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Resumen

. . .
— ¿Qué rayos fue eso?
— Eso fue un comienzo, Matthew. Algo viajó de un estado de exis-
tencia a otro. Vino de uno de los más distantes arrecifes del sueño.
Observemos las consecuencias.

A Game of You – The Sandman
Neil Gaiman, Shawn Mc Manis

Cuando se consideran las maneras de producir programas, la técnica principal que
viene a la mente de cada uno de nosotros es la de escribir el programa a mano. Aunque
existen técnicas de derivación y herramientas para producir programas automáticamen-
te, su aplicación está usualmente restringida a cierta clase de problemas, o ciertos domi-
nios (como los generadores de parsers, o las interfaces visuales). En los casos donde tales
técnicas se pueden aplicar, la productividad y la confiabilidad se ven ampliamente in-
crementadas. Por esa razón, nos interesamos en la producción automática de programas
en un marco general.

La especialización de programas es una manera particular de producir programas
automáticamente. En ella se utiliza un programa fuente general dado para generar
diversas versiones particulares, especializadas, del mismo, cada una resolviendo una in-
stancia particular del problema original. La técnica más conocida y más ampliamente
estudiada de especialización de programas es llamada evaluación parcial; se la ha uti-
lizado con éxito en varias áreas de aplicación diferentes. Sin embargo, la evaluación
parcial tiene problemas cuando se considera la producción automática de programas con
tipos.

La especialización de tipos es una forma de especialización de programas que puede
producir automáticamente programas con tipos a partir de uno fuente. Comprende
diversas técnicas muy poderosas, tales como especialización polivariante, especialización
de constructores, conversión de clausuras; es la primera de las variantes de especialización
de programas que puede generar tipos arbitrarios a partir de un único programa fuente.
Creemos que la especialización de tipos puede ser la base sobre la que desarrollar un
marco de producción automática de programas.

En esta tesis consideramos la especialización de programas, extendiéndola para pro-
ducir programas polimórficos. Ilustramos eso considerando un intérprete para un lambda
cálculo con tipos á la Hindley-Milner, y especializándolo con cualquier programa objeto
para producir un programa residual que sea esencialmente igual que el original. En la
búsqueda de la generación de polimorfismo, extendemos la especialización de tipos para
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que pueda expresar la especialización de programas con información estática incompleta,
y probamos que para cada término podemos inferir una especialización particular que
puede ser usada para reconstruir cada uno de las otras especializaciones de tal término.
Llamamos especialización de tipos principal a tal técnica, debido a la analoǵıa de esta
propiedad con la noción de tipos principales. Nuestra presentación clarifica muchos de
los problemas existentes en la especialización de tipos, lo cual puede ser usado como una
gúıa en la búsqueda de soluciones para ellos.

La presentación se divide en cuatro partes. En la primera Parte, presentamos la
Especialización de Tipos en su forma original, junto con material complementario. En
la Parte II desarrollamos la presentación de la Especialización de Tipos Principal, expli-
cando todos los detalles técnicos, dando varios ejemplos, y presentando nuestra imple-
mentación del prototipo. En la Parte III describimos las posibilidades de la formulación
nueva, proveyendo una extensión de la Especialización de Tipos para generar progra-
mas polimórficos. Finalmente, la última parte describe trabajos relacionados, trabajos
futuros, y concluye.

Este trabajo es el resultado de siete años de investigación, realizados durante mis
estudios de doctorado.

Palabras clave: especialización principal de tipos, especialización de tipos, especiali-
zación de programas, producción automática de programas, programas polimórficos.
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varios de ellos, pero los tres más importantes son Gabriel Baum, John Hughes, y Roberto
Di Cosmo. Gabriel fue mi director como estudiante de grado, y mi jefe y amigo por los
últimos doce años, y en cada ocasión en la que hablamos, me maravillé descubriendo la
incréıble fuente de sabiduŕıa que es; mis estudiantes han sufrido mis intentos de aprender
de él cómo ser un buen ĺıder y una mejor persona. John fue mi director de doctorado, y
una fuente importante de ideas, gúıa y apoyo; luego de cada una de las reuniones con él
me sent́ı intimidado y estimulado a ĺımites que pensaba imposibles para mı́. John, tengo
que agradecerte especialmente el haberme aceptado como tu estudiante en condiciones
lejos de las óptimas (¡con un océano entre medio de nosotros!) y sin embargo te las
arreglaste para hacerlo bien, a pesar de mis esfuerzos por lo contrario. Ah! No debo
olvidar las lecciones de ski! Y Roberto fue mi director en el Master, y también, por un
tiempo, mi director de doctorado, antes de que John entrase en escena; me enseñó y me
guió y me alentó tan bien y con tanta gentileza, que todav́ıa estoy preguntándome cómo
lo hizo (¡para imitarlo!). A vos, Roberto, tengo que agradecerte especialmente que me
dejaras libre cuando estaba coqueteando con la especialización de tipos. A los tres, mi
más sincera gratitud. Sepan que todav́ıa voy a beber de sus manantiales por un tiempo.

Hay también dos docentes ejemplares, a quienes debo mi vocación como docente. La
Profesora Ĺıa Oubiña, porque es la docente más incréıble que conoćı, y si sólo consiguie-
se durante mi carrera una pequeña fracción de lo que ella me mostró posible, estaŕıa
satisfecho de ser un excelente docente. Y el Profesor Michael Christie, porque él también
es un excelente docente (tu curso es algo memorable; ¡gracias!), y fue él el que provocó
mi gran descubrimiento: enseñar es mi vida.

Continuando con modelos y gúıas, debo mencionar a diversas personas: Peter Thie-
man, Mark Jones y Marcelo Fŕıas, los jurados de mi tesis, y Olivier Danvy, quién re-
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conoció el valor de algunas ideas en mi presentación. A Peter y Olivier, especialmente,
les debo diversas discusiones e iluminaciones.

Estoy completamente en deuda con diversos amigos a ambos lados del Océano
Atlántico. Quiero mencionar a seis en particular. En el lado americano, mis amigos
(y estudiantes y colegas) Esteban y Hernán, y mi colega Eduardo, por su apoyo, aliento
e interés en mi trabajo, y también porque se permitieron involucrarse en el mismo, en-
riqueciendo esta tesis (Hernán, te debo especialmente varias partes del Caṕıtulo 8, y el
autógrafro de mi admirada Úrsula); y también por ser parte del ambiente directo en mi
trabajo diario, el cual es mucho más animado y divertido gracias a ellos. En el lado
europeo, Ana, Carlos y Verónica, porque fueron mi familia durante mis largas estad́ıas
en Gotemburgo, y mis viajes no hubieran sido tan fáciles, interesantes y productivos sin
su ayuda, apoyo, amabilidad y amistad permanentes. Los tres me abrieron las puertas
de sus casas y me permitieron hacerlas la mı́a. (¡Ah! También tengo que mencionar
el refugio que Eduardo me dio cuando él también estaba de viaje por Europa, por las
mismas razones que yo.) Además me siento en la obligación de mencionar la cantidad de
veces que tanto Ana como Verónica me alimentaron; si hubiesen escuchado los consejos
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ahorrado bastante. ¡Mis amigos, espero ser bendecido con vuestra amistad por un largo
tiempo!

Hubo otros varios modelos para mi trabajo, y ellos también han contribuido con
mi tesis en formas directas e indirectas. Quiero mencionar a Juan Vicente Echagüe
(siempre Juanvi para mı́, aunque a él no le guste del todo. . . ), Delia Kesner, Alfredo
Olivero, Gustavo Rossi e Irene Loiseau, porque me ayudaron con sus consejos, su aliento
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Delia, en particular, quiero agradecerle todas las veces que me dio alojamiento en Paŕıs,
sus fantásticas cenas, y por ser quién me señaló la beca que hizo todo esto posible.
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dif́ıcil parte de mencionar algunas de las cosas que hicieron por mı́. ¡Va a ser injusto,
seguro, porque todos hicieron much́ısimo! A Andrés y Ale, por ayudarme con el código
del prototipo; a Diego P. y Laura por la cuidadosa lectura (¡ni siquiera una prima en
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me enfrentaron y me asistieron en el trabajo más gratificante del mundo: enseñar.
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Wanda, Vanesa, Agustina, Mariana, Pepe, Valeria, Hernán C., Mara.
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¡mi vida hubiese tomado una dirección completamente diferente! Valoro su amistad como
una de las joyas más importantes en mi tesoro.

Ahora es momento de volver al este del Atlántico. Hice un montón de amigos en
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agradecerles por ser los anfitriones de los Multi-meetings, e inspirarme para tener los
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amistad tan abiertamente. En particular, no voy a olvidar que fuiste vos la que empezó
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luego, todo el resto: Jörgen, Elin, Tuomo, Rogardt, Ilona, Mia, Andrei, Walid, Makoto,
Per B., Gordon, Boris, David R., Björn, Dave, Peter, Magnus, Thomas, y muchos otros.
Todos ustedes juntos han hecho que cada vez que dejé Gotemburgo, un pedazo mı́o se
quedara atrás.

Hay un lugar especial en mi corazón para aquellos con los que compart́ı tantas
discusiones (¡incluso en versos!), complots y batallas. Juan G., Pablo S., Pite, Marcos,
y nuevamente Steve y Hernán, jugar con ustedes a nuestra propia versión del 1914 fue
genial. Fue muy divertido y entretenido, y también me enseñó varias cosas útiles.

A lo largo de mis cursos de doctorado, hice sufrir a diversos docentes. Alejandro R.,
Laurance, Thomas, Thierry, Philippas, Gonzalo, Mart́ın F.C., Daniel F. (Frito), gracias
por su paciencia, sus enseñanzas y su tiempo.
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a cualquier individuo particular, y por ello, merecen un lugar por śı mismas acá. Estoy
en deuda con diversas instituciones, pero especialmente con el LIFIA de la Facultad de
Informática de la Universidad Nacional de La Plata, en Argentina, por ser mi lugar de
trabajo y por proveerme con todas las cosas necesarias para hacer buena investigación; la
ESLAI, porque sus esporas están creciendo y floreciendo en cientos de lugares alrededor
del mundo, y cada una de ellas es un hogar para mı́; el Departamento de Ciencias de la
Computación de la Facultad de Ciencias Exactas de la Universidad Nacional de Buenos
Aires, en Argentina, porque es mi alma mater, y la financiación que me dieron fue un
ingrediente fundamental en esta receta; el Departamento de Ciencias de la Computación
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provee, y porque me aceptó como uno más de sus habitantes; y a la institución detrás de
http://citeseer.nj.nec.com, por el servicio invaluable que le proveen a la comunidad
académica.

En los últimos ‘minutos’ de mi viaje, conoćı algunas personas que constituyen una
promesa para el futuro. Marjan, Tomaz, Simon, Andrea, Pedro, Maŕıa, espero que
podamos continuar trabajando y divirtiéndonos juntos.

Un lugar especial debe reservarse para mi escritora favorita, Úrsula Le Guin. Mi
vida es mucho más rica gracias a ella; sus palabras inundan mi mente, ayudándome a
soportar el dolor cuando viene, y aśı haciendo que no me sienta sólo, de forma que puede
empezar la fraternidad con otros, como enunció Shevek. Valoro tu autógrafo como un
regalo muy especial.

Finalmente, para aquellos que pueden entender las vueltas de mi retorcida mente,
mencionaré a mis propios Atro, Chifoilisk, Saio Pae, y el resto de los Urrasti. Yo no
hubiese estado tan afilado, enfocado y lleno de recursos si no hubieran estado alĺı.

Y aśı llega el final de este ‘caṕıtulo’. Traté de hacer una breve descripción de todas
las maravillas que viv́ı, v́ı y sufŕı en estos años. Pero hacerlo con justicia me hubiese
tomado todas las páginas de esta tesis. Entonces, para terminar, haré mı́as una vez más
las palabras de Úrsula.

Uno puede volver nuevamente al hogar (. . . ), siempre y cuando entienda que
el hogar es un lugar en el que nunca se estuvo.

Los Desposéıdos
Úrsula K. Le Guin
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Abstract

. . .
— What the hell was that?
— That was a beginning, Matthew. Something traveled from one state
of existence to another. It came from one of the more distant skerries
of dream. Let us observe the consequences.

A Game of You – The Sandman
Neil Gaiman, Shawn Mc Manis

When considering the ways in which programs are produced, the main technique
that comes to everybody’s mind is writing by hand. Although derivation techniques
and tools for producing programs exist, their application is usually restricted to certain
kind of problems, or certain domains (such as parsing generators, or visual interfaces).
In those cases where such techniques can be applied, productivity and reliability are
highly boosted. For that reason, we are concerned with the automatic production of
programs in a general setting.

Program specialization is a particular way to produce programs automatically. A
given, general source program is used to generate several particular, specialized versions
of it, each one solving a particular instance of the original problem. The best-known and
thoroughly studied technique for program specialization is called partial evaluation; it
has been successfully used in several different application areas. But partial evaluation
falls short when automatic production of typed programs is considered.

Type specialization is a form of program specialization that can automatically pro-
duce typed programs from some general source one. It comprises several powerful tech-
niques, such as polyvariant specialization, constructor specialization, and closure con-
version, and it is the first variant of program specialization that can generate arbitrary
types from a single source program. We believe that type specialization can be the basis
in which to develop a framework for automatic program production.

In this thesis we consider type specialization, extending it to produce polymorphic
programs. We illustrate that by considering an interpreter for Hindley-Milner typed
lambda-calculus, and specializing it to any given object program, producing a residual
program that is essentially the same as the original one. In achieving the generation
of polymorphism, we extend type specialization to be able to express specialization of
programs with incomplete static information, and prove that for each term we can infer
a particular specialization that can be used to reconstruct every other for that term.
We call that principal type specialization because of the analogy this property has with
the notion of principal types. Our presentation clarifies some of the problems existing in
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type specialization, clarification that can be used as a guide in the search for solutions
to them.

The presentation is divided in four parts. In the first Part we present Type Spe-
cialization in its original form, together with some background material. In Part II we
develop the presentation of Principal Type Specialization, explaining all the technical
details, offering several examples, and presenting our prototype implementation. In
Part III we describe the possibilities of the new formulation, by providing an extension
of Type Specialization to generate polymorphic programs. And finally, in the last Part
we describe related and future work and conclude.

This work is the result of seven years of research, performed during my PhD studies.

Keywords: principal type specialization, type specialization, program specialization,
automatic program production, polymorphic programs.
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Juanvi to me, although he doesn’t completely like it. . . ), Delia Kesner, Alfredo Olivero,
Gustavo Rossi, and Irene Loiseau, because they have helped me with their counsels,
their encouragement, and their work, and, not at all least, with my administrative stuff!
Delia, in particular, I want to thank for those times when she provided me with a house
in Paris, those fantastic dinners, and for being the one to point out the scholarship that
made all this possible.

Continuing with models and guides, I have to mention several people: Peter Thie-
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Finally, for those who can understand the turns of my twisted mind, I will mention
my own Atro, Chifoilisk, Saio Pae, and the rest of the Urrasti. I would not have been
so sharp, focused, and resourceful, had you not been there.

And thus we come to the end of this ‘chapter’. I tried to made a brief description of
all the wonders I have lived through, seen, and suffered during these years. But it would
have taken me all the pages of this thesis to be fair. So, to finish, I will once again make
mine the words of Úrsula.

You can go home again (. . . ), so long as you understand that home is a place
where you have never been.

The Dispossessed
Úrsula K. Le Guin
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Chapter 1

Introduction

Programming is a handcraft!!

Course on “Program Specialization”
John Hughes

Montevideo, 1997

1.1 Program Specialization

“Programming is a handcraft!!” was the first sentence John Hughes said during my first
course on automatic program generation. And the explanation followed: almost every
program is hand-written by some human programmer, and almost every line of code is
checked by a human programmer.

The situation is comparable with the task of carpet-weaving: if every carpet were
woven by a human weaver, the production of carpets would be limited by the speed of
the weavers, and their number; also the quality and complexity of the carpets produced
would depend heavily on the ability of the artisans, and on their physical and mental
state during the weaving process: many mistakes might be made because of the tiredness
of the weaver.

In the case of carpets, the solution to go from an artistic handcraft to an industrial
discipline of carpet-making was the invention of the weaver-machine. The machine
performs the repetitive tasks needed to weave a carpet, and the old craftsman is replaced
by designers, programmers, and operators for the weaver-machine. The old error-prone,
slow task of hand weaving is replaced by a highly efficient, fast process performed by a
machine, and production can be improved to limits that were impossible with the old
model.

The equivalent of the weaver-machine in the case of programming would be a pro-
gram that produces programs automatically. There are several well-known examples
of programs generating programs, but most of them are restricted in some way, the
typical case being the restriction to a certain domain (for example, parser generators);
thus we can talk of domain-oriented program generation. But to turn programming
from a handcraft to an industrial discipline, we need a general way to produce programs
automatically.

Automatic program generation is the field treating the problem of automatic pro-
duction of programs from a general point of view. There are several different ways to
produce a program automatically. Program specialization — the form of program gener-
ation that we consider in this thesis — is perhaps the most successful: a given program

1
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is used as input to produce one or more particular versions of it as output, each special-
ized to particular data. The program used as input is called the source program, and
those produced as output are called the residual programs.

The motivation for this approach comes from the following scenario: when solving
several similar problems, a programmer can choose between either writing several small
efficient programs by hand and then running them to solve each problem, or writing a
big, general, and usually inefficient program with many parameters, changing the data
on each run to solve each problem. In the former case, the programs will be very efficient,
but a lot of effort of programming is required; in the latter case, the programming effort
is better spent, but the resulting program will repeat many computations that depend
on the additional parameters used to distinguish among instances. The idea of program
specialization is to take the best of both worlds, writing a general source program and
then specializing it to each situation, producing the set of small residual program for each
instance of the class of problems. The classic example is the recursive power function
calculating xn

power n x = if n == 1

then x

else x * power (n-1) x

whose computation involves several comparisons and recursive calls, but that, when the
input parameter n is known — for example let’s say it is 3 — can be specialized to a
non-recursive residual version that can only computes powers of that particular n — the
function

power3 x = x * (x * x)

in our example. It is clear that the residual version is much more efficient than the
source version when computing cubes.

Program specialization has been studied from several different approaches; among
them, Partial Evaluation [Jones et al., 1993; Consel and Danvy, 1993] is, by far, the most
popular and well-known. And because the work of John Hughes [Hughes, 1996b] that
has inspired the present thesis, has in its turn been inspired by the partial evaluation
approach, we begin by describing its basics.

Partial evaluation is a technique that produces residual programs by using a general-
ized form of reduction: subexpressions with known arguments are replaced by the result
of their evaluation, and combined with those computations that cannot be performed.
That is, a partial evaluator works with the text of the source program by fixing some of
the input data (the static data) and performing a mixture of computation and code gen-
eration to produce a new program. The programs produced, when run on the remaining
data — called dynamic data because it is only known during run-time — yield the same
result as the original program run on all the data. Partial evaluation may sound like a
sophisticated form of constant folding, but in fact a wide variety of powerful techniques
are needed to do it successfully, and these may completely transform the structure of
the original program.

An area where partial evaluation is particularly successful is the automatic pro-
duction of compilers: compilation is obtained by specializing an interpreter for a lan-
guage to a given program [Futamura, 1971; Jones et al., 1985; Jones et al., 1989;
Wand, 1982; Hannan and Miller, 1992]. In this case, the interpreter is used as the
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source program, the object program is used as the static data, and then the residual
program is the compiled version of the object program; so, the specialization of the
interpreter yields compilation. Another layer of complexity can be added when the par-
tial evaluator is written in the language it specializes: self-application becomes possible,
and thus compilers can be generated as well. The (code of the) partial evaluator is
the source program and the interpreter is the static data; the resulting residual pro-
gram performs specialization of the interpreter mentioned above: a compiler! This is
very useful in the area of domain-specific languages [Thibault et al., 1998], where the
cost of generating a compiler must be kept to a minimum. Other areas where partial
evaluation has been applied successfully include networking [Muller et al., 1998], soft-
ware architectures [Marlet et al., 1999], hardware design and verification [Hogg, 1996;
Singh and McKay, 1998], virtual worlds [Beshers and Feiner, 1997], numerical compu-
tation [Lawall, 1998], and aircraft crew planning [Augustsson, 1997].

The partial evaluation community chooses to regard a partial evaluator as a “black
box” that can be used to optimize existing programs by totally automatic means [Jones,
1996] — that is, their primary goal is efficiency obtained by automatic means. The
main goal guiding our work, instead, is to obtain increased productivity by means of a
specializer. When writing the source program, a programmer can afford a vast amount
of static computations just to spare a small amount of dynamic ones; being aware of
how the specializer works is the key for the programmer to increase his abilities. While
efficiency and productivity are two sides of the same coin, we argue that the latter is
much more relevant. This is our rule of thumb: we regard a program specializer as a
tool that amplifies the programming abilities of programmers, and so, it should be very
flexible.

An important notion in the program specialization approach is that of inherited limit
[Mogensen, 1996; Mogensen, 1998a]. An inherited limit is some limitation in the residual
program imposed by the structure of the source program and the specialization method;
that is, the form of obtainable generated programs is limited by the form of the pro-
gram to be specialized. Inherited limits imply that residual programs cannot use the full
potential of the language. For example, the number of functions may be an inherited
limit: if every function in the source program must be specialized in a unique way —
this is called monovariant specialization — then the number of functions in the residual
program cannot be more than that in the source one, and then it will constitute an in-
herited limit. For that reason, all good partial evaluators are polyvariant: polyvariance
is the ability of an expression to specialize to more than one residual expression. In the
majority of existing partial evaluators, polyvariance is the default for let-bounded dec-
larations, thus allowing the declaration of functions that can be specialized to multiple
different functions.

Other inherited limits we can encounter in a specializer are the size of the program,
the number of variables, the nesting depth of some structures, the number of types,
etc. Mogensen [1996] has argued that historical developments in program specialization
gradually remove inherited limits, and suggests how this principle can be used as a
guideline for further development. Our work made use of this guideline to further
develop program specialization.

One good way to detect the presence or absence of inherited limits is to specialize
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a self-interpreter and compare the residual programs with the source one: if they are
essentially the same, then we can be confident that no inherited limits exist. We then say
that the specialization was optimal (or Jones-optimal, after Neil Jones [Jones, 1988b]).

Partial evaluation, in the case of self-interpreters written in untyped languages, can
obtain optimality; but for typed interpreters things are different. As partial evaluation
works by reduction, the type of the residual program is necessarily the same as that of
the source one; thus, the residual code will contain type information coming from the
representation of programs in the interpreter: optimality cannot be achieved, and the
inherited limit of types is exposed. This problem was stated by Neil Jones in 1987 as
one of the open problems in the partial evaluation field [Jones, 1988b].

1.2 Type Specialization

A different form of program specialization is called Type Specialization [Hughes, 1996b;
Hughes, 1996a; Hughes, 1998b]; it was introduced by John Hughes in 1996 as a solution
for optimal specialization of typed interpreters — that is, it removed the inherited limit
of types — but it has also proved to be a rich approach to program specialization. Type
specialization resembles partial evaluation in many respects — it is also a technique
for program specialization, after all — but the reader familiar with partial evaluation
should be warned: it is a different approach to program specialization. For example,
using the same interpreter for a given object language L, a compiler for both untyped
and typed versions of L can be automatically produced, just by varying the annotations.
This is possible because type checking is an integral part of type specialization, and so
it is embedded in the process of generating the residual program; partial evaluation falls
short in this respect.

The basic idea behind type specialization is to move static information to the type,
thus specializing both the source term and source type to residual term and residual
type. Types can be regarded as a static property of the code, approximating the known
facts about it; for example, in a functional language based on the simply typed lambda-
calculus, when some expression has type Int, we statically know that if its evaluation
produces some value, it will be an integer. But if the expression is known to be the
constant 42, for example, then a better approximation can be obtained by having a type
representing the property of being the integer 42 — let’s call this type 4̂2, and allow the
residual type system to have types like this one. Having all the information in the type,
there is no need to execute the program anymore, and thus, we can replace the integer
constant by a dummy constant having type 4̂2 — that is, the source expression 42 : Int

can be specialized to • : 4̂2, where • is the dummy constant. This specialization of types
into ones expressing more detailed facts about expressions — the type Int specialized
to the type 4̂2 in this example — needs a more powerful residual type system, which is
the key fact allowing optimal specialization for typed interpreters.

Polymorphism is an important property of modern typed languages, because it al-
lows reuse of code while keeping all the good properties of strong typing: one function
is reused at several different instances without change. It is important that a formalism
for program specialization can produce polymorphic programs for two reasons: firstly,
because we want as few inherited limits as possible in a specializer, and currently poly-
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morphism is one of them, and secondly, because polymorphism is a way to reduce the
size of code, avoiding the duplication of a piece of code when only the type of both
instances is different. Unfortunately, in the original formulation of type specialization
[Hughes, 1996b] both the source and residual type systems were monomorphic, and this
imposes an inherited limit: the residual programs cannot be polymorphic, they cannot
have more polymorphism than the source program.

Type specialization is specified by a system of rules that is very similar to those
used to specify type systems — indeed, type specialization can be seen as a generalized
form of type inference. In this way, the specification of the specialization procedure is
modular: the specialization of new constructs in the source language can be specified
by the addition of new rules, without changing the rest of them. The monomorphic
nature of the rules used in the original formulation produces some problems: there are
rules that are not completely syntax directed and so, for some source terms, several
different unrelated specializations can be produced. This is very similar to the problem
appearing in simply typed λ-calculus when typing an expression like λx.x: the type of
x is determined by the context of use, and different types for this expression have no
relation between them expressible in the system. The solution for this last problem is
to extend the type system to a polymorphic one, where a principal type expresses all
the possible ways of assigning a type to a given expression. For this reason, we say that
the original formulation of type specialization lacks the property of principality.

The lack of principality has important consequences. Firstly, the extension to pro-
duce polymorphic residual code or specializing polymorphic source code is very difficult
to treat. Secondly, an algorithm for specialization will fail for terms with more than one
specialization when the context does not indicate which one to choose, or even worse,
will choose one of them arbitrarily. Thirdly, although the context provides enough in-
formation for the choice, it is too restrictive for the whole process of specializing a term
to depend on the whole context; with this kind of restriction, specialization of program
modules is very hard to achieve, because in order to specialize a module, the specializer
may need to know all the program — in general, information about other modules on
which the current one has no syntactic dependencies.

