooted at CRSymbolTableEntry, and the

attributes defined in each class.

name, guardingCondition, defineLocation, uses
CRSymbolTableEntry

container
CRCLanguageElement

kind, type
CRVariableEntry

module
CRFunctionEntry

names, fields
CRStructEntry

CRUserDefinedType

definition, text, undefLocation

CRMacroEntry

names
CREnumEntry

CREnumConstEntry

CRLabelEntry

Figure 5.6: Hierarchy of CRSymbolTableEntry and attributes of each class

102

The ‘container’ of a CRCLanguageElement is the scope in which it is defined.

Section 5.3 will describe the representation of scopes. The ‘kind’ of a CRVariableEn-

try can be “global”, “local” or “extern”. The ‘module’ in a CRFunctionEntry is the

scope created by this function (more on this in Section 5.3). The ‘names’ of a CR-

ProgramStruct or a CREnumEntry are all the type names assigned to the structure or

enumerative in its definition. For example, in a definition like:

typedef struct S {...} Stype, *SPtrType;

the names that refer to the same entity are: “S”, “Stype” and “SPtrType” (although

the reference is indirect in the last case).

The ‘guardingCondition’ assigned to a symbol table entry is the conjunction

of the conditions in the tokens that make up the symbol definition. For example,

for the AST that appeared in Figure 5.3, there will be two variable entries: one

entry for ‘const char * msg;’ with condition CppDefinedCondition(STDC), and

another entry for ‘char * msg;’ with CppTrueCondition as guarding condition.

The list of ‘uses’ of a CRCLanguageElement is a list of CRSymbolLocations (pairs

of 〈filename, offset〉) where the definition is referenced. A reference to a symbol

that appears under a condition Cs is bound to the definition guarded by the same

condition, i.e., to the definition under condition Cs. If there is no such definition, the

reference is bound to a set DefSet of CRCLanguageElements such that:

∀ Def ∈ DefSet : compatible(guardingCondition(Def), Cs)

This is the same binding rule used by P-Cpp to bind a macro call to its macro

definition(s) (see Section 4.4).

Figure 5.7 shows some sample code and the corresponding symbol table entry for

var1. For simplicity, locations appear as line numbers and C1 and C2 stand for some

constant expressions and do not negate each other. If the pair < C1; C2 > does

not belong to the set of incompatible conditions of the initial configuration (Section

4.2), the uses of var1 in line 7 and in line 9 are bound to both definitions, since

103

CRefactory conservatively allows every combination of conditions to be possible (in

this case, C1 ∧ C2, C1 ∧ ¬C2, ¬C1 ∧ C2, ¬C1 ∧ ¬C2).

1 #if C1
2 int var1;
3 #else
4 double var1;
5 #endif
6 #if C2
7 var1 = get_c2_value();
8 #else
9 var1 = get_non_c2_value();
10 #endif

var1

Specs: int
DefLoc: 2
Uses: { 7, 9 }

Specs: double
DefLoc: 4
Uses: { 7, 9 }

Guarding cond : C1

Guarding cond : ! C1

Figure 5.7: Uses of a symbol binding to more than one definition

When #include directives are involved, computing the set DefSet of definitions

that bind to a use turns more complicated, since #include directives change the

visibility of definitions. We define below the rule of visibility used in CRefactory,

which includes the C notion of visibility but adds to it, to handle file inclusion and

conditional directives. In particular, the standard notion of visibility is extended by

file inclusion directives and restricted by conditional directives.

Rule of Visibility of Definitions. A definition for a symbol N , which is located

at position P inside a scope SC and under condition Cd is visible:

1. Inside SC after P . If SC is a local scope, N is not visible outside SC.

2. In inner scopes of SC that do not contain a redefinition of N . A redefinition of

N is a definition of N under the same condition Cd.

3. If SC is the global scope of a file F and F is a header file, N is visible in all

files that include F directly or indirectly, after the file inclusion (i.e., including

a file makes visible the definitions in that file).

4. If SC is the global scope of a file F , N is visible inside the files that F includes

after P (i.e., including a file makes all current definitions be visible for that file).

104

5. In the four previous sub-rules, visibility is restricted to the pieces of code under

conditions compatible with Cd.

The Rule of Visibility derives from the Cpp implementation of #include as copy-and-

paste, instead of a “module importation” of a language like Java or Maude. The next

section will describe how the Program Repository implements the Rule of Visibility.

Let us see an example. Figure 5.8 shows three files on the left and the result of

preprocessing the file inclusion with Cpp on the right.

-- code in A.h that can use var1

int var1;

-- code in B.h that can use var1

#include “A.h”

int f()
{

++ code in f() that can use var1
 while (i < 3)
 {

== code in while that can use var1
 }
}

#include “B.h”

-- code in X.c that can use var1 int var1;

-- code in B.h that can use var1

-- code in A.h that can use var1 --

int f()
{

++ code in f() that can use var1
 while (i < 3)
 {

== code in while that can use var1
 }
}

FILE X.c

FILE B.h

FILE A.h

COMPILATION UNIT

-- code in A.h that can use var1

-- code in X.c that can use var1

Figure 5.8: Example of visibility with #include directives

Figure 5.8 shows that after preprocessing the #include directives, the definition

of var1 is at the top of the compilation unit, and thus visible in:

1. In the file scope of “B.h”

2. In the inner scopes for function f() and the while block.

3. In “X.c” after the inclusion for “B.h”

4. In “A.h”, which is included by “B.h” after the definition of var1.

105

5.3 The Program Repository

CRefactory’s Program Repository constitutes what Roberts and Brant call “Program

Database” [51], a searchable repository to analyze the preconditions of refactorings.

The class that implements the Program Repository is called CRProgramRepository.

There is a single instance of this class at any time in the system, and this instance is

called CProgramDB. The CProgramDB contains a reference to the initial configuration

received as input (described in Section 4.2) and the Include Dependency Graph (IDG).

Moreover, it has a symbol table of external symbols, i.e., global variables and functions

shared between different source files [26].

The CProgramDB is populated by the ASTInfoCollector while visiting the ASTs.

Inside each ProgramFile in the IDG, the ASTInfoCollector creates modules to repre-

sent each sub-scope. Modules index the AST in the container file and have their

own symbol tables. They are represented by the class CRProgramModule. Concrete

subclasses are CRProgramFile, CRProgramFunction and CRProgramBlock, that is, one

class for each unit of program structure that may have variable declarations. A CR-

ProgramBlock represents a compound statement in the C program. Figure 5.9 shows

the hierarchy of CRProgramModules and the attributes defined in each class.

ast, symbolTable
CRProgramModule

blocks, positionInterval, parent

CRLocalProgramModule

CRProgramBlock

name
CRProgramFunction

name, sourceCode, tokenStream, ...
CRProgramFile

Figure 5.9: Hierarchy of CRProgramModule and attributes of each class

All CRProgramModules have an AST (which may be a reference to a sub-tree)

106

and a symbol table. CRProgramFunctions and CRProgramBlocks are local scopes, and

have a position inside the enclosing (parent) scope. They also have a list of the inner

blocks inside them. CRProgramFunctions are distinguished by the function’s name. A

CRProgramFile has a name, its source code, the token stream created by P-Cpp, and

other attributes presented in the specification given in Chapter 4.

A CRProgramFile knows its inner CRProgramFunctions by way of its symbol ta-

ble. There are actually two classes representing a function: CRFunctionEntry and

CRProgramFunction. Each of them represents different aspects of a function. A CR-

FunctionEntry represents the function as a C symbol, an entry in the symbol table,

whereas a CRProgramFunction represents the scope created by a function. A CRFunc-

tionEntry knows its associated CRProgramFunction and acts as a wrapper around its

CRProgramFunction, i.e., it delegates to the CRProgramFunction all requests it cannot

answer [69]. Table 5.3 shows the attributes that distinguish one representation of a

function from the other.

Table 5.3: Attributes that distinguish a CRFunctionEntry from a CRProgramFunction

CRFunctionEntry name, guardingCondition, defineLocation, uses,
container, isExtern, module

CRProgramFunction name, ast, symbolTable, parent, blocks,
positionInterval

The Program Repository provides answers to various queries during semantic anal-

ysis and refactoring. Some of these queries return scopes of definitions. When the

scope is a file, function or block, the answer is an instance of the corresponding sub-

class of CRProgramModule. However, sometimes a definition affects a set of files, either

because of #include directives or because of external definitions. In the case that the

scope is a set of files, the result of the query is an instance of class CRProgramFileSet.

This class is a subclass of CRProgramRepositoryElement, as it is CRProgramModule.

When the scope of a refactoring is a CRProgramFileSet, the transformation affects all

107

files in the set and they may all get changed. The next section describes the queries

that can be submitted to the Program Repository.

5.4 Queries Answered by the Program Repository

Some of the queries answered by the Program Repository are listed below. The name

of each query in the list is the name of the method in class CRProgramRepository that

implements it.

• allCSymbolsForName: aString underCondition: aCppCond

startingAt: aPgrmModule

This query is sent by the ASTInfoCollector when it finds a use of a symbol. The

query returns all definitions of C language elements to which the use binds,

following the Rule of Visibility defined in the previous section. Specifically,

it returns all CRCLanguageElements with name aString, whose condition is

compatible with aCppCond and that are visible in aPgrmModule.

Figure 5.10 shows the pseudo-code that implements this query, called allCSym-

bolForName() and related subroutines.

Thus, allCSymbolForName() works its way up from the scope where the use

was found (aPgrmModule) until the file scope, collecting definitions for the

symbol named aString. It removes from the set the overwritten definitions

(those definitions for aString under the same condition of a definition already

in defSet). Then it invokes allCSymbolsInFile&Preds&Sucs(). This function

first collects all definitions in the file and its direct and indirect predecessors

in the IDG, by calling allCSymbolsInFile&Preds(). The predecessors of a file in

the IDG are the files it includes. Then the function collects the definitions in

the successors (files that include the current file), and their predecessors and

successors recursively. Note that when including a definition from a different

108

allCSymbolsForName(aString, aCppCond, aPgrmModule, pos)
{

scope := aPgrmModule.
defSet := ∅.
while (scope is not file scope) {

col := allCSymbols(symbolTable(scope), aString, aCppCond, pos).
Remove from col all overwritten definitions (those already in defSet).
defSet := defSet

⋃
col.

scope := parent scope.
}
defSet := defSet

⋃

allCSymbolsInFile&Preds&Sucs(file scope, aString, aCppCond, pos).
return defSet.

}

allCSymbolsInFile&Preds&Sucs(pF ile, aString, aCppCond, pos)
{

defSet := allCSymbolsInFile&Preds(pF ile, aString, aCppCond, pos).
succs := from allDirectSuccessors(idg, pF ile) select those which include

pF ile under a condition compatible with aCppCond.
for each suc ∈ succs {

col := allCSymbolsInFile&Preds&Sucs(suc, aString, aCppCond, pos of include).
for (each def ∈ col) andGuardingCondition(def , guardCond(edge to suc)).
defSet := defSet

⋃
col.

}
return defSet.

}

allCSymbolsInFile&Preds(pF ile, aString, aCppCond, pos)
{

defSet := allCSymbols(symbolTable(pF ile), aString, aCppCond, pos).
preds := from allDirectPredecessors(idg, pF ile) select those included before pos

and under a condition compatible with aCppCond.
for each pre ∈ preds {

col := allCSymbolsInFile&Preds(pre, aString, aCppCond, end-of-file(pre)).
for (each def ∈ col) andGuardingCondition(def , guardCond(edge from pre)).
defSet := defSet

⋃
col.

}
return defSet.

}

Figure 5.10: Pseudo-code for finding definitions binding to a use

109

file, the condition of that definition is the conjunction of its condition in the

symbol table of the file, with the condition of the file inclusion (which is in the

edges of the path to or from the file).

• fileExistsInIDG: aFilename

All refactorings require as input some selection from the user, which is repre-

sented as a pair < aFilename, anInterval >. This query is sent while checking

the preconditions of refactoring, to validate the user input, in particular that

aFilename is a real filename of the loaded program.

• containsReferenceTo: aString interval: anInterval inFile: aFilename

This query is also sent with the previous one in the preconditions of most

refactorings, to check the remaining input from the user. For example, the

input to Rename Variable includes the name of the variable to rename and the

pair < aFilename, anInterval >. This query checks that the location pair

actually contains a reference to the variable to rename (in parameter aString).

• fileIsWriteable: aFilename

The answer to this query is needed by every refactoring, to check that the file or

files affected by the transformation were not specified at load time as read-only.

This prevents changes in a library header file.

• isUniqueDefinitionOfVariable: varName inFile: aFilename inInterval:

anInterval

This query is used to check if the refactoring will affect a single definition of

a variable with name varName that the user has selected at the location speci-

fied by aFilename and anInterval. A refactoring affects a single definition of

varName when there is only one definition of varName as a variable that reaches

the specified location, or when there are multiple definitions of varName but the

user-selected one does not share any uses with the other definitions (i.e., the set

110

of uses does not intersect with the other sets of uses).

Moreover, the location specified by aFilename and anInterval may be in the

variable definition or in a use of the variable. When there are multiple definitions

of varName, if the location is in the variable definition, this query checks that

the definition does not share uses with the other definitions of varName that

are visible in the scope. However, if the location specified in the parameters

represents a use of the variable, the query checks that the selected use binds to

a single definition, from all definitions of varName visible in the scope.

Similar queries exist for other kinds of symbol table entries.

• isDefinitionOfSymbol: sName visibleInFile: aFileName at: pos

This query returns true if there is a definition for sName as a C entity or a

macro, that reaches or is visible at position pos in aFileName. The result of

this query is used by renaming refactorings to check that the new name chosen

by the user does not overwrite or collide with the name of any other defined

entity under any program configurations.

• definitionOfVariable: varName inFile: aFilename at: pos

Once the preconditions of a refactoring checked that there is a single definition

of varName reaching the location specified by aFilename and pos, this query

returns that single definition. That is, it returns a CRVariableEntry for varName

that is either defined or used at the specified location.

Similar queries exist for other kinds of symbol table entries.

• allVariablesNamed: varName visibleIn: scope

When there is more than one definition of a variable, this query is used instead

of the previous one to retrieve the collection of CRVariableEntrys with name

varName that are visible in scope. Similar queries exist for other kinds of

symbol table entries.

111

• contextForPosition: pos inFile: aFilename

It returns the innermost CRProgramModule inside file aFilename that contains

pos. That is, if pos is inside a block, it returns the corresponding CRProgram-

Block. If pos is not inside a block, but it is inside a function, it returns the

corresponding CRProgramFunction. Otherwise, it returns the CRProgramFile

with name aFilename. This query is used in the analysis of many refactoring,

to obtain the scope of the user selection.

• scopeAffectedBy: anSTEntry

This query is sent by several refactorings, to get the scope affected by a change to

anSTEntry. In other words, this query calculates the visibility of the definition

represented by anSTEntry and returns an instance of any of the subclasses of

CRProgramRepositoryElement where the definition is visible.

• unionOfScopesAffectedBy: anSTEntryCol

When a refactoring affects more than one definition, this query is sent to cal-

culate the whole scope affected by the refactoring.

The union of two scopes is calculated in the following way: if one scope is nested

in the other, the result is the outer scope; if both scopes are in the same file

but do not intersect, the result is the whole file; if the scopes belong to different

files, the result is a CRProgramFileSet with the files that contain the scopes.

• changeProgramElement: scope fromAST: ast withChange: aChange

After a refactoring transforms the AST(s) of the affected scope, a ‘Change

object’ is created to update the Program Repository. Change objects belong to

the hierarchy of CRefactoryChange. There is one subclass in this hierarchy for

each kind of refactoring (see next section). Change objects send this query to

the Program Repository with the affected scope, the transformed ast and itself

as arguments. This query pretty-prints the ast back to source code, processes

112

the source code and gets a new AST with updated positions for all tokens,

assigns the new AST to the scope, and finally updates the symbol tables with

the information of the new AST. If scope is a local scope, it is necessary to

process and update the whole file.

5.5 Updating the Program Model

Refactorings are executed by first checking their preconditions and then updating

the Program Model. Preconditions are checked by querying the Program Repository

about specific properties. The update to the Program Model is performed in two

steps:

1. The ASTs of the affected scope are transformed.

In many cases, a ‘Parse Tree Rewriter’ is created to search for a piece of code

in a tree and replace it with a new subtree (like in Rename Variable). In other

cases, a ‘Parse Tree Searcher’ is used to search for certain subtree which is

then manually replaced or deleted (like in Delete Variable). Both ‘Parse Tree

Searcher’ and ‘Parse Tree Rewriter’ work as “Visitors” of the AST [69].

2. Change objects are created to update the Program Repository.

‘Change objects’ are instances of the classes in the hierarchy of CRefacto-

ryChange. There is one subclass in this hierarchy for each kind of refactoring.

Some ‘change’ objects only update the symbol table (like CRenameChange)

while others receive a transformed AST and invoke the updating query in the

Program Repository “changeProgramElement: fromAST: withChange:”.

Depending on the class of change object, there are different strategies to recreate

the symbol table. Specifically, there is a different AST visitor associated with differ-

ent classes of change objects. For example, CDeleteUnreferenceVariableChange uses a

113

CRASTInfoModifier to visit the new AST, whereas CMoveVariableToStructureChange

uses a CRASTInfoModifierRecreatingDeclarations.

The rest of this section is devoted to describe the different classes of ‘Visitors’

of the AST, used by CRefactoring throughout all stages. They are subclasses of

CRProgramNodeVisitor. The first two classes are used when a program is first loaded,

the following two during refactoring and the rest of them are used to update the

Program Model.

CRASTInfoCollector. After a program has been pseudo-preprocessed and parsed

for the first time, a CRASTInfoCollector visits the AST of each file and populates

the Program Repository by creating modules to represent nested scopes inside

each file (CRProgramFunctions and CRProgramBlocks). The CRASTInfoCollector

also creates the entries for CRCLanguageElements in the corresponding symbol

tables.

CRASTUsesModifier. Once the symbol tables have been populated with defini-

tions of all program entities, a CRASTUsesModifier is created to revisit all ASTs

and recalculate the binding of uses to definitions. Uses may bind to more global

definitions at this time when all definitions visible from all include paths are

available.

CRParseTreeSearcher. This class is used during refactoring. It uses one or more

CRSearchRules to find the first subtree matching certain conditions given in the

rules. A CRSearchRule can take some context information to find a match. A

CRParseTreeSearcher also has the ability to perform a given set of actions on

the matched node.

CRParseTreeSearchAll. This is a subclass of CRParseTreeSearcher used to find

all matching subtrees instead of just the first one. For example, during the

refactoring ‘Delete Unreferenced Variable’, a CRParseTreeSearchAll is used to

114

find all declarations for the symbol to be deleted, since there may be more than

one declaration under different configurations.

CRParseTreeRewriter. This is also a subclass of CRParseTreeSearcher. This class

can not only search for subtrees but also replace the matching subtrees by a

new one, following a CRReplaceRule. For example, all renaming refactorings use

a CRParseTreeRewriter to replace the old Identifier node for another one with

the new name.

CRFormatter. When a change object requests the Program Repository to update

a given scope with a transformed AST, the Program Repository first creates an

instance of CRFormatter to pretty-print the AST. The CRFormatter reads the

token labels on leaf nodes and is able to reverse macro expansion and conditional

completion based on those labels. The CRFormatter attempts to do exact pretty-

printing when possible.

CRASTInfoModifier. After the Program Repository requests the CRFormatter to

pretty-print the transformed AST, the new source code is parsed and a new

AST gets built. The next step is to create an AST visitor to update the symbol

tables and program modules. When the positions of symbols and modules is

the only necessary update, the new AST is visited by a CRASTInfoModifier.

CRASTInfoModifierRecreatingDeclarations. Any refactoring that changes dec-

larations (by adding or removing them) requires an instance of this class to

revisit the changed ASTs and reconstruct the symbol tables.

115

Chapter 6

Applying Refactoring

This chapter describes how CRefactory uses its Program Model to execute refactor-

ings. Refactorings are executed by first checking their preconditions, then manipu-

lating the nodes in the AST and finally updating the symbol tables. Preconditions

are checked by querying the Program Model about specific properties. AST manip-

ulation is performed by the Parse Tree Rewriter, which visits subtrees and replaces

them. Change objects update the symbol tables.

Incorporating the ability to handle preprocessor directives in a refactoring tool is

significantly difficult. File inclusion directives extend the scope of program entities.

Macros can be defined and undefined anywhere, their bodies may reference global

program entities and they may have hidden references to entities by using concate-

nation. Conditional directives can create multiple definitions of a program entity, as

described in previous chapters.

The first three sections of this chapter discuss in detail the circumstances in which

we found file inclusion, macros and conditional directives respectively to cause prob-

lems or violate correctness during refactoring. To solve these problems, new precon-

ditions and execution rules must be provided for each refactoring, so that behavior is

still preserved when preprocessor directives are present. The fourth section presents

the enhanced preconditions and transformation steps of a few refactorings. The last

116

section presents new refactorings that apply to Cpp directives.

Although a formal proof of correctness of the proposed preconditions and execu-

tion rules is out of the scope of this work, we carefully describe how these rules handle

the problems introduced by Cpp directives.

6.1 Handling File Inclusion During Refactoring

The #include directive extends the scope of program entities and thus, the refactor-

ings performed in one file may need to be spread to several files. Because of how Cpp

implements file inclusion, a change in a file not only spreads to the files that include

it but also to the files included by it (as explained in Chapter 5).

Therefore, changing a program entity correctly in the presence of #include direc-

tives depends on calculating the exact scope of the refactoring, i.e., the visibility of

the program entity. This is solved at the level of the Program Repository, following

the Visibility Rule defined in Chapter 5.

Another issue with file inclusion is that the user may choose to change a program

entity that is defined in a library file, i.e., a header file which is not supposed or it is

not possible to change. For example, a user should not be able to rename the function

“getc()” defined in “stdio.h”, because that will break all other programs that use that

function.

This issue is solved by having the user list the read-only directories in the input

to CRefactory (see Section 4.2). Then, individual refactorings should check in their

preconditions that the scope of refactoring does not include a file that belongs to a

read-only directory.

117

6.2 Handling Macros During Refactoring

While conditional directives are the hardest to handle at processing time (when the

program is being loaded), macros are the hardest to handle at refactoring time, i.e.,

there are many problems raised by macros that may invalidate a refactoring.

The first five subsections discuss issues that appear from refactoring C code that

has macro calls. Most of these issues cannot be handled by the preconditions of

the refactorings but are instead analyzed during the transformation of the AST. If a

problem is found at that point that invalidates the refactoring, the changes are rolled

back.

The last three subsections talk about the problems of refactoring macro definitions.

6.2.1 Scope of refactoring

When a refactoring is applied to a C language entity, macro definitions may change if

their body refers to that entity. Therefore, the scope of refactoring must be extended

with the body of all macro definitions that are called in that scope.

Conversely, if there is a macro definition in the scope of refactoring but there is

no call to this macro, its body is not included in the refactoring because it is not

possible to recognize if the macro body is actually referencing the changing entity.

This issue is handled during the transformation itself, by checking on the AST

nodes that require changes, if they have a macro call label (i.e., if they come from

macro expansion). If that is the case, a change is required either on the macro

definition (if its body refers to the changing entity) or on the macro call (if the

changing entity was an argument of the macro call).

118

6.2.2 Different contexts calling the same macro

There may be problems when a macro definition refers directly to C program entities,

i.e., when instead of using parameters, the macro has unbound references inside its

body. One of the problems that this may cause happens when a refactoring is applied

to a program entity E, and the body of a macro M is affected by the refactoring

(because M had a reference to E is its body). If there are calls to M from different

scopes, and each scope has a different definition of E, it is not possible to apply

refactoring to a single definition of E.

Figure 6.1 shows an example with two functions, f1() and main(), each one

declaring a variable ‘errstatus’ locally and calling macro ‘ER1’, which refers to

errstatus. Each macro expansion will refer to a different errstatus. If the variable

errstatus defined in f1() is renamed but the body of macro ER1 is not modified,

the call to ER1 in f1() will cause an error of undefined variable in the next compile.

On the contrary, if the macro body is modified renaming errstatus, the call to ER1

in function main() will cause the error of undefined variable.

#define ER1 errstatus = 1

int f1() {
 int errstatus;
 …
 if (bottom < 0)
 ER1;
 …
}

int main() {
 int errstatus;
 …
 if (input == 0)
 ER1;
 …
}

Figure 6.1: Macro referring to different definitions of a variable

Therefore, when a refactoring is applied to a program entity E, and the body of a

macro M is affected by the refactoring (because M had a reference to E in its body),

the scopes of all other calls to M in the entire program should be inspected. If there

119

is another scope in which M is called that has a different definition of E, then the

refactoring cannot proceed.