Our long term goal is to extend the power of type specialization to treat other features
of modern languages, such as polymorphism, type classes and lazy evaluation — to be
able, for example, to type specialize Haskell programs.

1.3 Contribution of This Thesis

The main contribution of this thesis is the formulation of a system for type specializa-
tion that can produce principal specializations as proved in Theorem 6.26. A principal
specialization is one that is more general than any other a given source term can have,
and from which all those can be obtained by a suitable notion of instantiation.

We express the type specialization system in a different way from the original for-
mulation of Hughes, by using constraints to express specialization, and separating the
specialization in two phases: constraint generation and constraint solving. In this way
we can express specialization with different degrees of detail, thus providing a better
understanding of the information flow during specialization, and enabling the appli-
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cation of different heuristics to the process of calculating the right residual program.
On the other hand, it makes it possible to define modular specialization: each module
can be specialized in a principal manner, and to link the residual code to the residual
main program, the right instantiation should be produced. Finally, the improved un-
derstanding of the information flow can be helpful in the treatment of other problems
related with type specialization, such as the interaction of recursion with features of
type specialization such as polyvariance.

The possibilities that our new formulation allows are shown by considering the re-
moval of the inherited limit of polymorphism: our approach can generate polymorphic
programs from monomorphic source ones. This is important because it increases the
abilities of program specialization, and makes the generation of more powerful and gen-
eral programs possible. However, the development presented here is just a basic one,
and our purpose when including it was to show the potential of our formulation.

Finally, from a slightly different perspective, we show that the type specialization
problem posed by Neil Jones in 1987 is not really there. We propose to read the problem
in a different way, showing that optimality for typed interpreters can indeed be obtained
with a Mix-style partial evaluator. This insight has been discovered during our work
with type specialization, and, while it does not invalidate 20 years of good research,
it shows that sometimes researchers’ inspiration can come from very strange places,
indeed.

1.4 Overview

The thesis is divided into four parts.
In Part I we present Type Specialization. We begin in Chapter 2 describing partial

evaluation, and discussing the features of it relevant to our work. In Chapter 3 we
describe the work of John Hughes on type specialization [Hughes, 1996b; Hughes, 1998a;
Dussart et al., 1997b; Hughes, 2000], which is the starting point of this thesis; we explain
the pragmatics of type specialization, and present the specification given by Hughes.
Finally in Chapter 4 we provide examples motivating the use of type specialization and
discuss some of its limitations.

Then in Part II we present the new formulation of type specialization, which we call
Principal Type Specialization (PTS). We start in Chapter 5 by reviewing the theory of
qualified types developed by Mark Jones [Jones, 1994a], because it is the technical foun-
dation of our development. Then in Chapter 6 we explain the problems of the original
formulation and present the new formulation for a small subset of the language. After
that, in Chapter 7 we develop an algorithm calculating principal specializations, and
we prove the principality of the system introduced in the previous chapter. Constraint
solving and postprocessing phases are considered in Chapter 8. We describe, then, in
Chapter 9, how to extend the principal specialization to a full language including static
functions, datatypes and recursion; the problems posed by the dynamic version of re-
cursion are also discussed. This part ends in Chapter 10, with a quick glance at the
details of the prototype implementation we have made in the functional language Haskell
[Peyton Jones and Hughes (editors), 1999].

The PTS system is the basis on which we built a type specialization framework that
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handles polymorphism. It is presented in Part III. We consider only the production
of polymorphic residual programs from monomorphic ones (residual polymorphism),
showing the possibilities of our formulation to remove this inherited limit. The full
treatment of this topic, as well as the specialization of polymorphic programs (source
polymorphism) is left for future work.

Part IV presents related and future work and concludes. We review some of the
different approaches to program specialization in Chapter 13, and compare them with
ours, providing an appropriate context for this work. Then, in Chapter 14, we discuss
some of the possible continuations for the work presented here. Finally, Chapter 15
presents the insights gained during the development of this thesis.





Part I

Type Specialization
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Chapter 2

Partial Evaluation

Ahead at warp 9. Engage!

Captain Picard
The Best of Both Worlds

Star Trek, Next Generation

A one-argument function can be obtained from one with two arguments by fixing
one input. This is called ‘projection’ in mathematical analysis, and ‘currying’ in logic.
Program specialization, however, deals with programs rather than functions. The first
formulation of the idea of program specialization was Kleene’s s-m-n theorem, 50 years
ago [Kleene, 1952], also an important building block of the theory of recursive functions.
Basically, what the theorem says is that a specialized version of a recursive function is
itself an effectively constructible recursive function — that is, there exists a recursive
function which acts as a general specializer.

Partial evaluation is a technique to specialize a program by fixing some of its inputs
and performing the computations that depend on them [Jones et al., 1993; Consel and
Danvy, 1993]. So, residual programs are produced by a generalized form of reduction:
subexpressions with known arguments are replaced by the result of their evaluation, and
combined with those computations that cannot be performed. But it should be kept
in mind that a partial evaluator works with the text of the source program by fixing
the known input data (the static data) and performing a mixture of computation and
code generation to produce a new program — that’s why Ershov [1982] called it “mixed
computation”, hence the historical name mix used for a partial evaluator. The programs
produced, when run on the remaining data — called dynamic data because it is only
known during run-time — yield the same result as the original program run on all the
data.

In this chapter we briefly revisit the main notions of partial evaluation, mention some
of its successful applications, and present the notion of compilation by specialization,
and show a particular problem that is difficult to solve with this approach: optimal
compilation of interpreters written in typed languages.

2.1 Partial Evaluation

The idea of partial evaluation can be clearly expressed with equations. We write [[p]]L
for the meaning, as a function from inputs to output, of a program p written in language
L. When dealing with partial evaluators, several languages are used; we denote them
symbolically by

L, the language in which the partial evaluator is implemented,

11
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Partial evaluator
mixsourceProgram

staticData dynamicData

residualProgram output

dynamicData

sourceProgram output

staticData

≡

= data

= program

L S

S

Figure 2.1: Graphical description of mix

S, the language specialized by the partial evaluator, and

O, an object language under treatment.

We use the name mix for program written in a language L that is the partial evaluator
for a language S, and whose behaviour is specified by:

[[mix]]L sourceProgram staticData = residualProgram

such that

[[residualProgram]]S dynamicData

= [[sourceProgram]]S staticData dynamicData

(occasionally, instead of a single language S, there can be two different languages: a
source language and a target language for source and residual programs; this is im-
portant, for example, when the code of mix is to be used as input to itself in order
to specialize it [Jones et al., 1993]; the rationales for variations of a specializers target
language are discussed by ? [?]). The equations are also clarified in the diagram on
Figure 2.1.

Several techniques known from the area of program transformation [Burstall and
Darlington, 1977] are used in partial evaluation; some of them are constant folding
(replacing variables with constant values by the actual values), folding and unfolding
of function calls (the replacement of a definition by a function call, or the call by
the corresponding instance of the body of the function), symbolic computation (the
manipulation of information in symbolic form, e.g. not considering the actual values of
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variables), and program point specialization (a combination of definition, folding, and
memoization such that a single function — or point — in a program can be specialized to
several different versions, each corresponding to different static data). Although partial
evaluation may sound like a sophisticated form of constant folding, a wide variety of
powerful techniques are needed to do it successfully, and these may completely transform
the structure of the original program.

In the case of the power function mentioned in Chapter 1, the residual program can
be obtained by partial evaluation by computing all the expressions involving n, reducing
the if-then-else, unfolding the function calls, and repeating these steps until the base
case is reached:

[[mix]]L power 3 = power3

such that

[[power3]]S x = [[power]]S 3 x

We want to draw attention to the fact that the main emphasis of partial evaluation
has been to achieve efficiency by automatic means while keeping correctness of the code.
In the words of Neil Jones et al. [1993]:

“The chief motivation for doing partial evaluation is speed. . . ” [Jones et
al., 1993, pp.5]

“By this we mean more than just a tool to help humans write compilers.
Given a specification of a programming language, for example a formal se-
mantics or an interpreter, our goal is automatically and correctly to trans-
form it into a compiler. . . ” [Jones et al., 1993, pp.9]

“Further, users shouldn’t need to understand how the partial evaluator works.
If partial evaluation is to be used by non-specialists in the field, it is essential
that the user thinks as much as possible about the problem he or she is trying
to solve, and as little as possible about the tool being used to aid its solution.”
[Jones et al., 1993, pp.15]

This amounts to regarding a partial evaluator as a sophisticated form of a compiler,
instead of as a tool for automatic program generation. We prefer to put the emphasis in
the increased ability a programmer has when using a program specializer; while efficiency
is still an issue, in this thesis we use expressiveness as the main guide.

Partial evaluation has been studied in several programming paradigms: functional
programming [Gomard and Jones, 1991; Mogensen, 1989; Consel, 1990b], imperative
programming [Andersen, 1992; Andersen, 1993], logic programming [Lloyd and Shep-
herdson, 1991; Fuller and Abramsky, 1988], and object oriented programming [Marquard
and Steensgaard, 1992], including compiler generation for object oriented languages
[Khoo and Sundaresh, 1991]. However, historically the innovations were first studied
in the functional programming paradigm, because of its simplicity, and they were in-
corporated into the other paradigms when they were understood. We follow the same
principle, and restrict our study to functional languages.
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Partial evaluation has been applied successfully in an important number of areas;
among them, we can mention the following ones.

Compilation
[Wand, 1982; Hannan and Miller, 1992; Hannan and Miller, 1990; Penello, 1986]
Compilers can be mechanically constructed from a description of the semantics
of the language, either an interpreter (as described in the next section), from an
operational semantics, or from other descriptions (LR parsing tables, etc.). The
resulting compilers are guaranteed by construction to be correct with respect to
the semantics.

Domain-specific languages
[Thibault et al., 1998; Thibault et al., 1999]
A domain-specific language is a language that is expressive uniquely over the
specific features of programs in a given problem domain. Partial evaluation has
been used in the development of application generators (translators from a domain-
specific to a general purpose language).

Networking
[Muller et al., 1998]
Remote procedure call (RPC) is a layer in the communication stack on some op-
erating systems. Partial evaluation has been applied to Sun RPC code, improving
it to run up to 1.5 times faster; these optimizations have been applied to mature,
commercial, representative system code.

Software architectures
[Marlet et al., 1999; Marlet et al., 1997]
Software architectures express how systems should be built from various compo-
nents and how those components should interact. Implementing the mechanisms
of flexible software architectures can lead to efficiency problems; those problems
can be solved by the careful use of a partial evaluator.

Hardware design and verification
[Hogg, 1996; Singh and McKay, 1998; Au et al., 1991]
Partial evaluation provides a systematic way to manage the complexity of dynamic
reconfiguration in the case where a general circuit is specialized with respect to
a slowly changing input. For example, circuits for encryption algorithms with
specific keys can be designed using partial evaluation techniques, reducing the
number of circuit resources needed.

Virtual worlds
[Beshers and Feiner, 1997]
Partial evaluation and dynamic compilation have been used in the implementation
of flexible and efficient interactive visualization tools (e.g., information visualiza-
tion, pictorial explanations, and multimedia explanations).

Numerical computation
[Lawall, 1998; Berlin, 1990; Berlin and Weise, 1990; Berlin and Surati, 1994]



2.2. Binding Time Analysis 15

For an important class of numerical programs, partial evaluation can provide
marked performance improvements: speedups over conventionally compiled code
that range from seven times faster to 91 times faster have been measured; for ex-
ample, efficient implementations of the Fast Fourier Transform have been produced
automatically and reliably by partial evaluation. By coupling partial evaluation
with parallel scheduling techniques, the low-level parallelism inherent in a compu-
tation can be exploited on heavily pipelined or parallel architectures.

Aircraft crew planning
[Augustsson, 1998]
The scheduling of aircraft and crews in large airlines is a very complex problem,
using a very complex system of rules to specify restrictions, but with several of
the values of variables fixed (such as the number and type of aircrafts); partial
evaluation is especially well-suited to this problem.

2.2 Binding Time Analysis

A key question in any partial evaluator is this: which expressions should be evaluated,
and which should be built into the residual program? Partial evaluation can be done
in either of two ways: using the values of the static data to determine which operations
should be computed, or performing an a priori analysis of the program to divide its
operations, based only on the knowledge of the division of the inputs but not on their
actual values. These two strategies are usually called online partial evaluation and
offline partial evaluation, respectively. The terminology used in this section is the one
used by Jones et al. [1993].

An online partial evaluator uses the concrete values computed during program spe-
cialization to guide further specialization decisions; an offline partial evaluator does not
use the values, but only the information of which of the data are known, to produce
a congruent division, ensuring that there is sufficient static information to do static
computations. For computability reasons, offline methods will inevitably classify some
expressions as dynamic even though they may sometimes assume values computable by
the specializer. An example of this is a conditional expression e = if e1 e2 e3 where
e1 and e2 are static but e3 is dynamic. The expression has to be classified as dynamic,
but an online test would discover that it may be computable if e1 evaluates to True.
If expression e is the argument of a function f, an online partial evaluator could apply
the function whenever e1 was True; but it would take more work to make an offline spe-
cializer to do that (for example, converting the program to continuation passing style
[Consel and Danvy, 1991]).

All early partial evaluators were online, but offline techniques are good for self-
application and the generation of program generators. Both approaches have their ben-
efits and their drawbacks. While online techniques can exploit more static information
during specialization, thus producing better residual programs, their behaviour is less
predictable. And the opposite is true for offline techniques: it is very clear what the
division of the program constructs is, but less improvement is possible.

The process of taking a program and the knowledge of which of its input variables
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are static (but not their values!) and producing a division of all program variables and
operations into static or dynamic is called Binding Time Analysis (also known as BTA),
because it calculates at what time the value of a variable can be computed, that is, the
time when the value can be bound to the variable [Jones, 1988a; Jones et al., 1993]. The
success of BTA was due to the fact that by using it, self-application becomes feasible,
producing residual program generators that were reasonably small and efficient. Indeed
BTA was introduced to make self-application possible [Jones et al., 1985; Sestoft, 1985;
Jones et al., 1989].

One of the key features allowing BTA is the restrictions imposed by the use of
reduction as the mechanism for passing information. The most common example is that
of a dynamic function: as it will not be reduced at specialization-time, the argument of
such a function will not be known before run-time, and thus is forced to be dynamic;
conversely, if the argument is static, the function must be made static. A general
principle establishes that any variable that depends on a dynamic value must itself be
classified as dynamic [Jones, 1988a]. This principle has different results according on
how the notion of dependency is defined; in general, the semantics of the specializer
affects the way in which BTA behaves, by changing the notion of dependency. For
example, a specializer written in continuation passing style (CPS) allows its BTA to
annotate as static the computations in the branches of a dynamic conditional, because
it specializes the context of it twice, once in each branch [Lawall and Danvy, 1994].

There has been a vast amount of research in the area of BTA, improving the way
in which different constructs are annotated. To cite just a few advances, BTA was
extended to handle partially static data structures [Mogensen, 1988], higher-order func-
tions both untyped and typed [Consel, 1990a; Henglein, 1991], pointers and memory
allocation [Andersen, 1993], polyvariant expansions [Thiemann and Sperber, 1996], and
polymorphic languages [Mogensen, 1989; ?; Heldal and Hughes, 2001].

2.3 Compiling by Partial Evaluation

An area where partial evaluation is particularly successful is the automatic production
of compilers: compilation is obtained by specializing an interpreter for a language to a
given program [Wand, 1982; Hannan and Miller, 1992; Hannan and Miller, 1990].

Consider a program interpreter, written in S, which is an interpreter for some
language O; that is, the result of running interpreter on a program written in O is
the same as the result of running that program on the input-data:

[[interpreter]]S program input-data = [[program]]O input-data

Then, using the mix equations, we can easily verify that the following equations hold:

[[mix]]L interpreter program = program’

[[program’]]S input-data = [[interpreter]]S program input-data

= [[program]]O input-data

This tells us that by specializing the O-interpreter to a program, we can obtain an equiv-
alent program in another language (the diagram in Figure 2.2 illustrates the equations).



2.3. Compiling by Partial Evaluation 17

Partial evaluator
mixinterpreter

program input−data

program’ output

input−data

interpreter output

program

≡

= data

= program

input−data

program output

≡

L S

S

O

Figure 2.2: Compilation by means of mix

Thus, ([[mix]]L interpreter) compiles O-programs to S-programs, and the only pro-
gramming effort was writing the O-interpreter — as it is easier to write an interpreter
than a compiler, the gains are evident. This result is known as the first Futamura projec-
tion [Futamura, 1971]; there are two more Futamura projections, related to automatic
production of a compiler (second Futamura projection), and automatic production of a
compiler generator (third Futamura projection) — Ershov [1988] provides an account of
their discovery.

To illustrate in more detail the notion of compilation by partial evaluation, we con-
sider a simple (self-)interpreter for untyped lambda calculus. We use the one presented
by Gomard and Jones [1991] (Figure 2.3), which is written in the untyped (or dynami-
cally typed) functional language Scheme [Abelson et al., 1998]. To be able to compare
it with the more complex versions used later, we also offer it in a “sugared” version
written in an untyped Haskell-like language in Figure 2.4. We have taken some liber-
ties when sugaring Scheme. Firstly, we are using constructors to represent S-expressions
whose car is a particular atom; later on we turn this into a proper datatype, when using
Haskell to express the example in a typed setting (Section 2.4). In the case of Scheme,
S-expressions can be viewed both as programs or data, depending on how they are used;
but when types are used, this amounts to encoding the program in the datatype, and
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(fix (lambda (sint)

(lambda (exp) (lambda (env)

(if (atom? exp)

(env exp)

(((lambda (hdexp) (lambda (tlexp)

(if ((eq? hdexp) (const const))

(lift (car tlexp))

(if ((eq? hdexp) (const lam))

(lam-r value

((sint (take-body exp))

(lambda (y) (if ((eq? y) (take-var exp)) value (env y)))))

(if ((eq? hdexp) (const @))

(@-r ((sint (car tlexp)) env)

((sint (cadr tlexp)) env))

(if ((eq? hdexp) (const if))

(if-r ((sint (car tlexp)) env)

((sint (cadr tlexp)) env)

((sint (caddr tlexp)) env))

(if ((eq? hdexp) (const fix))

(fix-r ((sint (car tlexp)) env))

(@-r (@-r error-r exp)

(lift (const "Wrong syntax")) ))))))))

(car exp)) (cdr exp)))))))

Figure 2.3: Scheme code for a self-interpreter of lambda calculus, sint.

sint = fix (λsint .λexp.λenv .
case exp of

Var x → env@x
Const n → lift n
Lam x e → (λD v . (sint@e@ (λy . if x == y

then v
else env@ y)))

App e1 e2 → (sint@ e1@ env) @D (sint@ e2@ env)
If e e1 e2 → if D sint@ e@ env

then sint@ e1@ env
else sint@ e2@ env

Fix e → fixD (sint@ e@ env)
→ error exp “Wrong syntax” )

Figure 2.4: “Sugared” version of sint in a Haskell-like syntax.
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that is the reason we use double-quotes in the sugared version: it means that the string
should be encoded with the proper constructors. Secondly, the program is clearly un-
typed (or dynamically typed), because the result of the case expression is a number in
one branch, but a function in another; also the tag Const is used for numbers, booleans
and operations. Thirdly, the binding time annotations indicated by the suffix -r in the
Scheme version are indicated in the sugared one by D ; static code is not marked because
the Scheme program, when applied to a particular lambda expression, will produce the
residual program — it is a generating extension of sint, a name coined by Andrei
Ershov for a program that generates specialized versions of another, in this case, sint.

The self-interpreter takes two arguments: an expression to evaluate, and an envi-
ronment relating free variables to values. It analyzes the form of the expression, and
combines the evaluation of the subexpressions in an appropriate way. The interesting
case is that of lambda abstractions: the result of evaluating an lambda expression is a
function, and in the recursive call the environment is extended with the binding of x to
the value v, argument to this function. This is a standard translation from denotational
semantics to Scheme.

To illustrate the function of the partial evaluator, Gomard and Jones [1991] use the
Fibonacci function, and partially evaluate sint to it. The Scheme version of fib used
there is:

(fix (lambda (fib) (lambda (x)

(if ((< x) (const 2))

(const 1)

((+ (fib ((- x) (const 1))))

(fib ((- x) (const 2))))))))

Looking at the code generated by [[mix]]L sint fib, for a mix specializing Scheme, we
can observe that it is structurally equal to the original object program; this means that
the partial evaluator was optimal: it removed a complete layer of interpretation (that
of sint).

(fix (lambda (value-6) (lambda (value-7)

(if ((< value-7) (const 2))

(const 1)

((+ (value-6 ((- value-7) (const 1))))

(value-6 ((- value-7) (const 2))))))))

We present the same example using the Haskell-like syntax and the encoding as type
tagged expression in Figure 2.5. Observe that the encoding of the small function is
complex, full of parenthesis, and similar in structure to the Scheme program; it is for
that reason that we choose to express them as strings to be appropriately encoded (we
discuss the consequences of this way of looking at object programs in Chapter 12).

The result of [[mix’]]L sint fib for a mix’ specializing the Haskell-like language is
the following one.

fix (λv .λv ′. if (v ′ < 2)
then 1
else v@ (v ′ − 1) + v@ (v ′ − 2))
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fib = “fix (λfib.λx .
if (x < 2)
then 1
else fib@ (x − 1) + fib@ (x − 2))”

Fix (Lam “fib” (Lam “x”
(If (App (App (Const (<)) (Var “x”)) (Const 2))

(Const 1)
(App (App (Const (+))
(App (Var “fib”) (App (App

(Const (−)) (Var “x”)) (Const 1))))
(App (Var “fib”) (App (App

(Const (−)) (Var “x”)) (Const 2)))))))

Figure 2.5: “Sugared” fib, both as text and encoded as a datatype.

We also present a simpler example for the purpose of comparison: a function that
applies its argument twice to the number 0.

ex = “(λf . f @ (f @ 0))”

Lam “f” (App (Var “f”) (App (Var “f”) (Const 0))

The result of [[mix’]]L sint ex is

(λv . v@ (v@ 0))

and again we can see that the result is structurally equal to the original object program,
and so, optimal.

But what happens when you try to use a typed language instead?

2.4 Inherited Limit: Types

Consider a version of sint written in a typed language, as presented in Figure 2.6
As sint does not manage types, this version is no more a self-interpreter, so we have
changed its name to eval . Self-interpretation is much more difficult to achieve in the
presence of types, and we do not attempt to do it.

There are some differences between this typed version, and the untyped sint pre-
sented in the previous section.

• The order of parameters is changed: Gomard and Jones [1991] put exp as the first
parameter because the partial evaluator assumed that the first parameter is the
static one, but this one is preferred.
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data LExpS = Var CharS | Const IntS

| Lam CharS LExpS | App LExpS LExpS

data ValueD = Num IntD | Fun (ValueD →D ValueD ) | Wrong

letS bind = λS x .λS v .λS env .
λS y .if S x == y then v else env @S y

in letS preeval =
fixS (λS eval .λS env .λS expr .

caseS expr of
Var x → env @S x
Const n → NumD (lift n)
Lam x e → FunD (λD v .

letS env ′ = bind @S x @S v @S env
in eval @S env ′ @S e)

App e1 e2 → caseD (eval @S env @S e1) of
Fun f → f @D (eval @S env @S e2))

in letS eval = preeval @S (λS x .WrongD )
in h. . . i

Figure 2.6: The interpreter for lambda-calculus written in a typed language.

• Type tags are added to the result of eval, corresponding to the data declarations.
Because of types, there is no need for the branch corresponding to a syntax error
— that kind of error is detected by the type system. Additionally, the branch for
application has to use a case construct to pattern match the result of evaluating
the first argument.

• Primitive operations can be no longer treated in the same way as before, because
their types have to be taken into account.

• To keep the example simple, we have removed if-then-else, recursion, and primitive
operations (which can be easily added again in a full example).

• We also work with texts of programs, rather than their encodings — although
those encodings are needed for specialization, they can be produced by a suitable
parser.

It is important to notice that the constructors for the type Value must be marked
as dynamic, because the type of the residual program must be the same as that of the
source — the specialization mechanism used by partial evaluation is reduction, and in
a (good) typed language, reduction does not change types. This also forces us to mark
as dynamic the case construct in the branch for application. But this is an important
restriction. Consider again the expression ex = (λf .f @(f @0)); the partial evaluation of
eval with respect to ex is

Fun (λv . case v of
Fun f → f (case v of

Fun f → f @ (Const 0)))
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The result is no longer optimal! The tags and their corresponding untag operations
appear in the residual program, and thus it is not essentially the same as the original
one.

The problem we have encountered — type tags appearing in the residual program
because of some characteristic of the specializer — is a particular instance of a more
general phenomenon. Whenever a feature of the source program imposes a restriction
on the occurrences of the same feature in the residual program, we say that we have
encountered an inherited limit : it is a limitation on the form of obtainable residual
programs that is imposed by the source program and the specialization method. The
presence of an inherited limit shows a weakness of the specialization method: the partic-
ular feature imposing the limit is treated in a poor way by the specializer. So, it is very
important that we detect inherited limits and try to remove them. Mogensen has argued
that the historical development of program specialization can be viewed as successive
achievements in removing specific inherited limits [Mogensen, 1996]; he suggests that
this principle can be used as a guideline for future development.

The case of the inherited limit of types presented here is an instance of how the
guideline of inherited limits has been effectively used: several ways to solve this particu-
lar limit have been proposed. Some include the use of type directed methods for partial
evaluation, such as Type Directed Partial Evaluation [Danvy, 1996] or Tag Elimination
[Taha and Makholm, 2000] (which are discussed in Section 13.2.1 and Section 13.2.2,
respectively), or the use of a system with dependent types [Thiemann, 1999c] or ad-
ditional techniques in partial evaluation, such as first-class polyvariance and co-arity
raising [Thiemann, 2000a] (both discussed in Section 13.1). Another one is Type Spe-
cialization, the subject of the rest of this work.
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Type Specialization

The person who takes the banal and ordinary and illuminates it in
a new way can terrify. We do not want our ideas changed. We feel
threatened by such demands. ≪I already know the important things!≫
we say. Then Changer comes and throws our old ideas away.