6.2.3 A macro referring to different uses of the same name

Another problem caused by macros that refer directly to program entities is that

different calls to the macro may refer to entities with the same name but in different

name spaces. In C, the same name may refer to different entities, even in the same

scope and under the same guarding condition, if the references are in different name

spaces [22]. The name spaces in C are:

1. statement labels;

2. structure, union and enumeration tags;

3. fields of structures and unions;

4. all other names (variables, functions, user-defined types and enumeration con-

stants).

For example, Figure 6.2 shows a variation of the code in Figure 6.1, where there

is a structure declaration for ‘Buffer’ that has ‘errstatus’ as a field. The function

f1() declares a variable buff of type Buffer and calls macro ER1 twice. In the first

call, ER1 refers to the variable errstatus, while in the second call, ER1 refers to the

field errstatus of structure buff. Therefore, if for example variable errstatus is

renamed, changing ER1 would give an error in the second macro call, and leaving it

unchanged would give an error in the first macro call. The refactoring is unsafe.

Therefore, when a refactoring is applied to a program entity E, and the body of a

macro M is affected by the refactoring (because M had a reference to E in its body),

all other calls to M in the entire program should be inspected. If any call to M refers

to a different use of E, i.e., to a different overloading class of E, then the refactoring

cannot proceed.

120

#define ER1 errstatus = 1

typedef struct {
 …
 int errstatus;
} Buffer;

int f1() {
 int errstatus;
 Buffer buff;
 …
 if (bottom < 0)
 ER1;
 …
 if (nelems > N)
 buff.ER1;
 …
}

Figure 6.2: Macro referring to different uses of a name

6.2.4 Use of concatenation in macro bodies

There are two special operators that can be used in the replacement text of macros:

‘#’ and ‘##’. We did not find any instance in which ‘#’ would cause a violation of

correctness in refactoring. However, the operator ‘##’ can cause a replacement text

to refer indirectly to a C language entity by concatenating two tokens.

Therefore, when renaming is applied to an entity E, and there is a macro M

called in the scope of refactoring that refers to E indirectly through concatenation

of substrings of the name of E, the refactoring cannot proceed. The reason is that

there is no safe way of modifying M so that it refers to the new name of E without

affecting other calls to M and other results of the concatenation. Figure 6.3 shows

an example where variable errstatus cannot be renamed.

#define ST(VAR) VAR##Status

int main() {
 int errStatus;
 ...
 switch (x)
 case 0: ST(complete) = 1;
 case 1: ST(err) = 1;
 ...
}

Figure 6.3: Macro using concatenation prevents renaming

121

6.2.5 Macros affecting code movement

Macros can be defined, undefined and redefined at any point. Therefore, when a piece

of code is moved, for example during Extract Function, the refactoring preconditions

must include checking that for all the macros called from that piece of code, the defi-

nitions are the same in the new location, i.e., the binding of calls to macro definitions

remains the same.

The next three sections describe problems during refactoring of macro definitions.

Although the refactorings on macro definitions are similar to those that apply for

function definitions, there are important differences as outlined below.

6.2.6 Scope of refactoring of a macro definition

The scope for any refactoring on the signature of a function is generally global to

the application. Instead, macros can be undefined through #undef directives, which

restricts the scope of refactoring to the code from the #define up to the #undef.

Some compilers do not even require a #undef before a new definition of a given

macro.

The Program Repository takes care of computing the correct scope for a macro

(see Section 5.3).

6.2.7 Replacement of macro parameters

In the semantics of the C language, the definition of a function parameter binds to

all uses of parameter name that are in the same name-space, e.g., it does not bind to

a structure field with the same name.

The semantics of Cpp with macro parameters is different. All instances of the

name of a macro parameter in the body of the macro are bound to the parameter.

122

Cpp does not know about name-spaces, it just performs string substitution. For

example, in a macro definition like:

#define M1(x, st) x = st.x

both instances of ‘x’ in the macro body are bound to the macro parameter ‘x’.

6.2.8 Parentheses around macro arguments

When a piece of code is replaced by a call to a macro (in refactorings like ‘Extract

Macro’ or ‘Replace Code with Macro Call’), errors can be caused by the presence

or absence of parentheses around a macro parameter in the body of the macro, or

around an argument in the macro call. For example, Figure 6.4 shows a definition

for a macro SQUARE and an expression below it that is to be replaced by a call to

SQUARE. The correct substitution is the one that encloses the macro argument with

extra parentheses. Behavior would not be preserved otherwise.

#define SQUARE(A) A * A

.... (z+x) * (z+x)

.... SQUARE(z+x)

.... SQUARE((z+x))

Figure 6.4: Parenthesis needed around a macro argument to preserve behavior

Unfortunately, the problem cannot always be solved by adding extra parentheses

to the arguments in the macro call. Sometimes the presence of parentheses in the

body of the macro can make the refactoring ‘Replace Code with Macro Call’ to fail.

Figure 6.5 shows a case in which the piece of code on the right of the figure cannot be

replaced by a call to the macro on the left, because a statement cannot be in between

parentheses (it would cause a compiler error).

Moreover, replacing a piece of code by a call to a macro may not only cause a

compiler error but may also change behavior. An example is given in Figure 6.6. If

123

#define M(e, t) do { r = (t)a++; } \
 while (e != max);

do { r = b++; a++; }
while (b != max);

Figure 6.5: Presence of parenthesis prevents substitution with macro call

the expression ‘*b++’ is replaced by a call ‘INC(*b)’, the expansion of the macro call

would yield (*b)++, which increments the contents pointed to by b instead of the

address of b as originally intended.

#define INC(P) (P)++ h = *b++;

Figure 6.6: Example where introducing a macro call changes program behavior

Last but not least, the presence of a comma in a piece of code can make it im-

possible to replace the code by a macro call. Figure 6.7 shows a definition for macro

DECL(X) on the left and a declaration on the right that cannot be replaced by a call

to DECL(X). The reason is that, if parenthesis are not added to the argument in the

macro call, preprocessing would fail since it would appear as a call with two argu-

ments. Conversely, if parenthesis are added to the argument in the macro call, the

expansion of the macro would yield a compiler error.

#define DECL(X) int X;
int a, b;

DECL(a, b)

DECL((a, b))

Figure 6.7: Presence of comma prevents substitution with macro call

124

6.3 Handling Conditional Directives During Refac-

toring

This section presents two issues that arise during refactoring of C code with condi-

tional directives. As we have stated before, a refactoring is considered correct if and

only if it is correct for all possible system configurations.

6.3.1 Multiple definitions for a program entity

When a program entity has multiple definitions under different configurations, some

refactorings may apply to a single definition while other must be applied to all defi-

nitions to preserve behavior, depending on the type of refactoring and on the degree

of intersection between definitions.

On the one hand, there are refactorings like ‘Replace Type’ that make sense when

applied to a single definition. On the other hand, a refactoring like ‘Rename’ can

only be applied to a single definition if the uses of the definition do not bind to

other definitions, i.e., if there is no intersection between the set of uses of different

definitions. Yet there are other refactorings like ‘Delete Unreferenced Variable’, which

apply to a subset of definitions of the variable, all those that have no uses.

6.3.2 Conditionals affecting code movement

When moving code to a new function or a new file, there are two important consid-

erations:

1. If the code being moved includes one or more conditional directives, the code

must include the whole Cpp conditional construct(s) to which the individual

directives belong.

125

2. The code being moved should be placed under the same condition that it was

before.

For example, if in the code of Figure 6.8, a user selects lines 6 to 9 to be extracted

into a new function, it would break the Cpp conditional construct that starts in line

7 and ends in line 12. On the other hand, if the user selects lines 8 and 9, the

new function must be enclosed by Cpp conditional with a branch for ‘defined X1’

surrounding those two lines. Note that variable q is only defined if ‘defined X1’.

1 #ifdef _X1
2 int q;
3 #endif
4
5 int f1() {
6 nelems++;
7 #ifdef _X1
8 q+= j;
9 nelems-= q;
10 #else
11 nelems*= j;
12 #endif
13 }

Figure 6.8: Extract function with conditional directives

6.4 Refactorings on C Code

In a previous work [16], we have proposed a catalog of refactorings applicable to C

code. The refactorings are grouped into four major categories. Table 6.1 shows the

list of refactorings with minor changes to the original version. The description of each

refactoring can be found in [16].

The next three subsections describe precisely the enhanced preconditions and

transformation steps of three representative refactorings in the catalog. Afterwards,

some ideas are presented on how to handle the other refactorings in the catalog.

126

Table 6.1: Refactorings for the C language

1.Adding a program entity Add variable
Add parameter to function
Add typedef definition
Add field to structure
Add pointer to variable

2.Removing a program entity Delete unreferenced variable
Delete unreferenced parameter
Delete unreferenced function

3.Changing a program entity Rename variable
Rename user-defined type
Rename structure field
Rename function
Replace type
Contract variable scope
Extend variable scope
Replace value with constant
Replace expression with variable
Change to pointer
Change from pointer
Convert global variable into parameter
Reorder function arguments

4.Complex refactorings Group variables in new structure
Move variable into structure
Extract function
Inline function
Consolidate conditional expression
For into while
While into for

6.4.1 Delete unreferenced variable

After a program has been changed a number of times, some variables may become

unused. However, programmers may resist deleting their definitions if they are unsure

whether the variable is used in some particular configuration. This refactoring allows

deleting only those definitions of the variable that have no uses under any possible

configuration.

127

Input values:

1. The name of the variable to be deleted (varName).

2. The position interval (interval) in a file (filename) that contains the user

selected reference to varName.

Preconditions:

Opdyke [2] describes the precondition of this refactoring as:

referencesTo(varName) = ∅

When multiple configurations of a program are considered, varName can have more

than one definition. CRefactory allows deleting those definitions of varName that have

no references, even when other definitions of varName are used in other configurations.

In terms of CRefactory’s analysis functions, this precondition is expressed as shown

in Figure 6.9.

preconditions

scopeOfSelection := CProgramDB contextForPosition: interval first inFile: filename.

^(((CProgramDB fileExistsInIDG: filename)

and: [CProgramDB fileIsWriteable: filename])

and: [CProgramDB containsReferenceTo: varName interval: interval inFile: filename])

and: [(CProgramDB allVariablesNamed: varName visibleIn: scopeOfSelection)

contains: [:entry | entry uses isEmpty]

Figure 6.9: Preconditions of Delete Variable

Figure 6.9 shows the Smalltalk code for method preconditions in class CDelete-

VariableRefactoring. The first line of the method assigns to the instance variable

scopeOfSelection the result of sending the message ‘contextForPosition:inFile:’

to the object in CProgramDB (the only instance of class CRProgramRepository).

The first argument of the message is ‘interval first’ and the second argument is

‘filename’. The ‘^’ in the following line returns the result of the statement that fol-

lows, which will be a Boolean value. That Boolean value is obtained by sending the

subsequent messages to the CProgramDB and applying the conjunction of the results

128

with the message and:. The message and: expects a block as argument. A block

in Smalltalk is a closure, a piece of code with deferred execution, specified between

square brackets. A block may have parameters, specified between ‘:’ and ‘|’ inside

the block. An example is the parameter entry in the block that is the argument to

the message contains: in the last line. That parameter will take the value of each

element in the collection returned by the message ‘allVariablesNamed:visibleIn:’

of the previous line. The message contains: evaluates the block on each element

and returns true if there is any element that complies with the block. In this case,

it will return true if there is a definition of varName as a variable that has no uses.

Transformation:

If varName has more than one definition under different branches of a Cpp conditional,

the refactoring must check which of those definitions have no references and can

be safely removed. Figure 6.10 shows the pseudo-code for the mechanics of this

refactoring.

performRefactoring

defCol := (CProgramDB allVariablesNamed: varName visibleIn: scopeOfSelection)

select: [:entry | entry uses isEmpty].

guardingConditions := defCol collect: [:def | def guardingCondition].

scope := CProgramDB unionOfScopesAffectedBy: defCol.

self delete: (self getAllDeclaratorNodes).

self createChangeObjects

delete: allDeclarators

allDeclarators do:

[: declarator |

self deleteDeclaratorOrDeclaration: declarator]

Figure 6.10: Performing Delete Variable

The refactoring first gathers in defCol all definitions of varName to be deleted.

The next statement returns the collection of guarding conditions of each definition

in defCol. The scope affected by the refactoring is then calculated by sending the

message unionOfScopesAffectedBy: to the CProgramDB (see Section 5.4). The

keyword self in the next line refers to the same receiver of the current message,

that is, the instance of CDeleteVariableRefactoring that is being performed. Method

129

getAllDeclaratorNodes is first invoked to find all declarators for varName in the

scope, and this result becomes the argument of the message delete:. Method

delete: iterates through all the declarators for varName and deletes each one by

calling deleteDeclaratorOrDeclaration:, which may just delete the declarator or,

if it was the only one in the declaration, delete the whole declaration.

To find all declarators for varName, method getAllDeclaratorNodes constructs a

CRParseTreeSearchAll that, given an AST, is able to find all declarators of varName un-

der any of the conditions in the set guardingConditions. The CRParseTreeSearchAll

is then requested to find all declarators in each of the ASTs of the scope.

Going back to performRefactoring, after the ASTs have been replaced, the mes-

sage createChangeObjects creates an instance of CDeleteVariableChange to update

the Program Repository. This change object will first remove the corresponding def-

initions of varName from the symbol tables and then create a CRASTInfoModifier to

modify the positions of every other element in the Program Repository.

This refactoring may leave a Cpp conditional branch empty, if the deleted def-

inition or declaration of varName was the only thing in the branch. We leave the

decision to the user to apply the refactoring “Delete empty branches of Cpp condi-

tional”, which, given a Cpp conditional, removes the branches that are left empty.

6.4.2 Rename variable

Renaming a variable is probably the best known and used refactoring. In CRefactory,

there are two versions of Rename Variable: Single Rename and the Multiple Rename.

If the user chooses the Single Rename, it means she wants to rename a single definition

of the variable. If instead she chooses the Multiple Rename, the refactoring will

rename all definitions of the variable that are compatible with the user selection

(as previously, the use of the word “compatible” here means compatible guarding

conditions).

130

Input values:

1. The name of the variable to be renamed (oldName).

2. The position interval (interval) in a file (filename) that contains the user-

selected reference to oldName. This reference may be a use of the variable or

part of the variable definition.

3. The new name for the variable (newName).

Preconditions:

Figure 6.11 shows the preconditions for the Single Rename and Multiple Rename

versions of Rename Variable.

preconditionsSingleRename

((((CProgramDB fileExistsInIDG: filename) and: [CProgramDB fileIsWriteable: filename])

and: [CProgramDB containsReferenceTo: oldName interval: interval inFile: filename])

and: [CProgramDB isUniqueDefinitionOfVariable: oldName inFile: filename inInterval: interval])

and: [(CProgramDB isDefinitionOfSymbol: newName visibleInFile: filename at: interval first) not]

preconditionsMultipleRename

(((CProgramDB fileExistsInIDG: filename) and: [CProgramDB fileIsWriteable: filename])

and: [CProgramDB containsReferenceTo: oldName interval: interval inFile: filename])

and: [(CProgramDB isDefinitionOfSymbol: newName visibleInFile: filename at: interval first) not]

Figure 6.11: Preconditions of Rename Variable

The first two lines of the preconditions are the same in both cases, and are self

explanatory. The last line is also the same in both cases, and represents the standard

precondition of Rename Variable, which is that the new name does not clash with

any other symbol in the scope [2].

The added precondition in the case of Single Rename is that the definition of

oldName that the user selected is unique. What this means is that either:

• there is a single definition of oldName in the scope, or

• there are multiple definitions of oldName but the selected definition for rename

does not share any uses with the other definitions (i.e., the set of uses does not

intersect with the other sets of uses).

131

The issues discussed in Section 6.2 that appear with macros are not addressed

in the preconditions but during the transformation, as it is described in the next

subsection. If the refactoring is found to be incorrect at that point, changes made so

far are rolled back.

Transformation:

Figure 6.12 shows the code for method performRefactoring in the case of Single

Rename.

performRefactoring

selectedDef := CProgramDB definitionOfVariable: oldName inFile: filename at: interval first.

guardingConditions := OrderedCollection with: selectedDef guardingCondition.

scope := CProgramDB scopeAffectedBy: selectedDef.

self renameIn: scope.

self checkAllMacroCallsChanged.

self createChangeObjectsAndReplaceMacro

renameIn: aPgrmRepElem

| astReplacer |

astReplacer := self replacer.

aPgrmRepElem isFileSet

ifFalse: [astReplacer executeTree: aPgrmRepElem ast]

ifTrue: [aPgrmRepElem files do: [:file| astReplacer executeTree: file ast]].

replacer

^(CRParseTreeRewriter new)

replace: oldName

withValueFrom:

[:aNode |

| macroCall |

aNode token isMacroDerived

ifTrue:

[((macroCall := aNode token macroCall) argumentsReferTo: oldName)

ifTrue: [macroCall replaceReferenceInArg: oldName with: newName]

ifFalse:

[(macroCall anyDefinitionUsesConcatOn: oldName)

ifTrue:

[^self refactoringErrorNeedsRollback: ’Macro uses ## on ’,oldName].

self addChangedMacro: macroCall.

aNode]]

ifFalse:

[CRIdentifierNode value: ((aNode token) value: newName; start: nil)]].

when:

[:aNode |

(aNode isField not and: [aNode isLabel not])

and: [selectedDef isInInterval: (aNode startPosition to: aNode stopPosition)]];

avoidRedefinitionsOf: oldName

Figure 6.12: Performing Rename Variable

The preconditions already checked that there is a unique definition of oldName

selected by the user, so the first step in performRefactoring is to get this defini-

132

tion. The guarding condition of the selected definition is stored and then it calculates

the affected scope. Method renameIn: is called with the affected scope as parame-

ter. That method creates a “replacer” of the AST (returned by method replacer)

and, depending on whether there is a single AST or more, it sends the message

executeTree: to the replacer on the single AST of the scope or on each of the ASTs,

which will perform the changes. The next step in performRefactoring is to check

that the replacer visited all calls to the macros that needed changes, thus addressing

the problems described in Section 6.2.2 and Section 6.2.3. If there were unvisited

macro calls, an error is raised declaring the refactoring as invalid and changes to

the ASTs are rolled back. Otherwise, change objects are created in the last step to

change the affected macros definitions and update the Program Repository from the

new ASTs. The change objects associated with Rename Variable are instances of

CRenameVariableChange.

In the replacer method the parameter to the keyword “when:” is a block that

tells which nodes should be visited. In this case, those representing an identifier for

oldName that is not a a field of a structure nor a label, and that represent a reference

to the selected definition. The parameter to the keyword “withValueFrom:” is a

block that tells how are nodes replaced. If the node derives from a macro, it first

checks if it was an argument of the macro. Otherwise, it checks if oldName comes

from the use of concatenation in the macro body, and in this case the refactoring is

aborted and all changes performed to the ASTs so far are rolled back. This addresses

the issues with macros discussed in Section 6.2.

The case for Multiple Rename is very similar, although there will not be a “selected

definition” but a set of them, and the affected scope will be the union of scopes, like

in the implementation of Delete Variable.

133

6.4.3 Move variable into structure

A variable defined outside any structure is moved inside one, so that it becomes a field

of the structure. This refactoring is useful when creating a structure out of global

variables. The next steps are to add a pointer reference to this structure and to pass

the pointer as argument to the functions, thus reducing the use of global variables in

the program.

Input values:

1. The name of the variable to be moved (varName).

2. The interval (varInterval) in a file (varFile) that contains the user-selected

reference to varName.

3. The name of the structure (structName) where the variable is to be moved.

Preconditions:

Figure 6.13 shows the preconditions for this refactoring. Once the input values are

checked as in previous refactorings, the preconditions are split in two cases: 1. There

is a single definition of varName, and 2. There are multiple definitions of varName.

In the case when there is a single definition of the variable, there must also be a

single definition of the structure, and they either must have the same guarding con-

dition or the guarding condition of the structure must be a TrueCondition. Moreover,

message checkNotFieldAndInnerScopeOf:in: checks that varName is not already a

field in the structure and that its scope is included in the scope of the structure. The

message checkStructVarForEachVarUse checks that at each use of varName, there

is a way to refer to an instance of the structure so that:

∀ui ∈ uses(defV ar) : ∃SV ar : (refers(type(SV ar) = defSt))

∧ (guardingCondition(SV ar) = guardingCondition(ui))

∧(scope(SV ar) ⊇ scope(defV ar))

134

preconditions

scopeOfSelection := CProgramDB contextForPosition: varInterval first inFile: varFile.

((((CProgramDB fileExistsInIDG: varFile) and: [CProgramDB fileIsWriteable: varFile])

and: [CProgramDB containsReferenceTo: varName interval: varInterval inFile: varFile])

and: [(CProgramDB allStructsNamed: structName visibleIn: scopeOfSelection) notEmpty])

ifFalse: [^false].

(CProgramDB isUniqueDefinitionOfVariable: varName inFile: varFile inInterval: varInterval)

ifTrue: [^self preconditionsSingleDefVar]

ifFalse: [^self preconditionsMultDefsVar]

preconditionsSingleDefVar

| defVar defSt |

(CProgramDB isUniqueDefinitionOfStruct: structName visibleIn: scopeOfSelection)

ifFalse: [^false].

defVar := CProgramDB definitionOfVariable: varName inFile: varFile at: varInterval first.

defSt := CProgramDB definitionOfStruct: structName visibleIn: scopeOfSelection.

^((defVar guardingCondition = defSt guardingCondition) or: [defSt guardingCondition isTrue])

and: [self checkNotFieldAndInnerScopeOf: defVar in: defSt]

preconditionsMultDefsVar

| defsVar defSt defsSt |

defsVar := CProgramDB allVariablesNamed: varName visibleIn: scopeOfSelection.

(CProgramDB isUniqueDefinitionOfStruct: structName visibleIn: scopeOfSelection)

ifTrue:

[defSt := CProgramDB definitionOfStruct: structName visibleIn: scopeOfSelection.

^(defSt guardingCondition isTrue) and: [defsVar do:

[: eachVar | (self checkNotFieldAndInnerScopeOf: eachVar in: defSt)

ifFalse: [^false]]]]

ifFalse:

[defsSt := CProgramDB allStructsNamed: structName visibleIn: scopeOfSelection.

^(defsVar size = defsSt size) and: [defsVar do:

[: eachVar |

defsSt detect: [:st | st guardingCondition = eachVar guardingCondition

and: [self checkNotFieldAndInnerScopeOf: eachVar in: st]]

ifNone: [^false]]]].

^true

checkNotFieldAndInnerScopeOf: defVar in: defSt

scopeVar := CProgramDB scopeAffectedBy: defVar.

scopeSt := CProgramDB scopeAffectedBy: defSt.

^(defSt includesField: varName) not]) and: [scopeSt includesScope: scopeVar])

and: [self checkStructVarForEachVarUse]

Figure 6.13: Preconditions of Move Variable Into Structure

In the case when there are multiple definitions of varName, there are again two

cases:

• There is a single definition of structName and for each definition of varName,

the checks in checkStructVarForEachVarUse hold, or

• There are as many definitions of varName as there are of structName, and the

checks in checkStructVarForEachVarUse hold for each pair of definitions with

the same condition.

135

Transformation:

Figure 6.14 shows how this refactoring is performed in the case when there is a single

definition of varName.

performSingleDefVar

defVar := CProgramDB definitionOfVariable: varName inFile: varFile at: varInterval first.

defSt := CProgramDB definitionOfStruct: structName visibleIn: scopeOfSelection.

self moveVar: defVar intoStruct: defSt

moveVar: defVar intoStruct: defSt

| nodeVar nodeSt |

scope := CProgramDB scopeAffectedBy: defSt.

nodeVar := self searchForVar: defVar inASTOf: scope.

nodeSt := self searchForStruct: defSt inASTOf: scope.

(defSt guardingCondition = defVar guardingCondition)

ifTrue: [self moveNode: nodeVar into: nodeSt]

ifFalse:

["means guardingCondition of defSt is true"

self insertCondIf: (defVar guardingCondition) into: nodeSt.

self moveNode: nodeVar into: nodeSt.

self insertEndifInto: nodeSt].

self replaceUsesOf: defVar withAccessTo: defSt

Figure 6.14: Performing Move Variable Into Structure

In the code of Figure 6.14, message searchForVar:inASTOf: constructs a CR-

ParseTreeSearcher that finds the node representing the declaration of defVar in the

AST(s) of the scope. Similarly, the message searchForStruct:inASTOf: returns

the node representing the declaration of defSt. When message moveNode:into: is

called, the node for the declaration of varName is moved as the last field of the node for

defSt. In the case when the guarding condition of defSt is a TrueCondition, nodeVar

is surrounded by a Cpp conditional with one branch for the guarding condition of

defVar.

The message replaceUsesOf:withAccessTo: will replace every use of varName by

a reference to “structVar.varName”, where structVar represents the way to refer to

an instance of defSt in the scope (that should be unique). Note that structVar may

be a variable or a parameter of type ‘struct structName’ or ‘struct *structName’,

etc.

The case when there are multiple definitions of varName will just consist of calling

136

moveVar:intoStruct: several times, for each appropriate combination of defVar and

defSt.

6.4.4 Other refactorings on C code

This section presents, for each category of refactorings in Table 6.1, a high-level

discussion of the issues that Cpp may introduce and that should be addressed in the

preconditions or transformations of the refactorings.

1. Adding a program entity. This category of refactorings is probably the

easiest to implement even in the presence of Cpp directives, since the entities

introduced are new to the program. The only consideration is, like in the case of

‘Rename variable’ (Section 6.4.2), making sure that the name of the new entity

is not used in the scope, which may include more than one file and a particular

configuration, and also includes macro definitions.

2. Removing a program entity. Section 6.4.1 describes the refactoring ‘Delete

unreferenced variable’ in detail. The other two refactorings in this category

should look very similar. In the case of ‘Delete unreferenced parameter’, a

further step is necessary to transform all calls to the function in which the

parameter is deleted, removing the corresponding actual argument.

3. Changing a program entity. Section 6.4.2 describes the first refactoring of

this category, ‘Rename variable’, in detail. The other rename refactorings look

very similar. The only difference in ‘Rename field’ is that it requires the parse

tree to be typed-checked before applying the transformation. The reason is that

every structure creates a separate name space, and the refactoring should only

apply to the selected structure. In other words, fields with the same name of

the one being renamed but in a different structure, should not be renamed.

137

The refactoring ‘Replace type’ is discussed in [2] under the name ‘change type’.

Basically, the preconditions ensure type safe assignments. The only additional

remark is that assignments should be checked for type safety under all possible

configurations.

The refactorings ‘Contract variable scope’ and ’Extend variable scope’ involve

code movement (the movement of the variable definition). Therefore, the issues

discussed in Section 6.2.5 about macros affecting code movement, and those in

Section 6.3.2 about conditionals affecting code movement, should be addressed

to implement these refactorings.

Refactorings that add or remove a level of indirection: ‘Change to pointer’ and

‘Change from pointer’ respectively, require some specific checks on the macros

involved in the transformation, if any. On the one hand, these refactorings

should check that all macro calls are changed in the same way, just like in

‘Rename variable’, to address the issues discussed in Sections 6.2.2 and 6.2.3.

On the other hand, parentheses are necessary when an address operator (&) or

indirection operator (*) is added, and if macros are involved, they may bring

the issues discussed in Section 6.2.8 about the use of parentheses in macros.

The other refactorings in this category should not bring further issues that the

ones already discussed.

4. Complex refactorings. The first refactoring in this category, ‘Group variables

in new structure’, is similar to the second, ‘Move variable into structure’, which

was presented in detail in Section 6.4.3. Nevertheless, the first is easier to

implement because it adds a new structure definition and variable(s), instead

of having to deal with existing, and possibly multiple, structure definitions.

Many of the issues that may arise during ‘Extract function’ are discussed in the

first three sections of this chapter. Moreover, ‘Inline function’ and ‘Consolidate

138

conditional expression’ (which joins adjacent cases in a switch) involve code

movement and therefore share similar issues.

The last two refactorings, ‘For into while’ and ‘While into for’ should not bring

additional complications.

6.5 Refactorings on Cpp Directives

This section presents new refactorings that apply on #include, #define and condi-

tional directives. In general, the refactorings in this section are simpler than the ones

in the previous section, because they mostly deal with the language of Cpp, whereas

the refactorings on C code need to deal with two languages: C and Cpp.

Table 6.2 shows a list of refactorings that we propose for preprocessor directives.

Table 6.2: Refactorings on preprocessor directives

Add file and #include
Remove #include
Rename macro
Rename macro parameter
Add macro parameter
Remove macro parameter
Extract macro
Inline macro
Remove condition
Complete Cpp conditional
Move common code outside Cpp conditional

The following subsections describe two refactorings for each Cpp directive. Since

these refactorings are simpler, their description is not as detailed as in the previous

section. Their correctness follows easily from observing that the output of Cpp is the

same before and after applying the refactoring.

139

6.5.1 Add file and #include

The user selects a piece of code to be moved into a new file. A #include directive of

the new file in inserted at the place of the selection.

Input values:

1. Text to be moved into a new file (text).

2. The interval (interval) in a file (filename) that contains the text.

3. The name of the new file (newFilename).

Preconditions:

The name newFilename should not be used already by another file in the same di-

rectory. Moreover, the selected piece of code should be a complete syntactical unit.

This precondition assures that the end result is still a valid input for P-Cpp, which

requires each file to be parseable on its own (see Section 4.2).

Transformation:

The refactoring cuts the selected text out of file filename and in its place adds

a line: #include ‘‘newFilename’’. Then the refactoring creates a new file with

name newFilename, in the same directory as filename and pastes the selected text

in it. Finally, two changed objects will be created: one to re-process filename and

re-create its symbol table, and the other to add newFilename to the IDG, process it

and create its symbol table.

This refactoring preserves behavior because the resulting code after preprocessing

will be the same than before the refactoring was applied. That is, Cpp will replace

the new #include line with the code of file newFilename, leaving the source code

exactly as it was before the refactoring. The precondition also ensures that there are

no side effects of newFilename clashing with an existing file name.

140

6.5.2 Remove file and #include

A file is removed from the set of program files and each #include directive for that

file is replaced by its text.

Input values:

1. The complete name of the file to be removed (filename).

Preconditions:

The only precondition is that a file with name filename is part of the program, i.e.,

exists in the IDG.

Transformation:

The first step is to search for the Program File with name filename in the IDG (let

us call it PF). Its direct successors in the IDG are the files that have a #include

directive to include it, so the next step is to visit the ASTs of all direct successors of

PF and replace the node representing the #include line by the AST of PF . Then

PF is removed from the IDG. Change objects are finally created for each modified

file, to re-process the file entirely.

Applying this refactoring is like preprocessing the #include directive. Therefore,

the code before and after this refactoring is equivalent at parsing time, and so there

is no change of behavior.

6.5.3 Rename macro

In the same way that a variable or a function can be renamed, so a macro can be

renamed. Moreover, there are also two versions of this refactoring: Single Rename

and Multiple Rename, depending on whether the user chooses to rename a single

definition of the macro or all definitions of the macro.

141

Input values:

1. The name of the macro to be renamed (oldName).

2. The position interval (interval) in a file (filename) that contains the user-

selected reference to oldName.

3. The new name for the macro (newName).

Preconditions:

The preconditions of this refactoring are very similar to the preconditions of ‘Rename

variable’. The only difference is that, in the case of Single Rename, instead of calling

the method isUniqueDefinitionOfVariable:inFile:inInterval:, it will be calling the method

isUniqueDefinitionOfMacro:inFile:inInterval:

Transformation:

The transformation is also similar to ‘Rename variable’, although the Parse Tree

Rewriter differs. The Parse Tree Rewriter will not be searching for Identifier nodes in

this case, because uses of the macro are not represented as nodes but as node labels.

Furthermore, uses of the macro (i.e., macro calls) do not store the name of the macro

but instead obtain the name from the macro definition to which they bound.

Therefore, changing the macro definition is enough, except for one case: if the

macro name is present in the body of another macro, it is necessary to change the

text of the other macro. Consequently, the Parse Tree Rewriter searches for macro

definition nodes and replaces their names or their body.

6.5.4 Rename macro parameter

This refactoring replaces the name of a formal parameter in a single macro definition.

If other macro definitions with the same name appear under other configurations,

they are not affected in the refactoring.

142

Input values:

1. The name of the parameter to be renamed (oldName).

2. The position interval (interval) in a file (filename) that contains the user-

selected reference to oldName.

3. The new name for the parameter (newName).

Preconditions:

The preconditions are very simple in this case, because the scope is confined to the

macro definition. The preconditions are that the input values are correct and that

the newName is not used in the macro definition (by another parameter or in the

replacement text).

Transformation:

There is a single node to replace in this case, the node for the macro definition

to which the parameter belongs. The macro definition is transformed by replacing

the parameter name in the parameter list and replacing all occurrences of the name

oldName in the body of the macro. Note that this differs from function parameter

renaming, where a different use of oldName would remain unmodified.

The argument for behavior preservation is the same as in the previous refactoring,

as changing the name of a parameter does not change the macro’s behavior or the C

preprocessor output.

6.5.5 Remove condition

When a configuration is discontinued, this refactoring allows removing all Cpp con-

ditional branches for certain condition that identifies the discontinued configuration.

143

Input values:

1. The text for the condition to be removed from the Cpp conditionals of the

program (cond).

Preconditions:

None, but the user is responsible for making sure that the configuration will not be

used in the future.

Transformation:

All ASTs of the program will be searched for nodes representing a conditional directive

with condition cond. The branches created by those conditional directives should be

removed from the Cpp conditional construct in which they appear.

Figure 6.15 uses Maude’s rewrite rules to describe how a Cpp conditional is re-

placed when the branch with condition ‘X’ is eliminated. The module in Fig. 6.15

uses the sort TOKEN defined in Chapter 3.

mod RULES-REM-COND is

pr TOKEN .

op <_> : TokenSequence -> State [ctor] .

vars X Y TS1 TS2 TS3 : TokenSequence .

rl [ifChangeElse] : < ’#if X TS1 ’#else TS2 ’#endif > => < ’#if !X TS2 ’#endif > .

rl [ifChangeElif] : < ’#if X TS1 ’#elif Y TS2 ’#endif> => < ’#if Y TS2 ’#endif > .

rl [elseRem] : < ’#if !X TS1 ’#else TS2 ’#endif > => < ’#if !X TS1 ’#endif > .

rl [elifRem] : < ’#if Y TS1 ’#elif X TS2 ’#elif TS3 ’#endif >

=> < ’#if Y TS1 ’#elif TS3 ’#endif > .

rl [elifRemElse] : < ’#if Y TS1 ’#elif X TS2 ’#else TS3 ’#endif >

=> < ’#if Y TS1 ’#else TS3 ’#endif > .

rl [ifRem] : < ’#if X TS1 ’#endif > => < nil > .

endm

Figure 6.15: Rules for Remove Condition

6.5.6 Complete Cpp conditional

With this refactoring, a Cpp conditional is transformed so that its branches are

complete syntactical units.

144

Input values:

1. Location of the Cpp conditional to be completed.

Preconditions:

None.

Transformation:

This refactoring “externalizes” the internal transformation that P-Cpp does on Cpp

conditionals when running the Conditional Completion Algorithm (see Section 4.5.5).

Since Cpp conditionals are already completed in the abstract syntax tree, this refac-

toring only requires changing the labels assigned by the Conditional Completion Al-

gorithm to the nodes in the tree. All nodes inside the Cpp conditional should be

labelled as ‘not-moved’, so the pretty-printer will print them at the current place.

145

Chapter 7

Quantitative Evaluation of

CRefactory

CRefactory is implemented in VisualWorks SmalltalkTM . The refactoring engine

mimics the design of the Smalltalk Refactoring Browser [7]. This chapter provides

a quantitative analysis of the program representations built by CRefactory when

loading some open-source packages. These metrics show that, in practice, conditional

completion does not appear to produce an exponential growth of the representation

of programs.

All these tests were run on a Linux platform with a 2.4GHz processor.

7.1 Results on rm

The source code for rm is contained in a single source file: “rm.c”. When this source

file was loaded in CRefactory, it included 94 header files, although only 20 of them

belong to the same package and are therefore modifiable (the others are GCC library

headers). Note that all these headers are included when considering all possible

configurations, only excluding false conditions (which account to 12 conditions, mostly

to disallow GCC extensions that CRefactory still does not support, such as variable

146

and function attributes [66]).

Table 7.1 shows the results on all program files and on the 20 files in the rm

package separately. It took 12 seconds to load the whole program in CRefactory,

which includes 9 seconds of pseudo-preprocessing time.

Table 7.1: Metrics on rm

All files ‘rm’ package

Number of files 94 20
Size 556 Kb 104 Kb
Number of Cpp conditionals 1182 262
Number of Cpp conditionals introduced by 41 30
macro expansion
Number of incomplete Cpp conditionals 41 30
Perc. of code growth after conditional completion 3% 18%
Maximum level of nesting of Cpp conditionals 23 3
Percentage of conditional definitions 48% 24%
Number of macros defined 2131 516
Number of macros with 1 definition 2028 497
Number of macros with 2 definitions 94 19
Number of macros with 3 definitions 7 0
Number of macros with 6 and with 7 definitions 1 0
Number of symbols defined as macros and functions 66 2
Number of symbols defined as macros and variables 6 0

There is one header file in the package: system.h, that alone contains 166 out

of the 262 Cpp conditionals. It contains many macro definitions (31% of all macro

definitions in the package). We can infer that this file is highly configurable and so,

difficult to maintain.

From the total of 262 Cpp conditionals in the rm package, 30 were introduced by

P-Cpp due to macro expansion (i.e., because of calls to macros with more than one

definition). All of these Cpp conditionals and only those were incomplete. Therefore,

all Cpp conditionals present in the source code of the rm package are complete, which

speaks very well of the readability of the source code. Moreover, 27 out of the 30

Cpp conditionals introduced by P-Cpp appear in a single file: rm.c. Since all of these

147

conditionals had to be completed, the tokenized representation of rm.c grew 57%

after conditional completion. Regarding standard library files, all Cpp conditionals

in their source code were also complete.

The depth of nesting of Cpp conditionals in the rm package is low, so the source

code is not complex in that sense. However, the percentage of symbol definitions

that depend on configuration variables (i.e., conditional definitions) is rather high.

Considering all possible configurations simultaneously is therefore very important to

be able to modify this code.

The macro that has 6 definitions in the program is LONG_BIT and the one with 7

definitions is WORD_BIT, both defined in file ‘/usr/include/bits/xopen_lim.h’. Al-

though it would be complex to expand and complete a conditional with 6 or 7 branches

inside a possible complicated expression, these macros are not used or referenced in

the program.

One of the symbols defined as a function under one configuration and as a macro

under another configuration in a different header file is getopt. Refactoring this

symbol or the code that uses it would be difficult without a tool that can spot these

double definitions and check for possible problems.

7.2 Results on Flex

The source code for Flex is contained in 13 source files. However, two of them are

automatically generated from grammar specifications. Loading Flex involved loading

54 files, but Table 7.2 shows the results obtained on the 11 source files that are not

auto-generated plus the 4 headers in the Flex package (i.e., all the modifiable files).

Table 7.2 shows that the Flex package is not too complex in terms of Cpp condi-

tionals. As with the previous case, all incomplete Cpp conditionals were introduced

by P-Cpp due to macro expansion.

148

Table 7.2: Metrics on Flex

Number of files 15
Size 245 Kb
Number of Cpp conditionals 36
Number of Cpp conditionals introduced by 9
macro expansion
Number of incomplete Cpp conditionals 9
Perc. of code growth after conditional completion 1%
Maximum level of nesting of Cpp conditionals 1
Percentage of conditional definitions 2%
Number of macros defined 134
Number of macros with 1 definition 134
Number of symbols defined as macros and functions 0
Number of symbols defined as macros and variables 0

The files that have the most conditional directives are flexdef.h, main.c and

misc.c. File flexdef.h has 15 Cpp conditionals, all present in the source code

and all complete. In the case of misc.c, 5 out of 7 Cpp conditionals come from

macro expansion. The tokenized representation of misc.c grew 4% after conditional

completion. The file that grew the most was yylex.c, with a growth of 7%.

There is no nesting of the Cpp conditionals in the Flex package, although the

maximum level of nesting is 23 when counting library files.

There is one unreferenced variable in the package: copyright, defined under

condition ¬defined(lint).

7.3 Results on linux/init/main.c

In this test case, the file ‘init/main.c’ of the Linux Kernel distribution version 2.6.7,

was the only source file loaded, although it included a total of 227 header files. The

configuration that loaded it into CRefactory had a total of 22 false conditions, again

most of them to disallow GCC extensions. The configuration also had 6 pairs of

incompatible conditions. It took 3 minutes to preprocess and another 3 minutes to

149

parse and populate the Program Repository with complete def-uses chains.

Table 7.3 shows the quantitative analysis on ‘init/main.c’ and all included files.

Table 7.3: Metrics on init/main.c

Number of files 228
Size 1.17 Mb
Number of Cpp conditionals 1169
Number of Cpp conditionals introduced by 364
macro expansion
Number of incomplete Cpp conditionals 351
Perc. of code growth after conditional completion 17%
Maximum level of nesting of Cpp conditionals 8
Percentage of conditional definitions 38%
Number of macros defined 6653
Number of macros with 1 definition 6486
Number of macros with 2 definition 149
Number of macros with 3 definition 14
Number of macros with 4 definition 2
Number of macros with 7 definition 1
Number of macros with 20 definition 1
Number of symbols defined as macros and functions 37
Number of symbols defined as macros and variables 6

It is remarkable that the 94 files of the rm package (which includes 74 standard

library header files) are as much or even more complex in terms of Cpp conditionals

as the 227 header files loaded with ‘init/main.c’. For example, the rm package has

1182 Cpp conditionals, while this Linux program has 1169. Also, the percentage

of conditional definitions in rm was 48%, while in this case is 38%. Moreover, the

maximum level of nesting of Cpp conditionals is 23 in rm and 8 here.

On the contrary, ‘init/main.c’ and its headers have about 3 times more macro

definitions than the ‘rm’ package. That creates a larger number of Cpp conditionals

introduced by macro expansion and consequently, a larger number of incomplete Cpp

conditionals.

The macro that has 7 definitions is SHIFT_HZ. There is at least one statement in

150

file ‘include/linux/time.h’ that calls this macro 5 times. When completing this

5 conditionals in the single statement, the conditionals have to be combined. The

number of conditional branches would be huge (75) if our conditional completion

algorithm was not checking that the conditionals really come from the same macro.

With that optimization the number of branches becomes 7. Nevertheless, the file

‘time.h’ calls the macro SHIFT_HZ several times (11 to be exact), and that causes

the file to grow 261% after conditional completion. The rest of the files do not grow

much. The average file growth is 5%.

The macro with 20 definitions is MODULE_PROC_FAMILY, and all definitions are in

file ‘include/asm/module.h’, in different branches of a single Cpp conditional. This

macro could have caused a large growth percentage, although there are no uses of

this macro.

During this case study, we realized the importance of reusing previously generated

representations. The file ‘include/linux/config.h’ gets re-included 69 times. An-

other file is re-included 34 times, and so on. Moreover, while testing an earlier version

of CRefactory, we realized that calculating the binding of uses to definitions had to be

done after the symbol tables are constructed. In that earlier version, def-use chains

were updated at the same time that the symbol tables were constructed, and that re-

quired a file to be revisited by a CRASTUsesModifier every time the file was included.

Processing the program took about 1 hour. The new version of CRefactory goes once

through each file in the Include Dependencies Graph to populate the symbol tables

with local symbol definitions and uses, and a second time to update the uses of global

symbols. The current version runs 10 times faster.

151

7.4 Results on Directory linux/init/

For this test case, we loaded all the source files in the ‘init/’ directory of the Linux

distribution. There are 8 source files in that directory, and when we loaded them

in CRefactory, the number of program files reached 321. There were a total of 29

false conditions needed to load the program, together with the same incompatible

condition pairs than in the case of ‘init/main’. It took 15 minutes to load the

program, which includes almost 11 minutes of pseudo-preprocessing time. Table 7.4

shows the quantitative results of this test case.

Table 7.4: Metrics on linux-2.6.7/init/

Number of files 321
Size 1.68 Mb
Number of Cpp conditionals 1988
Number of Cpp conditionals introduced by 928
macro expansion
Number of incomplete Cpp conditionals 918
Perc. of code growth after conditional completion 13%
Maximum level of nesting of Cpp conditionals 8
Percentage of conditional definitions 35%
Number of macros defined 8805
Number of macros with 1 definition 8613
Number of macros with 2 definition 173
Number of macros with 3 definition 15
Number of macros with 4 definition 2
Number of macros with 7 definition 1
Number of macros with 20 definition 1
Number of symbols defined as macros and functions 60
Number of symbols defined as macros and variables 8

It is interesting to compare growth percentages from the previous test case where

only the file ‘main.c’ of directory ‘init/’ was loaded. Now that the 8 source files

in that directory were loaded, the number of files in the IDG (Include Dependencies

Graph) grew 41% and the size of the program grew 43%. With that growth in program

152

size, the number of macro definitions grew 32%, about the same growth as the number

of files. However, the number of Cpp conditionals grew 70% and the number of

incomplete Cpp conditionals, all coming from the expansion of macro calls, grew

161%. While the increase in the number of incomplete Cpp conditionals, together

with the increase in program size, causes pseudo-preprocessing to take considerably

longer, it does not cause a raise in the percentage of code growth after conditional

completion. In the previous test case, this percentage was 17%, while now it is 13%.

The reason is that the file that grows the most, ‘include/linux/time.h’, was already

included in the previous test case, and the additional files in this case grow an average

of 3%, which spreads the higher percentages among a larger number of files.

153

Chapter 8

Conclusions

8.1 Summary of Contributions

Integrating preprocessor directives during refactoring is hard, for both the analysis

of the code required before refactoring and the transformation functions themselves.

This is a major factor that hinders the development of refactoring tools for C and

C++ code. The main contribution of this thesis is that it demonstrates that complete

integration between Cpp and C is possible.

Although CRefactory focuses on C and Cpp, our work applies to other languages

that use Cpp, like C++ and Fortran, and probably to other preprocessors with similar

directives, whose syntax is independent of the syntax of the underlying language (for

example, C#, which has conditional directives). Moreover, analysis tools should

be able to apply the same ideas for parsing and representation of Cpp directives.

In fact, the formal semantics that we have given to Cpp is programming language

independent. For this reason, the Cpp refactoring rules are programming language

generic, i.e., they will be applicable to any programming language using Cpp and will

also be correct for that language.

The main contributions of this thesis are:

• A formal executable specification of the C preprocessor.

154

• A new method for preprocessing that does not remove preprocessor directives

but prepares the source code for parsing. This method includes the Conditional

Completion Algorithm.

• Design of program representations that integrate C and Cpp.

• The identification of problems posed by Cpp in refactoring.

• Specification of the new preconditions and transformation rules for some refac-

torings, which solve the problems identified.

• A catalog of refactorings for Cpp directives.

• A refactoring tool for C: CRefactory.

• Measurements on the program representations when loading a few case studies.

8.2 Lessons Learned by Implementing CRefactory

The implementation of a refactoring tool has been essential to discover flaws or lim-

itations of our approach and correct them. It also gave us the opportunity to test

our ideas on real programs and to measure the performance of our algorithms and

program representations. Some of the lessons we have learned on the road towards

implementing CRefactory have been:

1. Handling multiple configurations at a time is the hardest problem.

At the early stages of this research, we believed that handling macros was the

main difficulty to be able to support refactoring on C + Cpp. While it is true

that macros invalidate many refactorings and complicate the transformations,

being able to parse conditional directives and to build a program representation

of all possible program configurations has been the most challenging aspect of

this work.

155

The first obstacle was to figure out how to parse multiple configurations at a

time without restricting the placement of conditional directives. In a personal

communication with Ira Baxter, one of the directors of the DMS project, he

warned us of this problem and advised us that parsing in multiple passes was

unwise, the reasons being the exponential time and complexity of that approach.

That is the reason for designing and implementing the Conditional Completion

Algorithm, whose novelty makes it one of the main contributions of this work.

Once parsing of multiple configurations was solved, the second obstacle was

being able to expand a macro with multiple definitions. The solution was to

expand the macro as a Cpp conditional construct. This added more complexity

to our Conditional Completion Algorithm, since more than one Cpp conditional

could break the same statement, and those conditionals had to be combined.

Supporting multiple configurations also required symbol tables to be enhanced,

and with that, a new definition of visibility and binding of symbol uses to

definitions was necessary.

Last but not least, pretty-printing the completed conditionals back to their

original, un-completed version, led us to design the complex labelling of tokens

that CRefactory currently has.

2. It is common for conditional directives to appear inside structures, enumeratives

and initializers.

An early version of CRefactory did not allow conditional directives to appear in

between structure fields, enumerator values or array initializers. During testing

of the Linux Kernel code, there was an exponential growth of code size and

processing time to generate a different array initializer, structure declaration

or enumerative for each possible combination of conditionals inside them. For

example, the initializer of array kern_table in file ‘/include/linux/sysctl.h’

156

has 14 Cpp conditionals inside, which would generate 214 different initializers.

Allowing conditional directives to appear inside these constructs has solved the

problem.

3. Exact pretty-printing is difficult but necessary.

Developers demand exact or nearly exact pretty printing in any usable tool.