The Zensufi Master

Chapterhouse: Dune
Frank Herbert

Type Specialization is an approach to program specialization introduced by John
Hughes [1996b]. The main idea of type specialization is to specialize both the source
program and its type to a residual program and residual type. To do this, instead of
a generalized form of evaluation, type specialization uses a generalized form of type
inference.

The key question behind type specialization is

“How can we improve the static information provided by the type of an
expression?”

An obvious first step is to have a more powerful type system. But we also want to
remove the static information expressed by this new type from the code, to obtain a
simpler and (hopefully) more efficient code. So, we work with two typed languages: the
source language, in which we code the programs we want to specialize, and the residual
language, which may contain additional constructs to express specialization features.

The rest of the chapter is organized as follows. In Section 3.1 we describe a basic
source language and its type system; the particular feature of this language is that it is
a two level language [Nielson and Nielson, 1992; Gomard and Jones, 1991], and the type
system reflects that; we provide a system of rules to derive valid typing judgements and
explain the main differences between annotations as used here in comparison to how
they are used in partial evaluation. In Section 3.2 we describe the residual language
corresponding to the source language presented earlier, and the rules performing the
specialization from the source to the residual language; we discuss several simple exam-
ples of the different features in the language. This section is based almost completely
on the original article where type specialization was presented [Hughes, 1996b]. We
defer the presentation of a system to derive residual typing judgements to Chapter 6,
because in Hughes’ work the residual type system is implicit in the specialization rules.
Finally, in Section 3.4, we present several extensions to the basic source language, the
corresponding extensions in the residual language, and the rules used to specialize the
new constructs; we also discuss some features of Hughes’ work that we do not consider
in the rest of this work.

23
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3.1 Basic Source Language

When considering the source language for type specialization, we can ask ourselves
about how to know which information should be moved into the type. In the best
scenario, some process will analyze our program and mark those parts containing static
information — a binding time analyzer. But, as shown by Hughes [1996b], no completely
automatic binding time analysis can be performed for type specialization, because the
only difference between an interpreter for a typed language and an interpreter for an
untyped one is their binding times: by annotating an interpreter, we decide the static
semantics of the object language — and we cannot expect a program to decide whether
our object language is typed or untyped, can we? See the programs in Figures 4.1 and
4.2 and Examples 4.1 and 4.3, and the discussion in Chapter 4 for an example of such
a situation.

We assume that the programmer has to add the corresponding binding time anno-
tations by hand, and define the source language as a two level language: expressions
with information we want to move from the code into the type will be marked static
(with a S superscript), and those we want to keep in the residual code will be marked
dynamic (with a D superscript). Annotation S is interpreted as the requirement to
remove an expression from the source program, by computing it and moving its result
into the residual type, and annotation D as the requirement to keep the expression in
the residual code. Additionally, we want some extra features, such as casting a static
computation into a dynamic one, or allowing a single expression to produce several dif-
ferent residual expressions in the residual code; these features can be obtained by some
extra annotations (lift, poly, and spec), whose effect is explained with examples in the
next section.

Definition 3.1. Let x denote a source term variable from a countably infinite set of
variables, and let n denote an integer number. A source term, written using the symbol
e, is an element of the language defined by the following grammar:

e ::= x | nD | e +D e
| lift e | nS | e +S e
| λDx.e | e @D e | letD x = e in e
| (e, . . . , e)D | πD

n,n e
| poly e | spec e

Note that this language includes finite tuples of the form (e1, . . . , en)D for every
possible arity n. The projections πD

1,2 e and πD

2,2 e may be abbreviated fstD e and sndD e,
respectively.

Source types also reflect the static or dynamic nature of expressions — the types
of constants, functions and operators are consistent with the types of arguments. For
example, the constant 42D has type IntD and the constant 42S has type IntS , and a
dynamic function can only be dynamically applied, that is, the D ’s in the following
expression correspond to each other: (λDx.x) @D y. Additionally, expressions annotated
with poly will have a corresponding poly in their type.
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Definition 3.2. A source type, written using the symbol τ , is an element of the lan-
guage defined by the following grammar:

τ ::= IntD | IntS | (τ, . . . , τ)D | τ →D τ | poly τ

This language has finite tuples of the form (τ1, . . . , τn)D for every possible arity n.

This language is a small subset of the language of the type specializer from [Hughes,
1996b], but contains enough constructs to illustrate the basic notions. We expand it to
the full language in Section 3.4. One thing should be remarked: the interpretation for
types is coinductive, that is, as greatest fixpoint of some generating function (values of
types are both finite and infinite valid combinations of constructors and values). This
is important for the way they are used during specialization. We discuss this feature in
Section 3.4.7.

The source language is simply typed : source terms may be given a monomorphic type
(that is, if they receive a type, then it is monomorphic), according to a typing system
we call ST — it is given below. A source term that cannot be given a type by the ST
system is considered to be invalid. Source type inference is straightforward, but with
a major difference from partial evaluation: no restrictions are imposed on annotations
other than consistency formation ones — i.e. introduction and elimination constructs
must have the same annotation — and thus constraints that a BTA uses to infer a “best”
type do not exist — see Example 3.9-2. It is important to keep in mind that annotating
a program involves taking decisions about the meaning of what we are specializing; so,
annotations need to be very flexible.

Definition 3.3. A source typing assignment, written using the symbol Γ
ST

, is a (finite)
list of source typing statements of the form x : τ , where no variable x appears more than
once.

Judgements in the ST system have the form Γ
ST

⊢
ST

e : τ which can be read as “if the
free variables of e have types as indicated in Γ

ST
, then expression e has type τ”. We use

the standard notation ⊢
ST

e : τ when Γ
ST

is the empty list. The rules for ST are given
in Figure 3.1.

The only non-standard rules are (O-LIFT), (O-POLY), and (O-SPEC). The first one captures
the notion that lift is a coercion from static integers to dynamic ones. The second
one permits to annotate the type of a polyvariant expression as polyvariant. And the
last one eliminates a polyvariant expression (known because the type is annotated as
polyvariant).

The only surprising thing about the typing rules for the source language is that they
are so unsurprising. Other authors using two-level languages restrict the ways in which
static and dynamic type formers are mixed — for example, Nielson and Nielson [1992] do
so by distinguishing compile-time from run-time . In contrast, we can allow completely
free type formation. Type-based binding-time analysis, such as the one presented by
Henglein [1991], must usually handle ‘dependency constraints’ which force the residual
type of a conditional expression to be dynamic if the condition is. In contrast, we can
allow static constructs under dynamic ones. Our ‘binding time-checker’ is simply an
ordinary type-checker (note that we use a checker and not an analyser !).
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(ST-VAR)
x : τ ∈ Γ

ST

Γ
ST

⊢
ST

x : τ

(ST-DINT) Γ
ST

⊢
ST

nD : IntD

(ST-D+)
(Γ

ST
⊢
ST

ei : IntD )i=1,2

Γ
ST

⊢
ST

e1 +D e2 : IntD

(ST-LIFT)
Γ
ST

⊢
ST

e : IntS

Γ
ST

⊢
ST

lift e : IntD

(ST-SINT) Γ
ST

⊢
ST

nS : IntS

(ST-S+)
(Γ

ST
⊢
ST

ei : IntS )i=1,2

Γ
ST

⊢
ST

e1 +S e2 : IntS

(ST-DTUPLE)
(Γ

ST
⊢
ST

ei : τi)i=1,..,n

Γ
ST

⊢
ST

(e1, . . . , en)D : (τ1, . . . , τn)D

(ST-DPRJ)
Γ
ST

⊢
ST

e : (τ1, . . . , τn)D

Γ
ST

⊢
ST

πD

i,n e : τi

(ST-DLAM)
Γ
ST

, x : τ2 ⊢ST
e : τ1

Γ
ST

⊢
ST

λDx.e : τ2 →
D τ1

(ST-DAPP)
Γ
ST

⊢
ST

e1 : τ2 →
D τ1 Γ

ST
⊢
ST

e2 : τ2

Γ
ST

⊢
ST

e1 @D e2 : τ1

(ST-DLET)
Γ
ST

⊢
ST

e2 : τ2 Γ
ST

, x : τ2 ⊢ST
e1 : τ1

Γ
ST

⊢
ST

letD x = e2 in e1 : τ1

(ST-POLY)
Γ
ST

⊢
ST

e : τ

Γ
ST

⊢
ST

poly e : poly τ

(ST-SPEC)
Γ
ST

⊢
ST

e : poly τ

Γ
ST

⊢
ST

spec e : τ

Figure 3.1: Typing rules for the source language.
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The next example illustrates the absence of restrictions other than consistency for-
mation ones. This lack of restrictions is possible because of the enhanced propagation
of information obtained by using types.

Example 3.4. Observe that only consistency formation restrictions are imposed, i.e.
static (resp. dynamic) integers can only be statically (resp. dynamic) added (items 1
and 2), dynamic functions can only be dynamically applied (item 3), and polyvariant
expressions need to be spec’ed before they can be used (item 4). Also observe that a
dynamic function can have static and/or polyvariant arguments (item 5), showing that
there are no restrictions such as those needed in partial evaluation, and that polyvariance
is first class (items 5 and 6).

1. ⊢
ST

λDx.x +S 1S : IntS →D IntS

2. ⊢
ST

λDx.lift x +D 1D : IntS →D IntD

3. ⊢
ST

letD f = λDx.x +S 1S in f @D 2S : IntS

4. ⊢
ST

letD f = poly (λDx.x +S 1S )
in (spec f @D 2S , spec f @D 3S )D

: (IntS , IntS )D

5. ⊢
ST

λDf.spec f @D 2S : poly (IntS →D IntS )→D IntS

6. ⊢
ST

(λDf.spec f @D 2S ) @D poly (λDx.x +S 1S )
: IntS

You may have noticed that in the first items, the addition under the lambda can actually
be resolved by the specializer (because its arguments can be both known), so it seems
preferable to annotate it static, as in item 1, rather than dynamic, as in item 2. However,
we want to keep the possibility to choose between both annotations — if we restrict the
possibility to annotate it dynamic, it implies that we restrict the range of residual
programs that can be produced, and then our framework may not be able to produce
arbitrary programs.

The freedom in choosing the way to annotate programs is important to allow flexi-
bility in the generation of programs; it is the programmer’s responsibility to control
the annotations (perhaps with the help of a binding time assistant — see Chapter 14,
Section 14.4).

3.2 Residual Language

The residual language has constructs and types corresponding to all the dynamic con-
structs and types in the source language, plus additional ones used to express the result
of specializing static constructs. In the original formulation, these additional constructs
are, in the term language, the dummy constant (•) and tuples and projections used for
polyvariance, and, in the type language, singleton types (or one-point types, e.g. 4̂2)
and tuple types.
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Definition 3.5. Let x′ denote a residual term variable from a countably infinite set of
variables. A residual term, written using the symbol e′, is an element of the language
defined by the following grammar:

e′ ::= x′ | n | e′ + e′ | •
| λx′.e′ | e′@e′ | let x′ = e′ in e′

| (e′1, . . . , e
′
n) | πn,n e′

As in the source language, this language has finite tuples of the form (e′1, . . . , e
′
n)

for every possible arity n, and π1,2 e′ and π2,2 e′ may be abbreviated fst e′ and snd e′

respectively.

The expression • corresponds to the residual of static numbers, the numbers n to the
residual of dynamic numbers, lambda abstraction and application and the let construct
are the residual of the corresponding dynamic ones, and finally, tuples and projections
correspond to both the residual of tuples and the residual of polyvariant expressions
and their specializations. It is important to mention that Hughes makes no distinction
between static and dynamic tuples, so both the residual of dynamic tuples and the
tuples introduced by polyvariance will be eliminated in a postprocessing phase called
arity raising — see Section 3.3.

Residual types reflect the definition of source types.

Definition 3.6. A residual type, written using the symbol τ ′, is an element of the
language defined by the grammar:

τ ′ ::= Int | n̂ | τ ′ → τ ′ | (τ ′, . . . , τ ′)

This language has finite tuples of the form (τ ′
1, . . . , τ

′
n) for every possible arity n.

The novel feature of this language is the use of an infinite number of one-point types
— the one-point type n̂ being the residual type corresponding to some static integer
whose value is known to be n. This feature makes this language more powerful than
traditional ones. It may seem at first glance that one-point types are subtypes of the
type Int, but this is not the case, as the information they carry is different: the fact
that an expression e′ has type Int means that if the computation of e′ terminates, it will
produce some number; but the fact that it has type n̂ means that its value, •, represents
the number n without the need to perform any computation.

To express the result of the specialization procedure, Hughes introduced a new kind
of judgement and a system of rules to infer valid judgements. These judgements, like
typing judgements in the source language, make use of assignments to determine the
specialization of free variables.

Definition 3.7. A specialization assignment, written using the symbol Γ, is a (finite)
list of specialization statements of the form x : τ →֒ e′ : τ ′, where no source variable
appears more than once.

We write Γ ⊢ e : τ →֒ e′ : τ ′ which can be read as “if the free variables in e
specialize to the expressions indicated in Γ, then source expression e of source type
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(O-VAR)
x : τ →֒ e′ : τ ′ ∈ Γ

Γ ⊢ x : τ →֒ e′ : τ ′

(O-DINT) Γ ⊢ nD : IntD →֒ n : Int

(O-D+)
(Γ ⊢ ei : IntD →֒ e′i : Int)i=1,2

Γ ⊢ e1 +D e2 : IntD →֒ e′1 + e′2 : Int

(O-LIFT)
Γ ⊢ e : IntS →֒ e′ : n̂

Γ ⊢ lift e : IntD →֒ n : Int

(O-SINT) Γ ⊢ nS : IntS →֒ • : n̂

(O-S+)
(Γ ⊢ ei : IntS →֒ e′i : n̂i)i=1,2

Γ ⊢ e1 +S e2 : IntS →֒ • : n̂
(n1+n2=n)

(O-DTUPLE)
(Γ ⊢ ei : τi →֒ e′i : τ ′

i)i=1,..,n

Γ ⊢ (e1, . . . , en)D : (τ1, . . . , τn)D →֒ (e′1, . . . , e
′
n) : (τ ′

1, . . . , τ
′
n)

(O-DPRJ)
Γ ⊢ e : (τ1, . . . , τn)D →֒ e′ : (τ ′

1, . . . , τ
′
n)

Γ ⊢ πD

i,n e : τi →֒ πi,n e′ : τ ′
i

(O-DLAM)
Γ, x : τ2 →֒ x′ : τ ′

2 ⊢ e : τ1 →֒ e′ : τ ′
1

Γ ⊢ λDx.e : τ2 →
D τ1 →֒ λx′.e′ : τ ′

2 → τ ′
1

(x′ fresh)

(O-DAPP)
Γ ⊢ e1 : τ2 →

D τ1 →֒ e′1 : τ ′
2 → τ ′

1 Γ ⊢ e2 : τ2 →֒ e′2 : τ ′
2

Γ ⊢ e1 @D e2 : τ1 →֒ e′1@e′2 : τ ′
1

(O-DLET)
Γ ⊢ e2 : τ2 →֒ e′2 : τ ′

2 Γ, x : τ2 →֒ x′ : τ ′
2 ⊢ e1 : τ1 →֒ e′1 : τ ′

1

Γ ⊢ letD x = e2 in e1 : τ1 →֒ let x′ = e′2 in e′1 : τ ′
1

(x′ fresh)

(O-POLY)
(∀i)(∃e′τ ′)(Γ ⊢ e : τ →֒ e′ : τ ′ ⇀

τ
′
!i = τ ′

⇀

e′!i = e′)

Γ ⊢ poly e : poly τ →֒
⇀
e
′
:

⇀
τ
′

(O-SPEC)
Γ ⊢ e : poly τ →֒ e′ :

⇀
τ
′ ⇀

τ
′
!i = τ ′

Γ ⊢ spec e : τ →֒ πie
′ : τ ′

Figure 3.2: Type specialization rules from the original formulation.
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τ specializes to residual expression e′ and residual type τ ′”. As usual, we use the
form ⊢ e : τ →֒ e′ : τ ′ when Γ is empty. The original rules for type specialization
are presented in Figure 3.2. In those rules,

⇀
τ
′

stands for a tuple of residual types
(τ ′

1, . . . , τ
′
n), and

⇀
τ
′
!i for its i-th component, and similarly for

⇀
e
′
. Observe that there is

a correspondence between specialization rules and source typing rules — that is, there
are the same number, corresponding to each of the source language constructs, and
they have a similar structure. This changes when if-then-else or case constructs are
introduced, because the typing rules type-check all the branches, but the original form
of type specialization specializes only the one that is necessary; we return to this issue
in Section 3.4.

Example 3.8. Observe that every expression annotated as dynamic appears in the
residual term (in fact, we have that a fully dynamic expression, that is one in which
every annotation is D , specializes to a copy of itself with the annotations removed).

1. ⊢ 42D : IntD →֒ 42 : Int

2. ⊢ 42S : IntS →֒ • : 4̂2

3. ⊢ (2D +D 1D ) +D 1D : IntD →֒ (2 + 1) + 1 : Int

4. ⊢ (2S +S 1S ) +S 1S : IntS →֒ • : 4̂

5. ⊢ lift (2S +S 1S ) +D 1D : IntD →֒ 3 + 1 : Int

Also observe in item 5 how the use of lift allows us to cast a static integer into a dynamic
one, thus inserting the result of the static computation back into the residual term.

To derive the judgements in Example 3.8, the rules (O-DINT), (O-D+), (O-SINT), (O-S+),
and (O-LIFT)

1 are used. It is important to note that both (O-S+) and (O-LIFT) used to derive
specialization of static operations and lifts, force the choice of a suitable one-point type
for the subexpressions, n in the former, and n1, n2 in the latter — this is not (always)
syntax directed (for example, when a variable appears as a subexpression).

Example 3.9. Assumptions provide the information for the specialization of free vari-
ables, which allows the specialization of functions.

1. x : IntS →֒ • : 3̂ ⊢ x +S 1S : IntS →֒ • : 4̂

2. ⊢ (λDx.x +S 1S ) @D (2S +S 1S ) : IntS →֒ (λx′.•)@• : 4̂

3. ⊢ (λDx.lift x +D 1D ) @D (2S +S 1S ) : IntD →֒ (λx′.3 + 1)@• : Int

The function appearing in item 3 will be used in additional examples in this and the
next chapters, and so, to keep details in those cases simple, we have chosen to mark the
addition as dynamic. As we have mentioned, this is possible because of the enhanced
propagation of information, and desirable to have flexibility in the range of residual
programs that can be generated.

1The O- prefix distinguishes the Original rules from the ones presented later.
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Observe in Example 3.9-2 and 3.9-3 that a dynamic function is allowed to have a
static argument, because residual type inference will provide the value needed for the
computation; for example, in Example 3.9-2, the residual function (λx′.•) has residual
type 3̂ → 4̂ thus providing information about x′ to the function body even when the
function is not reduced. It is not possible for dynamic functions to have static arguments
with the partial evaluation approach, as the only way to propagate information is by
reduction, and a dynamic function is never reduced. The examples in Chapter 4 show
the additional expressiveness that this lack of restrictions implies.

The rules to derive judgements involving free variables and functions are (O-VAR),
(O-DLAM), and (O-DAPP). Observe that in the rule (O-DAPP) there is the expected flow of
information, because in a specialization algorithm the antecedent of the residual function
type should be unified with the residual type of the argument. Also observe that the
residual type τ ′

2 assigned to the residual of the λ-bound variable in rule (O-DLAM) is not
restricted in any way, allowing any type to be chosen at this stage (this choice will be
further restricted by application, as noted above).

To see how type specialization works with higher order functions, we present the
following examples.

Example 3.10. Observe how the static information can be moved from the body of the
higher-order function to the place where lift will reinsert it into the residual term.

⊢ (λDf.f @D 42S ) @D (λDx.lift x +D 1D ) : IntD →֒ (λf.f@•)@(λx.42 + 1) : Int

This is possible because the residual type of f is 4̂2 → Int.

Example 3.11. Observe again that the value of f ’s function is propagated by using the
residual type of f ; in this example, also the result of f is propagated, and reinserted in
the residual code by the lift.

⊢ (λDf.lift (f @D 42S )) @D (λDx.x +S 1S ) : IntD →֒ (λf.43)@(λx.•) : Int

In this case, the residual type of f is 4̂2 → 4̂3.

One important feature of type specialization is that there exist correctly annotated
terms that cannot be specialized. Consider

letD f = λDx.lift x +D 1D

in (f @D 42S , f @D 17S )D : (IntD , IntD )D .

What should the specialization for this term be? As we have seen in Example 3.9-3, the
body of the function is specialized according to the parameter, but f has two different
parameters! We discuss why this is an important feature in Examples 4.3 and 4.5 of
Chapter 4.

But what to do if we do not want an error in this case? The solution is to allow f
to specialize in more than one way in the same program. Polyvariance is the ability of
an expression to specialize to more than one residual expression. The use of polyvari-
ance is indicated in the source language by using the annotations poly and spec, the
former to produce a polyvariant expression, and the latter to choose the corresponding
specialization of it.
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Example 3.12. Observe the use of poly in the definition of f (and how that annotation
produces a tuple for the definition of f ′ in each of the residual codes), and the use of
spec in every application of f to an argument (and how that produces the corresponding
projections).

1. ⊢ letD f = poly (λDx.lift x +D 1D )
in (spec f @D 42S , spec f @D 17S )D : (IntD , IntD )D →֒
let f ′ = (λx′.42 + 1, λx′.17 + 1)
in (fst f ′@•, snd f ′@•) : (Int, Int)

2. ⊢ letD f = poly (λDx.lift x +D 1D )
in (spec f @D 42S , spec f @D 17S )D : (IntD , IntD )D →֒
let f ′ = (λx′.17 + 1, λx′.55 + 1, λx′.42 + 1)
in (π3,3 f ′@•, π1,3 f ′@•) : (Int, Int)

The size and order of the residual tuple is arbitrary, provided that it has at least two
elements (λx′.42 + 1 and λx′.17 + 1), and that the projections select the appropriate
element, as can be seen when contrasting item 2 to item 1.

The rules (O-POLY) and (O-SPEC) used to specialize polyvariance reflect the freedom to
choose the size and order of the residual tuples. This freedom is the reason why the
rules are not syntax directed, because it is the context where the expression appears
which imposes the minimal restrictions the tuples must satisfy.

3.3 Arity Raising

The residual programs produced by the described specialization process contain many
subexpressions without computational content (that is, that are • or can only take that
value) — see Examples 3.9 and 3.10 — and also big tuples resulting from polyvariant
expressions — see Example 3.12. To produce efficient residual programs that do not
work with •’s or construct unnecessary tuples, we use a postprocessing phase called arity
raising, that removes subexpressions without computational content, and splits tuples
into their components, increasing the arity of functions. This phase works by inspecting
the types of subexpressions, detecting tuples and types whose only value is void, and
replacing them by equivalent types. As a consequence, arity raising can only be applied
as a postprocessing phase, because the residual types will only be completely known at
the end of the specialization phase. It is important to note that the language produced
by arity raising is not the same as the source or residual ones — in particular, it has a
let that can have multiple definitions.

In the original paper [Hughes, 1996b], this phase was called void erasure, because it
only removes •’s; but as voids are similar to empty tuples, its removal can be obtained
by a general treatment of tuples. Arity raising for type specialization was introduced
by Hughes [1998a]. The original idea of arity raising is due to Romanenko [1990], and
it was further developed by Hannan and Hicks [1998].

To illustrate what arity raising does, consider the following examples.
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Example 3.13. Observe that the second component of the argument in residual func-
tion f can only take the value •; to see that, look at the residual type of f , (Int, 3̂) → Int.

⊢ letD f = λDp.fstD p +D lift (sndD p)
in f @D (2D , 3S )D

: IntD

→֒ let f = λp.fst p + 3
in f@(2, •)

: Int

The arity raiser will remove the second component of the tuple, and all the corresponding
references, producing

let f = λp1.p1 + 3 in f@2 : Int

Example 3.14. Observe the tuples expressing the residual of the polyvariant expres-
sions, and how the arity raiser removes them in favour of several definitions/arguments.
Also observe that the residual of x is removed as well.

⊢ letD f = poly (λDg.(spec g @D 2S ) +D (spec g @D 3S ))
in spec f @D poly (λDx.lift x) +D spec f @D poly (λDx.lift (x +S 2S ))

: IntD

→֒ let f = (λg.(fst g@•) + (snd g@•), λg.(fst g@•) + (snd g@•))
in fst f@(λx.2, λx.3) + snd f@(λx.4, λx.5)

: Int

The result of arity raising the previous term is

let f1 = λg1.λg2.g1 + g2

f2 = λg1.λg2.g1 + g2

in f1@2@3 + f2@4@5

Observe that all the tupling has been removed, and the final term is, thus, more efficient.

Arity raising is important because it removes the last traces of static computations,
allowing optimal specialization. Inspired by Hughes’ work, Thiemann [2000a] used a
variation of this phase — dual to arity raising, thus named co-arity raising by him —
in combination with first-class polyvariance to obtain optimal specialization for a typed
interpreter of the lambda-calculus, thus showing the central role that arity raising plays
in the elimination of the inherited limit of types.

3.4 Extensions to the Language

The source language considered in Section 3.1 is quite small, and only a limited number
of programs can be written. To be able to specialize real programs, some additional
constructs must be considered. In most cases the static version of the construct is the
really interesting one, while the dynamic version is very simple; but there are some cases,
such as dynamic datatypes and dynamic recursion, that pose their own problems.
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Among the simplest things that we can add are characters and other base types;
their treatment is essentially the same as that of numbers: dynamic versions just copy
the values in the residual term, while static versions need the enriching of the residual
language with suitable residual types to express the specialization of static constants
(that is, additional one-point types). Additional binary operations on numbers (such as
equality or multiplication), and operations on other base types follow the same treatment
as addition.

Another simple extension is that of a static let: the only difference with the dynamic
version is the degree of unfolding in the residual term, as can be seen comparing rule
(O-DLET) with (O-SLET):

(O-SLET)
Γ ⊢ e2 : τ2 →֒ e′2 : τ ′

2 Γ, x : τ2 →֒ e′2 : τ ′
2 ⊢ e1 : τ1 →֒ e′1 : τ ′

1

Γ ⊢ letS x = e2 in e1 : τ1 →֒ e′1 : τ ′
1

Observe that, instead of introducing a new residual variable, we make e′2 the residual of
x, thus producing the unfolding of the let.