That is why it was important and necessary to reverse the completion of Cpp

conditionals and macro expansion, to assign exact position to tokens and to pre-

serve comments. Moreover, the pretty-printing algorithm is designed to preserve

the original format of all code pieces that have not been affected by refactorings.

4. Reuse of individual file representations makes the tool more efficient.

It is common for a header file to be included more than once in a program.

Although multiple inclusion is usually prevented by using “include guards” (a

combination of conditional directive and macro definition), they have to be

ignored when preprocessing multiple source files and multiple configurations

simultaneously. For this reason, it became important to represent each file

separately, detaching its representation from the context in which it is included,

and reusing its representation on subsequent includes. This requires each file

to be a complete syntactical unit, parseable on its own. We believe that the

restriction is worthwhile; furthermore, it is widely accepted and advisable to

follow it.

Moreover, an earlier version of CRefactory updated the def-use chains of each

symbol while constructing the symbol tables. This required the ASTs of pre-

viously included files to be re-visited each time, to update the symbol ta-

bles already constructed. Changing this approach to instead update the sym-

bol tables after they were constructed decreased the time to process the file

‘/init/main.c’ of the Linux kernel from 1 hour to 6 minutes.

157

8.3 Limitations

In the following list, the first two items are limitations of the input that CRefactory

accepts. The rest are limitations of the current implementation of CRefactory.

1. Except for conditional directives, all other Cpp directives must appear in be-

tween statements, declarations, structure fields, enumerator or initializer values.

Note that directives may appear inside a compound statement, as long as they

do not break any statement inside the compound statement. These are the

only places we have found in open source code packages where programmers

place all but conditional directives, so we believe that this assumption is not

too restrictive in the kind of input that CRefactory accepts.

2. Each file in the program must be a complete syntactical unit, parseable on

its own. As described in the previous section, while it is standard practice to

have header be complete units, this is also a worthwhile restriction that makes

CRefactory much more efficient.

3. While testing CRefactory on open-source packages, it became increasingly im-

portant to support some GCC extensions [66]. CRefactory currently supports

statement expressions, assembler instructions, inline specifier, alternate key-

words like __inline__, __volatile__ and __asm__, and double-word integers.

However, there are many extensions that CRefactory still does not support, like

nested functions, empty structures, variadic macros, and variable and function

attributes.

4. The Conditional Completion Algorithm currently supports 7 cases of condition-

als and combination of conditionals. Although these cases cover all those that

we have found in practice, the list is not exhaustive. See Chapter 4 for a list of

supported and unsupported cases.

158

8.4 Future Work

The first step in future work should be to release CRefactory to the public, realizing a

long-awaited contribution to the C community. For this purpose, the existent Emacs

plugin for CRefactory ([71]) should be upgraded to match the new features of the

current version.

In future releases, CRefactory could be extended to outgrow its limitations, i.e.,

adding all GCC extensions and supporting other cases of conditional completion.

Moreover, the set of supported refactorings could be extended. CRefactory cur-

rently supports renaming C entities and macros, deleting unreferenced variables, mov-

ing variables to a structure, creating a new structure from a set of variables, converting

a variable to a pointer and viceversa, and moving a variable up in the scope. There

are many other useful refactorings listed in our previous work that would be useful to

implement [16]. The first one should be function extraction, which is already halfway

implemented.

We believe that our approach is directly applicable to C++. It would be inter-

esting to demonstrate this idea. Firstly, the C++ grammar should be extended with

Cpp directives, finding the places where directives commonly appear in C++ con-

structs. Secondly, the first pass of the Conditional Completion Algorithm should be

extended to recognize the beginning and end of the new constructs and consequently

be able to identify incomplete conditionals. Thirdly, the interaction of macros with

C++ refactorings should be studied to discover potential new problems. Neverthe-

less, we do not foresee large obstacles since macros are not heavily used in C++. The

language itself includes features that limit the need for macros (e.g., templates).

Another area of future work would be to formally prove that pseudo-preprocessing,

and specially, the Conditional Completion Algorithm, preserves program behavior.

This could be accomplished by completing the Maude specification of P-Cpp and

using Maude’s theorem prover to show that Cpp’s semantics are equally observed by

159

(P-Cpp + Cpp)’s semantics. That is, if P-Cpp is applied on a certain input, and

the output of P-Cpp is flattened in a way that Cpp can subsequently process it, the

output would be the same as using Cpp alone on the same input and with the same

values for configuration variables. This algebraic simulation technique is described

by Mart́ı-Oliet et.al [72].

Another interesting theoretical area would be to study whether refactorings can be

specified with Maude’s rewrite rules. For this purpose, it would be necessary to devise

a way to carry context information to a rewrite rule, i.e., passing the data stored in the

program repository from rule to rule. If Maude is found suitable for this endeavor, it

would make a large impact on the refactoring community, since proving the behavior

preservation of each refactoring would be relatively straightforward. Furthermore,

proving the correctness of some of the refactorings on Cpp directives (those that do

not need context information, like the one in Figure 6.15) should be easier to achieve.

160

Appendix A

Maude Specification of Cpp

The following is the Maude specification of the syntax of Cpp.

--- ------------- ---

--- SYNTAX OF CPP ---

--- ------------- ---

fmod IDENTIFIER is

pr QID .

sort Identifier IdentifierList IdentifierListP .

subsorts Qid < Identifier < IdentifierList .

op ‘(‘) : -> IdentifierListP .

op ‘(_‘) : IdentifierList -> IdentifierListP .

op _,_ : IdentifierList IdentifierList -> IdentifierList [assoc] .

op size : IdentifierListP -> Nat .

op _in_ : Identifier IdentifierListP -> Bool .

op pos : Identifier IdentifierListP -> Nat .

op elemAt : Nat IdentifierListP -> Identifier .

op cons : Identifier IdentifierListP -> IdentifierListP .

vars I I’ : Identifier . var IL : IdentifierList . var N : Nat .

var ILP : IdentifierListP .

eq size(()) = 0 .

eq size((I, IL)) = 1 + size((IL)) .

eq size((I)) = 1 .

eq I in () = false .

eq I in (I’, IL) = (I == I’) or (I in (IL)) .

eq I in (I’) = (I == I’) .

eq pos(I, ()) = 0 .

ceq pos(I, (I’, IL)) = 1 if (I == I’) .

ceq pos(I, (I’, IL)) = 1 + pos(I, (IL)) if (I =/= I’) and (I in (IL)) .

ceq pos(I,(I’)) = 1 if (I == I’) .

eq pos(I, (IL)) = 0 [owise] .

eq elemAt(1, (I, IL)) = I .

eq elemAt(s(N), (I, IL)) = elemAt(N, (IL)) .

eq elemAt(1, (I)) = I .

eq cons(I,()) = (I) .

eq cons(I,(IL)) = (I,IL) .

endfm

fmod TOKEN is

pr IDENTIFIER .

sorts Token TokenSequence .

subsort Identifier < Token < TokenSequence .

op nil : -> TokenSequence .

161

op __ : TokenSequence TokenSequence -> TokenSequence [assoc id: nil] .

op _inTS_ : Token TokenSequence -> Bool .

vars T T’ : Token . var TS : TokenSequence .

eq T inTS nil = false .

eq T inTS (T’ TS) = (T == T’) or (T inTS TS) .

endfm

--- --- --- --- --- --- --- --- --- ---

--- Definition of expresions: CondExp ---

fmod COND-EXP-SYNTAX is

pr TOKEN . pr INT .

sort CondExp .

subsort Identifier < CondExp .

op e : Int -> CondExp . --- had to do this instead so I can modify attributes

op tokenize : CondExp -> TokenSequence .

endfm

fmod MACRO-CALL-SYNTAX is ex COND-EXP-SYNTAX .

sorts ArgList ArgListP MacroCall .

subsort CondExp < ArgList .

subsort IdentifierList < ArgList .

subsort IdentifierListP < ArgListP .

subsort Identifier < MacroCall .

subsort MacroCall < CondExp .

op ((_)) : ArgList -> ArgListP .

op _,_ : ArgList ArgList -> ArgList [ditto] .

op __ : Identifier ArgListP -> MacroCall [prec 30] .

op name : MacroCall -> Identifier .

var I : Identifier . var ALP : ArgListP .

eq name(I) = I .

eq name(I ALP) = I .

endfm

fmod DEF-COND-SYNTAX is ex COND-EXP-SYNTAX .

op defined_ : Identifier -> CondExp .

endfm

fmod ARITH-EXP-SYNTAX is ex COND-EXP-SYNTAX .

op _+_ : CondExp CondExp -> CondExp [prec 40 gather(e E)] .

op _-_ : CondExp CondExp -> CondExp [prec 40 gather(e E)] .

op _*_ : CondExp CondExp -> CondExp [prec 35 gather(e E)] .

op _/_ : CondExp CondExp -> CondExp [prec 35 gather(e E)] .

op _%_ : CondExp CondExp -> CondExp [prec 35 gather(e E)] .

endfm

fmod BIT-EXP-SYNTAX is ex COND-EXP-SYNTAX .

op _<<_ : CondExp CondExp -> CondExp [prec 42] .

op _>>_ : CondExp CondExp -> CondExp [prec 42] .

op _&_ : CondExp CondExp -> CondExp [prec 46] .

op _^_ : CondExp CondExp -> CondExp [prec 46] .

op _|_ : CondExp CondExp -> CondExp [prec 46] .

endfm

fmod REXP-SYNTAX is ex COND-EXP-SYNTAX .

op _<_ : CondExp CondExp -> CondExp [prec 44] .

op _<=_ : CondExp CondExp -> CondExp [prec 44] .

op _>_ : CondExp CondExp -> CondExp [prec 44] .

op _>=_ : CondExp CondExp -> CondExp [prec 44] .

op _==_ : CondExp CondExp -> CondExp [prec 45] .

op _!=_ : CondExp CondExp -> CondExp [prec 45] .

endfm

fmod BEXP-SYNTAX is ex COND-EXP-SYNTAX .

op !_ : CondExp -> CondExp [prec 30] .

op _&&_ : CondExp CondExp -> CondExp [prec 49] .

op _||_ : CondExp CondExp -> CondExp [prec 51] .

endfm

162

fmod CEXP-SYNTAX is ex COND-EXP-SYNTAX .

op _?_:_ : CondExp CondExp CondExp -> CondExp [prec 55] .

endfm

fmod ALL-COND-EXP-SYNTAX is

pr COND-EXP-SYNTAX .

pr MACRO-CALL-SYNTAX .

pr DEF-COND-SYNTAX .

pr ARITH-EXP-SYNTAX .

pr BIT-EXP-SYNTAX .

pr REXP-SYNTAX .

pr BEXP-SYNTAX .

pr CEXP-SYNTAX .

endfm

--- CppDirectives

fmod CPP-DIR-SYNTAX is

sort CppDirective .

endfm

fmod DEFINE-SYNTAX is ex CPP-DIR-SYNTAX .

pr TOKEN .

sorts MacroDefDir MacroUndefDir .

subsort MacroDefDir MacroUndefDir < CppDirective .

op #define__cr : Identifier TokenSequence -> MacroDefDir .

op #define___cr : Identifier IdentifierListP TokenSequence -> MacroDefDir .

op #undef_cr : Identifier -> MacroUndefDir .

endfm

fmod INCLUDE-SYNTAX is ex CPP-DIR-SYNTAX .

pr IDENTIFIER . pr MACRO-CALL-SYNTAX .

sorts IncludeDir FileName .

subsort IncludeDir < CppDirective .

op <_> : Identifier -> FileName .

op #include_cr : FileName -> IncludeDir .

op #include_cr : String -> IncludeDir .

op #include_cr : MacroCall -> IncludeDir .

endfm

fmod COND-DIR-SYNTAX is ex CPP-DIR-SYNTAX .

pr IDENTIFIER .

pr ALL-COND-EXP-SYNTAX .

sort CondDir .

subsort CondDir < CppDirective .

op #if_cr : CondExp -> CondDir .

op #ifdef_cr : Identifier -> CondDir .

op #ifndef_cr : Identifier -> CondDir .

op #elif_cr : CondExp -> CondDir .

op #else‘cr : -> CondDir .

op #endif‘cr : -> CondDir .

endfm

fmod LINE-SEQ-SYNTAX is

pr CPP-DIR-SYNTAX .

pr TOKEN .

sorts Line LineSeq .

subsorts CppDirective < Line < LineSeq .

op nilLS : -> LineSeq .

op __ : LineSeq LineSeq -> LineSeq [assoc id: nilLS] .

op _cr : TokenSequence -> Line .

op _\‘cr_ : TokenSequence Line -> Line .

vars TS1 TS2 : TokenSequence .

eq TS1 \ cr TS2 cr = (TS1 TS2) cr .

endfm

fmod CPP-SYNTAX is

pr TOKEN .

163

pr ALL-COND-EXP-SYNTAX .

pr DEFINE-SYNTAX .

pr INCLUDE-SYNTAX .

pr COND-DIR-SYNTAX .

pr LINE-SEQ-SYNTAX .

endfm

The Maude module QID defines quoted identifiers. By defining the sort Identifier

as a super-sort of the sort Qid, an identifier like var is denoted as ’var. An example

of a TokenSequence would be ’return ’a ’+ ’b ’;.

The following is the Maude specification of the semantics of Cpp.

in cpp-syntax.maude

--- ---------------- ---

--- SEMANTICS OF CPP ---

--- ---------------- ---

fmod STRINGS is pr STRING .

sort StringSet .

subsort String < StringSet .

op empty : -> StringSet .

op __ : StringSet StringSet -> StringSet [assoc comm id: empty] .

endfm

fmod TOKEN-TO-ARG is pr TOKEN .

sort TokenSeqList .

subsort TokenSequence < TokenSeqList .

op nilTSL : -> TokenSeqList .

op _;_ : TokenSeqList TokenSeqList -> TokenSeqList [assoc id: nilTSL] .

op size : TokenSeqList -> Nat .

op elemAtTS : Nat TokenSeqList -> TokenSequence .

op toTokenSeqList : TokenSequence -> TokenSeqList .

var T : Token . vars TS1 TS2 TSA : TokenSequence . var TSL : TokenSeqList . var N : Nat .

eq size(nilTSL) = 0 .

eq size(TS1 ; TSL) = 1 + size(TSL) .

eq elemAtTS(1, (TS1 ; TSL)) = TS1 .

eq elemAtTS(s(N), (TS1 ; TSL)) = elemAtTS(N, TSL) .

ceq toTokenSeqList(TS1) = TS1 if not (’‘, inTS TS1) .

ceq toTokenSeqList(TS1 ’‘, TS2) = TS1 ; toTokenSeqList(TS2)

if not (’‘, inTS TS1) and (’‘, inTS TS2) .

ceq toTokenSeqList(TS1 ’‘, TS2) = TS1 ; TS2 if not (’‘, inTS TS1) and not (’‘, inTS TS2) .

endfm

fmod MACRO-DEF is

pr TOKEN . pr STRING . pr TOKEN-TO-ARG .

pr MACRO-CALL-SYNTAX .

sort MacroDef .

op name_replText_ : Identifier TokenSequence -> MacroDef .

op name_params_replText_ : Identifier IdentifierListP TokenSequence -> MacroDef .

op name : MacroDef -> Identifier .

op hasArgs : MacroDef -> Bool .

op expand : MacroDef -> TokenSequence .

op expandWithArgs : MacroDef ArgListP -> TokenSequence .

op ex-rec : IdentifierListP TokenSequence ArgListP -> TokenSequence .

op dquote : -> Qid .

var N : Identifier . var TS : TokenSequence . vars T T2 : Token .

var PL : IdentifierListP . var Args : ArgListP .

eq name(name N replText TS) = N .

eq name(name N params PL replText TS) = N .

eq hasArgs(name N replText TS) = false .

eq hasArgs(name N params PL replText TS) = true .

164

eq expand(name N replText TS) = ex-rec(‘(‘), TS, ‘(‘)) .

ceq expandWithArgs(name N params PL replText TS, Args) = nil

if (size(PL) =/= size(Args)) .

eq expandWithArgs(name N params PL replText TS, Args) = ex-rec(PL, TS, Args) [owise] .

eq ex-rec(PL, nil, Args) = nil .

eq ex-rec(PL, ’# T TS, Args) = dquote elemAt(pos(T, PL), Args) dquote

ex-rec(PL, TS, Args) .

ceq ex-rec(PL, T ’## T2 TS, Args) = qid(string(T) + string(T2)) ex-rec(PL, TS, Args)

if not(T in PL) and not(T2 in PL) .

ceq ex-rec(PL, T ’## T2 TS, Args) = qid(string(elemAt(pos(T, PL), Args)) + string(T2))

ex-rec(PL, TS, Args) if (T in PL) and not(T2 in PL) .

ceq ex-rec(PL, T ’## T2 TS, Args) = qid(string(T) + string(elemAt(pos(T2, PL), Args)))

ex-rec(PL, TS, Args) if not(T in PL) and (T2 in PL) .

eq ex-rec(PL, T ’## T2 TS, Args) = qid(string(elemAt(pos(T, PL), Args)) +

string(elemAt(pos(T2, PL), Args))) ex-rec(PL, TS, Args) [owise] .

ceq ex-rec(PL, T TS, Args) = T ex-rec(PL, TS, Args) if not(T in PL) .

eq ex-rec(PL, T TS, Args) = tokenize(elemAt(pos(T, PL), Args)) ex-rec(PL, TS, Args) [owise] .

op expandWithTSArgs : MacroDef TokenSeqList -> TokenSequence .

op ex-recTS : IdentifierListP TokenSequence TokenSeqList -> TokenSequence .

var TSL : TokenSeqList .

ceq expandWithTSArgs(name N params PL replText TS, TSL) = nil

if (size(PL) =/= size(TSL)) .

eq expandWithTSArgs(name N params PL replText TS, TSL) = ex-recTS(PL, TS, TSL) [owise] .

eq ex-recTS(PL, nil, TSL) = nil .

eq ex-recTS(PL, ’# T TS, TSL) = dquote elemAtTS(pos(T, PL), TSL) dquote

ex-recTS(PL, TS, TSL) .

ceq ex-recTS(PL, T ’## T2 TS, TSL) = qid(string(T) + string(T2)) ex-recTS(PL, TS, TSL)

if not(T in PL) and not(T2 in PL) .

ceq ex-recTS(PL, T ’## T2 TS, TSL) = qid(string(elemAtTS(pos(T, PL), TSL)) + string(T2))

ex-recTS(PL, TS, TSL) if (T in PL) and not(T2 in PL) .

ceq ex-recTS(PL, T ’## T2 TS, TSL) = qid(string(T) + string(elemAtTS(pos(T2, PL), TSL)))

ex-recTS(PL, TS, TSL) if not(T in PL) and (T2 in PL) .

eq ex-recTS(PL, T ’## T2 TS, TSL) = qid(string(elemAtTS(pos(T, PL), TSL)) +

string(elemAtTS(pos(T2, PL), TSL))) ex-recTS(PL, TS, TSL) [owise] .

ceq ex-recTS(PL, T TS, TSL) = T ex-recTS(PL, TS, TSL) if not(T in PL) .

ceq ex-recTS(PL, T TS, TSL) = elemAtTS(pos(T, PL), TSL) ex-recTS(PL, TS, TSL) if (T in PL) .

endfm

fmod MACRO-TABLE is

pr MACRO-DEF .

sort MacroTable .

op empty : -> MacroTable .

op [_:_] : Identifier MacroDef -> MacroTable .

op __ : MacroTable MacroTable -> MacroTable [assoc comm id: empty] .

op _[_] : MacroTable Identifier -> MacroDef .

op _[_<-_] : MacroTable Identifier MacroDef -> MacroTable .

op isMacro : Identifier MacroTable -> Bool .

op isMacroWithArgs : Identifier MacroTable -> Bool .

op isMacroWithoutArgs : Identifier MacroTable -> Bool .

op remove : MacroDef MacroTable -> MacroTable .

vars N N’ : Identifier . vars M M’ : MacroDef . var MT : MacroTable .

eq ([N : M] MT)[N] = M .

eq ([N : M’] MT)[N <- M] = [N : M] MT .

eq MT[N <- M] = MT [N : M] [owise] .

eq isMacro(N, empty) = false .

eq isMacro(N, ([N’ : M] MT)) = (N == N’) or isMacro(N, MT) .

eq isMacroWithArgs(N, MT) = isMacro(N, MT) and hasArgs(MT[N]) .

eq isMacroWithoutArgs(N, MT) = isMacro(N, MT) and not hasArgs(MT[N]) .

eq remove(M, empty) = empty .

eq remove(M, ([N : M] MT)) = remove(M, MT) .

ceq remove(M, ([N : M’] MT)) = [N : M’] remove(M, MT) if M =/= M’ .

endfm

165

fmod COND-EXP-SEMANTICS is

pr COND-EXP-SYNTAX . pr MACRO-TABLE .

op evalB : CondExp MacroTable -> Bool .

op evalA : CondExp MacroTable -> Int .

op toCondExp : TokenSequence -> CondExp .

var X : Int . var MT : MacroTable .

var N : Identifier . var MD : MacroDef .

ceq evalB(e(X), MT) = true if X =/= 0 .

eq evalB(e(0), MT) = false .

ceq evalB(N, MT) = false if not isMacro(N, MT) .

eq evalA(e(X), MT) = X .

eq tokenize(N) = N .

eq tokenize(e(X)) = ’X .

endfm

fmod DEF-COND-SEMANTICS is pr DEF-COND-SYNTAX .

ex COND-EXP-SEMANTICS .

var N : Identifier . var MT : MacroTable .

eq evalB(defined N, MT) = isMacro(N, MT) .

eq tokenize(defined N) = ’defined N .

endfm

fmod ARITH-EXP-SEMANTICS is pr ARITH-EXP-SYNTAX .

ex COND-EXP-SEMANTICS .

vars E E’ : CondExp . var MT : MacroTable .

var X : Int . vars T T2 : Token .

eq evalA(E + E’, MT) = evalA(E, MT) + evalA(E’, MT) .

eq evalA(E - E’, MT) = evalA(E, MT) - evalA(E’, MT) .

eq evalA(E * E’, MT) = evalA(E, MT) * evalA(E’, MT) .

eq evalA(E / E’, MT) = evalA(E, MT) quo evalA(E’, MT) .

eq evalA(E % E’, MT) = evalA(E, MT) rem evalA(E’, MT) .

eq tokenize(E + E’) = tokenize(E) ’+ tokenize(E’) .

eq tokenize(E - E’) = tokenize(E) ’- tokenize(E’) .

eq tokenize(E * E’) = tokenize(E) ’* tokenize(E’) .

eq tokenize(E / E’) = tokenize(E) ’/ tokenize(E’) .

eq tokenize(E % E’) = tokenize(E) ’% tokenize(E’) .

endfm

fmod BIT-EXP-SEMANTICS is pr BIT-EXP-SYNTAX .

ex COND-EXP-SEMANTICS .

vars E E’ : CondExp . var MT : MacroTable .

eq evalA(E << E’, MT) = evalA(E, MT) << evalA(E’, MT) .

eq evalA(E >> E’, MT) = evalA(E, MT) >> evalA(E’, MT) .

eq evalA(E & E’, MT) = evalA(E, MT) & evalA(E’, MT) .

eq evalA(E ^ E’, MT) = evalA(E, MT) xor evalA(E’, MT) .

eq evalA(E | E’, MT) = evalA(E, MT) | evalA(E’, MT) .

eq tokenize(E << E’) = tokenize(E) ’<< tokenize(E’) .

eq tokenize(E >> E’) = tokenize(E) ’>> tokenize(E’) .

eq tokenize(E & E’) = tokenize(E) ’& tokenize(E’) .

eq tokenize(E ^ E’) = tokenize(E) ’^ tokenize(E’) .

eq tokenize(E | E’) = tokenize(E) ’| tokenize(E’) .

endfm

fmod REXP-SEMANTICS is pr REXP-SYNTAX .

ex COND-EXP-SEMANTICS .

vars E E’ : CondExp . var MT : MacroTable .

eq evalB(E < E’, MT) = (evalA(E, MT) < evalA(E’, MT)) .

eq evalB(E <= E’, MT) = (evalA(E, MT) <= evalA(E’, MT)) .

eq evalB(E > E’, MT) = (evalA(E, MT) > evalA(E’, MT)) .

eq evalB(E >= E’, MT) = (evalA(E, MT) >= evalA(E’, MT)) .

eq evalB(E == E’, MT) = (evalA(E, MT) == evalA(E’, MT)) .

eq evalB(E != E’, MT) = (evalA(E, MT) =/= evalA(E’, MT)) .

eq tokenize(E < E’) = tokenize(E) ’< tokenize(E’) .

eq tokenize(E <= E’) = tokenize(E) ’<= tokenize(E’) .

eq tokenize(E > E’) = tokenize(E) ’> tokenize(E’) .

eq tokenize(E >= E’) = tokenize(E) ’>= tokenize(E’) .

eq tokenize(E == E’) = tokenize(E) ’== tokenize(E’) .

eq tokenize(E != E’) = tokenize(E) ’!= tokenize(E’) .

166

endfm

fmod BEXP-SEMANTICS is pr BEXP-SYNTAX .

ex COND-EXP-SEMANTICS .

vars E E’ : CondExp . var MT : MacroTable .

eq evalB(! E, MT) = not evalB(E, MT) .

eq evalB(E && E’, MT) = evalB(E, MT) and evalB(E’, MT) .

eq evalB(E || E’, MT) = evalB(E, MT) or evalB(E’, MT) .

eq tokenize(! E) = ’! tokenize(E) .

eq tokenize(E && E’) = tokenize(E) ’&& tokenize(E’) .

eq tokenize(E || E’) = tokenize(E) ’|| tokenize(E’) .

endfm

fmod CEXP-SEMANTICS is pr CEXP-SYNTAX .

ex COND-EXP-SEMANTICS .

vars C E E’ : CondExp . var MT : MacroTable .

eq evalB(C ? E : E’, MT) = if evalB(C, MT) then evalB(E, MT) else evalB(E’, MT) fi .

eq tokenize(C ? E : E’) = tokenize(C) ’? tokenize(E) ’: tokenize(E’) .

endfm

fmod MACRO-CALL-SEMANTICS is pr MACRO-CALL-SYNTAX .

ex COND-EXP-SEMANTICS . pr MACRO-TABLE .

var N : Identifier . var MT : MacroTable . var AP : ArgListP . var A : ArgList .

ceq evalB(N, MT) = evalB(toCondExp(expand(MT[N])), MT) if isMacroWithoutArgs(N, MT) .

ceq evalB(N AP, MT) = evalB(toCondExp(expandWithArgs(MT[N], AP)), MT) if isMacroWithArgs(N, MT) .

ceq evalA(N, MT) = evalA(toCondExp(expand(MT[N])), MT) if isMacroWithoutArgs(N, MT) .

ceq evalA(N AP, MT) = evalA(toCondExp(expandWithArgs(MT[N], AP)), MT) if isMacroWithArgs(N, MT) .

var E : CondExp .

op tokenize : ArgListP -> TokenSequence .

op tokenize : ArgList -> TokenSequence .

eq tokenize(()) = nil .

eq tokenize(E, A) = tokenize(E) tokenize(A) .

endfm

fmod ALL-COND-EXP-SEMANTICS is

pr DEF-COND-SEMANTICS .

pr ARITH-EXP-SEMANTICS .

pr BIT-EXP-SEMANTICS .

pr REXP-SEMANTICS .

pr BEXP-SEMANTICS .

pr CEXP-SEMANTICS .

pr MACRO-CALL-SEMANTICS .

endfm

--- --- --- ---

--- CPP-STATE ---

fmod CPP-STATE is

pr MACRO-TABLE . pr TOKEN . pr STRINGS .

sorts CppState CppStateAttribute .

subsort CppStateAttribute < CppState .

op empty : -> CppState .

op _,_ : CppState CppState -> CppState [assoc comm id: empty] .

op includeDirs : StringSet -> CppStateAttribute .

op macroTbl : MacroTable -> CppStateAttribute .

op curMacroCalls : IdentifierListP -> CppStateAttribute .

op skip : Bool -> CppStateAttribute .

op nestLevelOfSkipped : Nat -> CppStateAttribute .

op branchTaken : Bool -> CppStateAttribute .

op outputStream : TokenSequence -> CppStateAttribute .

endfm

fmod HELPING-OPS is

pr STRINGS . pr CPP-SYNTAX . pr CPP-STATE .

sort MacroDefDirList .

subsort MacroDefDir < MacroDefDirList .

167

op nil : -> MacroDefDirList .

op _;_ : MacroDefDirList MacroDefDirList -> MacroDefDirList [assoc id: nil] .

op readFile : String -> LineSeq .

--- This function reads in memory the source code of the file

--- whose name is specified in the parameter and returns its contents

op readFile : Identifier StringSet -> LineSeq .

op readFile : String StringSet -> LineSeq .

--- Idem previous except that the file is searched in the include

--- directories specified in the second argument

op initMacroTable : MacroDefDirList -> MacroTable .

var M : Identifier . var TS : TokenSequence .

var L : MacroDefDirList . var IdL : IdentifierList .

eq initMacroTable(nil) = empty .

eq initMacroTable((#define M TS cr) ; L) =

[M : (name M replText TS)] initMacroTable(L) .

eq initMacroTable((#define M (IdL) TS cr) ; L) =

[M : (name M params (IdL) replText TS)] initMacroTable(L) .

op initialCppState : StringSet MacroDefDirList -> CppState .

var ID : StringSet .

eq initialCppState(ID, L) = includeDirs(ID), macroTbl(initMacroTable(L)),

curMacroCalls(‘(‘)), skip(false), nestLevelOfSkipped(0),

branchTaken(false), outputStream(nil) .

eq readFile("foo.c") =

#include "foo.h" cr

#define ’MAXTOKEN ’100 cr

#define ’INC(’X) (’X ’+ ’1) cr

#define ’M3(’X, ’Y, ’Z) (’X ’> ’Y ’? ’X ’: ’Z) cr

(’char ’token ’‘[’MAXTOKEN ’‘] ’;) cr

(’int ’i ’= ’INC ’‘(’i ’‘) ’;) cr

(’float ’h ’= ’M3 ’‘(’i ’‘, ’j ’‘, ’k ’‘) ’;) cr

#include "foo.h" cr

.

eq readFile("foo.h", empty) =

#if defined ’MAXTOKEN cr

(’int ’max ’;) cr

#else cr

(’int ’min ’;) cr

#endif cr

.

endfm

--- --- --- ---

--- SEMANTICS ---

fmod CPP-DIR-SEMANTICS is pr CPP-DIR-SYNTAX .

pr CPP-STATE .

op state : CppDirective CppState -> CppState .

endfm

fmod INCLUDE-SEMANTICS is pr INCLUDE-SYNTAX .

ex CPP-DIR-SEMANTICS . pr HELPING-OPS .

pr MACRO-CALL-SEMANTICS .

var FN : String . var S : CppState .

var SS : StringSet . var I : Identifier . var MT : MacroTable .

eq state(#include FN cr, (includeDirs(SS), S)) = state(readFile(FN, SS), (includeDirs(SS), S)) .

eq state(#include < I > cr, (includeDirs(SS), S)) = state(readFile(I, SS), (includeDirs(SS), S)) .

ceq state(#include I cr, (includeDirs(SS), macroTbl(MT), S))

= state(readFile(string(expand(MT[I])), SS), (includeDirs(SS), macroTbl(MT), S))

if isMacroWithoutArgs(I, MT) .

endfm

fmod DEFINE-SEMANTICS is pr DEFINE-SYNTAX .

ex CPP-DIR-SEMANTICS .

168

var I : Identifier . var TS : TokenSequence . var MT : MacroTable .

var S : CppState . var IdL : IdentifierList .

eq state(#define I TS cr, (macroTbl(MT), S))

= macroTbl([I : (name I replText TS)] MT), S .

eq state(#define I (IdL) TS cr, (macroTbl(MT), S))

= macroTbl([I : (name I params (IdL) replText TS)] MT), S .

ceq state(#undef I cr, (macroTbl(MT), S))

= macroTbl(remove(MT[I], MT)), S if isMacro(I, MT) .

eq state(#undef I cr, (macroTbl(MT), S)) = macroTbl(MT), S [owise] .

endfm

fmod COND-DIR-SEMANTICS is pr COND-DIR-SYNTAX .

ex CPP-DIR-SEMANTICS .

pr ALL-COND-EXP-SEMANTICS .

var CE : CondExp . var N : Nat . var B : Bool . var AMT : MacroTable . var S : CppState .

--- Case 1 of #if: Not skipping -> Not skipping

ceq state(#if CE cr, (macroTbl(AMT), skip(false), branchTaken(false), S))

= macroTbl(AMT), skip(false), branchTaken(true), S if evalB(CE, AMT) = true .

--- Case 2 of #if: Not skipping -> Skipping

ceq state(#if CE cr, (macroTbl(AMT), skip(false), nestLevelOfSkipped(0), branchTaken(false), S))

= macroTbl(AMT), skip(true), nestLevelOfSkipped(1), branchTaken(false), S

if evalB(CE, AMT) = false .

--- Case 3 of #if: Skipping -> Skipping

eq state(#if CE cr, (skip(true), nestLevelOfSkipped(N), branchTaken(B), S))

= skip(true), nestLevelOfSkipped(N + 1), branchTaken(false), S .

--- Case 1, 2, 3 of #ifdef and #ifndef: idem

--- Case 1 of #elif: Not skipping -> Skipping

eq state(#elif CE cr, (skip(false), nestLevelOfSkipped(0), S))

= skip(true), nestLevelOfSkipped(1), S .

--- Case 2 of #elif: Skipping -> Skipping

ceq state(#elif CE cr, (macroTbl(AMT), skip(true), S))

= macroTbl(AMT), skip(true), S if evalB(CE, AMT) = false .

--- Case 3 of #elif: Skipping -> Not skipping

ceq state(#elif CE cr, (macroTbl(AMT), skip(true), nestLevelOfSkipped(1),

branchTaken(false), S))

= macroTbl(AMT), skip(false), nestLevelOfSkipped(0), branchTaken(true), S

if evalB(CE, AMT) = true .

--- Case 1 of #else: Not skipping -> Skipping

eq state(#else‘cr, (skip(false), nestLevelOfSkipped(0), S))

= skip(true), nestLevelOfSkipped(1), S .

--- Case 2 of #else: Skipping -> Skipping

eq state(#else‘cr, (skip(true), nestLevelOfSkipped(N), branchTaken(true), S))

= skip(true), nestLevelOfSkipped(N), branchTaken(true), S .

--- Case 3 of #else: Skipping -> Not skipping

eq state(#else‘cr, (skip(true), nestLevelOfSkipped(1), branchTaken(false), S))

= skip(false), nestLevelOfSkipped(0), branchTaken(true), S .

--- Case 1 of #endif: Not skipping -> Not skipping

eq state(#endif‘cr, (skip(false), branchTaken(true), S))

= skip(false), branchTaken(false), S .

--- Case 2 of #endif: Skipping -> Skipping

ceq state(#endif‘cr, (skip(true), nestLevelOfSkipped(N), S))

= skip(true), nestLevelOfSkipped(N - 1), S if N > 1 .

--- Case 3 of #endif: Skipping -> Not Skipping

eq state(#endif‘cr, (skip(true), nestLevelOfSkipped(1), branchTaken(true), S))

= skip(false), nestLevelOfSkipped(0), branchTaken(false), S .

endfm

fmod LINE-SEQ-SEMANTICS is pr LINE-SEQ-SYNTAX .

pr CPP-DIR-SEMANTICS . pr ALL-COND-EXP-SEMANTICS .

op state : LineSeq CppState -> CppState .

var L : Line . var LS : LineSeq . var S : CppState . var IL : IdentifierList .

169

vars ILP ILP2 : IdentifierListP .

vars T T2 : Token . vars TS O : TokenSequence . var MT : MacroTable . var I : Identifier .

var MC : MacroCall . var AS : TokenSequence .

eq state(nil cr, S) = S .

eq state((’## TS) cr, (curMacroCalls((I, IL)), skip(false), S))

= state(TS cr, (curMacroCalls((IL)), skip(false), S)) .

eq state((’## TS) cr, (curMacroCalls((I)), skip(false), S))

= state(TS cr, (curMacroCalls(()), skip(false), S)) .

ceq state((T TS) cr, (macroTbl(MT), curMacroCalls(ILP), skip(false), outputStream(O), S))

= state(TS cr, (macroTbl(MT), curMacroCalls(ILP), skip(false), outputStream(O T), S))

if not(isMacro(T, MT)) or (T in ILP) .

ceq state((T ’‘(AS ’‘) TS) cr, (macroTbl(MT), curMacroCalls(ILP), skip(false), S))

= state((expandWithTSArgs(MT[T], toTokenSeqList(AS)) ’## TS) cr,

(macroTbl(MT), curMacroCalls(cons(T, ILP)), skip(false), S))

if isMacroWithArgs(T, MT) .

ceq state((T TS) cr, (macroTbl(MT), curMacroCalls(ILP), skip(false), S))

= state((expand(MT[T]) ’## TS) cr,

(macroTbl(MT), curMacroCalls(cons(T, ILP)), skip(false), S))

if isMacroWithoutArgs(T, MT) .

eq state((T TS) cr, (skip(true), S)) = skip(true), S .

eq state(nilLS, S) = S .

eq state(L LS, (skip(false), S)) = state(LS, state(L, (skip(false), S))) .

eq state(L LS, (skip(true), S)) = state(LS, state(L, (skip(true), S))) .

endfm

fmod CPP-SEMANTICS is

pr CPP-SYNTAX . pr HELPING-OPS .

pr INCLUDE-SEMANTICS . pr DEFINE-SEMANTICS . pr COND-DIR-SEMANTICS .

pr LINE-SEQ-SEMANTICS .

op preprocess : String StringSet MacroDefDirList -> TokenSequence .

op returnOutput : CppState -> TokenSequence .

var Name : String .

vars IncludeDirs : StringSet .

var ComLineMacros : MacroDefDirList .

var O : TokenSequence . var S : CppState .

eq preprocess(Name, IncludeDirs, ComLineMacros)

= returnOutput(state(readFile(Name),

initialCppState(IncludeDirs, ComLineMacros))) .

eq returnOutput(outputStream(O), S) = O .

endfm

After loading the above specification, executing the line:

red preprocess(‘‘foo.c’’, empty, nil) .

at the command prompt in Maude, it make it “read” the file “foo.c” (specified in

module HELPING-OPS), which exercises the different Cpp directives. The result is:

TokenSequence:

’int ’min ’;

’char ’token ’‘[’100 ’‘] ’;

’int ’i ’= ’i ’+ ’1 ’;

’float ’h ’= ’i ’> ’j ’? ’i ’: ’k ’;

’int ’max ’;

170

Appendix B

Maude Specification of P-Cpp

The following is the Maude specification of the semantics of P-Cpp.

in cpp-syntax.maude

--- ------------------ ---

--- SEMANTICS OF P-CPP ---

--- ------------------ ---

fmod CONDITIONS is

pr ALL-COND-EXP-SYNTAX .

sorts CppCondition CondStack CondStackStack CondSet CondPair CondPairSet .

subsort CppCondition < CondStack .

subsort CondStack < CondStackStack .

subsort CppCondition < CondSet .

subsort CondPair < CondPairSet .

op condition : CondExp -> CppCondition [ctor] .

op trueCondition : -> CppCondition [ctor] .

op _and_ : CppCondition CppCondition -> CppCondition .

op _isNegationOf_ : CppCondition CppCondition -> Bool .

op compatible : CppCondition CppCondition CondPairSet -> Bool .

op nil : -> CondStack .

op _;_ : CondStack CondStack -> CondStack [assoc id: nil] .

op nil : -> CondStackStack .

op _;_ : CondStackStack CondStackStack -> CondStackStack [assoc id: nil] .

op empty : -> CondSet .

op __ : CondSet CondSet -> CondSet [assoc comm id: empty] .

op _in_ : CppCondition CondSet -> Bool .

op <_;_> : CppCondition CppCondition -> CondPair [ctor] .

op empty : -> CondPairSet .

op __ : CondPairSet CondPairSet -> CondPairSet [assoc comm id: empty] .

op _in_ : CondPair CondPairSet -> Bool .

op condFromStack : CondStack -> CppCondition .

op condFromStackStack : CondStackStack -> CppCondition .

op tokenize : CppCondition -> TokenSequence .

vars C C’ : CppCondition . var Incomp : CondPairSet . var S : CondStack .

eq compatible(C, C’, Incomp) = not (C isNegationOf C’) and not (< C ; C’ > in Incomp) .

eq condFromStack(nil) = trueCondition .

eq condFromStack(C ; nil) = C .

eq condFromStack(trueCondition ; S) = condFromStack(S) .

eq condFromStack(C ; S) = C and condFromStack(S) .

var CE : CondExp .

eq tokenize(condition(CE)) = tokenize(CE) .

endfm

171

fmod STRINGS is pr STRING .

sorts StringSet StringList .

subsort String < StringSet .

subsort String < StringList .

op nil : -> StringSet .

op __ : StringSet StringSet -> StringSet [assoc comm id: nil].

op nil : -> StringList .

op _;_ : StringList StringList -> StringList [assoc id: nil].

endfm

fmod LOC is

pr STRING . pr NAT .

sort Location .

op nilLoc : -> Location . --- A nil location

op file_offset_ : String Nat -> Location .

endfm

fmod TOKEN-TO-ARG is pr TOKEN . --- exactly like Cpp

sort TokenSeqList .

subsort TokenSequence < TokenSeqList .

op nilTSL : -> TokenSeqList .

op _;_ : TokenSeqList TokenSeqList -> TokenSeqList [assoc id: nilTSL] .

op size : TokenSeqList -> Nat .

op elemAtTS : Nat TokenSeqList -> TokenSequence .

op toTokenSeqList : TokenSequence -> TokenSeqList .

var T : Token . vars TS1 TS2 TSA : TokenSequence . var TSL : TokenSeqList . var N : Nat .

eq size(nilTSL) = 0 .

eq size(TS1 ; TSL) = 1 + size(TSL) .

eq elemAtTS(1, (TS1 ; TSL)) = TS1 .

eq elemAtTS(s(N), (TS1 ; TSL)) = elemAtTS(N, TSL) .

ceq toTokenSeqList(TS1) = TS1 if not (’‘, inTS TS1) .

ceq toTokenSeqList(TS1 ’‘, TS2) = TS1 ; toTokenSeqList(TS2)

if not (’‘, inTS TS1) and (’‘, inTS TS2) .

ceq toTokenSeqList(TS1 ’‘, TS2) = TS1 ; TS2 if not (’‘, inTS TS1) and not (’‘, inTS TS2) .

endfm

fmod MACRO-DEF is

pr STRINGS . pr DEFINE-SYNTAX . pr MACRO-CALL-SYNTAX . pr LOC .

pr CONDITIONS . pr TOKEN-TO-ARG .

sorts MacroDef MacroDefList MacroCallDescr MacroCallDescrList MacroCallStack .

subsort MacroDef < MacroDefList .

subsort MacroCallDescr < MacroCallDescrList .

subsort MacroCallDescr < MacroCallStack .

op nil : -> MacroDefList .

op _,_ : MacroDefList MacroDefList -> MacroDefList [assoc comm id: nil] .

op nil : -> MacroCallDescrList .

op _;_ : MacroCallDescrList MacroCallDescrList -> MacroCallDescrList [assoc comm id: nil] .

op nil : -> MacroCallStack .

op __ : MacroCallStack MacroCallStack -> MacroCallStack [assoc id: nil] .

op name_def_defLoc_condition_calls_undefLoc_ :

Identifier MacroDefDir Location CppCondition MacroCallDescrList Location -> MacroDef .

op name_def_ : Identifier MacroDefDir -> MacroDef . *** to create a command line macro

op name_def_defLoc_condition_ : Identifier MacroDefDir Location CppCondition -> MacroDef .

op macroDefs_args_loc_ : MacroDefList StringList Location -> MacroCallDescr .

op name : MacroDef -> Identifier .

op hasArgs : MacroDef -> Bool .

op guardCond : MacroDef -> CppCondition .

op expand : MacroDef -> TokenSequence . --- idem Cpp

op expandWithArgs : MacroDef ArgListP -> TokenSequence . --- idem Cpp

op expandWithTSArgs : MacroDef TokenSeqList -> TokenSequence . --- idem Cpp

op undef : MacroDef Location -> MacroDef .

op addCall : MacroDef MacroCallDescr -> MacroDef .

op findWithGuardCond : MacroDefList CppCondition -> MacroDef .

op addCallToAll : MacroDefList MacroCallDescr -> MacroDefList .

op expandMacroCall : MacroCallDescr -> TokenSequence .

op expMC-rec : MacroDefList -> TokenSequence .

172

op andGuardCond : MacroDef CppCondition -> MacroDef .

op andGuardCondToAll : MacroDefList CppCondition -> MacroDefList .

op nameIn : MacroCallStack Identifier -> Bool .

var N : Identifier . vars C C’ : CppCondition . vars L UL L’ : Location .

var MCL : MacroCallDescrList . var D : MacroDefDir . var TS : TokenSequence .

var MC : MacroCallDescr . var M : MacroDef . var MDL : MacroDefList .

eq name N def D = name N def D defLoc nilLoc condition trueCondition calls nil undefLoc nilLoc .

eq name N def D defLoc L condition C = name N def D defLoc L condition C calls nil undefLoc nilLoc .

eq guardCond(name N def D defLoc L condition C calls MCL undefLoc UL) = C .

eq undef(name N def D defLoc L condition C calls MCL undefLoc UL, L’) =

name N def D defLoc L condition C calls MCL undefLoc L’ .

eq addCall(name N def D defLoc L condition C calls MCL undefLoc UL, MC)

= name N def D defLoc L condition C calls (MCL ; MC) undefLoc UL .

eq addCallToAll(nil, MC) = nil .

eq addCallToAll((M , MDL), MC) = addCall(M, MC) , addCallToAll(MDL, MC) .

eq andGuardCond(name N def D defLoc L condition C calls MCL undefLoc UL, C’)

= name N def D defLoc L condition (C and C’) calls MCL undefLoc UL .

eq andGuardCondToAll(nil, C) = nil .

eq andGuardCondToAll((M , MDL), C) = andGuardCond(M, C) , andGuardCondToAll(MDL, C) .

eq expandMacroCall(macroDefs M args nil loc L) = expand(M) .

eq expandMacroCall(macroDefs (M , MDL) args nil loc L)

= ’#if tokenize(guardCond(M)) ’cr

expand(M) ’cr

expMC-rec(MDL)

’#endif ’cr .

eq expMC-rec(nil) = nil .

eq expMC-rec(M , MDL) = ’#elif tokenize(guardCond(M)) ’cr

expand(M) ’cr

expMC-rec(MDL) .

endfm

fmod MACRO-TABLE is

pr MACRO-DEF .

sort MacroTable .

op empty : -> MacroTable .

op [_:_] : Identifier MacroDefList -> MacroTable .

op __ : MacroTable MacroTable -> MacroTable [assoc comm id: empty] .

op _[_] : MacroTable Identifier -> MacroDefList .

op _[_under_] : MacroTable Identifier CppCondition -> MacroDef .

op _[_<-_] : MacroTable Identifier MacroDefList -> MacroTable .

op isMacro : Identifier MacroTable -> Bool .

op remove : MacroDef MacroTable -> MacroTable .

op andConditionToAll : MacroTable CppCondition -> MacroTable .

var N : Identifier . vars L L’ : MacroDefList .

vars M M’ : MacroDef . var C : CppCondition .

var MT : MacroTable .

eq ([N : L] MT)[N] = L .

eq ([N : L] MT)[N under C] = findWithGuardCond(L, C) .

eq ([N : L’] MT)[N <- L] = [N : L] MT .

eq MT[N <- L] = MT [N : L] [owise] .

eq isMacro(N, empty) = false .

eq isMacro(N, ([N : L] MT)) = true .

eq andConditionToAll(([N : L] MT), C) = [N : andGuardCondToAll(L, C)] andConditionToAll(MT, C) .

endfm

fmod COND-EXP-SEMANTICS is

pr COND-EXP-SYNTAX . pr CONDITIONS .

op eval : CondExp -> CppCondition .

var X : Int . var CE : CondExp .

ceq eval(e(X)) = trueCondition if X =/= 0 .

eq eval(CE) = condition(CE) .

endfm

fmod CONFIG is

pr STRINGS .