We can also add booleans, static functions, datatypes, polyvariant sums, impera-
tive features (in monadic form [Dussart et al., 1997b]), etc. We present each of these
extensions in a separate subsection.

3.4.1 Booleans

In the original paper [Hughes, 1996b], booleans were included as a particular case of a
datatype. But as booleans are not a recursive type, we present them separately, because
their treatment is simpler, and allow us to illustrate the techniques when reformulating
the presentation. First we consider the dynamic version of booleans, and then the static
one.

Dynamic booleans are almost as simple as dynamic numbers, with a small addition:
both branches of the if-then-else construct are forced to have the same residual type,
in order to be able to generate the residual if-then-else — see rule (O-DIF) below. This
introduces another way of forcing two residuals to be the same (we have already seen
that applying a monovariant function produces the same effect before Example 3.12).

The source and residual term languages are extended with straightforward con-
structs: TrueD , FalseD , ifD b then e1 else e2 in the source language, and True, False,
if b then e′1 else e′2 in the residual one. In the type languages, BoolD and Bool are
added. Source typing rules are standard. The rules to specialize dynamic booleans are
the following:

(O-DTRUE) Γ ⊢ TrueD : BoolD →֒ True : Bool

(O-DFALSE) Γ ⊢ FalseD : BoolD →֒ False : Bool

(O-DIF)
Γ ⊢ e : BoolD →֒ e′ : Bool Γ ⊢ e1 : τ →֒ e′1 : τ ′ Γ ⊢ e2 : τ →֒ e′2 : τ ′

Γ ⊢ ifD e then e1 else e2 : τ →֒ if e′ then e′1 else e′2 : τ ′
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Static information can be used under each of the branches of a dynamic if-then-else,
in much the same way as under a dynamic λ.

⊢ (λDx.λDb.ifD b then lift (x +S 1S ) else lift x) @D 42S : IntD

→֒ (λx.λb.if b then 43 else 42)@• : Int

As a more interesting case, we can have a dynamic conditional with a static result.
However, the residual type of both branches must be the same, producing a failure
when this is not the case — see Example 3.15; this restriction can be relaxed by using
polyvariant sums, as discussed in Section 3.4.6 — see Example 3.23.

Example 3.15. We present two conditionals: one with the same static information on
each branch, and the second one with different ones. In the first conditional, specializa-
tion is possible, giving

⊢ λDb.letD f = λDx.ifD b
then (2S , lift x)D

else (2S , 51D )D

in letD y = (f @D 42S ) in sndD y +D lift (fstD y)
: IntD

→֒ λb.let f = λx. if b
then (•, 42)
else (•, 51)

in letD y = (f@•) in snd y + 2
: Int

However, if we change the static information in one of the branches, thus having different
residual types for each of them, specialization is no longer possible.

λDb.letD f = λDx.ifD b
then (2S , lift x)D

else (3S , 51D )D

in letD y = (f @D 42S ) in sndD y +D lift (fstD y)
: IntD

In this case, the error will be that 2̂ and 3̂ are not equal.

This variation of static information on each branch is truly useful when used in
combination with static sum types and static functions — again, see Section 3.4.6.

For static booleans, TrueS , FalseS , and ifS b then e1 else e2 on terms, BoolS on
types, are added to the source language, and ˆTrue and ˆFalse are added to the residual
types (the constant • is used for the residual of static boolean constants). Static booleans
are treated similarly to static numbers, the main difference being that only one of the
branches is actually specialized, while the other is simply ignored. This fact is realized
by having two rules for static if-then-else:

(O-STRUE) Γ ⊢ TrueS : BoolS →֒ • : ˆTrue
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(O-SFALSE) Γ ⊢ FalseS : BoolS →֒ • : ˆFalse

(O-SIF-TRUE)
Γ ⊢ e : BoolS →֒ e′ : ˆTrue Γ ⊢ e1 : τ →֒ e′1 : τ ′

1

Γ ⊢ ifS e then e1 else e2 : τ →֒ e′1 : τ ′
1

(O-SIF-FALSE)
Γ ⊢ e : BoolS →֒ e′ : ˆFalse Γ ⊢ e2 : τ →֒ e′2 : τ ′

2

Γ ⊢ ifS e then e1 else e2 : τ →֒ e′2 : τ ′
2

As an example, we can consider a static if-then-else such that a specialization error
is located in the branch which is ignored, and see that the result still can be obtained
— the error will not be detected.

⊢ (λDx.λDb.ifS x == S 42S then lift x else lift (ifD b then x else 0S )) @D 42S : IntD

→֒ (λx.λb.42)@• : Int

If we change the argument of the function from 42S to some other number different
from zero, the specialization will fail with an error, because the residual type of x would
not be equal to the residual type of 0S (remember that the residual types of the two
branches of a dynamic if-then-else must be the same!).

3.4.2 Dynamic recursion

Dynamic recursion is added in the source language by the construct fixD e representing
a fixpoint operator; no new type is required. The rule for typing a fixD construct is the
classic one. In the residual language, a corresponding fix e′ is added, together with the
rule to specialize it:

(O-DFIX)
Γ ⊢ e : τ →D τ →֒ e′ : τ ′ → τ ′

Γ ⊢ fixD e : τ →֒ fix e′ : τ ′

While this seems a minor addition, its combination with other features in the lan-
guage, such as polyvariance, poses the most challenging problems. In addition to all the
non-termination problems common to partial evaluation — see upcoming Example 3.17
— there is a problem when a recursive function is polyvariant: the recursive calls will be
specializations of the polyvariant expression, and so knowing all the necessary elements
for the residual tuple is very involved.

How often will dynamic recursion and polyvariance may appear together? The an-
swer is: too often! In fact, this scenario is the prime motivation for introducing and
using poly.

If the (dynamic) recursive function has static arguments, then making it monovariant
forces it to be used only with one single value for each one of those arguments, even in
recursive calls! And in that case, why those values are used as arguments at all? It is
better considering them to be global variables. Let’s see an example.

Example 3.16. We consider again the power function mentioned in Chapter 1, but
with dynamic recursion (to obtain the same result as that presented in the introduction,
we have to use static recursion — see Example 3.19 below).
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The source expression is the following one.

letD power = fixD (λD p.poly (λD n.λD x .if S n == S 1S

then x
else x ∗D spec p @D (n −S 1) @D x ))

in spec power @D 3S

Observe that power has the first argument static, and thus it has to be polyvariant (be-
cause the recursive call will be applied to a different number!). To make it polyvariant,
the recursive argument p and the result of the fix body are annotated polyvariant (the
former by using it inside a spec, and the latter with an explicit poly.)

The specialization of this example is the following one.

let power = fix (λp.(λn.λx .x ∗ π2,3 p@ • @x ,
λn.λx .x ∗ π3,3 p@ • @x ,
λn.λx .x ))

in π1,3 power@•

After arity raising, it becomes the following (final) term.

let power3 = λx .x ∗ power2@x ,
power2 = λx .x ∗ power1@x ,
power1 = λx .x

in power3

It can be observed that one function for every call was generated.

Non-termination is an issue, because there exist programs that cannot be specialized
without an infinite number of variants. For example, consider the following case.

Example 3.17. Observe that the variable x controlling the termination of the recursive
function is dynamic; so, there is potentially an infinite number of static values for y,
which implies that the specializer must attempt to generate a tuple with an infinite
number of variants to express the residual of f .

letD f = fixD λD f .poly (λD x .λD y .ifD x == D 0D

then y
else spec f @D (x −D 1D ) @D (y +S 1S ))

in spec f @D 3D @D 0S

Any specializer will loop when attempting to specialize this example.

However, there are several programs for which (finite) specializations exist, but that
may cause the specializer to loop if it does not proceed with care. We leave the discussion
of these problems for Section 4.4, where some problematic cases will be considered.
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3.4.3 Static functions

If only dynamic functions can be defined in the source language, then the specialization
process would be very weak because no function call will ever be unfolded. For that
reason, every good specializer must provide static functions. The additions to the source
language are simple: just lambda-abstractions, applications, and function types with
static annotations. The rules for typing static functions are just copies of those for
dynamic ones, but with the annotations changed; this is so simple because there are no
restrictions on annotations, as we have explained.

The problem with static functions in this formulation of type specialization is that,
as the specialization of an expression may depend on the context, and one expects the
context to be different at every application (a static function that can only be applied
to a unique element could not be considered a function at all!), then the body of the
function cannot be specialized until the function is applied. The solution chosen by
Hughes was to have residual types representing closures of a source function and its
environment, so that the body can be specialized every time there is the need to unfold
an application.

But there is yet another problem! The body of a static function is likely to contain
free variables whose residuals may contain some dynamic information, so when unfolding
the function, residual variables may escape their scopes. The solution to this is to make
the residual term of a static function be a tuple of the residuals of the free variables of
the function, which is very close to the solution to the same problem adopted in Similix
[Bondorf, 1991]; in such a way, residual variables still appear in the same scope as in
the source term, and they are accessed on unfoldings by using projections.

The rule for static λ reflects that:

(O-SLAM) [zi : τi →֒ e′i : τ ′
i ]

n
i=1 ⊢

λSx.e : τ2 →
S τ1 →֒ (e′1, . . . , e

′
n) : clos ≪ [(zi, τi, τ

′
i)]

n
i=1, x, e ≫

Observe that the closure contains the source code of the function’s body (e) and the name
and source and residual type of each of the variables in the specialization assignment.
As the only variables that are really needed are those that appear free in the body, a
rule to restrict the variables of an assignment to those appearing in the term can be
used; the rule is the following one:

(O-WEAK)
Γ1, Γ2 ⊢ e : τ →֒ e′ : τ ′

Γ1, x : τx →֒ e′x : τ ′
x, Γ2 ⊢ e : τ →֒ e′ : τ ′

(x 6∈FV(e))

An efficient implementation should apply (O-WEAK) as much as possible.
It is important to remark that no specialization at all is performed to a static function

when it is declared. This allows the body to contain specialization errors that will not
be detected unless the function is applied. The application of a static function is the
real place where the specialization process takes place.

(O-SAPP)

Γ ⊢ e1 : τa →
S τr →֒ e′1 : clos ≪ [(zi, τi, τ

′
i)]

n
i=1, x, e ≫ Γ ⊢ e2 : τa →֒ e′2 : τ ′

a [zi : τi →֒ πi,n e′1 : τ ′
i ]

n
i=1, x

Γ ⊢ e1 @S e2 : τr →֒ e′ : τ ′
r
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Observe how the body of the static function (e) is specialized once for every application
(in the third premise), with a different specialization assignment each time: the residual
term and type of x is different. Also observe how the free variables in e are specialized
to projections of the residual tuple; this guarantees that no variable escapes its scope.

An example shows what the residual program looks like after unfolding a static
function with free variables.

Example 3.18. Note that the variable x appears free in the body of the function.

⊢ letD f = letD x = (5S , 6D )D

in λSy.lift (fstD x +S y) +D sndD x
in f @S 2S

: IntD

→֒ let f = let x = (•, 6)
in x

in 7 + snd f
: Int

However, the residual of the static function keeps the scope for the residual of x; in the
unfolded code, where x would have appeared, f is used (in general, it is a projection of
f). The residual type of f is

clos ≪ [(x, (IntS , IntD )D , (5̂, Int))], y, lift (fstD x +S y) +D sndD x ≫

reflecting that x appears free.
After arity raising, the result will be

let f = let x = 6 in x
in 7 + f
: Int

3.4.4 Static recursion

Static recursion is added in the source language by a fixpoint operator fixS e, which is
unfolded during the specialization process. The problem of unfolding recursion during
specialization is non-termination: we need some way to control the termination of the
unfolding because, if the specialization does not terminate, then it will either produce an
infinite answer or none at all. A sensible restriction to ensure termination is to allow fixS

to be used only to produce static functions, delaying the unfolding until an application
of the function is performed; in this way, only non-terminating static functions will
produce non-terminating specializations. This restriction is the same adopted in strict
programming languages.

To represent the residual of a static fixpoint operator we need a new residual type
capturing the fact that the name of the recursive function appears free in its body. It
is similar to the static closures considered above, but with the addition of the name of
the function:

rec ≪ [(zi, τi, τ
′
i)]

m
i=1, f, x, e ≫
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This new form of types will be the residual type of a source expression of the form
fixS (λSf.λSx.e), with free variables among the {zi}s — observe, in particular, that
is has the same information appearing in the static closure, with the addition of the
recursive variable.

The rule to specialize a static recursive function works in two steps: it first specializes
the argument of the fixS construct to a function from a static function to itself, and
then specializes the body of this function without binding the name of the recursive
function (this will produce no problems, because if the specialized version of the recursive
function is needed to obtain the specialized version of the recursive function, then no
specialization can be done!). The result is a recursive closure built from the closure of
the body and the name of the function:

(O-SFIX)

Γ ⊢ ef : (τa →
S τr)→

S (τa →
S τr) →֒ e′f : clos ≪ [(zi, τfi

, τ ′
fi
)]ni=1, x, eb ≫ [zi : τfi

→֒ πi,n e′f : τ ′
fi
]ni=1 ⊢

eb : τa →
S τr →֒ e′b : clos

Γ ⊢ fixS ef : τa →
S τr →֒ e′b : rec ≪ [(wi, τbi

, τ ′
bi
)]mi=1, f, x, er ≫

An interesting observation is that, as presented, the rule does not take into account the
case when the ef expression is itself the result of a fixpoint (that is, its residual e′f is of
type rec instead of clos). This is an oversight in Hughes’ original work, but easily fixed
by η-conversion.

The details can be better understood with an example. Consider the program

letD n = 35D

in letD f = fixS (λSg.λSx.1D +D ifS x ==S 0S then n else g @S (x −S 1S ))
in f @S 2S

The argument of fixS specializes as follows (in the first premise of rule (O-SFIX))

n : IntD →֒ 35 : Int

⊢ λSg.λSx.1D +D ifS x ==S 0S then n else g @S (x −S 1S )
: (IntS →S IntD )→S (IntS →S IntD )

→֒ 35 : clos ≪[(n, IntD , Int)], g,
λSx.1D +D ifS x ==S 0S then n else g @S (x −S 1S ) ≫

Then (on the second premise of (O-SFIX)), the body of the function is specialized without
a binding for g, thus resulting in

n : IntD →֒ 35 : Int

⊢ λSx.1D +D ifS x ==S 0S then n else g @S (x −S 1S )
: IntS →S IntD

→֒ 35 : clos ≪[(n, IntD , Int)], x,
1D +D ifS x ==S 0S then n else g @S (x −S 1S ) ≫

in which g appears as a free variable. The residual of f can be obtained applying (O-SFIX):

35 : rec ≪ [(n, IntD , Int)], g, x, 1D +D ifS x ==S 0S then n else g @S (x −S 1S ) ≫
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It is important to note that the body of the recursive function was not specialized at
all; it was simply stored in the closure, waiting for an application.

The application of a recursive function needs a special rule, because unfolding of
recursive calls must be performed; it is obtained by binding the name of the recursive
variable to the very function being applied.

(O-RSAPP)

Γ ⊢ e1 : τa →
S τr →֒ e′1 : rec ≪ [(zi, τi, τ

′
i)]

n
i=1, f, x, e ≫ Γ ⊢ e2 : τa →֒ e′2 : τ ′

a Γrec ⊢ e : τr →֒ e′ : τ ′
r

Γ ⊢ e1 @S e2 : τr →֒ e′ : τ ′
r

where
Γrec = [zi : τi →֒ πi,n e′1 : τ ′

i ]
n
i=1,

f : τa →
S τr →֒ e′1 : clos ≪ [(zi, τi, τ

′
i)]

n
i=1, x, e ≫,

x : τa →֒ e′2 : τ ′
a

Concluding the example of the static recursive function f , we may apply the rule
(O-RSAPP) obtaining the following residual code:

let n = 35 in let f = n in 1 + (1 + (1 + f))

The recursive function has been unfolded three times, and the name of the function is
bound to a (one-)tuple of its free variables, used to interpret the reference of n in the
unfolded code.

Had we used dynamic recursion instead, the resulting code would be very similar,
except that the residual of f would be a tuple with a circular (recursive) reference to
itself, and projections would be used to extract the correct component.

⊢ letD n = 35D

in letD f = fixD (λDg.poly (λDx.1D +D ifS x ==S 0S

then n
else spec g @D (x −S 1S )))

in spec f @D 2S

: IntD

→֒ let n = 35
in let f = fix λg.λx.(1 + π2,3 g@•, 1 + π3,3 g@•, 1 + n)

in π1,3 f@•
: Int

The similarity is much more apparent after arity raising, when the residual code becomes
the following final term.

let n = 35 in let f1 = 1 + f2

f2 = 1 + f3

f3 = 1 + n
in f1

The usefulness of static recursion can be seen in the following example.

Example 3.19. We consider again the power function mentioned in Chapter 1.
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letS power = fixS (λS p.(λS n.λS x .if S n == S 1S

then x
else x ∗D p @S (n −S 1) @S x ))

in λDz .power @S 3S @S z

Observe that power has the first argument static, but it is also a static function — thus,
it will be unfolded, and there is no need for polyvariance. When using power , we provide
a dynamic function as context to its application, to be able to observe the result.

The specialization of this example is λz.z ∗ (z ∗ z), as expected.

3.4.5 Sum types

A very important extension to the language is the addition and treatment of sum
types. Hughes defined sum types as anonymous, tagged, n-ary sums of the form
C1 τ1 | . . . | Cn τn, in which every constructor, distinguished lexically using an
initial capital letter, takes only one argument. The order of constructors in a sum is
irrelevant, that is, sum types are identified by the set of constructors. Sum types are
usually abbreviated

Pn
i=1 Ci τi. For example, the type Bool of booleans can be expressed

as the sum True () | False (), where we identify True : Bool and True () (and similarly
for False).

The construct to operate with sums is the case construct: case e of C1 x1 →
e1; . . . ; Cn xn → en. It has a branch for each constructor in the type, and performs
a pattern matching on the value of the expression e, selecting the ith branch when it
begins with constructor Ci, and returning the value of ei with xi bound to the value of
the argument of that constructor.

The decision of representing sum types as anonymous sums requires the introduction
of recursive types to have the possibility to define inductive sets. This results in a type
system that is more powerful than Haskell’s, introducing some minor complications in
the treatment; in later sections we use the more familiar definition of datatypes à la
Haskell, so we add those definitions at the beginning of our examples.

Sum types are divided into static and dynamic, just like every other construct in the
language. The specialization of each variant is different, and so we discuss each one in
its own subsection. Examples of the use of static and dynamic sum types in practical
situations are given in Chapter 4.

Static sums

Following the basic idea of “move the static information into the type”, the specialization
of a value of a static sum has to move the constructor tag into the residual type. To
do that, we introduce one residual type constructor for every static sum constructor,
and let the residual type of a tagged value live in the type resulting from applying the
corresponding constructor to the residual type of the argument.

(O-SCON)
Γ ⊢ e : τk →֒ e′ : τ ′

k

Γ ⊢ C
S

k e :
Pn

i=1 C
S

i τi →֒ e′ : Ck τ ′
k
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The original system uses a variation of rows [Rèmy, 1989; ?; Pottier, 2000; Shields and
Meijer, 2001] to calculate the resulting sum type, but we have chosen to present it here
in a simpler form, because the treatment of rows is just an implementation detail not
affecting the specialization.

Observe that, in the rule (O-SCON), the residual type Ck τ ′
k is a specialized version of

the source type
Pn

i=1 C
S

i τi, corresponding to a specialization of the k-th constructor; the
information that e lies in summand C

S

k is recorded in the residual type, thus removing
the tag in the residual code. This is very important in the optimal specialization of
lambda calculus presented in Chapter 4.

Static case expressions are specialized by choosing the branch corresponding to the
constructor used in the scrutinized expression. Determining which branch to choose is
possible because the residual type of the control expression has information of which
constructor was used; this can be seen in the first premise of the rule, by observing that
the residual type of the expression is Ck τ ′

k.

(O-SCASE)
Γ ⊢ e :

Pn
i=1 C

S

i τi →֒ e′ : Ck τ ′
k Γ, xk : τk →֒ e′ : τ ′

k ⊢ ek : τ →֒ e′k : τ ′

Γ ⊢ caseS e of [C S

i xi → ei]
n
i=1 : τ →֒ e′k : τ ′

Observe that the second premise only specializes the k-th branch; all the other branches
are not specialized at all.

It is interesting to see some examples using static sums.

Example 3.20. Observe how the static case in the body of the function can be elimi-
nated, because the type of the argument gives the information about which branch to
choose, even when the function is not reduced. Also observe that the static number 17S

is propagated as expected.

⊢ (λD x .caseS x of
LeftS f → f @D 17S

RightS n → n)
@D (LeftS (λDy .lift y +D 1D ))

: IntD

→֒ (λx .x@•)@(λy .17 + 1) : Int

Example 3.21. Observe how the static case in the body of the polyvariant function is
resolved differently in each specialization.

⊢ letD f = poly (λDx.caseS x of
LeftS n → n +D 1D

RightS n → n +D n)
in (spec f @D (LeftS 2D ), spec f @D (RightS 3D ))D

: (IntD , IntD )D

→֒ let f = (λx.x +D 1D , λx.x +D x)
in (fst f@2, snd f@3)

: (Int, Int)
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Dynamic sums

In the case of dynamic sums, the tag must remain in the residual code, and the residual
type must be a sum type. That is reflected in the rule for dynamic sum constructors.

(O-DCON)
Γ ⊢ e : τk →֒ e′ : τ ′

k

Γ ⊢ C
D

k e :
Pn

i=1 C
D

i τi →֒ Ck e′ : Ck τ ′
k | φ′

This rule restricted the residual sum type to have a summand with the right tag, Ck,
but left the rest unspecified (as expressed by the metavariable φ); several rules taken
together will provide all the constructors that will be part of the residual type. In this
way, new sum types will be created depending on how they are used.

The static information that was moved into the residual type argument of a con-
structor is used in a dynamic case to specialize each branch accordingly.

(O-DCASE)

Γ ⊢ e :
Pn

i=1 C
D

i τi →֒ e′ :
Pn

i=1 Ci τ ′
i [Γ, xi : τi →֒ x′

i : τ ′
i ⊢ ei : τ →֒ e′i : τ ′]ni=1

Γ ⊢ caseD e of [C D

i τi → ei]
n
i=1 : τ

→֒ case e′ of [Ci τ ′
i → e′i]

n
i=1 : τ ′

(x′
i fresh,i∈1...n)

It is interesting to observe that, while the rule for constructors allows the residual sum
type to have fewer constructors than the source one, the rule for case forces the same
number to appear on both. This is a small inconsistency in Hughes’ presentation that
can be fixed, either by relaxing the rule for case, or by forcing also the same number of
constructors in the other rule.

An example of the use of dynamic sums shows that a dynamic case produces a case in
the residual program; but, even more importantly, it also shows that static information
under a constructor can be used in the proper branch of that case (but it has to be the
same on all the uses of the constructor!)

Example 3.22. Observe how each branch of the case uses static information appearing
under a dynamic if.

⊢λDb.(λDx .caseD x of
LeftD n → lift (n +S 1S )
RightD b ′ → ifS b ′ then 1D else 0D )

@D (ifD b then LeftD 42S else RightD TrueS ) : BoolD →D IntD

→֒ λb.(λx .case x of
Left n → 43
Right b ′ → 1)

@ (if b then Left • else Right •) : Bool → Int

This propagation of static information is possible because it is carried on the residual
type of x: Left 4̂2 | Right ˆTrue; then, the residual type of n in the left branch is 4̂2
and the residual type of b′ in the right branch is ˆTrue, allowing the specialization of the
branch expressions.
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3.4.6 Things not included

The specializer implemented by Hughes has some additional features that we do not
consider in this thesis, but that are important for expressiveness. One such feature is
polyvariant sums, that are the dual of the polyvariance we have described. Another one
is the treatment of imperative features, as presented by Dussart et al. [1997b].

The polyvariance presented here creates n-ary products in the residual program. The
dual notion is a polyvariant construct that creates polyvariant sums. It is introduced
by a new source type sum τ with a single data constructor In, and eliminated using a
special form of case expression. For example,

⊢ letD f = λDx.caseD x of In y → lift y +D 1D

in (f @D (In 17S ), f @D (In 42S ))D

: (IntD , IntD )D

→֒ let f = λx.case x of
In0 y → 17 + 1
In1 y → 42 + 1

in (f@(In0 •), f@(In1 •))
: (Int, Int)

Polyvariant sums and polyvariant products are used for similar purposes, that is, to allow
multiple specializations of some expression; polyvariant sums produce case expressions
that take apart the different specializations of In, but can be used to produce some
residual codes that cannot be obtained using polyvariant products, as can be observed
in the following example, or in the firstifying interpreter presented by Hughes [1996b].

Example 3.23. The expression presented here is similar to that in Example 3.15, except
that it uses polyvariant sums to allow the variation of static information in the branches
of the conditional.

⊢ λDb.letD f = λDx.ifD b
then In (2S , lift x)D

else In (3S , 51D )D

in caseD (f @D 42S ) of In y → sndD y +D lift (fstD y)
: IntD

→֒ λb.let f = λx. if p
then In0 (•, 42)
else In1 (•, 51)

in case (f @•) of
In0 y → snd y + 2
In1 y → snd y + 3

: Int

Observe how the dynamic conditional can have different static information on each
branch, because in the residual that will give rise to a new version of constructor In,
and compare that with Example 3.15. The same idea is used in the firstifying interpreter
of Hughes: to produce firstification, the universal type to represent expressions of the
object language will use static functions; but to allow those functions to have different
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static information, a polyvariant sum is used in a way similar to the one showed here
— more details were given by Hughes [1996b]. A natural question to ask is whether
a firstifying interpreter can be constructed using only polyvariant products. There are
several alternatives, but none of them produce a suitable firstifying interpreter. One
of those alternatives is to use CPS to represent the sums (i.e. poly (τ → ans) → ans
representing the polyvariant sum sum τ), but then the resulting program will still
contain functions coming from the representation of continuations, and so it will not
be first order; additionally, it is not clear that one type of answers is sufficient (ans in
the previous definition). Another alternative is to use only polyvariant products. But
then the resulting program will contain a function for every function call with a different
type, even for higher order functions in the object program — it is expected that the
first order version of a higher order function is a single function receiving closures, and
not a set of different functions. So, the best choice to produce a firstifying interpreter
is to use polyvariant sums.