173

sort CRConfiguration .

op fileNames_includeDirs_commandLineMacros_falseConds_incompatConds_ :

StringSet StringSet StringSet StringSet StringSet -> CRConfiguration .

endfm

fmod CR-TOKEN is pr TOKEN .

pr MACRO-DEF . pr CONDITIONS .

sort CRToken .

sort CRTokenStream .

subsort CRToken < CRTokenStream .

op value_ : Token -> CRToken .

op value_macroCalls_cond_ :

Token MacroCallStack CppCondition -> CRToken .

op empty : -> CRTokenStream .

op __ : CRTokenStream CRTokenStream -> CRTokenStream [assoc id: empty] .

endfm

fmod INCLUDE-DEP-GRAPH is

pr CR-TOKEN . pr MACRO-TABLE . pr CONDITIONS . pr STRINGS .

sorts ProgramFile ProgramFileStack IncludeDepGraph IdgEdge IdgEdgeList .

subsort ProgramFile < IncludeDepGraph .

subsort ProgramFile < ProgramFileStack .

subsort IdgEdge < IdgEdgeList .

op empty : -> IncludeDepGraph .

op __ : IncludeDepGraph IncludeDepGraph -> IncludeDepGraph [assoc comm id: empty] .

op nil : -> ProgramFileStack .

op _;_ : ProgramFileStack ProgramFileStack -> ProgramFileStack [assoc id: nil] .

op includes : IncludeDepGraph String -> Bool .

var PF : ProgramFile . var IDG : IncludeDepGraph . var N : String .

eq includes(empty, N) = false .

eq includes(PF IDG, N) = (name(PF) == N) or includes(IDG, N) .

op dest_pos_under_ : ProgramFile Location CppCondition -> IdgEdge .

op nil : -> IdgEdgeList .

op _,_ : IdgEdgeList IdgEdgeList -> IdgEdgeList [assoc id: nil] .

op name_tokenStream_activeMacrosAtStart_macrosDefined_Csymbols_includingFiles_includedFiles_ :

String CRTokenStream MacroTable MacroTable StringSet IdgEdgeList IdgEdgeList

-> ProgramFile [ctor] .

op programFile : String -> ProgramFile [ctor] .

op programFileWithName : String -> ProgramFile . --- returns PF with that name

op appendOutputToken : ProgramFile CRToken -> ProgramFile .

op addEdgeFrom_to_at_under_ : ProgramFile ProgramFile Location CppCondition -> ProgramFile .

op name : ProgramFile -> String .

op addMacroDefinition : ProgramFile MacroDef -> ProgramFile .

op macrosDefInPredsOf : ProgramFile -> MacroTable .

op macrosDefIn : IdgEdgeList -> MacroTable .

vars FN FN’ : String . vars TS TS’ : CRTokenStream . vars AM MD AM’ MD’ : MacroTable .

vars SS SS’ : StringSet . vars Suc Pred Suc’ Pred’ : IdgEdgeList .

var T : CRToken . var L : Location . var C : CppCondition .

eq programFile(FN) = name FN tokenStream empty activeMacrosAtStart empty

macrosDefined empty Csymbols nil includingFiles nil includedFiles nil .

eq appendOutputToken(name FN tokenStream TS activeMacrosAtStart AM

macrosDefined MD Csymbols SS includingFiles Suc includedFiles Pred, T)

= name FN tokenStream TS T activeMacrosAtStart AM

macrosDefined MD Csymbols SS includingFiles Suc includedFiles Pred .

eq addEdgeFrom (name FN tokenStream TS activeMacrosAtStart AM macrosDefined MD

Csymbols SS includingFiles Suc includedFiles Pred)

to (name FN’ tokenStream TS’ activeMacrosAtStart AM’ macrosDefined MD’

Csymbols SS’ includingFiles Suc’ includedFiles Pred’)

at L under C

= name FN tokenStream TS activeMacrosAtStart AM macrosDefined MD Csymbols SS

includingFiles (Suc, (dest

(name FN’ tokenStream TS’ activeMacrosAtStart AM’ macrosDefined MD’

Csymbols SS’ includingFiles Suc’ includedFiles (Pred’ ,

dest programFileWithName(FN) pos L under C))

pos L under C)) includedFiles Pred .

174

eq name(name FN tokenStream TS activeMacrosAtStart AM

macrosDefined MD Csymbols SS includingFiles Suc includedFiles Pred) = FN .

eq macrosDefInPredsOf(name FN tokenStream TS activeMacrosAtStart AM

macrosDefined MD Csymbols SS includingFiles Suc includedFiles Pred)

= MD macrosDefIn(Pred).

eq macrosDefIn(nil) = empty .

eq macrosDefIn(((dest PF pos L under C), Pred))

= andConditionToAll(macrosDefInPredsOf(PF), C) macrosDefIn(Pred) .

endfm

fmod LINE-SEQ-STACK is pr LINE-SEQ-SYNTAX .

sort LineSeqStack .

subsort LineSeq < LineSeqStack .

op nil : -> LineSeqStack .

op _;_ : LineSeqStack LineSeqStack -> LineSeqStack [assoc id: nil] .

endfm

--- --- --- ---

--- PCPP-STATE ---

fmod PCPP-STATE is

pr CONFIG . pr LINE-SEQ-STACK . pr INCLUDE-DEP-GRAPH .

pr CONDITIONS . pr MACRO-TABLE .

pr STRINGS .

sorts PcppState PcppStateAttribute .

subsort PcppStateAttribute < PcppState .

op empty : -> PcppState .

op _,_ : PcppState PcppState -> PcppState [assoc comm id: empty] .

op inputStack : LineSeqStack -> PcppStateAttribute .

op fileNames : StringSet -> PcppStateAttribute .

op includeDirs : StringSet -> PcppStateAttribute .

op commandLineMs : StringSet -> PcppStateAttribute .

op falseConds : CondSet -> PcppStateAttribute .

op incompatConds : CondPairSet -> PcppStateAttribute .

op idg : IncludeDepGraph -> PcppStateAttribute .

op curPF : ProgramFileStack -> PcppStateAttribute .

op macroTbl : MacroTable -> PcppStateAttribute .

op curMacroStack : MacroCallStack -> PcppStateAttribute .

op curCond : CondStackStack -> PcppStateAttribute .

op skip : Bool -> PcppStateAttribute .

op nestLevelOfSkipped : Nat -> PcppStateAttribute .

op curLoc : Location -> PcppStateAttribute .

op Csymbols : StringSet -> PcppStateAttribute .

endfm

fmod HELPING-OPS is

pr STRINGS . pr CPP-SYNTAX . pr PCPP-STATE .

sort MacroDefDirList .

subsort MacroDefDir < MacroDefDirList .

op nil : -> MacroDefDirList .

op _;_ : MacroDefDirList MacroDefDirList -> MacroDefDirList [assoc id: nil] .

op readFile : String -> LineSeq . --- idem Cpp

op readFile : String StringSet -> LineSeq . --- idem Cpp

op initialCppState : CRConfiguration -> PcppState .

op createFCondsSet : StringSet -> CondSet .

op createIConds : StringSet -> CondPairSet .

op initMacroTable : StringList -> MacroTable .

op subsetCompatible : MacroDefList CppCondition CondPairSet -> MacroDefList .

op subsetIncompat : MacroDefList CppCondition CondPairSet -> MacroDefList .

var M : MacroDef . var MDL : MacroDefList . var C : CppCondition .

var IC : CondPairSet .

eq subsetCompatible(nil, C, IC) = nil .

ceq subsetCompatible((M , MDL), C, IC) = M , subsetCompatible(MDL, C, IC)

175

if compatible(guardCond(M), C, IC) .

eq subsetCompatible((M , MDL), C, IC) = subsetCompatible(MDL, C, IC) [owise] .

vars FNs IDs Ms FCs ICs : StringSet .

var IDG : IncludeDepGraph . var S : PcppState .

eq initialCppState(fileNames (FNs) includeDirs IDs commandLineMacros Ms falseConds FCs

incompatConds ICs)

= inputStack(nil),

fileNames(FNs),

includeDirs(IDs),

commandLineMs(Ms),

falseConds(createFCondsSet(FCs)),

incompatConds(createIConds(ICs)),

idg(empty),

macroTbl(initMacroTable(Ms)),

curPF(nil),

curMacroStack(nil),

curCond(nil),

skip(false),

nestLevelOfSkipped(0),

curLoc(nilLoc),

Csymbols(nil) .

endfm

--- --- --- ---

--- SEMANTICS ---

fmod PCPP-DIR-SEMANTICS is pr CPP-DIR-SYNTAX .

pr PCPP-STATE .

op state : CppDirective PcppState -> PcppState .

endfm

fmod INCLUDE-SEMANTICS is pr INCLUDE-SYNTAX .

ex PCPP-DIR-SEMANTICS . pr HELPING-OPS .

var LS : LineSeq . var LSS : LineSeqStack .

var FN : String . var S : PcppState . var LO : Location . var MT : MacroTable .

var Dirs : StringSet . var IDG : IncludeDepGraph . var T : CRToken .

var PFS : ProgramFileStack . vars PF PF’ : ProgramFile .

var CS : CondStack . var CSS : CondStackStack . var MCS : MacroCallStack .

ceq state(#include FN cr LS, (inputStack(LSS), includeDirs(Dirs), idg(PF IDG),

curPF(PF ; PFS), curMacroStack(MCS), curCond(CS ; CSS), curLoc(LO), S))

= state(readFile(FN, Dirs), (inputStack(LS ; LSS), includeDirs(Dirs),

idg((addEdgeFrom programFile(FN) to PF at LO under condFromStack(CS)) PF IDG),

curPF(programFileWithName(FN) ;

appendOutputToken(PF, value qid("#include" + FN) macroCalls MCS cond condFromStack(CS)) ;

PFS),

curMacroStack(MCS), curCond(nil ; CS ; CSS), curLoc(LO), S))

if not includes(IDG, FN) .

ceq state(#include FN cr, (idg(PF’ PF IDG), curPF(PF ; PFS), macroTbl(MT),

curMacroStack(MCS), curCond(CS ; CSS), curLoc(LO), S))

= idg((addEdgeFrom PF’ to PF at LO under condFromStack(CS)) PF IDG),

curPF(appendOutputToken(PF, value qid("#include" + FN) macroCalls MCS cond condFromStack(CS))

; PFS),

macroTbl(MT macrosDefInPredsOf(PF’)), curMacroStack(MCS), curCond(CS ; CSS), curLoc(LO), S

if name(PF’) == FN .

endfm

fmod DEFINE-SEMANTICS is pr DEFINE-SYNTAX .

ex PCPP-DIR-SEMANTICS .

var I : Identifier . var TS : TokenSequence . var L : Location .

var PF : ProgramFile . var PFS : ProgramFileStack . var MT : MacroTable .

var S : PcppState . var CS : CondStack . var CSS : CondStackStack .

eq state(#define I TS cr, (curPF(PF ; PFS), macroTbl(MT), curCond(CS ; CSS), curLoc(L), S))

= curPF(addMacroDefinition(

appendOutputToken(PF, value qid("#define") macroCalls nil cond condFromStack(CS)),

176

(name I def (#define I TS cr) defLoc L condition condFromStack(CS)))

; PFS),

macroTbl([I : (name I def (#define I TS cr) defLoc L condition condFromStackStack(CS ; CSS))] MT),

curCond(CS ; CSS), curLoc(L), S .

--- similarly for a macro with arguments

endfm

fmod COND-DIR-SEMANTICS is pr COND-DIR-SYNTAX .

ex PCPP-DIR-SEMANTICS . pr COND-EXP-SEMANTICS .

var CE : CondExp . var FC : CondSet . var CS : CondStack . var CSS : CondStackStack .

var S : PcppState . var N : Nat . var PF : ProgramFile . var PFS : ProgramFileStack .

--- Case 1 of #if: Not skipping -> Not skipping

ceq state(#if CE cr, (falseConds(FC), curCond(CS ; CSS), skip(false), curPF(PF ; PFS), S))

= falseConds(FC), curCond((eval(CE) ; CS) ; CSS), skip(false),

curPF(appendOutputToken(PF, value ’#if macroCalls nil cond condFromStack(CS)) ; PFS), S

if not(eval(CE) in FC) .

--- Case 2 of #if: Not skipping -> Skipping

eq state(#if CE cr, (skip(false), nestLevelOfSkipped(0), S))

= skip(true), nestLevelOfSkipped(1), S [owise] .

--- Case 3 of #if: Skipping -> Skipping

eq state(#if CE cr, (skip(true), nestLevelOfSkipped(N), S))

= skip(true), nestLevelOfSkipped(N + 1), S .

endfm

fmod LINE-SEQ-SEMANTICS is pr LINE-SEQ-SYNTAX .

ex PCPP-DIR-SEMANTICS . pr HELPING-OPS .

op state : LineSeq PcppState -> PcppState .

var L : Line . var LS : LineSeq . var S : PcppState . var T : Token .

vars TS O : TokenSequence . var MT : MacroTable . var MCS : MacroCallStack .

var LSS : LineSeqStack . var CS : CondStack . var CSS : CondStackStack .

var PF : ProgramFile . var PFS : ProgramFileStack . var LOC : Location .

vars MDL CompatDefs IncomDefs : MacroDefList . var MC : MacroCallDescr .

var IC : CondPairSet .

ceq state((T TS) cr, (curPF(PF ; PFS), macroTbl(MT), curMacroStack(MCS),

curCond(CS ; CSS), skip(false), S))

= state(TS cr, (curPF(appendOutputToken(PF, value T macroCalls MCS cond condFromStack(CS))

; PFS),

macroTbl(MT), curMacroStack(MCS), curCond(CS ; CSS), skip(false), S))

if not (isMacro(T, MT)) or nameIn(MCS, T).

ceq state((T TS) cr, (inputStack(LSS), incompatConds(IC), skip(false), curLoc(LOC),

macroTbl([T : CompatDefs, IncomDefs] MT), curMacroStack(MCS),

curCond(CSS), S))

= state(expandMacroCall(macroDefs CompatDefs args nil loc LOC) cr,

(inputStack((TS cr) ; LSS), incompatConds(IC), skip(false), curLoc(LOC),

macroTbl([T :

addCallToAll(CompatDefs, macroDefs CompatDefs args nil loc LOC),

IncomDefs] MT),

curMacroStack((macroDefs CompatDefs args nil loc LOC) MCS),

curCond(CSS), S))

if (subsetCompatible(MDL, condFromStackStack(CSS), IC)) := CompatDefs

and (subsetIncompat(MDL, condFromStackStack(CSS), IC) := IncomDefs) .

eq state(nil cr, (inputStack(LS ; LSS), skip(false), curMacroStack(MC MCS), S))

= state(LS, (inputStack(LSS), skip(false), curMacroStack(MCS), S)) .

eq state((T TS) cr LS, (skip(true), curPF(PF ; PFS), S))

= state(TS cr LS, (skip(true),

curPF(appendOutputToken(PF, value qid(string(T) + "comment")) ; PFS), S)) .

eq state(L LS, (skip(false), S)) = state(LS, state(L, (skip(false), S))) .

eq state(L LS, (skip(true), S)) = state(LS, state(L, (skip(true), S))) .

endfm

fmod PCPP-SEMANTICS is

pr CPP-SYNTAX . pr CONFIG . pr HELPING-OPS . pr LINE-SEQ-SEMANTICS .

177

op preprocess : CRConfiguration -> IncludeDepGraph .

op returnOutput : PcppState -> IncludeDepGraph .

var CO : CRConfiguration . var N : String . vars FNs Ms SY : StringSet .

var CS : CondStack . var CSS : CondStackStack .

var IDG : IncludeDepGraph . var MT : MacroTable . var LO : Location . var S : PcppState .

var LS : LineSeq . var LSS : LineSeqStack . var PF : ProgramFile . var PFS : ProgramFileStack .

eq preprocess(CO) = returnOutput(state(nilLS, initialCppState(CO))) .

eq state(nilLS, (fileNames(N ; FNs), idg(IDG), curPF(nil), curLoc(LO), S))

= state(readFile(N), (fileNames(FNs), idg(IDG programFile(N)),

curPF(programFile(N)), curLoc(file N offset 1), S)) .

eq state(nilLS, (inputStack(LS ; LSS), curPF(PF ; PFS), curMacroStack(nil), curCond(CS ; CSS), S))

= state(LS, (inputStack(LSS), curPF(PFS), curMacroStack(nil), curCond(CSS), S)) .

eq state(nilLS, (inputStack(nil), fileNames(nil), S)) = S .

eq returnOutput(idg(IDG), S) = IDG .

endfm

178

Appendix C

C Grammar with Cpp extensions

This Appendix lists the grammar used by CRefactory’s parser. CRefactory uses

SmallCC, a parser generator for Smalltalk, to generate the parser from this grammar

specification.

The grammar specification uses standard notation, where each grammar produc-

tion names the non-terminal represented, then a semi-colon, and then the different

alternatives separated by a ‘|’ character. Terminals of the grammar are surrounded

by angle brackets. The scripts that create AST nodes appear in between curly braces.

They have Smalltalk code that creates a node, listing the node’s class name first and

a message that sets the parts of the node. The expression ‘1’ represents the first

element in the right-hand side of the production, ‘2’ represents the second, and so on.

The grammar looks mostly like the standard ANSI-C grammar, although there

are additions to parse Cpp directives and some GCC extensions, like assembler in-

structions and statement expressions.

translationUnit

: externalDeclaration

{CRTranslationUnitNode with: ’1’ first}

| translationUnit externalDeclaration

{’1’ add: ’2’ first; yourself}

;

externalDeclaration

: functionDefinition

179

| declaration

| controlLine

;

functionDefinition

: declarationSpecifiers declarator declarationList compoundStatement

{|func| func := CRFunctionDefinitionNode declarationSpecifiers: ’1’ declarator: ’2’

declarationList: ’3’ compoundStatement: ’4’.

scanner hasComments ifTrue: [func comments: scanner getComments].

func}

| declarator declarationList compoundStatement

{|func| func := CRFunctionDefinitionNode declarator: ’1’

declarationList: ’2’ compoundStatement: ’3’.

scanner hasComments ifTrue: [func comments: scanner getComments].

func}

| declarationSpecifiers declarator compoundStatement

{|func| func := CRFunctionDefinitionNode declarationSpecifiers: ’1’ declarator: ’2’

compoundStatement: ’3’.

scanner hasComments ifTrue: [func comments: scanner getComments].

func}

| declarator compoundStatement

{|func| func := CRFunctionDefinitionNode declarator: ’1’ compoundStatement: ’2’.

scanner hasComments ifTrue: [func comments: scanner getComments].

func}

;

declarationSpecifiers

: declarationSpecifiers declarationSpec

{’1’ add: ’2’; yourself}

| declarationSpec

{|node| node := CRSpecifiersNode with: ’1’.

scanner hasComments ifTrue: [node comments: scanner getComments].

node}

;

declarationSpec

: storageClassSpecifier

{CRStorageClassSpecifier value: ’1’ first}

| typeQualifier

{’1’}

| typeSpecifier

{’1’}

;

storageClassSpecifier

: <AUTO>

| <REGISTER>

| <STATIC>

| <EXTERN>

| <INLINE>

| <TYPEDEF>

{scanner typedefSeen.

OrderedCollection with: ’1’}

;

typeQualifier

: <CONST>

{CRTokenSpecifier value: ’1’}

| <VOLATILE>

{CRTokenSpecifier value: ’1’}

;

declarator

: pointer directDeclarator

{CRDeclaratorNode pointer: ’1’ directDeclarator: ’2’}

| directDeclarator

{CRDeclaratorNode directDeclarator: ’1’}

;

180

pointer

: <STAR_OP>

{CRPointerNode operator: ’1’}

| <STAR_OP> typeQualifierList

{CRPointerNode operator: ’1’ typeQualifierList: ’2’}

| <STAR_OP> pointer

{CRPointerNode operator: ’1’ pointer: ’2’}

| <STAR_OP> typeQualifierList pointer

{CRPointerNode operator: ’1’ typeQualifierList: ’2’ pointer: ’3’}

;

typeQualifierList

: typeQualifier

{CRCollectionNode with: ’1’}

| typeQualifierList typeQualifier

{’1’ add: ’2’; yourself}

;

directDeclarator

: identifierToken

{self checkForTypedef: ’1’ token.

’1’}

| <LEFT_PAREN> declarator <RIGHT_PAREN>

{CRParenthesizedDeclaratorNode leftParen: ’1’ declarator: ’2’ rightParen: ’3’}

| directDeclarator <LEFT_BLOCK> constantExpressionOrNil <RIGHT_BLOCK>

{CRArrayDeclaratorNode directDeclarator: ’1’ leftBrace: ’2’ constantExpression: ’3’

rightBrace: ’4’}

| directDeclarator <LEFT_PAREN> parameterTypeList <RIGHT_PAREN>

{CRFunctionTypedDeclaratorNode directDeclarator: ’1’ leftParen: ’2’ parameterTypeList: ’3’

rightParen: ’4’}

| directDeclarator <LEFT_PAREN> identifierList <RIGHT_PAREN>

{CRFunctionDeclaratorNode directDeclarator: ’1’ leftParen: ’2’ identifierList: ’3’

rightParen: ’4’}

| directDeclarator <LEFT_PAREN> <RIGHT_PAREN>

{CRFunctionDeclaratorNode directDeclarator: ’1’ leftParen: ’2’ rightParen: ’3’}

;

identifierToken : <IDENTIFIER>

{CRIdentifierNode value: ’1’}

;

typeSpecifier

: basicTypeSpecifier

{CRBasicTypeSpecifier value: ’1’ first}

| structOrUnionSpecifier

{’1’}

| enumSpecifier

{’1’}

| <TYPE_NAME>

{CRTypedefNameNode value: ’1’}

;

basicTypeSpecifier : <VOID>

| <CHAR>

| <SHORT>

| <INT>

| <LONG>

| <FLOAT>

| <DOUBLE>

| <SIGNED>

| <UNSIGNED>;

structOrUnionSpecifier

: structOrUnionToken identifierToken

{CRStructSpecifier tokenSpecifier: ’1’ identifier: ’2’}

| structOrUnionToken identifierToken <LEFT_BRACE> structDeclarationList <RIGHT_BRACE>

{CRStructSpecifier tokenSpecifier: ’1’ identifier: ’2’ leftBrace: ’3’ structDeclarationList: ’4’

rightBrace: ’5’}

181

| structOrUnionToken <LEFT_BRACE> structDeclarationList <RIGHT_BRACE>

{CRStructSpecifier tokenSpecifier: ’1’ leftBrace: ’2’ structDeclarationList: ’3’ rightBrace: ’4’}

this added to make it work in stdio.h

| structOrUnionToken <TYPE_NAME>

{CRStructSpecifier tokenSpecifier: ’1’ identifier: (CRTypedefNameNode value: ’2’)}

this added to make it work in sysctl.h

| structOrUnionToken <TYPE_NAME> <LEFT_BRACE> structDeclarationList <RIGHT_BRACE>

{CRStructSpecifier tokenSpecifier: ’1’ identifier: (CRTypedefNameNode value: ’2’) leftBrace: ’3’

structDeclarationList: ’4’ rightBrace: ’5’}

;

structOrUnionToken

: <STRUCT>

{CRStructOrUnionTokenSpecifier value: ’1’}

| <UNION>

{CRStructOrUnionTokenSpecifier value: ’1’}

;

structDeclarationList

: structDeclaration

{CRCollectionNode with: ’1’}

| structDeclarationList structDeclaration

{’1’ add: ’2’}

;

structDeclaration

: specifierQualifierList structDeclaratorList <SEMI_COLON>

{CRStructDeclarationNode specifierQualifierList: ’1’ structDeclaratorList: ’2’ semiColon: ’3’}

| conditionalDirective

{’1’}

| macroDirective

{’1’}

;

specifierQualifierList

: typeSpecifier specifierQualifierList

{’2’ addFirst: ’1’}

| typeSpecifier

{CRSpecifiersNode with: ’1’}

| typeQualifier specifierQualifierList

{’2’ addFirst: ’1’}

| typeQualifier

{CRSpecifiersNode with: ’1’}

;

structDeclaratorList

: structDeclarator

{CRCommaCollectionNode with: ’1’}

| structDeclaratorList <COMMA> structDeclarator

{’1’ add: ’3’ afterComma: ’2’}

;

structDeclarator

: declarator

{CRStructDeclaratorNode declarator: ’1’}

| <COLON> constantExpression

{CRStructDeclaratorNode colon: ’1’ constantExpression: ’2’ first}

| declarator <COLON> constantExpression

{CRStructDeclaratorNode declarator: ’1’ colon: ’2’ constantExpression: ’3’ first}

;

enumSpecifier

: <ENUM> identifierToken <LEFT_BRACE> enumeratorList <RIGHT_BRACE>

{|eNode| eNode := CREnumSpecifier enumToken: ’1’ identifier: ’2’ leftBrace: ’3’

enumeratorList: ’4’ rightBrace: ’5’.

scanner possibleTypedef: ’2’ token.

scanner endTypedef.

eNode

182

}

| <ENUM> <LEFT_BRACE> enumeratorList <RIGHT_BRACE>

{CREnumSpecifier enumToken: ’1’ leftBrace: ’2’ enumeratorList: ’3’ rightBrace: ’4’}

| <ENUM> identifierToken

{|eNode| eNode := CREnumSpecifier enumToken: ’1’ identifier: ’2’.

scanner possibleTypedef: ’2’ token.

scanner endTypedef.

eNode

}

;

enumeratorList

: {CRCommaCollectionNode new}

| enumerator

{CRCommaCollectionNode with: ’1’}

| enumerator <COMMA> enumeratorList

{’3’ addFirst: ’1’ beforeComma: ’2’}

| controlLine enumeratorList

{’2’ addFirst: ’1’ beforeComma: nil}

| enumerator controlLine enumeratorList

{’3’ addFirst: ’2’ beforeComma: nil.