Computational effects expressed as monadic operations can be type specialized, as
explained by Dussart et al. [1997b]. The rules to specialize monadic primitives and oper-
ations on state are modularly added to the ones presented here, showing the advantages
of presenting the specialization by a system of rules.ting the specialization by a system
of rules. Optimal specialization for a language with first-class references is presented,
and also the specialization of a lazy interpreter using references to store closures that
can be updated. One of the distinguishing features of this specialization is that some
operations on references can be performed statically. Another one is that the specializer
is independent of the evaluation order: only the sequence of monadic operations is fixed.

3.4.7 On recursive types

We have said, when presenting the syntax of source types in Section 3.1, that their
interpretation is coinductive. This is different with respect to the classical interpretation
of types as the initial algebra (that is, inductive types), and implies that these types
are any finite or infinite expressions conforming to this grammar. In this way, recursive
types can be represented by their infinite unfolding — which is called equi-recursive
types by ? [?]. We use the abbreviation µX.T (X) to represent the infinite unfolding of
T — that is, T (T (T (. . .))).

This feature is important because it is our goal that residual recursive types be
generated from an interpreter with no indication of where the recursion takes place.
That is, if we are using a universal type to represent values of the object language, then
the tags of this type will be used to generate residual types for the program — even
recursive ones. Then, the interpretation for that universal type has to include infinite
terms, corresponding to the expansion of the recursive type to be generated. Let’s see
that with an example.

Example 3.24. We consider a fragment of a universal datatype to represent values,
V, containing numbers, constructors, unit, and pairs. The notation dataVS is used to
indicate that the sum represented by V is a static sum at top level — that is, all its
constructors are static.
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data VS = N IntD | C (StringS , VS )D

| U ()D | P (VS , VS )D

We define a program that produces an object list of seventeens from a given number,
and annotate it so the residual program will produce such a list. The residual type must
then be a recursive type representing lists.

⊢ fixD (λDf .λDx .ifD x == D 0D

then In (CS (“Nil”S , US ()D )D )
else In (CS (“Cons”S , PS (NS 17D , f @D (x −D 1D ))D )D )

) @D 3D

: sum VS

→֒ fix(λf .λx . if x == 0
then In0 (•, ())
else In1 (•, (17, f@(x − 1)))

)@3
: µX .In0 (C (“Nil”, U ())) + In1 (C (“Cons”, P (N Int,X )))

After arity raising, we obtain the following program, as expected.

fix(λf .λx . if x == 0
then In0 ()
else In1 (17, f@(x − 1))

)@3
: µX .In0 + In1 Int X

where In0 represents the constructor Nil and In1 , the constructor Cons. Observe
that the residual type is recursive, although the source type does not indicate where the
recursion has to be introduced — the source type is recursive, but static, thus indicating
that the infinite unfolding must be used. For this reason the interpretation of the source
type has to be coinductive.





Chapter 4

Examples

And in a day or two more he was bold enough to ask his master, ‘When will
my apprenticeship begin, Sir?’
‘It has begun’, said Ogion.
There was a silence, as if Ged was keeping back something he had to say. Then
he said it: ‘But I haven’t learned anything, yet!’
‘Because you haven’t found out what I am teaching’, replied the mage. . .

A Wizard of Earthsea
Úrsula K. Le Guin

In this chapter we give three variations of the interpreter for the lambda-calculus
appearing in Chapter 2; the purpose is to illustrate the usefulness of the techniques
presented. We also discuss some of the limitations and problems in type specialization,
and summarize the main ideas.

The three examples are based on the same basic code for an interpreter of the lambda-
calculus, but they are annotated differently, obtaining compilers with different static
semantics. The first example, in Section 4.1, is annotated in such a way that the resulting
lambda-calculus is untyped. The only difference between the interpreter presented in
Section 4.2 and the previous one is in the annotation of the sum type representing
lambda terms; however, that makes it an interpreter for the simply typed lambda-
calculus. Then, in Section 4.3, we show a variation of the previous interpreter to deal
with let-bound polymorphism in the object language; polyvariance is used to express
polymorphism, but the resulting residual program is monomorphic, so, in that sense, the
compilation obtained by specializing this interpreter is a monomorphizer: a polymorphic
function in the object language is expanded to one copy for each use with a different
monomorphic type.

In Section 4.4 we discuss some limitations of type specialization providing examples
of the kind of problems they produce. Finally in Section 4.5 we summarize the strengths
and problems of type specialization.

The examples considered here show that the ability to choose the binding times of the
source program is a great advantage when designing typed languages. It is completely
unreasonable to expect that a program, such as a BTA, can determine the annotations
in our stead: that would mean that the BTA is choosing the static semantics of our
object language! It is for this reason that we argue that Jones’ claim that the goal is
to automatically transform an interpreter into a compiler is unrealistic, and therefore
we put the stress on the increased power that a specializer can give to a programmer
(in this case, the ability to choose between untyped, simply typed, and Hindley-Milner
typed versions of the object language!). Additionally, the understanding of how the
specializer works helps to choose where to place polyvariance, giving more flexibility to

49
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data LExpS = Var CharS | Const IntS

| Lam CharS LExpS | App LExpS LExpS

| Let CharS LExpS LExpS

data ValueD = Num IntD | Fun (ValueD →D ValueD ) | Wrong

letS bind = λS x .λS v .λS env .
λS y .if S x == y then v else env @S y

in
letS preeval =

fixS (λS eval .λS env .λS expr .
caseS expr of

Var x → env @S x
Const n → NumD (lift n)
Lam x e → FunD (λD v .

letS env ′ = bind @S x @S v @S env
in eval @S env ′ @S e)

App e1 e2 → caseD (eval @S env @S e1) of
Fun f → f @D (eval @S env @S e2)

Let x e1 e2 → letD v = eval @S env @S e1

in letS env ′ = bind @S x @S v @S env
in eval @S env ′ @S e2)

in
letS ueval = preeval @S (λS x .WrongD )
in h. . . i

Figure 4.1: An evaluator for untyped lambda-calculus.

the programmer. For that reason we think that users (in this case, programmers!) need
to understand the details of the specialization process.

4.1 Untyped λ-calculus

Our first example, presented in Figure 4.1, is an interpreter for lambda-calculus with the
same annotations as the one given in Chapter 2. The only differences are that we have
made a function to add a binding variable-value to an environment (bind), and we have
added an initial environment (λS x → WrongD )1. Observe that the constructors of the
result of ueval (Num and Fun) have been annotated dynamic; this amounts to keeping
the tags in the residual code, and then it is during runtime that type errors are detected
— that is, the language is untyped. See how that happens in the following example.

1We are also taking some liberties in the use of datatype syntax to express sum types. The names
LExpS and ValueD must be considered as abbreviations for the anonymous sum of their components.

Additionally, we show constructors with several arguments, but the sum types introduced can only
handle single arguments. This can be considered syntactic sugar, because it can be expressed using a
tuple as argument for the constructor, and pattern matching as the use of the corresponding projection.
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Example 4.1. The following specialization is possible.

⊢ueval @S (AppS (ConstS 2S ) (ConstS 3S )) : ValueD

→֒ case (Num 2) of Fun f → f @(Num 3) : Value

The AppS produces the residual case and the residual application, and every ConstS

produces a residual Num. This program will fail when evaluated, exactly as the object
program would have failed, because there is no branch for Num in the residual case.

We are, again, compiling by specialization, and the fact that the residual program
is produced indicates that the resulting compilation is for untyped lambda-calculus —
that is, specialization is analogous to compile-time, and, as the error is produced at
run-time, we can conclude that no type checking was performed.

As the language interpreted is untyped, the generation of runtime type checks has
to be done even when the program is correctly typed; as we have seen this is a problem
for partial evaluation, because in that approach, this is the best annotation possible.

Example 4.2. The result of specializing the expression

ueval @S (LamS ’f’S

(AppS (VarS ’f’S )
(AppS (VarS ’f’S ) (ConstS 0S ))))

is the following residual code

Fun (λv .case v of
Fun f → f @(case v of

Fun f → f @(Num 0)))
: Value

Every function requires a Fun tag, every application requires a case, and every number
requires a Num tag.

4.2 Simply Typed λ-calculus

But with type specialization, we can go further. In Figure 4.2 the same evaluator is
annotated in a different way: observe that the constructors in the result of teval are an-
notated as static, but their arguments are still dynamic; this amounts to removing the
tags, specializing the residual type. The object language is now simply typed lambda-
calculus, because the specialization process (and therefore, the compilation of the object
program) will succeed only when the object program is well-typed, and it will fail for
ill-typed ones. If we are to compile by specializing an interpreter, then the specializa-
tion method must fail on those inputs. This is achieved by the failure of an equality
test on residual types, something that seemed a not-so-good idea when we introduced
polyvariance, but that is an essential feature of the system. We illustrate this feature
with the following examples.



52 Chapter 4. Examples

data LExpS = Var CharS | Const IntS

| Lam CharS LExpS | App LExpS LExpS

| Let CharS LExpS LExpS

data ValueS = Num IntD | Fun (ValueS →D ValueS ) | Wrong

letS bind = λS x .λS v .λS env .
λS y .if S x == y then v else env @S y

in
letS preeval =

fixS (λS eval .λS env .λS expr .
caseS expr of

Var x → env @S x
Const n → NumS (lift n)
Lam x e → FunS (λD v .

letS env ′ = bind @S x @S v @S env
in eval @S env ′ @S e)

App e1 e2 → caseS (eval @S env @S e1) of
Fun f → f @D (eval @S env @S e2)

Let x e1 e2 → letD v = eval @S env @S e1

in letS env ′ = bind @S x @S v @S env
in eval @S env ′ @S e2)

in
letS teval = preeval @S (λS x .WrongS )
in h. . . i

Figure 4.2: An evaluator for simply-typed lambda-calculus.
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Example 4.3. The expression teval @S (AppS (ConstS 2S ) (ConstS 3S )) has no spe-
cialization, thus showing that the compilation process obtained by specialization treats
the object language as typed. The failure is caused by the annotations: type tags FunS

and NumS are moved into the type, so the residual type of (ConstS 2S ) is • :: Num 2̂;
but the static case in the evaluator has no branch for the Num tag, and then it will fail
when trying to generate a residual term for this expression. Observe that the special-
ization failure is indeed the desired behaviour!

Example 4.4. The result of specializing the expression

teval @S (LamS ’f’S

(AppS (VarS ’f’S )
(AppS (VarS ’f’S ) (ConstS 0S ))))

is the following residual code

λv . v @ (v @ 0) :: Fun (Fun (Num Int → Num Int)
→ Num Int)

Observe that the residual type reflects the typing of the object program! Type special-
ization is performing type inference using only the text of the interpreter appropriately
annotated.

Example 4.5. The result of specializing the expression

teval @S (LetS ’i’S (LamS ’x’S (VarS ’x’S ))
(AppS (AppS (VarS ’i’S ) (VarS ’i’S ))

(ConstS 0S )))

is a failure, because the two occurrences of (VarS ’i’S ) should have different residual
types: the first should have residual type

Fun ((Fun (Num Int → Num Int)) → (Fun (Num Int → Num Int)))

and the second one, Fun (Num Int → Num Int). This is showing that the lambda
calculus interpreted is simply typed, and once more the importance of failure when
residual types do not match.

4.3 Monomorphizing λ-calculus

There is still one more useful alternative we can take when annotating the interpreter: by
using polyvariance, we can make our interpreter accept let-bound polymorphic programs
and monomorphize them — that is, produce an equivalent monomorphic program where
the polymorphic functions are expanded to monomorphic copies of themselves. We
present the variation in Figure 4.3. The only change to the evaluator presented in
previous sections is in the elements that can be stored in the environment: they can be
monovariant or polyvariant, reflecting the fact that the object elements associated with
the corresponding variables are monomorphic or polymorphic. To be able to return
either monovariant or polyvariant expressions, a new datatype, MPS is introduced.
Polyvariant expressions are created by the Let rule, and eliminated by the Var rule.
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data LExpS = Var CharS | Const IntS

| Lam CharS LExpS | App LExpS LExpS

| Let CharS LExpS LExpS

data ValueS = Num IntD | Fun (ValueS →D ValueS ) | Wrong

data MPS = M ValueS | P (poly ValueS )

letS bind = λS x .λS v .λS env .
λS y .if S x == y then v else env @S y

in
letS preeval =

fixS (λS eval .λS env .λS expr .
caseS expr of

Var x → caseS (env @S x ) of
M v → v
P v → spec v

Const n → NumS (lift n)
Lam x e → FunS (λD v .

letS env ′ = bind @S x @S (MS v) @S env
in eval @S env ′ @S e)

App e1 e2 → caseS (eval @S env @S e1) of
Fun f → f @D (eval @S env @S e2)

Let x e1 e2 → letD v = PS (poly eval @S env @S e1)
in letS env ′ = bind @S x @S v @S env

in eval @S env ′ @S e2)
in
letS meval = preeval @S (λS x .MS WrongS )
in h. . . i

Figure 4.3: A monomorphizer for lambda-calculus.
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Example 4.6. The result of specializing the expression

meval @S (LetS ’i’S (LamS ’x’S (VarS ’x’S ))
(AppS (AppS (VarS ’i’S ) (VarS ’i’S ))

(ConstS 0S )))

is the expression

let v = (λv ′.v ′, λv ′.v ′)
in (fst v (snd v)) 0
:: Num Int

Observe that the residual of the let-bound identity function is a pair of functions: the
type of the first one is

Fun ( (Fun (Num Int → Num Int)) → (Fun (Num Int → Num Int))

and that of the second one is Fun (Num Int → Num Int). Also observe the projec-
tions appearing on every use of the residual of the identity function (v), choosing the
corresponding monomorphic version.

This is a very powerful transformation, not possible with other program specialization
techniques.

4.4 Limitations of Type Specialization

However, Type Specialization, like every other method, has limitations and problems.
We review some of them here, explaining them through examples.

4.4.1 Lack of principality

We remarked that when the context provides enough information, the specialization can
proceed with no problems (Example 3.9-2, Example 3.9-3, Example 3.12). But, what
happens when specializing any of the expressions in the following example?

Example 4.7. Observe that in all cases there is some static information missing.

1. λDx.x +S 1S : IntS →D IntS

2. poly (λDx.lift x +D 1D ) : poly (IntS →D IntD )

3. λDf.spec f @D 13S : poly (IntS →D IntD )→D IntD

All have many different unrelated specializations! For example, the function in Exam-
ple 4.7-1 has one specialization for each possible value for x — in particular, λx′.• :
n̂ → n̂′, for every value of n and n′ such that n′ = n + 1. If this function appears
in one module, but is applied in another one, then the specialization should wait until
the value n of the argument is known, in order to decide the residual type. The same
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problem appears in the case of polyvariance, as can be observed in Example 4.7-2 and
Example 4.7-3: the generation of the tuple or the selection of the right projection should
be deferred until all the information is available — in the second case, if the expression
is annotated as polyvariant, the right projection can even be a different one on each
application!

Another example with a similar problem is the following one.

Example 4.8. Consider the term

ef = letD f = poly (λDx.lift x +D 1D )
in (spec f @D 42S , spec f @D 17S , spec f)D

Observe that there is not enough information to determine which is the right specializa-
tion for the third component of the tuple! As a consequence, we have several different
specializations for this term; in particular, all the three specializations shown differ in
the residual assigned to that component.

1. ⊢ ef : (IntD , IntD , IntS →D IntD )D

→֒
let f ′ = (λx′.42 + 1, λx′.17 + 1)

in (fst f ′@•, snd f ′@•, snd f ′) : (Int, Int, 1̂7 → Int)

2. ⊢ ef : (IntD , IntD , IntS →D IntD )D

→֒
let f ′ = (λx′.42 + 1, λx′.17 + 1)

in (fst f ′@•, snd f ′@•, fst f ′) : (Int, Int, 4̂2 → Int)

3. ⊢ ef : (IntD , IntD , IntS →D IntD )D

→֒
let f ′ = (λx′.42 + 1, λx′.17 + 1, λx′.n + 1)
in (π1,3 f ′@•, π2,3 f ′@•, π3,3 f ′) : (Int, Int, n̂ → Int)

The first two are not general enough, because they force the unknown number to be
either 42 or 17, respectively. And the third, while general, is not optimal in the case
when the value of n is 42 or 17, because two copies of the same function have to be
generated.

Fixing this problem requires a big change in the residual language.

4.4.2 Failure

We have seen that the specialization of a term fails when two different residual types
have to be unified, and that this is an important feature that allows us to express the
failure of typechecking by failure of the specialization.

When the failure is inside a polyvariant expression, it cannot be detected until some
spec of it is calculated. Consider the following example.
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Example 4.9. Observe that the poly is never specialized (its residual is a 0-tuple), and
thus the specialization succeeds.

⊢ letD f = poly (letD id = λDx.x in (id @D 1S , id @D 2S )D )
in 2D

: IntD →֒ let f = () in 2 : Int

But if we try to specialize the body of the poly, a failure will occur because 1̂ is not
equal to 2̂.

In the interpreters of Figures 4.2 and 4.3 the case of unbound variables in object
programs was handled with a special constructor WrongS , which specializes to • :
Wrong . The consequence of this can be seen in the following example.

Example 4.10. Observe that the argument of teval represents the term λx.y.

⊢ teval @S (LamS ’x’S (VarS ’y’S )) : ValueS →֒ λv .• : Fun (Num Int → Wrong )

The residual program is not a failure, but a function delivering an element statically
known to be Wrong ! To make the type specializer fail in this case, we can change
the ValueS element WrongS in the initial environment for some computation with no
specialization; but in that case the specialization failure will have a very strange error
message!

To have the possibility of producing a failure in specialization with a proper error mes-
sage, a simple extension may be the addition of a (specialization) failure primitive. This
can be represented using a static failing computation — see Section 9.1.

4.4.3 Interaction between polyvariance and recursion

We have said that the interaction between dynamic recursion and polyvariance intro-
duces the most challenging problems; we explain what kind of problems are involved
with some examples.

The first example shows that when specializing a dynamic recursive function, some
care is needed to avoid a loop during specialization. In this case, the argument of f
can only take a finite number of static values, and thus a recursive program can be
generated.

Example 4.11. The source program

letS not = λS b.if S b then FalseS else TrueS

in
letD f = fixD (λD f .poly (λD b.spec f (not @S b)))
in spec f TrueS

specializes to

let f = fix (λf .(λb.snd f •, λb.fst f •))
in fst f •

It can be argued that the program is non-terminating, but in a lazy language a program
producing an infinite list of alternating values will have the same structure, so it is worth
considering it.
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To find the correct specialization in Example 4.11, an algorithm should perform some
kind of memoization: when calculating new polyvariant versions it is important not to
calculate one already seen or else the specialization will loop! This is much clearer to
see with the formulation presented in Chapters 6 and 9 — see Example 9.15.

The second example shows that identifying when two recursive calls are the same —
which we have shown is very important to achieve termination — may imply comparing
types with missing information.

Example 4.12. The source program

letD f = fixD (λD f .poly (λD x .λD y .
if D lift x == D 0D

then x +S 1S

else spec f @D x @D y +S 0S ))
in λD z .spec f @D 3S @D z
: IntS →D IntS

specializes to

let f = fix (λf .(λx .λy .
if 3 == 0
then •
else f @x@•))

in λz .f @ • @z
: n̂ → 4̂

for all values of n. Observe that the recursive call to f is invoked with the same values,
and so there is no need for more than one specialization of the polyvariant recursive
function; however, realizing that this is the case can only be done by comparing the
residual type of y with the residual type of y +S 0S , which depends on an unknown
number. In this case it is easy to see that both are the same, but this is not decidable
in general.

Another version of the same problem is presented in the next example.

Example 4.13. The source program

letD f = fixD (λD f .poly (λD x .λD ys .
if D lift x == D 0D

then x +S 1S

else spec f @D x @D sndD ys))
in λD zs .spec f @D 3S @D zs
:: α→D IntS

where α = (IntS , α)D

specializes to
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let f = fix (λf .(λx .λys .
if 3 == 0
then •
else f @x@snd ys))

in λzs .f @ • @zs
:: α → 4̂

where α = (n̂, α)

for all values of n. In this case, the recursive call to f invokes itself with almost the same
arguments: it takes the ‘tail’ of the argument ‘list’ (represented as a recursive pair).
Again there is no need for more than one specialization of the polyvariant recursive
function; however, identifying that this is the case involves taking the decision that the
infinite ‘list’ has all identical elements.

There are also other possible solutions; for example, the following term is also ob-
tainable by specialization from the same source code.

let f = fix (λf .(λx .λys .if 3 == 0 then • else snd f @x@snd ys),
λx .λys .if 3 == 0 then • else fst f @x@snd ys))

in λzs .fst f @ • @zs
:: α → 4̂

where α = (n̂, β),
β = (m̂, α)

for any value of n and m. In this case, instead of all identical elements, we have decided
that the infinite list has two alternating values (observe that the only difference between
both components of the residual of the recursive function’s body is in their types: one
uses α and the other uses β).

Other combinations are also possible: any choice of values that makes ys have a finite
number of static values in a repeated pattern is a possible specialization for this code.
For that reason, it is difficult to decide what the correct behaviour of the algorithm
should be in this case.

Our final example fails to specialize. Its purpose is to illustrate new problems intro-
duced by possible solutions to the previous problems, as discussed after the example.

Example 4.14. The source program

letD id = λD z .z
in
letD f = fixD (λD f .

poly (λD b.λD x .λD y .
ifD lift b
then lift (id @D x +S id @D y)
else spec f @D b @D x @D y))

in λD b ′.(spec f @D b ′ @D 2S @D 2S , spec f @D b ′ @D 3S @D 3S )

cannot be specialized. The problem is the use of the monovariant function id : as it is
applied to both arguments of the function f , they have both to be the same in every
call to f ! As f is invoked with 2 and 3 as arguments, the code cannot be specialized.
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All these examples present some kind of problem to an algorithm performing spe-
cialization. The one presented by Hughes [1996b] solved some of these problems with
different degrees of success. In the case of Example 4.7, it simply fails with an error
message; after all, it is assumed that all the static information is present, and so it is
sensible to fail if this is not the case. For the other cases, it uses an aggressive technique
for memoization: two specializations of the same polyvariant expression are identified if
it is possible to do so, even when it may not be the case that they are equal; if later an
error is encountered, the algorithm backtracks and tries with those two specializations
as different. This involves choosing one particular specialization between all the possible
ones for a given source term.

In Hughes’ implementation, the body of a poly is not specialized at all until a spec is
encountered. In the cases of Examples 4.12 and 4.13 it would mean that to determine if
different specs are the same, both should be specialized! The technique of memoization
used helps in this case, identifying the second spec with the first one before proceeding
with its specialization.

The aggressive identification of specs also helps in Examples 4.8 and 4.11: the
algorithm attempts a solution guessing that the unknown specs are one of the known
ones, and succeeds. That means choosing one of the first two alternatives in Example 4.8;
in case a failure occurs later, the backtracking mechanism is used to calculate the correct
solution.

But for Example 4.14, backtracking constitutes a problem. In fact, the “guessing”
that identifies specs is correct, but when the error unifying 2̂ with 3̂ is found, backtrack-
ing causes a loop, generating more and more different specializations of the recursive
function. Hughes [1996b] argued that better control of the backtracking mechanism
(some kind of dependency-directed backtracking) is necessary to solve this problem.

4.5 Summary of Type Specialization

We have presented type specialization, a technique for program specialization that pro-
duces specialized versions of both programs and types. Every good specializer is able to
produce arbitrary programs, but the novel feature of type specialization is that it is also
able to produce arbitrary types. This allows more expressiveness, and enables solving
the problem of optimal specialization for interpreters written in typed languages — as
shown in Figure 4.2 — through performing type inference by the specialization process.

Type specialization combines several powerful features to program specialization. For
example, traditional partial evaluation, polyvariance, constructor specialization, firsti-
fication (or closure conversion), some forms of data specialization, arity raising, and
all these for a higher-order language — it is remarkable that type specialization is the
first program specialization approach that supports both constructor specialization and
higher-order functions.

There is still a long way to go before type specialization can be as successfully applied
as partial evaluation because several problems remain to be solved: the generation
of polymorphic programs; the treatment of polymorphic source code; non-termination
produced by combining polyvariance and recursion; self-application; a semi-automatic
tool to help annotating a program with binding-times suitable for type specialization;
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modular specialization; and the elimination of dead code and code duplication.
In the rest of this thesis we contribute to the development of type specialization by

solving the first of them, and by providing a richer way of presenting type specialization,
such that the rest of the problems can be stated and treated more easily.
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Chapter 5

Theory of Qualified Types

Q: How do you kill a purple elephant?

A: With a purple elephant gun.

. . .

Popular joke (first part)

The theory of qualified types [Jones, 1994a] is a framework that allows the develop-
ment of constrained type systems in an intermediate level between monomorphic and
polymorphic type disciplines. We have made a thorough use of the techniques developed
by Mark Jones, by reformulating type specialization as a system with qualified types
(Chapter 6). For that reason, we consider it valuable to describe the basics of this theory
first.

Qualified types can be seen in two ways: either as a restricted form of polymorphism,
or as an extension of the use of monotypes (commonly described as overloading, in which
a function may have different interpretations according to the types of its arguments or
its result). Predicates are used to restrict the use of type variables, or, using the second
point of view, to express several possible different instances with one single type (but
without the full generality of parametric polymorphism). The theory explains how to
enrich types with predicates, how to perform type inference using the enriched types,
and which are the minimal properties predicates must satisfy in order for the resulting
type system to have similar properties as in the Hindley-Milner one. In particular, it
has been shown that any well typed program has a principal type that can be calculated
by an extended version of Milner’s algorithm.

The material presented in this chapter is based completely on the presentation of the
theory given by Jones [1994a], with the only exception that the names of the syntactic
categories were changed to fit in the type specialization system. In particular, we use
similar notational conventions to those used by Mark Jones. Those conventions can
be a bit confusing at first glance, but they are extremely useful once mastered. After
describing the notational conventions (Section 5.1), we review the use of predicates
(Section 5.2) and basic type inference for qualified types (Section 5.4). One of the most
important technical concepts in the theory of qualified types is that of evidence, and
the associated notion of conversion; in Section 5.5 we discuss the use of evidence as a
technique to provide coherence to terms with qualified types, and also how type inference
can be enriched with evidence. We conclude with a discussion about simplification of
predicates generated by the inference process (Section 5.6) and a summary of the ideas.

65
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5.1 On Notational Conventions

In technical reasoning, it is sometimes convenient to blur some notions behind the no-
tation. Jones [1994a] uses several of these conventions, in particular regarding lists of
elements, lists of pairs, the usual operations on lists, and their use on type expressions.
Despite the possible source of confusion that these conventions may be for a casual
reader, they can be easily mastered with very little practice.

The first convention blurs the notions of sets, lists, and individual elements. Using
the conventions in Notation 5.1, the use of ∅ and , can be reformulated to either sets
or lists without needing to change the definition of rules that use them.

Notation 5.1. Let L and L′ be any kind of (finite) lists or sets, and l an element.

We write L,L′ for the result of the union of sets L and L′ or the append of lists L
and L′. We write l, L for the result of the inclusion of element l to set L or the cons of l
to list L. Finally, we write ∅ for the empty set or list, and assume that ∅, L = L, ∅ = L.
Observe that l can be used as a singleton list, when the context requires a list.

Another point where blurring is convenient is when working with different kinds of
quantification; there are two possible ways to add quantifiers to the basic syntax: one
by one, or all together in a set. For example, in the case of type schemes, this amounts
to define either that σ ::= ∀α.σ | τ or σ ::= ∀{αi}i∈1...n.τ , respectively. We use the first
form as the definition and the second as an abbreviation.

Notation 5.2. Let σ = ∀{αi}i∈1...n.τ be a type scheme. We use the shorter form
∀{αi}.τ or even ∀αi.τ for σ. We also use the notation ∀β.σ as an abbreviation for
∀β, αi.τ . Finally, we identify ∀∅.τ with τ .

This is consistent with the blurring between lists and sets defined by Notation 5.1.

The convention for quantification is used for several kinds of expressions. The table
in Notation 5.3 summarizes them (the syntax for each kind of expression is introduced
in Chapter 6).

Notation 5.3. Assuming the following equalities, ∆ = δ1, · · · , δm, α = α1, · · · , αm,
h = h1, · · · , hm, and v = v1, · · · , vm, we use the abbreviations:

Object Expression Abbreviation(s)
Qualified type δ1 ⇒ · · · δm ⇒ τ ′ ∆ ⇒ τ ′

Type scheme ∀α1. · · · ∀αm.ρ ∀α.ρ
Evidence abstr. Λh1. · · ·Λhm.e′ Λh.e′

Evidence app. ((e′((v1))) · · · )((vm)) e′((v))

In the special case when m = 0, all the sequences are empty, and then the abbreviations
stand for the enclosed element (e.g. e′((v)) represents e′). This implies, for example, that
a type τ can be understood as a qualified type (∅ ⇒ τ) or a type scheme (∀∅.∅ ⇒ τ)
depending on the context of use.

Another convention is concerned with lists of pairs.
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Notation 5.4. Lists of pairs may be abbreviated by a pair of lists in the following way.
If h = h1, . . . , hn and ∆ = δ1, . . . , δn, the list h1 : δ1, . . . , hn : δn may be abbreviated as
h : ∆ or as ∆ depending on the context. The latter is also used for a list of predicates
— no explicit removal of the variables (first components of pairs) will be used.

The union (concatenation) of two sets (lists) of pairs h : ∆ and h′ : ∆′ will be written
h : ∆, h′ : ∆′ (as an alternative to h, h′ : ∆, ∆′, which may also be used).

Again this is consistent with the blurring between lists and individual elements.

Finally, we should mention substitutions. Substitutions are functions from type
(scheme) variables to types (type schemes). We use two notations for substitutions. The
first one, used for substitutions changing only a finite number of variables, emphasizes
the individual replacement of variables, while the second one emphasises the functional
nature of substitutions.

Notation 5.5. If α = α1, · · · , αn are variables, and τ = τ1, · · · , τn are types, then
S = [αi/τi] is the substitution mapping each of the αi to the corresponding τi. When
applied to a particular type τ ′, it will be written S τ ′ or τ ′[αi/τi] (and sometimes τ ′[α/τ ]
or τ ′[αi/τi] identifying the lists with elements).

5.2 Predicates

Polymorphism is the ability to treat some terms as having many different types. We
can express a polymorphic type by means of a type scheme [Damas and Milner, 1982],
using universal quantification to abstract those parts of a type that may vary. That is,
if f(t) is a type for every possible value of type variable t, then giving the type scheme
∀t.f(t) to a term means that that term can receive any of the types in the set

{f(τ) s.t. τ is a type.}

But sometimes that is not enough: not all the types can replace t and still express
a possible type for the term. For those cases, a form of restricted quantification can be
used. If P (t) is a predicate on types, we use the type scheme ∀t.P (t) ⇒ f(t) to represent
the set of types

{f(τ) s.t. τ is a type such that P (τ) holds.}

and accurately reflect the desired types for a given term.

One important property of a type system is that of type inference: given a term
without any information of typing, infer a type for it that reflects the ways in which the
term may be used. The theory of qualified types [Jones, 1994a] describes how to perform
type inference in presence of type schemes with restricted quantification (qualified types).

The key feature in the theory is the use of a language of predicates to describe sets
of types (or, more generally, relations between types). The exact set of predicates may
vary from one application to another, but the theory effectively captures the minimum
required properties by using an entailment relation (⊢⊢) between (finite) sets of predicates
satisfying a few simple laws. If ∆ is a set of predicates, then ∆ ⊢⊢ {δ} (also written as
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(Fst) ∆, ∆′ ⊢⊢ ∆

(Snd) ∆, ∆′ ⊢⊢ ∆′

(Univ)
∆ ⊢⊢ ∆′ ∆ ⊢⊢ ∆′′

∆ ⊢⊢ ∆′, ∆′′

(Trans)
∆ ⊢⊢ ∆′ ∆′ ⊢⊢ ∆′′

∆ ⊢⊢ ∆′′

(Close)
∆ ⊢⊢ ∆′

S ∆ ⊢⊢ S ∆′

Figure 5.1: Structural laws satisfied by entailment.

∆ ⊢⊢ δ by virtue of Notation 5.1) indicates that the predicate δ can be inferred from the
predicates in ∆. This can be generalized to bigger sets by using the following property:

∆ ⊢⊢ ∆′ iff for all δ ∈ ∆′, ∆ ⊢⊢ δ

which will be used implicitly in the definitions; in this way, it is only necessary to describe
the rules for entailments of the form ∆ ⊢⊢ δ.

The basic properties that entailment must satisfy are:

Monotonicity: ∆ ⊢⊢ ∆′ whenever ∆ ⊇ ∆′

Transitivity: if ∆ ⊢⊢ ∆′ and ∆′ ⊢⊢ ∆′′, then ∆ ⊢⊢ ∆′′

Closure property: if ∆ ⊢⊢ ∆′, then S∆ ⊢⊢ S∆′.

The last condition is needed to ensure that the system of predicates is compatible with
the use of parametric polymorphism. This properties can be expressed by a system
containing the rules in Figure 5.1; every particular use of the theory should provide
additional rules to capture the exact relation between predicates.

5.3 An Example: the Haskell Class System

The technical aspects of the theory of qualified types will be of central importance in
the next chapter, where we present our approach to type specialization. For that reason,
it is important to see an example in order to understand the role of predicates.

Mark Jones’ main motivation to study qualified types was formalizing the Haskell
class system, so new developments could be done, and several alternatives could be
tested. Additionally, Haskell classes are pretty well understood nowadays by the func-
tional programming community, and we assume that the reader is familiar with the
concept — although we provide a short description of it, it will be far from optimal if
lacking some familiarity. For those reasons, we think that presenting how to express
classes by using predicates is a good way to clarify this theory.
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In Haskell, the programmer has the possibility to declare type classes, that can be
understood as families of types — the instances of a given class — having particular
member functions. The declarations in Haskell allow to declare also the dependence
of a given type class from certain others — the superclasses. Type inference will use
this information to restrict the use of polymorphism when a function that is member of
certain class is used (an overloaded use of it), and these restrictions will be propagated
to other functions using the overloaded one, making them also overloaded. Let’s see
a brief example taken from the Haskell prelude: the classes for equality and ordering
(although we simplify them a bit for the purposes of this presentation).

class Eq a where

(==) :: a -> a -> Bool

class Eq a => Ord a where

(<) :: a -> a -> Bool

The first of these declarations establishes that to belong to the family denoted by the
class Eq — written in the predicate form Eq a — a type a must have a function named
(==), with the correct type. The second one establishes that to belong to the class Ord,
a type must belong first to the Eq class, and must have a function named (<), with the
correct type. In the latter case, we say that Eq is a superclass of Ord.

Instance declarations are used to declare that a particular type belongs to a class.
Continuing with our example,

instance Eq Int where

(==) = primEqInt

instance Eq Char where

c == c’ = ord c == ord c’

instance Eq a => Eq [a] where

[] == [] = True

(x:xs) == (y:ys) = x==y && xs==ys

_ == _ = False

The first two declarations establish that Int and Char are instances of Eq, and define
the implementation of the corresponding functions (==) :: Int -> Int -> Bool, and
(==) :: Char -> Char -> Bool — the former as a built-in primitive, and the latter
based on that of Int. The third one does the same for lists [a], but also asks the
condition that the type a belongs to the Eq class to provide the instance of [a].

In the formalization of this system using qualified types, the assertion that a given
type belongs to a class is used as a predicate — for example, Eq a is a predicate — and
the information provided by the class and instance declarations will be captured by a
global context D, called a type class environment, containing two kind of terms:

• Class (∆ ⇒ δ), corresponding to class declarations, where each of the classes in
∆ is a superclass of δ.
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• Inst (∆ ⇒ δ), corresponding to instance declarations, where if there is an instance
for every predicate in ∆, then there is an instance for δ.

For example, all the Haskell declarations given previously can be expressed by the type
class environment

{Class ({} ⇒ Eq a),
Class ({Eq a} ⇒ Ord a),
Inst ({} ⇒ Eq Int),
Inst ({} ⇒ Eq Char),
Inst ({Eq a} ⇒ Eq [a])}

Once the type class environment D for a given program has been determined, it is
possible to define the particular rules for entailment — these rules, together with those
in Figure 5.1 will establish the relation.

(Super)
∆ ⊢⊢ δ Class (∆′ ⇒ δ) ∈ D δ′ ∈ ∆′

∆ ⊢⊢ δ′

(Inst)
∆ ⊢⊢ ∆′ Inst (∆′ ⇒ δ) ∈ D

∆ ⊢⊢ δ

The first of the rules establishes the conditions to obtain information from superclass
declarations — basically, it says that if a particular class declaration δ can be deduced
in a context ∆, then all its superclasses δ′ are also deducible in that context. This is
in accordance with the superclasses declarations: to declare a particular class, all the
superclasses have to be declared first. The second rule is used to obtain information
for instance declarations — it establishes that if all the conditions ∆′ needed to prove a
particular instance δ can be proved in a given context ∆, then the instance δ is provable
as well. This is in accordance with instance declarations: if all the member functions for
the required classes have been constructed, then the member functions for the particular
instance can be constructed as well.

With this entailment relation, type inference in Haskell proceeds as described in the
following sections.

5.4 Type Inference with Qualified Types

In the theory of qualified types, the language of types and type schemes is stratified in
a similar way as in the Hindley-Milner system, where the most important restriction is
that qualified or polymorphic types cannot be arguments of functions. That is, types
(written using the symbol τ) are defined by a grammar with at least these productions
τ ::= t | τ → τ ; on top of types are constructed qualified types of the form ∆ ⇒ τ
(written using the symbol ρ), and then type schemes of the form ∀{αi}.ρ (written using
the symbol σ). We use freely the conventions defined in Notation 5.3. Using that
notation, any type scheme can be written in the form ∀αi.∆ ⇒ τ , representing the set
of qualified types

{∆[αi/τi] ⇒ τ [αi/τi] s.t. τi is a type}
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(VAR)
x : τ ∈ Γ

∆ | Γ ⊢ x : τ

(LAM)
∆ | Γx, x : τ2 ⊢ e : τ1

∆ | Γ ⊢ λx.e : τ2 → τ1

(APP)
∆ | Γ ⊢ e1 : τ2 → τ1 ∆ | Γ ⊢ e2 : τ2

∆ | Γ ⊢ e1@e2 : τ1

(LET)
∆ | Γ ⊢ e2 : σ ∆ | Γ, x : σ ⊢ e1 : τ

∆ | Γ ⊢ let x = e2 in e1 : τ

(QIN)
∆, δ | Γ ⊢ e : ρ

∆ | Γ ⊢ e : δ ⇒ ρ

(QOUT)
∆ | Γ ⊢ e : δ ⇒ ρ ∆ ⊢⊢ δ

∆ | Γ ⊢ e : ρ

(GEN)
∆ | Γ ⊢ e : σ

∆ | Γ ⊢ e : ∀α.σ
(α 6∈FV(∆)∪FV(Γ))

(INST)
∆ | Γ ⊢ e : ∀α.σ

∆ | Γ ⊢ e : S σ
(dom(S)=α)

Figure 5.2: Typing rules for OML.

Observe that here ∆ is taken as a list of predicates — this will be important later, when
evidence is considered (see Section 5.5).

The language of terms — written using the symbol e — is based on the untyped λ-
calculus (it has, at least, variables, applications, abstractions, and the let construct); it
is called OML, abbreviating ‘Overloaded ML’. Type inference uses judgements extended
with a context of predicates

∆ | Γ ⊢ e : σ

representing the fact that when the predicates in ∆ are satisfied, and the types of the free
variables of e are as specified by Γ, then the term e has type σ. Valid typing judgements
can be derived using a system of rules specifying typing derivations — see Figure 5.2.
The notation Γx is used to indicate the environment Γ without the association for x.
The interesting rules (those actually involving the predicate set ∆) are (QIN) and (QOUT),
that move predicates in to or out of the type of an object, and (GEN), that allows
polymorphism. In particular, rule (QIN) can be used to maximize the opportunities to
use rule (GEN).

For the examples concerning Haskell in the rest of this chapter, we consider the
system as defined in Section 5.3.

Example 5.6. Consider the Haskell declaration
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member x [] = False

member x (y:ys) = x == y || member x ys

The following type inference judgement will hold

∅ | ∅ ⊢ member : ∀a.Eq a ⇒ a → a → Bool

Observe how the use of the overloaded function (==) in the body of the function member

is reflected in the predicate qualifying the variable a in the resulting type.

To find all the ways in which a particular e can be used within a given Γ, one should
consider all the judgements of the form ∆ | Γ ⊢ e : σ, that is, all the pairs of ∆ and σ
such that the typing judgement holds — observe that some predicates may have been
introduced in the type scheme σ while some others may remain in the context ∆. This
motivates the definition and study of constrained type schemes, written (∆ | σ).

Definition 5.7. A constrained type scheme is an expression of the form (∆ | σ) where
∆ is a set of predicates and σ is a type scheme.

Thus, given an expression e and and assignment Γ, the theory has to deal with sets of
the form

{(∆ | σ) s.t. (∆ | Γ ⊢ e : σ)}

The main tool used to deal with these sets is a preorder ≥ — pronounced more general
— defined on pairs of constrained type schemes, and whose intended meaning is that
if (∆ | σ) ≥ (∆′ | σ′) then it is possible to use an object that can be treated as having
type σ in an environment satisfying the predicates in ∆ whenever an object of type σ′

is required in an environment satisfying the predicates in ∆′. To define it formally, the
notion of generic instance is needed.

Definition 5.8. A qualified type ∆τ ⇒ τ is a generic instance of the constrained type
scheme (∆ | ∀αi.∆

′ ⇒ τ ′) if there are types τi such that

∆τ ⊢⊢ ∆, ∆′[αi/τi] and τ = τ ′[αi/τi]

In particular, a qualified type ∆ ⇒ τ is instance of another qualified type ∆′ ⇒ τ ′ if
and only if ∆ ⊢⊢ ∆′ and τ = τ ′. Also, any constrained type scheme has at least one
generic instance: if the constrained type scheme is (∆ | ∀αi.∆

′ ⇒ τ) then for any types
τi it holds that ∆, ∆′[αi/τi] ⇒ τ ′[αi/τi] is a generic instance of it.

Now we are in position to define the “more general” ordering (≥) on constrained
type schemes.

Definition 5.9. The constrained type scheme (∆ | σ) is said to be more general than
the constrained type scheme (∆′ | σ′), written (∆ | σ) ≥ (∆′ | σ′), if every generic in-
stance of (∆′ | σ′) is a generic instance of (∆ | σ).

Because every type scheme σ is equivalent to a constrained type scheme of the form
(∅ | σ) and every qualified type ρ is equivalent to a type scheme of the form ∀∅.ρ, the
ordering defined can be used to compare type schemes and qualified types as well as
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constrained type schemes. For example, σ ≥ σ′ indicates that σ is more general than σ′

in any environment.
Definition 5.9 implies that (∆ | σ) ≥ (∆′ | σ′) if and only if the set of generic instances

of (∆′ | σ′) is a subset of the set of generic instances of (∆ | σ), and so it is straightforward
to show that ≥ is a preorder on constrained type schemes, and that a qualified type ρ
is a generic instance of a type scheme σ if and only if σ ≥ ρ.

Studying the properties of ≥ is important for the study of the typing of terms in
the theory of qualified types. The first step is to define an equivalence relation between
constrained type schemes:

(∆ | σ) ≃ (∆′ | σ′) iff (∆ | σ) ≥ (∆′ | σ′) and (∆′ | σ′) ≥ (∆ | σ)

Observe that two constrained type schemes are equivalent when they have the same
set of generic instances. Note in particular that, if σ = ∀αi.∆ ⇒ τ , then σ ≃
∀βi.(∆ ⇒ τ)[αi/βi] for any distinct variables βi which do not appear free in σ.

For example, in the Haskell system, it is true that

(Eq a,Eq [a] | a → [a] → Bool) ≃ (Eq a | a → [a] → Bool)

because Eq a ⊢⊢ Eq [a] by (Inst), and also that

(Eq [a] | Ord a ⇒ [a] → [a] → Bool) ≃ (Ord a | [a] → [a] → Bool)

because Ord a ⊢⊢ Eq a by (Super). Equivalences like these will be exploited in Section 5.6
to produce a set of predicates as simple as possible, equivalent to a given one.

The following properties are easily established:

• (∆ | ρ) ≃ ∆ ⇒ ρ

• σ ≥ (∆ | σ)

• if σ ≥ σ′ and ∆′ ⊢⊢ ∆, then (∆ | σ) ≥ (∆′ | σ′)

• if none of the variables αi appears in ∆, then ∀αi.∆ ⇒ ρ ≃ (∆ | ∀αi.ρ)

The definition of ≥ is an extension of the ordering relation described by Damas
and Milner [1982]. In the latter, a simple syntactic characterization of the relation is
given, which is useful for working in algorithms. The equivalent characterization in this
framework for ≥ is given by the following proposition.

Proposition 5.10. Let σ = ∀αi.∆τ ⇒ τ and σ′ = ∀βi.∆
′
τ ⇒ τ ′ be two type schemes,

and suppose that none of the βi appears free in σ, ∆, or ∆′. Then (∆ | σ) ≥ (∆′ | σ′)
if and only if there are types τi such that:

τ ′ = τ [αi/τi] and ∆′, ∆′
τ ⊢⊢ ∆, ∆τ [αi/τi]

Another property that the ordering relation on constrained type schemes has is
that it is preserved by substitution. This is particularly important for the treatment
of polymorphism. The application of a substitution S to a constrained type scheme
(∆ | σ) is defined by S (∆ | σ) = (S ∆ | S σ); with this, it is easy to see that the following
proposition holds.



74 Chapter 5. Theory of Qualified Types

(W-VAR)
x : ∀αi.∆ ⇒ τ ∈ Γ βi new

∆[αi/βi] | IdΓ ⊢
W

x : τ [αi/βi]

(W-LAM)
∆ | S (Γx, x : t) ⊢

W
e : τ1

∆ | S Γ ⊢
W

λx.e : S t → τ1

(t fresh)

(W-APP)

∆1 | S1 Γ ⊢
W

e1 : τ ∆2 | S2 (S1 Γ) ⊢
W

e2 : τ2 S2 τ ∼U τ2 → t

U S2 ∆1,U ∆2 | (US2S1)Γ ⊢
W

e1@e2 : U t (t fresh)

(W-LET)

∆2 | S2 Γ ⊢
W

e2 : τ2 ∆1 | S1 (S2 Γ, x : σ) ⊢
W

e1 : τ1

∆1 | (S1S2)Γ ⊢
W

let x = e2 in e1 : τ1 (σ=GenS2 Γ(∆2⇒τ2))

Figure 5.3: Type Inference Algorithm for OML1.

Proposition 5.11. For any substitution S and constrained type schemes (∆ | σ) and
(∆′ | σ′):

(∆ | σ) ≥ (∆′ | σ′) implies S (∆ | σ) ≥ S (∆′ | σ′)

All these elements are used to formally compare the system of rules specifying OML
typings with an algorithm calculating a particular typing for a given expression, and
to prove that the typing produced by this algorithm has the important property of
expressing all the others — i.e. it is principal. The algorithm is specified by a system of
rules given in Figure 5.3 deriving judgements of the form ∆ | S Γ ⊢

W
e : τ where Γ, and

e are the type assignment and OML expression provided as inputs, and ∆, S and τ are
a predicate set, a substitution, and a type, respectively, produced as results (marked in
bold in the figure). We also use a unification judgement, τ ∼S τ ′, where the two types τ
and τ ′ are inputs, and the substitution S is output. The notation GenΓ(ρ) used in rule
(W-LET) indicates the generalization of ρ with respect to Γ, defined as ∀αi.ρ where {αi}
indicates the set of type variables FV(ρ)/FV(Γ). Observe that rules (QIN), (QOUT), (GEN),
and (INST) have been incorporated into the other rules; in particular, (QIN) and (GEN) are
expressed by the use of Gen ( ) in rule (W-LET), and (QOUT) and (INST) by taking new type
variables in rule (W-VAR). This is the standard procedure in Milner’s algorithm extended
to incorporate predicates.

The following proposition is proved.

Proposition 5.12. If ∆ | S Γ ⊢
W

e : τ , then σp = GenS Γ(∆ ⇒ τ) is a principal type
scheme for e under S Γ, that is, ∆ | Γ ⊢ e : σ iff σp ≥ (∆ | σ)

The concept of principal type scheme corresponds to the most general derivable typing
with respect to ≥ under a given type assignment. Notice that it is also possible for
the type inference algorithm to fail, either because e contains a free variable not bound
in Γ, or because the calculation of a most general unifier, described by the notation
τ ∼U τ ′ fails as a result of a mismatch between the expected and actual type of a
function argument. In this case, there are no derivable typings of the form ∆ | Γ ⊢ e : σ,
established by the completeness of the property.

1Outputs from the algorithm are marked in bold.
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(Fst) h : ∆, h′ : ∆′ ⊢⊢ h : ∆

(Snd) h : ∆, h′ : ∆′ ⊢⊢ h′ : ∆′

(Univ)
h : ∆ ⊢⊢ v′ : ∆′ h : ∆ ⊢⊢ v′′ : ∆′′

h : ∆ ⊢⊢ v′ : ∆′, v′′ : ∆′′

(Trans)
h : ∆ ⊢⊢ v′ : ∆′ h′ : ∆′ ⊢⊢ v′′ : ∆′′

h : ∆ ⊢⊢ v′′[h′/v′] : ∆′′

(Close)
h : ∆ ⊢⊢ v′ : ∆′

h : S ∆ ⊢⊢ v′ : S ∆′

Figure 5.4: Structural laws satisfied by entailment.

5.5 Coherence and Evidence

To give semantics to the terms in the system, [Jones, 1994a] introduces the notion of
evidence, and provides a translation from the original language of terms, OML, to one
manipulating evidence explicitly — called OP, for ‘Overloaded Polymorphic λ-calculus.
The essential idea is that an object of type ∆ ⇒ τ can only be used if supplied with
suitable evidence that the predicates in ∆ do indeed hold. The treatment of evidence
can be ignored in the basic typing algorithm, but is essential to provide coherence, which
means that the meaning of a term does not depend on the way it is typechecked [Breazu-
Tannen et al., 1991]. The properties of predicate entailment must be extended to deal
with predicate assignments and evidence expressions — the rules given in Figure 5.4
are the same as those of Figure 5.1 but extended with evidence; h denotes an evidence
variable, and v denotes an evidence expression. Observe that we are using the conven-
tions introduced in Notation 5.4, so predicate assignments are written as h : ∆ meaning
h1 : δ1, . . . , hn : δn, and similarly for v : ∆.

One important property of the theory of qualified types is that it is abstract, admit-
ting different realizations of the notions of predicates and evidence. In particular, when
choosing what evidence should be, there is a great freedom in the decision of which
particular things should be resolved during type checking, and which ones should be
deferred to run-time. Following a distinction made by Thatte [1992], we observe that
implementations may vary from a prescriptive type system (that is, where meaning and
well-typing can be treated independently), to a descriptive type system (that is, where
meaning and well-typing are inseparable).

In the case of the Haskell type system, the treatment of evidence suggests an im-
plementation of overloading using dictionaries — a special record containing the im-
plementation of the member functions — with the formal treatment described below
establishing how these dictionaries have to be manipulated in overloaded terms. For
example, in the case of the class Eq from Section 5.3, the corresponding dictionary
declaration will be

data EqD a = EqDict (a -> a -> Bool)
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eq :: EqD a -> (a -> a -> Bool)

eq (EqDict e) = e

and the instance declarations for Int and Char will then produce the following dictio-
naries:

eqDInt :: EqD Int

eqDInt = EqDict primEqInt

eqDChar :: EqD Char

eqDChar = EqDict (\c -> \c’ -> eq eqDInt (ord c) (ord c’))

The dictionaries eqDInt and eqDChar will be used as the evidence proving the predicates
Eq Int and Eq Char. The use of dictionaries in particular functions is presented in
Example 5.13.