’3’ addFirst: ’1’ beforeComma: nil}

;

enumerator

: identifierToken

{CREnumeratorNode identifier: ’1’}

| identifierToken <EQUALS_OP> constantExpression

{CREnumeratorNode identifier: ’1’ equalsOperator: ’2’ constantExpression: ’3’ first}

;

typeName

: specifierQualifierList

{CRTypeNameNode specifierQualifierList: ’1’}

| specifierQualifierList abstractDeclarator

{CRTypeNameNode specifierQualifierList: ’1’ abstractDeclarator: ’2’}

;

abstractDeclarator

: pointer

{CRAbstractDeclaratorNode pointer: ’1’}

| pointer directAbstractDeclarator

{CRAbstractDeclaratorNode pointer: ’1’ directAbstractDeclarator: ’2’}

| directAbstractDeclarator

{CRAbstractDeclaratorNode directAbstractDeclarator: ’1’}

;

directAbstractDeclarator

: <LEFT_PAREN> abstractDeclarator <RIGHT_PAREN>

{CRParenthesizedDeclaratorNode leftParen: ’1’ declarator: ’2’ rightParen: ’3’}

| directAbstractDeclarator <LEFT_BLOCK> constantExpressionOrNil <RIGHT_BLOCK>

{CRAbstractArrayDeclaratorNode directAbstractDeclarator: ’1’ leftBrace: ’2’

constantExpressionOrNil: ’3’ rightBrace: ’4’}

| <LEFT_BLOCK> constantExpressionOrNil <RIGHT_BLOCK>

{CRAbstractArrayDeclaratorNode leftBrace: ’1’ constantExpressionOrNil: ’2’ rightBrace: ’3’}

| directAbstractDeclarator <LEFT_PAREN> parameterTypeListOrNil <RIGHT_PAREN>

{CRAbstractFunctionTypedDeclaratorNode directAbstractDeclarator: ’1’ leftParen: ’2’

parameterTypeListOrNil: ’3’ rightParen: ’4’}

| <LEFT_PAREN> parameterTypeListOrNil <RIGHT_PAREN>

{CRAbstractFunctionTypedDeclaratorNode leftParen: ’1’ parameterTypeListOrNil: ’2’ rightParen: ’3’}

;

constantExpressionOrNil

: constantExpression {’1’ first}

| {nil}

;

parameterTypeListOrNil

183

: parameterTypeList {’1’}

| {nil}

;

parameterTypeList

: parameterList

{CRParameterTypeListNode parameterList: ’1’}

| parameterList <COMMA> <ELLIPSIS>

{CRParameterTypeListNode parameterList: ’1’ comma: ’2’ ellipsis: ’3’}

;

parameterList

: parameterDeclaration

{CRCommaCollectionNode with: ’1’}

| parameterList <COMMA> parameterDeclaration

{’1’ add: ’3’ afterComma: ’2’}

;

parameterDeclaration

: declarationSpecifiers declarator

{CRParameterDeclarationNode declarationSpecifiers: ’1’ declarator: ’2’}

| declarationSpecifiers abstractDeclarator

{CRParameterDeclarationNode declarationSpecifiers: ’1’ declarator: ’2’}

| declarationSpecifiers

{CRParameterDeclarationNode declarationSpecifiers: ’1’}

;

identifierList

: identifierToken

{CRCommaCollectionNode with: ’1’}

| identifierList <COMMA> identifierToken

{’1’ add: ’3’ afterComma: ’2’}

;

declarationList

: declarationList declaration

{’1’ add: ’2’}

| declarationList controlLine

{’1’ add: ’2’}

| declaration

{CRCollectionNode with: ’1’}

| controlLine

{CRCollectionNode with: ’1’}

;

declaration

: declarationSpecifiers initDeclaratorList <SEMI_COLON>

{|dNode| dNode := CRDeclarationNode declarationSpecifiers: ’1’ initDeclaratorList: ’2’ semiColon: ’3’.

scanner hasComments ifTrue: [dNode comments: scanner getComments].

scanner endTypedef.

dNode

}

| declarationSpecifiers <SEMI_COLON>

{|dNode| dNode := CRDeclarationNode declarationSpecifiers: ’1’ semiColon: ’2’.

scanner hasComments ifTrue: [dNode comments: scanner getComments].

scanner endTypedef.

dNode

}

;

initDeclaratorList

: initDeclarator

{CRCommaCollectionNode with: ’1’}

| initDeclaratorList <COMMA> initDeclarator

{’1’ add: ’3’ afterComma: ’2’}

;

initDeclarator

184

: declarator

{CRInitDeclaratorNode declarator: ’1’}

| declarator <EQUALS_OP> initializer

{CRInitDeclaratorNode declarator: ’1’ equalsOp: ’2’ initializer: ’3’}

;

initializer

: assignmentExpression

{’1’}

| <LEFT_BRACE> initializerList <RIGHT_BRACE>

{CRInitializerListNode leftBrace: ’1’ list: ’2’ rightBrace: ’3’}

| <LEFT_BRACE> initializerList <COMMA> <RIGHT_BRACE>

{CRInitializerListNode leftBrace: ’1’ list: ’2’ comma: ’3’

rightBrace: ’4’}

;

initializerList

: {CRCommaCollectionNode new}

| initializer

{CRCommaCollectionNode with: ’1’}

| initializer <COMMA> initializerList

{’3’ addFirst: ’1’ beforeComma: ’2’}

| conditionalDirective initializerList

{’2’ addFirst: ’1’ beforeComma: nil}

| initializer conditionalDirective initializerList

{’3’ addFirst: ’2’ beforeComma: nil.

’3’ addFirst: ’1’ beforeComma: nil}

;

#***********Expressions

constantExpression

: conditionalExpression

;

conditionalExpression

: logicalOrExpression

{’1’}

| logicalOrExpression <QUESTION_MARK> expression <COLON> conditionalExpression

{CRConditionalExpressionNode logicalOrExpression: ’1’ questionMark: ’2’ expression: ’3’

colon: ’4’ conditionalExpression: ’5’}

;

logicalOrExpression

: logicalAndExpression

{’1’}

| logicalOrExpression logicalOrOperatorToken logicalAndExpression

{CRBinaryExpressionNode leftOperand: ’1’ operator: ’2’ rightOperand: ’3’}

;

logicalOrOperatorToken : <LOGIC_OR_OP>

{CROperatorNode token: ’1’}

;

logicalAndExpression

: inclusiveOrExpression

{’1’}

| logicalAndExpression logicalAndOperatorToken inclusiveOrExpression

{CRBinaryExpressionNode leftOperand: ’1’ operator: ’2’ rightOperand: ’3’}

;

logicalAndOperatorToken : <LOGIC_AND_OP>

{CROperatorNode token: ’1’}

;

inclusiveOrExpression

: exclusiveOrExpression

{’1’}

185

| inclusiveOrExpression inclusiveOrOperatorToken exclusiveOrExpression

{CRBinaryExpressionNode leftOperand: ’1’ operator: ’2’ rightOperand: ’3’}

;

inclusiveOrOperatorToken : <INCL_OR_OP>

{CROperatorNode token: ’1’}

;

exclusiveOrExpression

: andExpression

{’1’}

| exclusiveOrExpression exclusiveOrOperatorToken andExpression

{CRBinaryExpressionNode leftOperand: ’1’ operator: ’2’ rightOperand: ’3’}

;

exclusiveOrOperatorToken : <EXCL_OR_OP>

{CROperatorNode token: ’1’}

;

andExpression

: equalityExpression

{’1’}

| andExpression andOperatorToken equalityExpression

{CRBinaryExpressionNode leftOperand: ’1’ operator: ’2’ rightOperand: ’3’}

;

andOperatorToken : <AND_OP>

{CROperatorNode token: ’1’}

;

equalityExpression

: relationalExpression

{’1’}

| equalityExpression equalityOperatorToken relationalExpression

{CRBinaryExpressionNode leftOperand: ’1’ operator: ’2’ rightOperand: ’3’}

;

equalityOperatorToken : <EQUALITY_OP>

{CROperatorNode token: ’1’}

;

relationalExpression

: shiftExpression

{’1’}

| relationalExpression relationalOperatorToken shiftExpression

{CRBinaryExpressionNode leftOperand: ’1’ operator: ’2’ rightOperand: ’3’}

;

relationalOperatorToken : <REL_OP>

{CROperatorNode token: ’1’}

;

shiftExpression

: additiveExpression

{’1’}

| shiftExpression shiftOperatorToken additiveExpression

{CRBinaryExpressionNode leftOperand: ’1’ operator: ’2’ rightOperand: ’3’}

;

shiftOperatorToken : <SHIFT_OP>

{CROperatorNode token: ’1’}

;

additiveExpression

: multiplicativeExpression

{’1’}

| additiveExpression additiveOperatorToken multiplicativeExpression

{CRBinaryExpressionNode leftOperand: ’1’ operator: ’2’ rightOperand: ’3’}

186

;

additiveOperatorToken : <ADD_OP>

{CROperatorNode token: ’1’}

;

multiplicativeExpression

: castExpression

{’1’}

| multiplicativeExpression multiplicativeOperatorToken castExpression

{CRBinaryExpressionNode leftOperand: ’1’ operator: ’2’ rightOperand: ’3’}

;

multiplicativeOperatorToken

: <STAR_OP>

{CROperatorNode token: ’1’}

| <MULT_OP>

{CROperatorNode token: ’1’}

;

castExpression

: unaryExpression

{’1’}

| <LEFT_PAREN> typeName <RIGHT_PAREN> castExpression

{CRCastExpressionNode leftParen: ’1’ typeName: ’2’ rightParen: ’3’ castExpression: ’4’}

;

unaryExpression

: postfixExpression

{’1’}

| doubleOperator unaryExpression

{CRPrefixAdditionNode operator: ’1’ unaryExpression: ’2’}

| unaryOperator castExpression

{CRPrefixExpressionNode operator: ’1’ expression: ’2’}

| <SIZEOF> unaryExpression

{CRSizeOfExpressionNode sizeOfToken: ’1’ expression: ’2’}

| <SIZEOF> <LEFT_PAREN> typeName <RIGHT_PAREN>

{CRSizeOfExpressionNode sizeOfToken: ’1’ leftParen: ’2’ expression: ’3’ rightParen: ’4’}

;

doubleOperator

: <INC_OP>

{CROperatorNode token: ’1’}

| <DEC_OP>

{CROperatorNode token: ’1’}

;

unaryOperator

: <AND_OP>

{CROperatorNode token: ’1’}

| <STAR_OP>

{CROperatorNode token: ’1’}

| <ADD_OP>

{CROperatorNode token: ’1’}

| <UNARY_OP>

{CROperatorNode token: ’1’}

;

postfixExpression

: primaryExpression

{’1’}

| postfixExpression <LEFT_BLOCK> expression <RIGHT_BLOCK>

{CRArrayExpressionNode postfixExpression: ’1’ leftBrace: ’2’ indexExpression: ’3’ rightBrace: ’4’}

| postfixExpression <LEFT_PAREN> <RIGHT_PAREN>

{CRFunctionCallNode postfixExpression: ’1’ leftParen: ’2’ argumentExpressionList: nil rightParen: ’3’}

| postfixExpression <LEFT_PAREN> argumentExpressionList <RIGHT_PAREN>

{CRFunctionCallNode postfixExpression: ’1’ leftParen: ’2’ argumentExpressionList: ’3’ rightParen: ’4’}

| postfixExpression <DOT> identifierToken

{CRStructFieldExpressionNode postfixExpression: ’1’ pointerOp: ’2’ field: ’3’}

187

| postfixExpression <PTR_OP> identifierToken

{CRStructFieldExpressionNode postfixExpression: ’1’ pointerOp: ’2’ field: ’3’}

| postfixExpression doubleOperator

{CRPostfixAdditionNode postfixExpression: ’1’ operator: ’2’}

;

primaryExpression

: identifierToken

{’1’}

| constant

{CRConstantExpressionNode value: ’1’ first}

| stringLiteralToken

{’1’}

| <LEFT_PAREN> expression <RIGHT_PAREN>

{CRParenthesizedExpressionNode leftParen: ’1’ expression: ’2’ rightParen: ’3’}

| <LEFT_PAREN> compoundStatement <RIGHT_PAREN>

{CRStatementExpressionNode leftParen: ’1’ compoundStatement: ’2’ rightParen: ’3’}

;

constant

: <CHAR_CONSTANT>

| <INT_CONSTANT>

| <FLOAT_CONSTANT>

;

stringLiteralToken : <STRING_LITERAL>

{CRStringValueNode value: ’1’}

| stringLiteralToken <STRING_LITERAL>

{’1’ addValue: ’2’}

;

expression

: assignmentExpression

{CRComposedExpressionNode with: ’1’}

| expression <COMMA> assignmentExpression

{’1’ add: ’3’ afterComma: ’2’}

;

assignmentExpression

: conditionalExpression

{’1’}

| unaryExpression assignmentOperatorToken assignmentExpression

{CRAssignmentExpressionNode leftOperand: ’1’ operator: ’2’ rightOperand: ’3’}

;

assignmentOperatorToken

: <EQUALS_OP>

{CROperatorNode token: ’1’}

| <ASSIGN_OP>

{CROperatorNode token: ’1’}

;

argumentExpressionList

: assignmentExpression

{CRCommaCollectionNode with: ’1’}

| argumentExpressionList <COMMA> assignmentExpression

{’1’ add: ’3’ afterComma: ’2’}

;

###***************************Statements

compoundStatement

: <LEFT_BRACE> <RIGHT_BRACE>

{|stat| stat := CRCompoundStatementNode leftBrace: ’1’ rightBrace: ’2’.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat

}

| <LEFT_BRACE> declarationOrStatementList <RIGHT_BRACE>

188

{|stat| stat := CRCompoundStatementNode leftBrace: ’1’ statementList: ’2’ rightBrace: ’3’.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat

}

;

declarationOrStatementList

: declaration

{CRCollectionNode with: ’1’}

| statement

{CRCollectionNode with: ’1’ first}

| declarationOrStatementList declaration

{’1’ add: ’2’}

| declarationOrStatementList statement

{’1’ add: ’2’ first}

;

statement

: labeledStatement

| compoundStatement

| expressionStatement

| selectionStatement

| iterationStatement

| jumpStatement

| controlLine

| asmInstruction

;

labeledStatement

: identifierToken <COLON> statement

{|stat| stat := CRLabeledStatementNode identifier: ’1’ colon: ’2’ statement: ’3’ first.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat

}

| <CASE> constantExpression <COLON> statement

{|stat| stat := CRCaseStatementNode caseToken: ’1’ constantExpression: ’2’ first colon: ’3’

statement: ’4’ first.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat

}

| <DEFAULT> <COLON> statement

{|stat| stat := CRDefaultStatementNode defaultToken: ’1’ colon: ’2’ statement: ’3’ first.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat

}

;

expressionStatement

: <SEMI_COLON>

{|stat| stat := CRExpressionStatementNode semiColon: ’1’.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat}

| expression <SEMI_COLON>

{|stat| stat := CRExpressionStatementNode expression: ’1’ semiColon: ’2’.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat}

;

selectionStatement

: <IF> <LEFT_PAREN> expression <RIGHT_PAREN> statement

{|stat| stat := CRIfStatementNode ifToken: ’1’ leftParen: ’2’ expression: ’3’ rightParen: ’4’

thenStatement: ’5’ first.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat}

| <IF><LEFT_PAREN> expression <RIGHT_PAREN> statement <ELSE> statement

{|stat| stat := CRIfStatementNode ifToken: ’1’ leftParen: ’2’ expression: ’3’ rightParen: ’4’

thenStatement: ’5’ first elseToken: ’6’ elseStatement: ’7’ first.

scanner hasComments ifTrue: [stat comments: scanner getComments].

189

stat}

| <SWITCH> <LEFT_PAREN> expression <RIGHT_PAREN> statement

{|stat| stat := CRSwitchStatementNode switchToken: ’1’ leftParen: ’2’ expression: ’3’

rightParen: ’4’ statement: ’5’ first.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat}

;

iterationStatement

: <WHILE> <LEFT_PAREN> expression <RIGHT_PAREN> statement

{|stat| stat := CRWhileStatementNode whileToken: ’1’ leftParen: ’2’ expression: ’3’

rightParen: ’4’ statement: ’5’ first.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat}

| <DO> statement <WHILE> <LEFT_PAREN> expression <RIGHT_PAREN> <SEMI_COLON>

{|stat| stat := CRDoWhileStatementNode doToken: ’1’ statement: ’2’ first whileToken: ’3’

leftParen: ’4’ expression: ’5’ rightParen: ’6’ semiColon: ’7’.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat}

| <FOR> <LEFT_PAREN> expressionStatement expressionStatement <RIGHT_PAREN> statement

{|stat| stat := CRForStatementNode forToken: ’1’ leftParen: ’2’ expressionStat1: ’3’

expressionStat2: ’4’ rightParen: ’5’ statement: ’6’ first.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat}

| <FOR> <LEFT_PAREN> expressionStatement expressionStatement expression <RIGHT_PAREN> statement

{|stat| stat := CRForStatementNode forToken: ’1’ leftParen: ’2’ expressionStat1: ’3’

expressionStat2: ’4’ expression: ’5’ rightParen: ’6’ statement: ’7’ first.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat}

;

jumpStatement

: <GOTO> identifierToken <SEMI_COLON>

{|stat| stat := CRGotoStatementNode gotoToken: ’1’ identifier: ’2’ semiColon: ’3’.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat}

| <CONTINUE> <SEMI_COLON>

{|stat| stat := CRContinueStatementNode continueToken: ’1’ semiColon: ’2’.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat}

| <BREAK> <SEMI_COLON>

{|stat| stat := CRBreakStatementNode breakToken: ’1’ semiColon: ’2’.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat}

| <RETURN> <SEMI_COLON>

{|stat| stat := CRReturnStatementNode returnToken: ’1’ semiColon: ’2’.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat}

| <RETURN> expression <SEMI_COLON>

{|stat| stat := CRReturnStatementNode returnToken: ’1’ expression: ’2’ semiColon: ’3’.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat}

;

Preprocessor

conditionalDirective

: <CONDITIONAL_START_IF>

{CRControlConditionalStartIfNode token: ’1’}

| <CONDITIONAL_START_IFDEF>

{CRControlConditionalStartIfdefNode token: ’1’}

| <CONDITIONAL_ELIF>

{CRControlConditionalElifNode token: ’1’}

| <CONDITIONAL_ELSE>

{CRControlConditionalElseNode token: ’1’}

| <CONDITIONAL_END>

{CRControlConditionalEndNode token: ’1’}

;

190

macroDirective

: <DEFINE>

{CRControlDefineNode token: ’1’}

| <UNDEF>

{CRControlUndefineNode token: ’1’}

;

controlLine: <INCLUDE>

{|node| node := CRControlIncludeNode token: ’1’.

scanner hasComments ifTrue: [node comments: scanner getComments].

node}

| macroDirective

{|node| node := ’1’.

scanner hasComments ifTrue: [node comments: scanner getComments].

node}

| conditionalDirective

{|node| node := ’1’.

scanner hasComments ifTrue: [node comments: scanner getComments].

node}

| <OTHER_DIRECTIVE>

{|node| node := CRControlOtherNode token: ’1’.

scanner hasComments ifTrue: [node comments: scanner getComments].

node}

| <CONDITIONAL_START_IF> <DEFINED>

{CRControlConditionalStartIfNode token: ’1’}

#It will never parse this, but we need it to generate the token "defined"

;

Assembler instructions

asmInstruction

: <ASM> <LEFT_PAREN> asmExpression <RIGHT_PAREN> <SEMI_COLON>

{|stat| stat := CRAsmInstructionNode asmToken: ’1’ leftParen: ’2’ asmExpression: ’3’

rightParen: ’4’ semiColon: ’5’.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat

}

| <ASM> <VOLATILE> <LEFT_PAREN> asmExpression <RIGHT_PAREN> <SEMI_COLON>

{|stat| stat := CRAsmInstructionNode asmToken: ’1’ volatileToken: ’2’ leftParen: ’3’

asmExpression: ’4’ rightParen: ’5’ semiColon: ’6’.

scanner hasComments ifTrue: [stat comments: scanner getComments].

stat

}

;

asmExpression

: stringLiteralToken

{CRAsmExpressionNode assemblerTemplate: ’1’}

| stringLiteralToken <COLON> asmOperandList

{CRAsmExpressionNode assemblerTemplate: ’1’ colon1: ’2’ outputOperands: ’3’}

| stringLiteralToken <COLON> asmOperandList <COLON> asmOperandList

{CRAsmExpressionNode assemblerTemplate: ’1’ colon1: ’2’ outputOperands: ’3’ colon2: ’4’

inputOperands: ’5’}

| stringLiteralToken <COLON> asmOperandList <COLON> asmOperandList <COLON> stringList

{CRAsmExpressionNode assemblerTemplate: ’1’ colon1: ’2’ outputOperands: ’3’ colon2: ’4’

inputOperands: ’5’ colon3: ’6’ hardRegisters: ’7’}

;

asmOperandList

: {CRCommaCollectionNode new}

| asmOperand

{CRCommaCollectionNode with: ’1’}

| asmOperandList <COMMA> asmOperand

{’1’ add: ’3’ afterComma: ’2’}

;

191

asmOperand

: stringLiteralToken <LEFT_PAREN> expression <RIGHT_PAREN>

{CRAsmOperandNode constraint: ’1’ leftParen: ’2’ operand: ’3’ rightParen: ’4’}

| <LEFT_BLOCK> identifierToken <RIGHT_BLOCK> stringLiteralToken <LEFT_PAREN> expression <RIGHT_PAREN>

{CRAsmOperandNode leftBlock: ’1’ symbolicName: ’2’ rightBlock: ’3’ constraint: ’4’ leftParen: ’5’

operand: ’6’ rightParen: ’7’}

;

stringList

: stringLiteralToken

{CRCommaCollectionNode with: ’1’}

| stringList <COMMA> stringLiteralToken

{’1’ add: ’3’ afterComma: ’2’}

;

192

Appendix D

Source Code of Examples

This appendix first shows the original source code for rm.c and remove.h in the package

“coreutil-5.2.1” [73]. The comments at the beginning of rm.c were shortened since

they were not important for our purposes. Then, the last two listings are the final

versions of both files after the transformations listed in Chapter 1 has been applied.

Following is the original source code of rm.c.

/* ‘rm’ file deletion utility for GNU.

Copyright (C) 88, 90, 91, 1994-2004 Free Software Foundation, Inc.

...

*/

#include <config.h>

#include <stdio.h>

#include <getopt.h>

#include <sys/types.h>

#include <assert.h>

#include "system.h"

#include "dirname.h"

#include "error.h"

#include "quote.h"

#include "remove.h"

#include "root-dev-ino.h"

#include "save-cwd.h"

/* The official name of this program (e.g., no ‘g’ prefix). */

#define PROGRAM_NAME "rm"

#define AUTHORS \

"Paul Rubin", "David MacKenzie, Richard Stallman", "Jim Meyering"

/* Name this program was run with. */

char *program_name;

/* For long options that have no equivalent short option, use a

non-character as a pseudo short option, starting with CHAR_MAX + 1. */

193

enum

{

NO_PRESERVE_ROOT = CHAR_MAX + 1,

PRESERVE_ROOT,

PRESUME_INPUT_TTY_OPTION

};

static struct option const long_opts[] =

{

{"directory", no_argument, NULL, ’d’},

{"force", no_argument, NULL, ’f’},

{"interactive", no_argument, NULL, ’i’},

{"no-preserve-root", no_argument, 0, NO_PRESERVE_ROOT},

{"preserve-root", no_argument, 0, PRESERVE_ROOT},

/* This is solely for testing. Do not document. */

/* It is relatively difficult to ensure that there is a tty on stdin.