Terms in the language OP are extended with evidence variables, and corresponding
constructs to abstract and instantiate evidence. We will here use the name h to denote
evidence variables, and the constructs Λh.e′ and e′((v)) to denote evidence abstraction
and evidence instantiation, respectively. The typing rules for OP terms allow the intro-
duction and elimination of those constructs, and also unrestricted use of polymorphism
— although this makes type inference undecidable, OP will be used as a target lan-
guage for the translation of OML terms, and then that is not an issue. This feature
will also allow treating constrained type schemes as types, by means of the equivalence
(∆ | ρ) ≃ ∆ ⇒ ρ. Any OML typing can be treated as an OP typing, and can be
obtained from it by erasing all the evidence information; in particular, an OP term that
can be erased to obtain the corresponding OML term is the translation of this term.
A more direct approach is to define a relation ∆ | Γ ⊢ e →֒ e′ : σ, that, given a OML
term e, calculates an OP term e′ and type scheme σ, such that erasing evidence from
e′ gives e again — see Figure 5.5. Observe the way in which evidence is abstracted and
instantiated in rules (QIN) and (QOUT), respectively.

To illustrate how this translation works with an actual program, we consider again
the function from Example 5.6, and its translation with evidence.

Example 5.13. The function member from Example 5.6 is translated to the following
term dealing with dictionaries:

member :: EqD a -> a -> [a] -> Bool

member d x [] = False

member d x (y:ys) = eq d x y || member d x ys

In the particular language used in the formalization this will be written member =
Λd.λx.λxs. . . ., showing clearly that the variable d is evidence abstracted by means
of the new kind of abstraction. When this function is used with particular data, as
in member 2 [1], the translation will provide the right evidence: member eqDInt 2

[1] — in the language of evidence used in this chapter, this last term will be written
member((eqDInt))@2@[1].
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(VAR)
x : τ ∈ Γ

∆ | Γ ⊢ x →֒ x : τ

(LAM)
∆ | Γx, x : τ2 ⊢ e →֒ e′ : τ1

∆ | Γ ⊢ λx.e →֒ λx.e′ : τ2 → τ1

(APP)
∆ | Γ ⊢ e1 →֒ e′1 : τ2 → τ1 ∆ | Γ ⊢ e2 →֒ e′2 : τ2

∆ | Γ ⊢ e1@e2 →֒ e′1@e′2 : τ1

(LET)
∆ | Γ ⊢ e2 →֒ e′2 : σ ∆ | Γ, x : σ ⊢ e1 →֒ e′1 : τ

∆ | Γ ⊢ let x = e2 in e1 →֒ let x = e′2 in e′1 : τ

(QIN)
∆, h : δ | Γ ⊢ e →֒ e′ : ρ

∆ | Γ ⊢ e →֒ Λh.e′ : δ ⇒ ρ

(QOUT)
∆ | Γ ⊢ e →֒ e′ : δ ⇒ ρ ∆ ⊢⊢ v : δ

∆ | Γ ⊢ e →֒ e′((v)) : ρ

(GEN)
∆ | Γ ⊢ e →֒ e′ : σ

∆ | Γ ⊢ e →֒ e′ : ∀α.σ
(α 6∈FV(∆)∪FV(Γ))

(INST)
∆ | Γ ⊢ e →֒ e′ : ∀α.σ

∆ | Γ ⊢ e →֒ e′ : S σ
(dom(S)=α)

Figure 5.5: Translation from OML to OP.
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Unfortunately, there exist OML terms for which the translation gives two or more
non-equivalent terms, showing that the meaning of OML terms depends in the way they
are typed. To characterize those terms with a unique meaning, OP typings have to be
studied; thus, reduction and equality of OP terms are defined, and then, the central
notion of conversion. A conversion from σ to σ′ is a collection of OP terms that allow
the transformation of any OP term of type σ into an OP term of type σ′ by manipulating
evidence; this is an extension of the notion of ≥ defined before. The motivation for using
this notion is that an important property of the ordering relation ≥ used to compare
types in OML breaks down in OP, due to the presence of evidence: a term with a general
type can be used as having an instance of that type only after adjusting the evidence it
uses.

The definition of conversions extends the definition of ≥ (Definition 5.9) with the
treatment of evidence, following the characterization given by Proposition 5.10.

Definition 5.14. Let σ = ∀αi.∆τ ⇒ τ and σ′ = ∀βi.∆
′
τ ⇒ τ ′ be two type schemes,

and suppose that none of the βi appears free in σ, ∆, or ∆′. A closed OP term C of type
(∆ | σ) → (∆′ | σ′)1, such that erasing all evidence from it returns the identity function,
is called a conversion from (∆ | σ) to (∆′ | σ′), written C : (∆ | σ) ≥ (∆′ | σ′), if there
are types τi, evidence variables h′ and h′

τ , and evidence expressions v and v′ such that:

• τ ′ = τ [αi/τi]

• h′ : ∆′, h′
τ : ∆′

τ ⊢⊢ v : ∆, v′ : ∆τ [αi/τi], and

• C = (λx.Λh′, h′
τ .x((v))((v′)))

Conversions are only used in the theory of qualified types to relate different transla-
tions for the same term, and for that reason there is no need to distinguish between the
scope of h′ and that of h′

τ in the previous definition — observe that both h′ and h′
τ are

abstracted in the conversion.
To fully comprehend the idea of conversion it is useful to consider an example from

the Haskell system. We consider again the expression member 2 [1] from Example 5.13:
in this context, the general function member whose principal type is ∀a.Eq a ⇒ a →
[a] → Bool has to be instantiated to work on Ints — that is, we need an expression
of type Int → [Int] → Bool obtained from the polymorphic function. The first type is
more general than the second one, and the conversion proving that is λx.x((dEqInt)),
which, when applied to member, will produce the desired effect.

Several useful properties of conversions can be established. First of all, they are
reflexive and transitive (Proposition 5.15), and they respect substitutions (Proposi-
tion 5.16). Finally, some rules to modify the predicate assignments constraining the
type schemes are given by Proposition 5.17.

Proposition 5.15. The following assertions hold:

1. λx.x : (∆ | σ) ≥ (∆ | σ)

1Remember that this is an abbreviation for (∆ ⇒ σ) → (∆′ ⇒ σ′).
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2. if C : (∆ | σ) ≥ (∆′ | σ′) and C ′ : (∆′ | σ′) ≥ (∆′′ | σ′′) then

C ′′ : (∆ | σ) ≥ (∆′′ | σ′′)

where for all e′, C ′′e′ = C ′(C e′)

Proposition 5.16. If C : (∆ | σ) ≥ (∆′ | σ′), then C : S (∆ | σ) ≥ S (∆′ | σ′).

Proposition 5.17. For any qualified type ρ and predicate assignments h : ∆ and h′ : ∆′,
there are conversions such that:

1. λx.x : (∆, ∆′ | ρ) ≥ (∆ | ∆′ ⇒ ρ)

2. λx.x : (∆ | ∆′ ⇒ ρ) ≥ (∆, ∆′ | ρ)

It is also the case that

3. if C : (∆ | σ) ≥ (∆′ | σ′) and h : ∆′′′ ⊢⊢ v : ∆′′, then

C ′ : (∆, ∆′′ | σ) ≥ (∆′, ∆′′′ | σ′)

where C ′ = λx.Λh.C (x((v)))

Observe that by taking ∆ = ∅, we have, by Proposition 5.17-1,2 that

λx.x : (∆ | ρ) ≥ ∆ ⇒ ρ and λx.x : ∆ ⇒ ρ ≥ (∆ | ρ)

The algorithm calculating OML principal types can be extended to an algorithm
calculating principal translations from OML to OP. Then, it can be proved that any
translation of an OML term e to OP can be written in the form C (Λh′.e′)((h)) where e′ is
the principal translation and C the corresponding conversion. This allows to characterize
two translations as equivalent if the corresponding conversions are equivalent. One way
to assure that property is to define the notion of ambiguous type scheme as a type
scheme that qualifies variables not appearing in the type, and then restrict our language
to those terms with unambiguous principal type schemes.

5.6 Fine Tuning of Predicates

With the algorithm mentioned in the previous section, an OML term e of type ∀αi.∆ ⇒ τ
is implemented by a translation of the form Λh.e′, where h is a collection of evidence
variables for ∆, and e′ is an OP term corresponding to e that uses those variables to
obtain appropriate evidence values. It is desirable, then, that the number of predicates
appearing in ∆ be kept as small as possible, avoiding duplications and redundancy, and
also that the predicates in ∆ be as accurate as possible (avoiding ambiguities whenever
possible, etc.). There are two mechanisms to do this — they have been introduced by
Jones [1994b] and applied by Jones [2000].

The first one is to replace ∆ by another assignment ∆′, equivalent to ∆ (in the
sense that they entail each other), but with fewer predicates or reduced by some other
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measure of complexity depending on the application. The process of taking a predicate
assignment ∆ and producing the mentioned ∆′ is called simplification, and it is very
important to produce type schemes that are small.

As the theory of qualified types is abstract (in the sense that no particular predicates
are used), the exact way in which the simplification process is performed is not given,
because it will vary from one system of predicates to another — and the notion of an
optimal predicate assignment may even not exist for some systems. Simplification can
be expressed by asking the implementation to provide a function simp that given a
predicate set returns another equivalent one in a simpler form, and then using it in the
following rule:

∆ | S Γ ⊢
W

e : τ ∆′ = simp (∆)

∆′ | S Γ ⊢
W

e : τ

Observe that it is always possible to take simp (∆) = ∆.
The second notion is that of improvement of predicates. It is similar to simplification,

but it fixes the value of some variables. An improving substitution for a predicate set ∆
is a substitution S that can be applied to it without changing its satisfiability properties,
that is, such that S ∆ has the same satisfiable instances as ∆. As with simplification,
the specific way in which improving is implemented cannot be given in the abstract
setting, but it can be expressed by assuming a function impr that, given a predicate set
returns an improving substitution, and using it in the rule:

∆ | S Γ ⊢
W

e : τ T = impr (∆)

T ∆ | TS Γ ⊢
W

e : T τ

There is always an improving function, that is, the one returning always the identity
substitution.

A special case of the notion of improvement — or even it can be said an application

of it — is the idea of functional dependencies. When considering a predicate P with
more than one argument, it may be the case that in every use of the predicate, the value
of some of the arguments, y, depend uniquely on the value of some others, x. In that
case we say that y functionally depends on x, and write x ; y. These dependencies
can be used to deduce some improving substitutions, to detect some ambiguities, and
to accurately generalize over inferred types.

Calculating improving substitutions If we have a predicate P (x, y) with instances
P (x, y1) and P (x, y2), then if x ; y, we can unify y1 and y2, or fail if they are not
unifiable. Note that, in general, this process has to be iterated until no further
improvements can be found.

Detecting ambiguity Instead of considering a type ambiguous when some variable
appears in the qualifiers but not in the type, we can relax this condition to variables
appearing in the qualifiers that are not dependent on variables appearing in the
type.

Accurate generalization When generalizing a qualified type, we usually quantify all
the variables appearing in the type and not in the environment. Using functional
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dependencies, those variables not appearing in the environment but that depend
on variables in it, must not be quantified.

These elements allow the language designer a fine control over these aspects of the
type inference algorithm.

5.7 Summary

We have briefly presented the main aspects of the theory of qualified types. The main
idea in this theory is to restrict the scope of type variables by qualifying them with
predicates; also the theory provides a small collection of properties that predicates have
to satisfy to allow the existence of principal types. The theory presents a system of
rules specifying typing, and another one giving an algorithm to calculate principal type
schemes. It also uses the concept of evidence to implement overloaded terms with
qualified types, and the concept of conversions to establish the coherence of the language.

In the next chapter we use all these ideas to present a system specifying type spe-
cialization in such a way that principal specializations exist. To do that, we introduce
the notion of conversion into the language, and extend all the properties accordingly.
In the process we change the definition of conversions slightly, in order to avoid the use
of β-reduction when proving equality of conversions, and to keep better control of the
scope of evidence variables.





Chapter 6

Principal Type Specialization

. . .

Q: How do you kill a white elephant?

A: You strangle him until he turns purple, and then
shoot him with a purple elephant gun.

Popular joke (conclusion)

The problem of lack of principality in the original formulation of type specialization
is important, because it forces an algorithm to wait until all the context is known before
making any attempt to specialize a given expression. As we have seen, this implies that
the specialization of polyvariant expressions must be deferred until a specialization is
required, and that of static functions until an application is performed; in the case of a
polyvariant recursive function, the ‘context’ may be hidden in the body of the function,
thus causing problems to determine the specialization needed for a given expression.
With these restrictions, the additions of modules or polymorphism is very difficult.
Our claim is that by solving the problem of lack of principality, we can improve our
understanding of the flow of information, and express the problems in a much clearer
way, thus facilitating the search for solutions. So this chapter addresses that problem,
and removes the lack of principality, by providing a different formulation that has the
property of existence of principal specializations.

Lack of principality is very similar to the problem appearing in simply typed λ-
calculus when typing an expression like λx.x: the type of x is determined by the context
of use, and different typings for this expression have no relation between them expressible
in the system. The solution to this problem for the Hindley-Milner type system is to
extend the type language to allow polymorphism — by introducing type variables —
modifying the typing rules accordingly [Damas and Milner, 1982], and defining a notion
of instantiation for types. Then it can be proved that for every typable term there exists
a particular type scheme — the principal type scheme — such that every typing for the
same term is expressible using it.

The contribution of this chapter is to achieve a similar result for specializations: the
existence of a principal type specialization, that is, a specialization such that every other
valid specialization for the same source source term can be obtained as an instance of it.
The key idea is that the principal specialization of an expression can be done in isolation,
without any context, because it will perform only the minimum work required, and it
will wait for the static information that the context must provide. A first step in this
direction is to use residual type variables — here written using the symbol t — to defer
the specialization of expressions depending on the context. Unfortunately, this is not
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enough, as subtle dependencies between types (such as the relation between n and n′

in the specialization of Example 4.7-1), cannot be expressed. Using type variables, we
expect a specialization of the form ⊢ λDx.x +S 1S : IntS →D IntS →֒ λx.• : ∀t, t′.t → t′

but with an extra condition relating t and t′. The theory of qualified types, briefly
described in Chapter 5, presents a type framework that allows expressing conditions
relating universally quantified variables [Jones, 1994a]. In this framework, types are
enriched with predicates constraining variables, and type inference, the ‘more general’
ordering, instantiation, etc. from the Hindley-Milner system, are redefined to take the
predicates into consideration.

In the example above, we can introduce a predicate expressing the relation between
type variables, and thus produce ⊢ λDx.x +S 1S : IntS →D IntS →֒ λx.• : ∀t, t′.t′ :=
t + 1̂ ⇒ t → t′, in which the predicate t′ := t + 1̂ is qualifying the type t → t′ and thus
restricting the quantification.

In this chapter we present a new formulation for type specialization based on the
theory of qualified types, explain the changes introduced to that theory, and the main
differences that our formulation has with the original formulation of type specialization.
We show with several examples that more expressiveness is possible, and also show
that this new formulation allows the better understanding of the problems posed in
Section 4.4. When presenting propositions or lemmas, their proofs are omitted during
this chapter, and collected in Appendix A.

We proceed as follows. In Section 6.1 we present the residual language extended to
express the new features of the system. After that, in Section 6.3 we give the rules al-
lowing the derivation of specializations in the new system, and enunciate the main result
of the chapter — Theorem 6.26 establishing the existence of principal specializations;
its proof is presented in detail in Chapter 7. Finally, in Section 6.4 we illustrate the
expressiveness of the new system with examples.

6.1 Residual Language, Revisited

The key idea when extending type specialization to achieve the existence of principal
specializations is the extension of the residual type language with predicates following the
framework of the theory of qualified types presented in the previous chapter. Predicates
will be used to express restrictions imposed by the context on the residual type of an
expression; in this way, the specialization of any expression can proceed in isolation,
independent of the context, and the result can be instantiated in accordance with its
uses in different contexts.

Extending the residual type language with predicates implies that the residual term
language must also be extended to manipulate evidence. The extensions have two parts:
the “structural” components taken from the theory of qualified types, and the particu-
lar constructs needed to express specialization features. In this section we present the
residual type and term languages extended in this way, and discuss the main differences
that our extension has: we use conversions as part of the language to express polyvari-
ance. When defining conversions, we have chosen to give a slightly different formulation
than the one given by Jones [1994a]; the reason is that in this way we avoid the need
for conventional β-reduction in the definition of equality, and to keep better control on



6.1. Residual Language, Revisited 85

the scope of evidence variables. We also think that this presentation makes it easier to
distinguish conversions from other terms only by syntactic means.

Following the theory of qualified types, the residual type language is extended with
type variables (t), and the syntactic categories of qualified types (ρ) and type schemes
(σ); also particular predicates (δ) are defined. The most important innovations with
respect to the theory of qualified types are the new type construct poly σ, and the use
of scheme variables (s). We use the name α to refer either to a type variable t or a type
scheme variable s. It is very important to note that the construct poly now takes a
type scheme as its argument, instead of a type as before, and the reason of why scheme
variables are needed. These two changes are the key to obtain principality.

Definition 6.1. Let t denote a type variable from an countably infinite set of variables,
and s a type scheme variable from another countably infinite set of variables, both
disjoint with any other set of variables already used. A residual type, written using the
symbol τ ′, is an element of the language given by the grammar

τ ′ ::= t | Int | n̂ | τ ′ → τ ′ | (τ ′, . . . , τ ′) | poly σ
ρ ::= δ ⇒ ρ | τ ′

σ ::= s | ∀s.σ | ∀t.σ | ρ
δ ::= IsInt τ ′ | τ ′ := τ ′ + τ ′ | IsMG σ σ

For example, (4̂2 → (t,poly s)) is a residual type, (IsInt t, IsMG s′ s ⇒ 4̂2 →
(t,poly s)) is a qualified residual type, and (∀s, t.IsInt t, IsMG s′ s ⇒ 4̂2 → (t,poly s))
is a residual type scheme. (Observe that we are using the conventions introduced in
Notation 5.3). The intuition for predicate IsInt is that its argument type has to be a
one-point type, n̂, and that for IsMG is the internalization of the “more general” relation
corresponding to this theory.

Given a type scheme σ = ∀α1. · · · ∀αm.ρ, we define the set of bound variables of σ,
written BV(σ), as the set of variables A = {α1, · · · , αm}, and the set of free variables of
σ, written FV(σ), as the set of all variables appearing in σ (even those in predicates),
with the exception of those that are bound. These sets will be naturally divided into
two subsets of type variables and scheme variables, but we do not explicitly distin-
guish this fact unless necessary. We assume implicit rules for α-conversion of universal
quantification.

We define a notion of substitution for types and type schemes. A substitution is a
pair of functions from type variables to types and from type scheme variables to type
schemes, such that they are different from the identity function only in a finite number
of variables. We usually do not distinguish between these two, and use the notational
convention defined in Notation 5.5.

The residual term language is extended with evidence (v), including evidence vari-
ables (h), evidence abstractions (Λh.e′), and evidence applications (e′((v))). Evidence
is very important in this formulation of type specialization because it allows us to ab-
stract differences among different residual terms of a given source term, and is one of
the cornerstones for the principality result. Two particular kinds of evidence are used:
numbers, as evidence for predicates of the form IsInt and := + , and conversions, as
evidence for predicates of the form IsMG. Observe that conversions, written using the
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(βv) (Λh.e′1)((v)) ⊲ e′1[h/v]

(ηv) Λh.e′1((h)) ⊲ e′1 (h6∈EV(e′1))

(letv) letv x = e′1 in e′2 ⊲ e′2[x/e′1]

(◦v) (v1 ◦ v2)[e
′] ⊲ v1[v2[e

′]]

Figure 6.1: Reduction for residual terms.

symbol C , are defined separately from other elements in the language, and that they are
contexts instead of (families of) terms; the particular forms v◦v and letv x = e′ in e′ are
used for composition of conversions, necessary for technical reasons — see, for example,
Theorem 7.10.

Definition 6.2. A residual term, written using the symbol e′, is an element of the
language defined by the following grammar:

e′ ::= x′ | n | e′ + e′ | •
| λx′.e′ | e′@e′ | let x′ = e′ in e′

| (e′1, . . . , e
′
n) | πn,n e′

| h | v[e′] | Λh.e′ | e′((v)) | letv x = e′ in e′

v ::= h | n | C | v ◦ v
C ::= [] | Λh.C | C ((v)) | letv x = C in e′

The particular uses of each kind of evidence is shown in the examples. The expressions
Λh.e′, e′((v)), and letv x = e′1 in e′2 are the evidence version of the abstraction, appli-
cation, and local definition, and they are considered separately because they will have
reduction rules associated with them — see Definition 6.3 — while their counterparts for
regular variables will not. In particular, the letv construct is used to differentiate clearly
the scope of evidence variables appearing in the composing terms. Given a residual term
e, we denote by EV (e) the set of free evidence variables of e.

To identify different equivalent ways of abstracting or providing evidence, we define
a notion of equivalence on residual terms.

Definition 6.3. The equivalence = on residual terms is defined as the smallest congru-
ence containing the reduction rules appearing on Figure 6.1. Observe that there is no
rule of β-reduction for normal applications — only evidence applications can be reduced.

We assume implicitly rules for α-conversion for both λ and Λ-abstractions.
The equivalence on residual terms can be extended to conversions:

Definition 6.4. Two conversions C and C ′ are equivalent, written C = C ′, if for every
residual expression e′, C [e′] = C ′[e′], where = is the equivalence given in Definition 6.3.

Properties relating lists of predicates and evidence are captured by an entailment re-
lation (⊢⊢), as described in the previous chapter, which satisfies the structural properties
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(IsInt) ∆ ⊢⊢ n : IsInt n̂

(IsOp) h : ∆ ⊢⊢ n : n̂ := n̂1 + n̂2 (whenever n=n1+n2)

(IsOpIsInt) ∆, τ ′ := τ ′
1 + τ ′

2, ∆
′ ⊢⊢ h : IsInt τ ′

(IsMG)
C : (∆ | σ′) ≥ (∆ | σ)

∆ ⊢⊢ C : IsMG σ′ σ

(Comp)
∆ ⊢⊢ v : IsMG σ1 σ2 ∆ ⊢⊢ v′ : IsMG σ2 σ3

∆ ⊢⊢ v′ ◦ v : IsMG σ1 σ3

Figure 6.2: Entailment for evidence construction.

established by the theory of qualified types (see Figure 5.4). The particular meaning of
predicates is defined by completing the definition of ⊢⊢ with rules to entail those predi-
cates; these rules are presented in Figure 6.2. The predicate IsInt is provable when the
type is a one-point type representing a number (rule (IsInt)), and the evidence is the value
of that number. Similarly, the predicate := + is provable when the three arguments
are one-point types with the corresponding numbers related by addition (rule (IsOp)),
and the evidence is the number corresponding to the result of the addition. The predi-
cate IsMG internalizes the ordering ≥ (rules (IsMG) and (Comp)), and the evidence is the
corresponding conversion; rule (Comp) captures the transitivity of ≥, which is important
in the proofs.

6.1.1 Ordering between residual types

As described in Chapter 5, the comparison between different types and type schemes
can be done by using a “more general” ordering, defined as in Definition 5.14. As we
have mentioned, we define conversions as special kinds of contexts, rather than as terms
in the residual language. Additionally, as we use conversions as part of the evidence
language, we need to be careful in the treatment of free and bound evidence variables
in both the term to convert and in the converted one. Our definition of “more general”
reflects those changes (compare Definition 5.14 and the following definition).

Definition 6.5. Let σ = ∀αi.∆τ ⇒ τ and σ′ = ∀βi.∆
′
τ ⇒ τ ′ be two type schemes, and

suppose that none of the βi appears free in σ, h : ∆, or h′ : ∆′. A term C is called a
conversion from (∆ | σ) to (∆′ | σ′), written C : (∆ | σ) ≥ (∆′ | σ′), if and only if there
are types τi, evidence variables h′

τ , and evidence expressions v and v′ such that:

• τ ′ = τ [αi/τi]

• h′ : ∆′, h′
τ : ∆′

τ ⊢⊢ v : ∆, v′ : ∆τ [αi/τi], and

• C = (letv x = Λh.[] in Λh′
τ .x((v))((v′)))
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The most important property of conversions is that they can be used to transform
an object e′ of type σ under a predicate assignment ∆ into an element of type σ′ under a
predicate assignment ∆′, changing only the evidence that appears at top level of e′ — we
prove this fact in Theorem 6.12. Assuming that C is used to convert such e′, we know
that the only free evidence variables in it are those appearing in h — see Lemma 6.23
— and so the x in letv does not contain free evidence variables. The variables in h′ and
h′

τ may only appear in the evidence values v and v′. This allows us to apply the (ηv) rule
on conversions.

Example 6.6. Conversions are used to adjust the evidence demanded by different type
schemes. For all ∆ it holds that

1. []((42)) : (∆ | ∀t.IsInt t ⇒ t → Int) ≥ (∆ | 4̂2 → Int)

2. C : (∆ | ∀t1, t2.IsInt t1, IsInt t2 ⇒ t1 → t2) ≥ (∆ | ∀t.IsInt t ⇒ t → t) where C =
Λh.[]((h))((h))

3. Λh.[] : (∆ | 4̂2 → Int) ≥ (∆ | ∀t.IsInt t ⇒ 4̂2 → Int)

Observe in Example 6.6-1 that the conversion provides the evidence needed to prove the
predicate IsInt 4̂2, resulting from the instantiation of variable t, and thus the resulting
type does not depend anymore on the predicate. Example 6.6-2 shows a situation where
both abstraction and application are combined: both t1 and t2 are instantiated to t, so
IsInt t1 and IsInt t2 collapse into IsInt t, and that is reflected by the conversion, which
abstracts h for the evidence proving IsInt t and instantiates its arguments twice with
h to prove the predicates qualifying the original term. Finally, Example 6.6-3 shows
how it is possible to qualify a type with needless predicates, as long as the conversion
abstracts the evidence for them (although it will not be used at all).

The composition of two conversions C [C ′[e′]] can be expressed in the syntax as
letv x = C ′ in C [x]; we use the abbreviation (C ◦ C ′) for this last expression, which
is justified because, for every e′, (C ◦ C ′)[e′] = C [C ′[e′]] = (letv x = C ′[e′] in C [x]) =
(letv x = C ′ in C [x])[e′]. This is also compatible with the composition of conversions
when considered as evidence (v ◦ v).

Properties similar to those enunciated in Chapter 5 hold for this definition of con-
versions, too.