Since rm acts differently depending on that, without this option,

it’d be harder to test the parts of rm that depend on that setting. */

{"presume-input-tty", no_argument, NULL, PRESUME_INPUT_TTY_OPTION},

{"recursive", no_argument, NULL, ’r’},

{"verbose", no_argument, NULL, ’v’},

{GETOPT_HELP_OPTION_DECL},

{GETOPT_VERSION_OPTION_DECL},

{NULL, 0, NULL, 0}

};

void

usage (int status)

{

if (status != EXIT_SUCCESS)

fprintf (stderr, _("Try ‘%s --help’ for more information.\n"),

program_name);

else

{

char *base = base_name (program_name);

printf (_("Usage: %s [OPTION]... FILE...\n"), program_name);

fputs (_("\

Remove (unlink) the FILE(s).\n\

\n\

-d, --directory unlink FILE, even if it is a non-empty directory\n\

(super-user only; this works only if your system\n\

supports ‘unlink’ for nonempty directories)\n\

-f, --force ignore nonexistent files, never prompt\n\

-i, --interactive prompt before any removal\n\

"), stdout);

fputs (_("\

--no-preserve-root do not treat ‘/’ specially (the default)\n\

--preserve-root fail to operate recursively on ‘/’\n\

-r, -R, --recursive remove the contents of directories recursively\n\

-v, --verbose explain what is being done\n\

"), stdout);

fputs (HELP_OPTION_DESCRIPTION, stdout);

fputs (VERSION_OPTION_DESCRIPTION, stdout);

printf (_("\

\n\

To remove a file whose name starts with a ‘-’, for example ‘-foo’,\n\

use one of these commands:\n\

%s -- -foo\n\

\n\

%s ./-foo\n\

"),

base, base);

fputs (_("\

\n\

Note that if you use rm to remove a file, it is usually possible to recover\n\

the contents of that file. If you want more assurance that the contents are\n\

194

truly unrecoverable, consider using shred.\n\

"), stdout);

printf (_("\nReport bugs to <%s>.\n"), PACKAGE_BUGREPORT);

}

exit (status);

}

static void

rm_option_init (struct rm_options *x)

{

x->unlink_dirs = 0;

x->ignore_missing_files = 0;

x->interactive = 0;

x->recursive = 0;

x->root_dev_ino = NULL;

x->stdin_tty = isatty (STDIN_FILENO);

x->verbose = 0;

}

int

main (int argc, char **argv)

{

bool preserve_root = false;

struct rm_options x;

int fail = 0;

int c;

initialize_main (&argc, &argv);

program_name = argv[0];

setlocale (LC_ALL, "");

bindtextdomain (PACKAGE, LOCALEDIR);

textdomain (PACKAGE);

atexit (close_stdout);

rm_option_init (&x);

while ((c = getopt_long (argc, argv, "dfirvR", long_opts, NULL)) != -1)

{

switch (c)

{

case 0: /* Long option. */

break;

case ’d’:

x.unlink_dirs = 1;

break;

case ’f’:

x.interactive = 0;

x.ignore_missing_files = 1;

break;

case ’i’:

x.interactive = 1;

x.ignore_missing_files = 0;

break;

case ’r’:

case ’R’:

x.recursive = 1;

break;

case NO_PRESERVE_ROOT:

preserve_root = false;

break;

case PRESERVE_ROOT:

195

preserve_root = true;

break;

case PRESUME_INPUT_TTY_OPTION:

x.stdin_tty = 1;

break;

case ’v’:

x.verbose = 1;

break;

case_GETOPT_HELP_CHAR;

case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS);

default:

usage (EXIT_FAILURE);

}

}

if (argc <= optind)

{

if (x.ignore_missing_files)

exit (EXIT_SUCCESS);

else

{

error (0, 0, _("too few arguments"));

usage (EXIT_FAILURE);

}

}

if (x.recursive && preserve_root)

{

static struct dev_ino dev_ino_buf;

x.root_dev_ino = get_root_dev_ino (&dev_ino_buf);

if (x.root_dev_ino == NULL)

error (EXIT_FAILURE, errno, _("failed to get attributes of %s"),

quote ("/"));

}

{

size_t n_files = argc - optind;

char const *const *file = (char const *const *) argv + optind;

enum RM_status status = rm (n_files, file, &x);

assert (VALID_STATUS (status));

if (status == RM_ERROR)

fail = 1;

}

exit (fail);

}

Following is the original source code of remove.h.

#ifndef REMOVE_H

define REMOVE_H

include "dev-ino.h"

struct rm_options

{

/* If nonzero, ignore nonexistent files. */

int ignore_missing_files;

/* If nonzero, query the user about whether to remove each file. */

int interactive;

196

/* If nonzero, recursively remove directories. */

int recursive;

/* Pointer to the device and inode numbers of ‘/’, when --recursive.

Otherwise NULL. */

struct dev_ino *root_dev_ino;

/* If nonzero, stdin is a tty. */

int stdin_tty;

/* If nonzero, remove directories with unlink instead of rmdir, and don’t

require a directory to be empty before trying to unlink it.

Only works for the super-user. */

int unlink_dirs;

/* If nonzero, display the name of each file removed. */

int verbose;

};

enum RM_status

{

/* These must be listed in order of increasing seriousness. */

RM_OK = 2,

RM_USER_DECLINED,

RM_ERROR,

RM_NONEMPTY_DIR

};

define VALID_STATUS(S) \

((S) == RM_OK || (S) == RM_USER_DECLINED || (S) == RM_ERROR)

define UPDATE_STATUS(S, New_value) \

do \

{ \

if ((New_value) == RM_ERROR \

|| ((New_value) == RM_USER_DECLINED && (S) == RM_OK)) \

(S) = (New_value); \

} \

while (0)

enum RM_status rm (size_t n_files, char const *const *file,

struct rm_options const *x);

#endif

Following is the refactored source code of rm.c.

/* ‘rm’ file deletion utility for GNU.

Copyright (C) 88, 90, 91, 1994-2004 Free Software Foundation, Inc.

...

*/

#include <config.h>

#include <stdio.h>

#include <getopt.h>

#include <sys/types.h>

#include <assert.h>

#include "system.h"

#include "dirname.h"

#include "error.h"

#include "quote.h"

#include "remove.h"

#include "root-dev-ino.h"

197

#include "save-cwd.h"

/* The official name of this program (e.g., no ‘g’ prefix). */

#define PROGRAM_NAME "rm"

#define AUTHORS \

"Paul Rubin", "David MacKenzie, Richard Stallman", "Jim Meyering"

/* Name this program was run with. */

char *program_name;

/* For long options that have no equivalent short option, use a

non-character as a pseudo short option, starting with CHAR_MAX + 1. */

enum

{

NO_PRESERVE_ROOT = CHAR_MAX + 1,

PRESERVE_ROOT,

PRESUME_INPUT_TTY_OPTION

};

static struct option const long_opts[] =

{

{"directory", no_argument, NULL, ’d’},

{"force", no_argument, NULL, ’f’},

{"interactive", no_argument, NULL, ’i’},

{"no-preserve-root", no_argument, 0, NO_PRESERVE_ROOT},

{"preserve-root", no_argument, 0, PRESERVE_ROOT},

/* This is solely for testing. Do not document. */

/* It is relatively difficult to ensure that there is a tty on stdin.

Since rm acts differently depending on that, without this option,

it’d be harder to test the parts of rm that depend on that setting. */

{"presume-input-tty", no_argument, NULL, PRESUME_INPUT_TTY_OPTION},

{"recursive", no_argument, NULL, ’r’},

{"verbose", no_argument, NULL, ’v’},

{GETOPT_HELP_OPTION_DECL},

{GETOPT_VERSION_OPTION_DECL},

{NULL, 0, NULL, 0}

};

void

usage (int status)

{

if (status != EXIT_SUCCESS)

fprintf (stderr, _("Try ‘%s --help’ for more information.\n"),

program_name);

else

{

char *base = base_name (program_name);

printf (_("Usage: %s [OPTION]... FILE...\n"), program_name);

fputs (_("\

Remove (unlink) the FILE(s).\n\

\n\

-d, --directory unlink FILE, even if it is a non-empty directory\n\

(super-user only; this works only if your system\n\

supports ‘unlink’ for nonempty directories)\n\

-f, --force ignore nonexistent files, never prompt\n\

-i, --interactive prompt before any removal\n\

"), stdout);

fputs (_("\

--no-preserve-root do not treat ‘/’ specially (the default)\n\

--preserve-root fail to operate recursively on ‘/’\n\

-r, -R, --recursive remove the contents of directories recursively\n\

-v, --verbose explain what is being done\n\

"), stdout);

fputs (HELP_OPTION_DESCRIPTION, stdout);

198

fputs (VERSION_OPTION_DESCRIPTION, stdout);

printf (_("\

\n\

To remove a file whose name starts with a ‘-’, for example ‘-foo’,\n\

use one of these commands:\n\

%s -- -foo\n\

\n\

%s ./-foo\n\

"),

base, base);

fputs (_("\

\n\

Note that if you use rm to remove a file, it is usually possible to recover\n\

the contents of that file. If you want more assurance that the contents are\n\

truly unrecoverable, consider using shred.\n\

"), stdout);

printf (_("\nReport bugs to <%s>.\n"), PACKAGE_BUGREPORT);

}

exit (status);

}

static void

rm_option_init (struct rm_options *opts)

{

opts->unlink_directories = 0;

opts->ignore_missing_files = 0;

opts->interactive = 0;

opts->recursive = 0;

opts->root_dev_ino = NULL;

opts->stdin_tty = isatty (STDIN_FILENO);

opts->verbose = 0;

opts->preserve_root = false;

}

int

main (int argc, char **argv)

{

struct rm_options opts;

int fail = 0;

int c;

initialize_main (&argc, &argv);

program_name = argv[0];

setlocale (LC_ALL, "");

bindtextdomain (PACKAGE, LOCALEDIR);

textdomain (PACKAGE);

atexit (close_stdout);

rm_option_init (&opts);

while ((c = getopt_long (argc, argv, "dfirvR", long_opts, NULL)) != -1)

{

switch (c)

{

case 0: /* Long option. */

break;

case ’d’:

opts.unlink_directories = 1;

break;

case ’f’:

opts.interactive = 0;

opts.ignore_missing_files = 1;

break;

case ’i’:

199

opts.interactive = 1;

opts.ignore_missing_files = 0;

break;

case ’r’:

case ’R’:

opts.recursive = 1;

break;

case NO_PRESERVE_ROOT:

opts.preserve_root = false;

break;

case PRESERVE_ROOT:

opts.preserve_root = true;

break;

case PRESUME_INPUT_TTY_OPTION:

opts.stdin_tty = 1;

break;

case ’v’:

opts.verbose = 1;

break;

case_GETOPT_HELP_CHAR;

case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS);

default:

usage (EXIT_FAILURE);

}

}

if (argc <= optind)

{

if (opts.ignore_missing_files)

exit (EXIT_SUCCESS);

else

{

error (0, 0, _("too few arguments"));

usage (EXIT_FAILURE);

}

}

if (opts.recursive && opts.preserve_root)

{

static struct dev_ino dev_ino_buf;

opts.root_dev_ino = get_root_dev_ino (&dev_ino_buf);

if (opts.root_dev_ino == NULL)

error (EXIT_FAILURE, errno, _("failed to get attributes of %s"),

quote ("/"));

}

{

size_t n_files = argc - optind;

char const *const *file = (char const *const *) argv + optind;

enum RM_status status = rm (n_files, file, &opts);

assert (VALID_STATUS (status));

if (status == RM_ERROR)

fail = 1;

}

exit (fail);

}

200

Following is the refactored source code of “remove.h”.

#ifndef REMOVE_H

define REMOVE_H

include "dev-ino.h"

struct rm_options

{

/* If nonzero, ignore nonexistent files. */

int ignore_missing_files;

/* If nonzero, query the user about whether to remove each file. */

int interactive;

/* If nonzero, recursively remove directories. */

int recursive;

/* Pointer to the device and inode numbers of ‘/’, when --recursive.

Otherwise NULL. */

struct dev_ino *root_dev_ino;

/* If nonzero, stdin is a tty. */

int stdin_tty;

/* If nonzero, remove directories with unlink instead of rmdir, and don’t

require a directory to be empty before trying to unlink it.

Only works for the super-user. */

int unlink_directories;

/* If nonzero, display the name of each file removed. */

int verbose;

bool preserve_root;

};

enum RM_status

{

/* These must be listed in order of increasing seriousness. */

RM_OK = 2,

RM_USER_DECLINED,

RM_ERROR,

RM_NONEMPTY_DIR

};

define VALID_STATUS(S) \

((S) == RM_OK || (S) == RM_USER_DECLINED || (S) == RM_ERROR)

define UPDATE_STATUS(S, New_value) \

do \

{ \

if ((New_value) == RM_ERROR \

|| ((New_value) == RM_USER_DECLINED && (S) == RM_OK)) \

(S) = (New_value); \

} \

while (0)

enum RM_status rm (size_t n_files, char const *const *file,

struct rm_options const *x);

#endif

201

References

[1] M. Fowler, Refactoring. Improving the Design of Existing Code. Addison-Wesley,
1999.

[2] W. Opdyke, Refactoring Object-Oriented Frameworks. PhD thesis, University of
Illinois at Urbana-Champaign, 1992.

[3] “Eclipse.org main page.” http://www.eclipse.org.

[4] “Refactoring Browser.” http://www.refactory.com/RefactoringBrowser/index.html.

[5] “jFactor - Home Page.” http://www.instantiations.com/jfactor/, 2003.

[6] D. Roberts, Eliminating Analysis in Refactoring. PhD thesis, University of Illi-
nois at Urbana-Champaign, 1999.

[7] D. Roberts, J. Brant, and R. Johnson, “A Refactoring Tool for Smalltalk,” The-
ory and Practice of Object Systems, vol. 3, no. 4, 1997.

[8] A. Garrido and R. Johnson, “Challenges of refactoring C programs,” in Proc. of
the Fifth International Workshop on Principles of Software Evolution (IWPSE)
(M. Aoyama, K. Inoue, and V. Rajlich, eds.), (Orlando), pp. 6–14, ACM, 2002.

[9] A. Garrido and R. Johnson, “Refactoring C with conditional compilation,” in
Proceedings of the IEEE Automated Software Engineering Conference (ASE),
(Montreal, Canada), pp. 323–326, 2003.

[10] M. Lehman, “Laws of program evolution - rules and tools for programming man-
agement,” in Infotech State of the Art Conference, Why Software Projects Fail,
pp. 11/1 – 11/25, 1978.

[11] M. Lehman, “On understanding laws, evolution and conservation in the large
program life cycle,” Journal of Sys. And Software, vol. 1, no. 3, pp. 213–221,
1980.

[12] M. Lehman, “Laws of software evolution revisited,” in Proceedings of EWSPT’96,
(Nancy), 1996.

[13] R. Arnold, “Software restructuring,” in Proceedings IEEE, vol. 77, pp. 607–617,
1989.

202

[14] M. Ó Cinnéide, Automated Application of Design Patterns: a Refactoring Ap-
proach. PhD thesis, University of Dublin, Trinity College, 2001.

[15] B. Foote and W. Opdyke, “Lifecycle and refactoring patterns that support evolu-
tion and reuse,” in Pattern Languages of Program Design I (Coplien and Schmidt,
eds.), pp. 239–257, Addison-Wesley, 1995.

[16] A. Garrido, “Software refactoring applied to C programming language,” Master’s
thesis, University of Illinois at Urbana-Champaign, May 2000.

[17] W. Opdyke and R. Johnson, “Refactoring: An aid in designing application frame-
works and evolving object-oriented systems,” in Proc. of Symposium on Object-
Oriented Programming Emphasizing Practical Applications (SOOPPA), 1990.

[18] J. Overbey, S. Xanthos, R. Johnson, and B. Foote, “Refactorings for Fortran and
High-Performance Computing,” in 2nd. Int. Workshop on Software Engineering
for High Performance Computing System Applications, (St. Louis, MO), 2005.

[19] D. Dig and R. Johnson, “The role of refactorings in API evolution,” in Proc.
of the International Conference on Software Maintenance (ICSM), (Budapest,
Hungary), 2005.

[20] L. Tokuda and D. Batory, “Evolving object oriented designs with refactoring,”
in Proc. IEEE Conference on Automated Software Engineering (ASE), 1999.

[21] A. Garrido and R. Johnson, “Analyzing multiple configurations of a C program,”
in Proc. of the International Conference on Software Maintenance (ICSM), (Bu-
dapest, Hungary), 2005.

[22] B. W. Kernighan and D. M. Ritchie, The C Programming Language. Prentice
Hall, second ed., 1988.

[23] M. Ernst, G. Badros, and D. Notkin, “An empirical analysis of C preproces-
sor use,” Revision of Technical Report UW-CSE-97-04-06, Dept. of Computer
Science and Engineering, Univ. of Washington, Seattle, 1999.

[24] B. Stroustrup, The Design and Evolution of C++. Reading, Massachusetts:
Addison-Wesley, 1994.

[25] R. Stallman and Z. Weinberg, “The C preprocessor.” GNU Online documenta-
tion. http://gcc.gnu.org/onlinedocs/, 2001.

[26] S. Harbison and G. Steele, C. A reference manual. Prentice Hall, third ed., 1991.

[27] J. Steffen, “The CScope Program.” Berkeley UNIX Release 3.2, 1981.

[28] D. A.Kinloch and M.Munro, “Understanding c programs using the combined c
graph representation,” in Proceedings of the Int. Conference on Software Main-
tenance, (Victoria, Canada), pp. 172–180, IEEE Computer Soc. Press, 1994.

203

[29] P. Devanbu, “Genoa - a customizable, front-end retargetable source code anal-
ysis framework,” ACM Transactions on Software Engineering and Methodology,
vol. 9, no. 2, 1999.

[30] M.-A. Storey, K. Wong, and H. Mueller, “Rigi: A visualization environment for
reverse engineering,” in Proceedings of the Int. Conference on Software Engineer-
ing, 1997.

[31] R. Bowdidge, Supporting the Restructuring of Data Abstractions through Ma-
nipulation of a Program Visualization. PhD thesis, University of California,
San Diego, Dep. of Computer Science and Engineering, 1995. Technical Report
CS95-457.

[32] P. Devanbu, “The GEN++ page.” http://seclab.cs.ucdavis.edu/ devanbu/-genp.

[33] M. Weiser, “Programmers use slices when debugging,” Communications of the
ACM, vol. 25, no. 7, 1982.

[34] D. Atkinson and W. Griswold, “Effective whole-program analysis in the presence
of pointers,” in Proc. of the 6th ACM Int. Symposium on the Foundations of
Software Engineering, (Lake Buena Vista, FL), pp. 46–55, 1998.

[35] M. Mock, D. Atkinson, C. Chambers, and S. Eggers, “Improving program slicing
with dynamic points-to data,” in Proceedings of the 10th Int. Symposium on the
Foundations of Software Engineering, ACM Press, 2002.

[36] R. Bowdidge and W. Griswold, “Supporting the restructuring of data abstrac-
tions through manipulation of a program visualization,” ACM Transactions of
Software Enginnering and Methodology, vol. 7, pp. 109–157, April 1998.

[37] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using dependence
graphs,” ACM Transactions on Programming Languages and Systems, vol. 12,
no. 1, pp. 26–60, 1990.

[38] Y. Chen, M. Nishimote, and C. Ramanoorthy, “The C information abstraction
system,” IEEE Transactions on Software Engineering, vol. 16, pp. 325– 334,
March 1990.

[39] “C and C++ editor reverse engineering, code navigation and automatic docu-
mentation.” http://www.scitools.com/ucpp.html, 2003.

[40] G. J. Badros and D. Notkin, “A framework for preprocessor-aware C souce code
analyses,” Software Practice and Experience, vol. 30, no. 8, 2000.

[41] D. Evans, “LCLint user’s guide.” MIT Laboratory for Computer Science, August
1996.

[42] S. Somé and T. Lethbridge, “Parsing minimization when extracting information
from code in the presence of conditional compilation,” in Sixth International
Workshop on Program Comprehension, (Ischia, Italy), IEEE, 1998.

204

[43] P. Livadas and D. Small, “Understanding code containing preprocessor con-
structs,” tech. rep., Computer and Information Science Department, Univ. of
Florida, 1994.

[44] A. Cox and C. Clarke, “Relocating XML elements from preprocessed to unpro-
cessed code,” in Int. Workshop on Program Comprehension, 2002.

[45] B. Kullback and V. Riediger, “Folding: An approach to enable program under-
standing of preprocessed languages,” in Eight Working Conference on Reverse
Engineering, (Stuttagart, Germany), 2001.

[46] M. Fowler, “Crossing refactoring’s rubicon.”
http://www.martinfowler.com/articles/refactoringRubicon.html.

[47] “IntelliJ IDEA: the most intelligent Java IDE around.”
http://www.intellij.com/idea/.

[48] “Xrefactory - a C/C++ development tool with refactoring browser.” http://xref-
tech.com/xrefactory.

[49] M. Vittek, “Refactoring browser with preprocessor,” in 7th European Conference
on Software Maintenance and Reengineering, (Benevento, Italy), March 2003.

[50] “DMS Software Reengineering Toolkit.” http://www.semdesigns.com/Products/
DMS/DMSToolkit.html.

[51] D. Roberts and J. Brant, “Refactoring tools,” in Refactoring. Improving the
Design of Existing Code, ch. 14, Addison-Wesley, 1999.

[52] I. Baxter, C. Pidgeon, and M. Mehlich, “DMS: Program transformations for
practical scalable software evolution,” in Proceedings of the International Con-
ference of Software Enigineering, 2004.

[53] I. Baxter and M. Mehlich, “Preprocessor conditional removal by simple partial
evaluation,” inWorkshop on Analysis, Slicing, and Transformation at the Eighth
Working Conference on Reverse Engineering (WCRE’01), 2001.

[54] M. D. P. Aversano, L. and I. Baxter, “Handling preprocessor-conditioned decla-
rations,” in 2nd IEEE Int. Workshop on Source Code Analysis and Manipulation,
(SCAM’02), (Montreal), 2002.

[55] “Ref++ - C++ Refactoring Tool for Visual C++.NET.”
http://www.refpp.com/index.htm.

[56] “SlickEdit.” http://www.slickedit.com/.

[57] R. Fanta and V. Rajlich, “Restructuring legacy c code into c++,” in Proc. of
the International Conference on Software Maintenance (ICSM), 1999.

205

[58] R. Fanta and V. Rajlich, “Reengineering object-oriented code,” in Proc. of the
International Conference on Software Maintenance (ICSM), pp. 238–246, 1998.

[59] “The Maude System.” http://maude.cs.uiuc.edu/.

[60] G. Roşu, “CS422 - Programming Language Design - Class Notes.”
http://fsl.cs.uiuc.edu/ grosu/classes/2004/fall/cs422/, Fall 2004.

[61] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
J. Quesada, “A Maude Tutorial.” http://maude.cs.uiuc.edu/primer/maude-
tutorial.pdf.

[62] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott, Maude Manual (Version 2.1.1). SRI International, Menlo Park, CA,
April 2005.

[63] T. McCombs, “Maude 2.0 primer.” http://maude.cs.uiuc.edu/primer/maude-
primer.pdf.

[64] D. Friedman, M. Wand, and C. Haynes, Essentials of Programming Languages.
McGraw-Hill, 1997.

[65] “Flex - GNU project - Free Software Foundation (FSF).”
http://www.gnu.org/software/flex/flex.html.

[66] “Extensions to the C language family.” http://gcc.gnu.org/onlinedocs/gcc/C-
Extensions.html.

[67] A. Aho, R. Sethi, and J. Ullman, Compilers. Principles, Techniques, and Tools.
Addison Wesley, 1988.

[68] “SmaCC by Refactory, Inc..” http://www.refactory.com/Software/SmaCC/.

[69] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[70] S. Muchnick, Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997.

[71] C. Shanbhag, “The design of a user interface for a refactoring tool for C,” Mas-
ter’s thesis, University of Illinois at Urbana-Champaign, 2003.

[72] N. Mart́ı-Oliet, J. Meseguer, and M. Palomino, “Theoroidal maps as algebraic
simulations,” in Proc of WADT’04, pp. 126–143, Springer-Verlag LNCS, 2004.

[73] “Coreutils - GNU Project - Free Software Foundation (FSF).”
http://www.gnu.org/software/coreutils/coreutils.html.

206

Author’s Biography

Alejandra Garrido was born in La Plata, Argentina, on June 5, 1972. She attended

the University of La Plata, Argentina, where she earned a Computer Analyst degree

in 1993. While at the University of La Plata, Mrs. Garrido worked at LIFIA as a

teaching and research assistant, while pursuing the degree of Licentiate in Computer

Science, which she completed in 1997. That year she won the IMF-IDB scholarship

for graduate studies and was admitted to the Department of Computer Science of the

University of Illinois at Urbana-Champaign. She completed a Master of Science from

the University of Illinois in 2000. That year she served as the Conference Chair of the

Seventh Conference on Pattern Languages of Programs, and she became a member

of the Hillside Group. During her graduate studies, Mrs. Garrido worked mostly as a

teaching assistant, and she received the “Excellent Teaching Assistant” award in April

2003. She worked as an Intern in IBM T.J. Watson Research Center during Summer

2003. During her graduate studies at the University of Illinois, Mrs. Garrido has been

a member of the Software Architecture Group, leaded by Prof. Ralph Johnson, where

she reviewed several books and publications on object-oriented software engineering,

design patterns and refactoring. Following the completion of her Ph.D., Mrs. Garrido

will begin working as a Visiting Scholar with Prof. José Meseguer at the Dept. of

Computer Science of the University of Illinois.

207

View publication statsView publication stats

https://www.researchgate.net/publication/32964532