Proposition 6.7. The following assertions hold when σ, σ′, σ′′ are not scheme variables:

1. [] : (∆ | σ) ≥ (∆ | σ)

2. if C : (∆ | σ) ≥ (∆′ | σ′) and C ′ : (∆′ | σ′) ≥ (∆′′ | σ′′) then

C ′ ◦ C : (∆ | σ) ≥ (∆′′ | σ′′)

Proposition 6.8. The following assertions hold:

1. If C : (∆ | σ) ≥ (∆′ | σ′), then C : S (∆ | σ) ≥ S (∆′ | σ′).

2. If C : (∆ | σ) ≥ (∆′ | ∀α.σ′), and dom(S) = α then C : (∆ | σ) ≥ (∆′ | S σ′).
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Proposition 6.9. For any qualified type ρ and predicate assignments h : ∆ and h′ : ∆′,

1. Λh′.[] : (∆, h′ : ∆′ | ρ) ≥ (∆ | ∆′ ⇒ ρ)

2. []((h′)) : (∆ | ∆′ ⇒ ρ) ≥ (∆, h′ : ∆′ | ρ)

3. if C : (∆ | σ) ≥ (∆′ | σ′) and h′′′ : ∆′′′ ⊢⊢ v′′ : ∆′′, then

C ′ : (∆, ∆′′ | σ) ≥ (∆′, ∆′′′ | σ′)

where C ′ = (letv x = Λh′′′.C [] in x((v′′)))

4. if C : (∆ | σ) ≥ (∆′ | σ′) and α 6∈ FV(∆, ∆′ ⇒ σ), then

C : (∆ | σ) ≥ (∆′ | ∀α.σ′)

6.1.2 Typing residual terms

Instead of letting the typing of residual terms be implicitly defined in the specialization
process (as it was defined by Hughes [1996b]), we give a separate system defining this
typing. In this way we can show that specialization is well behaved with respect to
this system (Theorem 6.20). We first define the notion of residual type assignment,
and then the judgements and rules used to derive the typing of a residual term. It is
very important to note that the system RT is not designed to infer residual types given
residual terms, but only to check a given typing; this is so because the residual language
is not intended to be used manually by a programmer, but to be automatically produced
by a program generator, so there is no need for type inference: the type is produced at
the same time as the term! This is the reason allowing us to use the form of higher-order
polymorphism (controlled by annotations) provided by the new construct poly σ.

Definition 6.10. A residual type assignment, written using the symbol Γ
R
, is a (finite)

list of residual type statements of the form x′ : τ ′, where no x′ appears more than once.

Judgements for residual typing have the form ∆ | Γ
R

⊢
RT

e′ : σ, expressing that
the residual term e′ has type σ under the assumptions stated in ∆ and Γ

R
. Residual

terms are assigned a type scheme according to the RT system, whose rules are given in
Figures 6.3 and 6.4.

An example of a residual typing showing the use of the poly wrapper is ⊢
RT

Λht.λx′.x′ :
poly (∀t.IsInt t ⇒ t → t). Another one, showing the use of a poly-type in a function
argument, is, for any given n, h : IsMG s (n̂ → t) | ∅ ⊢

RT
λf ′.h[f ′]@• : poly s → t —

observe the use of the evidence variable h, that allows to introduce a conversion when
the scheme variable s is instantiated.

The following properties show that contexts can be weakened in residual judgements,
and that conversions indeed relate types σ and σ′ in their contexts.

Proposition 6.11. If h : ∆ | Γ
R
⊢
RT

e′ : σ, and ∆′ ⊢⊢ v : ∆, then ∆′ | Γ
R
⊢
RT

e′[h/v] : σ.

Theorem 6.12. If h : ∆ | Γ
R

⊢
RT

e′ : σ, and C : (h : ∆ | σ) ≥ (h′ : ∆′ | σ′), then
h′ : ∆′ | Γ

R
⊢
RT

C [e′] : σ′.

This last theorem is important, because it shows that conversions behave as expected.
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(RT-VAR)
x′ : τ ′ ∈ Γ

R

∆ | Γ
R
⊢
RT

x′ : τ ′

(RT-DINT)
∆ ⊢⊢ v : IsInt τ ′

∆ | Γ
R
⊢
RT

v : Int

(RT-D+)
(∆ | Γ

R
⊢
RT

e′i : Int)i=1,2

∆ | Γ
R
⊢
RT

e′1 + e′2 : Int

(RT-SINT)
∆ ⊢⊢ v : IsInt τ ′

∆ | Γ
R
⊢
RT

• : τ ′

(RT-TUPLE)
(∆ | Γ

R
⊢
RT

e′i : τ ′
i)i=1,..,n

∆ | Γ
R
⊢
RT

(e′1, . . . , e
′
n) : (τ ′

1, . . . , τ
′
n)

(RT-PRJ)
∆ | Γ

R
⊢
RT

e′ : (τ ′
1, . . . , τ

′
n)

∆ | Γ
R
⊢
RT

πi,n e′ : τ ′
i

(RT-LAM)
∆ | Γ

R
, x′ : τ ′

2 ⊢RT
e′ : τ ′

1

∆ | Γ
R
⊢
RT

λx′.e′ : τ ′
2 → τ ′

1

(RT-APP)
∆ | Γ

R
⊢
RT

e′1 : τ ′
2 → τ ′

1 ∆ | Γ
R
⊢
RT

e′2 : τ ′
2

∆ | Γ
R
⊢
RT

e′1@e′2 : τ ′
1

(RT-LET)
∆ | Γ

R
⊢
RT

e′2 : τ ′
2 ∆ | Γ

R
, x′ : τ ′

2 ⊢RT
e′1 : τ ′

1

∆ | Γ
R
⊢
RT

let x′ = e′2 in e′1 : τ ′
1

(RT-POLY)
∆ | Γ

R
⊢
RT

e′ : σ′ ∆ ⊢⊢ v : IsMG σ′ σ

∆ | Γ
R
⊢
RT

v[e′] : poly σ

(RT-SPEC)
∆ | Γ

R
⊢
RT

e′ : poly σ ∆ ⊢⊢ v : IsMG σ τ ′

∆ | Γ
R
⊢
RT

v[e′] : τ ′

Figure 6.3: Typing rules for the residual language (first part).
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(RT-QIN)
∆, h : δ | Γ

R
⊢
RT

e′ : ρ

∆ | Γ
R
⊢
RT

Λh.e′ : δ ⇒ ρ

(RT-QOUT)
∆ | Γ

R
⊢
RT

e′ : δ ⇒ ρ ∆ ⊢⊢ v : δ

∆ | Γ
R
⊢
RT

e′((v)) : ρ

(RT-GEN)
∆ | Γ

R
⊢
RT

e′ : σ

∆ | Γ
R
⊢
RT

e′ : ∀α.σ
³

α 6∈FV(∆)∪FV(Γ
R

)
´

(RT-INST)
∆ | Γ

R
⊢
RT

e′ : ∀α.σ

∆ | Γ
R
⊢
RT

e′ : S σ
(dom(S)=α)

Figure 6.4: Typing rules for the residual language (second part).

6.2 Roadmap Example

Before proceeding with the development of the theory of principal type specialization,
we provide an example to be used as a roadmap, to understand some of the motivations
under the technicalities. We choose the source program introduced in Example 3.12,
which is further developed in Examples 6.17, 7.22 and 8.13. We present again the
source term, and each of the specializations here, with a brief explanation of what is
intended in each case. However, the details are explained in each of the corresponding
examples.

The term we consider is

letD f = poly (λDx.lift x +D 1D )
in (spec f @D 42S , spec f @D 17S )D : (IntD , IntD )D

It contains a polyvariant function that is applied to two different static values, thus
producing two different specializations.

Recalling Example 3.12, possible residual programs for this term in the original type
specialization framework are

1. let f ′ = (λx′.42 + 1, λx′.17 + 1)
in (fst f ′@•, snd f ′@•) : (Int, Int)

2. let f ′ = (λx′.17 + 1, λx′.55 + 1, λx′.42 + 1)
in (π3,3 f ′@•, π1,3 f ′@•) : (Int, Int)

where the polyvariant function is specialized to a tuple, and each specialization to the
corresponding projection. However, the size and ordering of the tuple is not specified
by the translation, thus allowing us to choose any of them.

The idea we develop with principal type specialization is that the specialization will
be divided in two phases: in a first syntax directed pass, information about the term
is collected by means of predicates, and a second phase will solve those predicates to
calculate a corresponding solution. We first present a specification for the system in the
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present chapter, then an algorithm to perform the first phase (Chapter 7) and then the
second phase (Chapter 8), with two variants.

With the system as specified in this chapter, several different specializations for the
same term can be obtained. In Example 6.17 we present some of them. Of particular
interest is one specialization for a given term with particular properties: every other
specialization for the same term can be obtained from that one by instantiation (see
Section 6.3.3, specially Definition 6.25 for details). We call this specialization principal
because of the similarity of this property with the notion of principal types. For our
source term, the principal specialization is

Λhu
s , hℓ

s1
, hℓ

s2
.let f ′ = hu

s [Λht.λx′.ht + 1]
in (hℓ

s1
[f ′]@•, hℓ

s2
[f ′]@•)

: ∀s.IsMG (∀t.IsInt t ⇒ t → Int) s,

IsMG s (4̂2 → Int), IsMG s (1̂7 → Int) ⇒ (Int, Int)D

Instead of a tuple and projections, we use variables standing for conversions to allow
further decisions on the final form for them. The residual program obtained with the al-
gorithm of Chapter 7, given in Example 7.22, is equivalent to this one after simplification
of the predicates.

We can choose to produce either the principal residual program, or to perform the
constraint solving phase (Chapter 8), giving a different residual (see Example 8.13):

let f ′ = Λh.λx′.h + 1
in (f ′((42))@•, f ′((17))@•) : (Int, Int)D

where polyvariance is expressed using evidence abstraction, and each instance is ex-
pressed using evidence application.

To obtain the residual program produced with the original formulation, we present
a slight modification of the constraint solving phase, which we call evidence elimination
(Section 8.3) — by using this phase, the same residuals as those of Example 3.12 can
be obtained.

6.3 Specifying Principal Specialization

The system specifying type specialization is composed by two sets of rules.

The first one relates source types with residual types, expressing which residual type
can be obtained by specializing a given source one. This system, called SR, is important
because it is needed to restrict the possible choices of residuals for the bound variable
when specializing a lambda-abstraction, and the residual types of the specializations of a
polyvariant expression (see rules (DLAM) and (SPEC) in Figure 6.6). Section 6.3.1 presents
the rules for it, and some useful properties.

The second one presents the specialization rules themselves. The rules correspond
with those introduced in Chapter 3, but extended with predicates, and dealing with the
extended residual language. They are presented in Section 6.3.2.
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(SR-DINT) ∆ ⊢
SR

IntD →֒ Int

(SR-SINT)
∆ ⊢⊢ IsInt τ ′

∆ ⊢
SR

IntS →֒ τ ′

(SR-DFUN)
∆ ⊢

SR
τ1 →֒ τ ′

1 ∆ ⊢
SR

τ2 →֒ τ ′
2

∆ ⊢
SR

τ2 →
D τ1 →֒ τ ′

2 → τ ′
1

(SR-TUPLE)
(∆ ⊢

SR
τi →֒ τ ′

i)i=1,..,n

∆ ⊢
SR

(τ1, . . . , τn)D →֒ (τ ′
1, . . . , τ

′
n)

(SR-POLY)
∆ ⊢

SR
τ →֒ σ′ ∆ ⊢⊢ IsMG σ′ σ

∆ ⊢
SR

poly τ →֒ poly σ

(SR-QIN)
∆, δ ⊢

SR
τ →֒ ρ

∆ ⊢
SR

τ →֒ δ ⇒ ρ

(SR-QOUT)
∆ ⊢

SR
τ →֒ δ ⇒ ρ ∆ ⊢⊢ δ

∆ ⊢
SR

τ →֒ ρ

(SR-GEN)
∆ ⊢

SR
τ →֒ σ

∆ ⊢
SR

τ →֒ ∀α.σ
(α 6∈FV(∆))

(SR-INST)
∆ ⊢

SR
τ →֒ ∀α.σ

∆ ⊢
SR

τ →֒ S σ
(dom(S)=α)

Figure 6.5: Rules defining the source-residual relationship.

6.3.1 Source-Residual relationship

In the original formulation, the residual type assigned to the residual variable in the rule
for lambda abstraction is not constrained in any way. In that case it was not a problem,
because only whole programs were the target for specialization, so it was expected that
every function be applied at least once. But when looking for principal specializations,
this becomes a problem, because certain terms have more specializations than expected
(e.g. ⊢ λDx.x : IntS →D IntS →֒ λx′.x′ : Bool → Bool is a valid specialization), and every
valid specialization should be expressed by the principal one. So, we have added a source-
residual relationship (τ ′ is a residual of τ) — expressed by a new kind of judgement:
∆ ⊢

SR
τ →֒ τ ′. Rules to derive this judgement are more or less straightforward, (SR-SINT)

for static integers and (SR-POLY) for polyvariance being the most interesting ones — see
Figure 6.5. In this way, we cure a simple omission in the original paper, which is
necessary to achieve our contribution.

The following properties of the SR system are useful.

Proposition 6.13. If ∆ ⊢
SR

τ →֒ σ then S ∆ ⊢
SR

τ →֒ S σ.
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Proposition 6.14. If ∆ ⊢
SR

τ →֒ σ and ∆′ ⊢⊢ ∆, then ∆′ ⊢
SR

τ →֒ σ.

Theorem 6.15. If ∆ ⊢
SR

τ →֒ σ and C : (∆ | σ) ≥ (∆′ | σ′) then ∆′ ⊢
SR

τ →֒ σ′.

This last theorem shows that if a residual type can be obtained from a source one,
any instance of it can be obtained too.

6.3.2 Specialization rules: the system ⊢
P

The specialization judgements of the original system are extended with a predicate as-
signment and produce residual type schemes, becoming ∆ | Γ ⊢

P
e : τ →֒ e′ : σ. The

original assignments map source variables to residual expressions, allowing the unfolding
of the variable in static lets and functions; while powerful, that trick is troublesome in
proofs, because the expressions may contain evidence variables limiting the use of pred-
icates. For that reason, we have chosen to allow only a restricted form of specialization
assignments, where source variables are mapped to residual variables; the unfolding of
static lets and functions will be handled in a different way (see Chapter 9).

The rules to specify type specialization are changed accordingly; they appear in
Figures 6.6 and 6.7. Observe the use of ⊢⊢ on the premises, allowing residual types to
be properly constrained type variables when corresponding static information is missing.

Example 6.16. The predicate IsInt constrains a residual type such that it can only be
a one-point type, and := + constrains three types such that they are one-point
types, and the first is the result of adding the other two.

1. ⊢P λDx.lift x : IntS →D IntD →֒ Λht.λx′.ht : ∀t.IsInt t ⇒ t → Int

2. ⊢P λDx.x +S 1S : IntS →D IntS

→֒ Λht, ht′ .λx′.• : ∀t, t′.IsInt t, t′ := t + 1̂ ⇒ t → t′

3. ⊢P λDx.lift x +D 1D : IntS →D IntD →֒ Λht.λx′.ht + 1 : ∀t.IsInt t ⇒ t → Int

4. ⊢P λDx.lift x +D lift (x +S 1S ) : IntS →D IntD

→֒ Λht, ht′ .λx′.ht + ht′ : ∀t, t′.IsInt t, t′ := t + 1̂ ⇒ t → Int

The residual term Λht.λx′.ht in Example 6.16-1 can be converted into λx′.42 of type
4̂2 → Int using the conversion in Example 6.6-1, and reducing the resulting redexes.

Observe how every predicate appearing in a residual type has a corresponding ev-
idence abstraction on the term level. This is obtained by rules used to move predi-
cates from the predicate assignment into the type, and vice-versa: (QIN) and (QOUT) in
Figure 6.7. Another thing to observe is the predicate IsInt appearing in all the spe-
cializations of Example 6.16; it is introduced by the combination of rules (DLAM) and
(SR-SINT).

One important thing to take into account is that the predicate := + constrains
many variables at once and creates some dependencies between them; for example, in
t′ := t + 1̂, the variable t′ depends on t. If not all variables with dependencies are
quantified, then there will be only fewer solutions than one would expect. For example,
the type (∀t.IsInt t, t′ := t + 1̂ ⇒ t → t′) is possible in Example 6.16-2, but as t′
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(VAR)
x : τ →֒ x′ : τ ′ ∈ Γ

∆ | Γ ⊢
P

x : τ →֒ x′ : τ ′

(DINT) ∆ | Γ ⊢
P

nD : IntD →֒ n : Int

(D+)
(∆ | Γ ⊢

P
ei : IntD →֒ e′i : Int)i=1,2

∆ | Γ ⊢
P

e1 +D e2 : IntD →֒ e′1 + e′2 : Int

(LIFT)
∆ | Γ ⊢

P
e : IntS →֒ e′ : τ ′ ∆ ⊢⊢ v : IsInt τ ′

∆ | Γ ⊢
P

lift e : IntD →֒ v : Int

(SINT) ∆ | Γ ⊢
P

nS : IntS →֒ • : n̂

(S+)
(∆ | Γ ⊢

P
ei : IntS →֒ e′i : τ ′

i)i=1,2 ∆ ⊢⊢ v : τ ′ := τ ′
1 + τ ′

2

∆ | Γ ⊢
P

e1 +S e2 : IntS →֒ • : τ ′

(DTUPLE)
(∆ | Γ ⊢

P
ei : τi →֒ e′i : τ ′

i)i=1,..,n

∆ | Γ ⊢
P

(e1, . . . , en)D : (τ1, . . . , τn)D →֒ (e′1, . . . , e
′
n) : (τ ′

1, . . . , τ
′
n)

(DPRJ)
∆ | Γ ⊢

P
e : (τ1, . . . , τn)D →֒ e′ : (τ ′

1, . . . , τ
′
n)

∆ | Γ ⊢
P

πD

i,n e : τi →֒ πi,n e′ : τ ′
i

(DLAM)
∆ | Γ, x : τ2 →֒ x′ : τ ′

2 ⊢P
e : τ1 →֒ e′ : τ ′

1 ∆ ⊢
SR

τ2 →֒ τ ′
2

∆ | Γ ⊢
P

λDx.e : τ2 →
D τ1 →֒ λx′.e′ : τ ′

2 → τ ′
1

(x′ fresh)

(DAPP)
∆ | Γ ⊢

P
e1 : τ2 →

D τ1 →֒ e′1 : τ ′
2 → τ ′

1 ∆ | Γ ⊢
P

e2 : τ2 →֒ e′2 : τ ′
2

∆ | Γ ⊢
P

e1 @D e2 : τ1 →֒ e′1@e′2 : τ ′
1

(DLET)

∆ | Γ ⊢
P

e2 : τ2 →֒ e′2 : τ ′
2 ∆ | Γ, x : τ2 →֒ x′ : τ ′

2 ⊢P
e1 : τ1 →֒ e′1 : τ ′

1

∆ | Γ ⊢
P

letD x = e2 in e1 : τ1 →֒ let x′ = e′2 in e′1 : τ ′
1

(x′ fresh)

(POLY)
∆ | Γ ⊢

P
e : τ →֒ e′ : σ′ ∆ ⊢⊢ v : IsMG σ′ σ

∆ | Γ ⊢
P

poly e : poly τ →֒ v[e′] : poly σ

(SPEC)
∆ | Γ ⊢

P
e : poly τ →֒ e′ : poly σ ∆ ⊢⊢ v : IsMG σ τ ′ ∆ ⊢

SR
τ →֒ τ ′

∆ | Γ ⊢
P

spec e : τ →֒ v[e′] : τ ′

Figure 6.6: Specialization rules (first part)
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(QIN)
∆, hδ : δ | Γ ⊢

P
e : τ →֒ e′ : ρ

∆ | Γ ⊢
P

e : τ →֒ Λhδ.e
′ : δ ⇒ ρ

(QOUT)
∆ | Γ ⊢

P
e : τ →֒ e′ : δ ⇒ ρ ∆ ⊢⊢ vδ : δ

∆ | Γ ⊢
P

e : τ →֒ e′((vδ)) : ρ

(GEN)
∆ | Γ ⊢

P
e : τ →֒ e′ : σ

∆ | Γ ⊢
P

e : τ →֒ e′ : ∀α.σ
(α 6∈FV(∆)∪FV(Γ))

(INST)
∆ | Γ ⊢

P
e : τ →֒ e′ : ∀α.σ

∆ | Γ ⊢
P

e : τ →֒ e′ : S σ
(dom(S)=α)

Figure 6.7: Specialization rules (second part).

depends on t, there will be only one solution for t, although it is universally quantified
— this does not seem to be the intention when universal quantification is used. To
quantify residual types properly, a notion of functional dependency should be used in
generalization, exactly as it is done by Jones [2000] — see Definition 7.1.

Type specializing polyvariance in a principal manner is involved; its treatment is the
key notion allowing principality. The basic idea is that the specialization of a polyvariant
expression e should have a scheme as its residual type (instead of a tuple type), and
spec’s of e provide adequate instances (instead of projections); this is easier to see with
an example.

Example 6.17. A specialization of the expression in Example 3.12 using this idea is

⊢P letD f = poly (λDx.lift x +D 1D )
in (spec f @D 42S , spec f @D 17S )D : (IntD , IntD )D →֒
let f ′ = Λh.λx′.h + 1
in (f ′((42))@•, f ′((17))@•) : (Int, Int)D

Observe the use of an evidence abstraction corresponding to the use of poly and the
use of evidence applications corresponding to the use of every spec (instead of the
previous use of tuples and projections), so no decision about the size and order of the
tuple is needed. Unfortunately, this is not enough, because a given source expression
may have different residual schemes in different specializations (e.g. λDx.λDy.lift x :
IntS →D IntS →D IntD specializes to Λht, ht′ .λx′.λy′.ht : ∀t, t′.IsInt t, IsInt t′ ⇒ t → t′ →
Int and also to Λht.λx′.λy′.ht : ∀t.IsInt t ⇒ t → t → Int) and the principal one should
express both of them. To express this, we use the predicate IsMG in the definition of
rules (POLY) and (SPEC) in Figure 6.6. The type scheme for poly e cannot be derived
entirely from the type of e, because the context can place further constraints on it, for
example by passing the expression to a function which expects an argument with a more
restricted residual type — see Example 6.31; the use of the predicate IsMG in the rule
(POLY) permits expressing the principal specialization of a poly by allowing to abstract
over those constraints placed by the context: instead of calculating the residual type
directly, a scheme variable s can be introduced and constrained with an upper bound;
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further constraints can be expressed as additional upper bounds to s. Conversely, the
use of IsMG in the rule (SPEC) allows the selection of the proper instance for a spec;
it introduces a lower bound for s, whose conversion establishes how to instantiate the
polyvariant expression to the type needed. The rule (SPEC) also uses the source-residual
relation, for just the same reason as it is used in the rule (DLAM). The rule for poly
types — (SR-POLY) in Figure 6.5 — is used when a lambda-bound variable is of a poly
type — see Example 6.18-2.

The principal specialization for the expression in Example 6.17 then is

Λhu
s , hℓ

s1
, hℓ

s2
.let f ′ = hu

s [Λht.λx′.ht + 1] in (hℓ
s1

[f ′]@•, hℓ
s2

[f ′]@•)
: ∀s.IsMG (∀t.IsInt t ⇒ t → Int) s,

IsMG s (4̂2 → Int), IsMG s (1̂7 → Int) ⇒ (Int, Int)D

The upper bound (IsMG (∀t.IsInt t ⇒ t → Int) s) introduced by (POLY) is responsible for
the use of hu

s in the principal specialization for f , and the lower bounds (IsMG s (4̂2 →
Int)) and (IsMG s (1̂7 → Int)) introduced by (SPEC), for the conversion variables hℓ

s1
and

hℓ
s2

, respectively.

Example 6.18. These are the principal specializations for the expressions in Exam-
ple 4.7. (Remember that the source type — including binding time annotations — is
part of the input!)

1. ⊢P poly (λDx.lift x +D 1D ) : poly (IntS →D IntD )
→֒ Λhu

s .hu
s [Λhx.λDx′.hx + 1] :

∀s.IsMG (∀t.IsInt t ⇒ t → Int) s ⇒ poly s

2. ⊢P λDf.spec f @D 13S : poly (IntS →D IntD )→D IntD

→֒ Λhu
s , hℓ

s.λf ′.hℓ
s[f

′]@• :

∀s.IsMG (∀t.IsInt t ⇒ t → Int) s, IsMG s (1̂3 → Int) ⇒ poly s → Int

Observe that scheme variables are used when a poly appears in the source type, and
that the predicates constraining them are upper and lower bounds: the upper bounds
come from poly’s (hu

s in expression 1), and the lower bounds come from spec’s (hℓ
s

in expression 2). Also observe the upper bound in expression 2: this is an additional
constraint that every poly expression used as argument to the function must satisfy.

The following two theorems show that the specialization system is well behaved
with respect to the residual typing and the restrictions imposed by the source-residual
relationship.

Theorem 6.19. If ∆ | Γ ⊢
P

e : τ →֒ e′ : σ, and for all x : τx →֒ x′ : τ ′
x ∈ Γ,

∆ ⊢
SR

τx →֒ τ ′
x, then ∆ ⊢

SR
τ →֒ σ.

Given a specialization assignment, Γ = [xi : τi →֒ x′
i : σi | i = 1..n], we define the

projection of Γ to the residual language to be Γ
(RT)

= [x′
i : σi | i = 1..n].

Theorem 6.20. If ∆ | Γ ⊢
P

e : τ →֒ e′ : σ, then ∆ | Γ
(RT)

⊢
RT

e′ : σ.

Additionally, we need the following properties of the system during the proof of
principality.
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Proposition 6.21. If h : ∆ | Γ ⊢
P

e : τ →֒ e′ : τ ′ and h′ : ∆′ ⊢⊢ v : ∆, then
h′ : ∆′ | Γ ⊢

P
e : τ →֒ e′[h/v] : τ ′

Proposition 6.22. If ∆ | Γ ⊢
P

e : τ →֒ e′ : σ then S ∆ | S Γ ⊢
P

e : τ →֒ e′ : S σ.

Lemma 6.23. If h : ∆ | Γ ⊢
P

e : τ →֒ e′ : σ then EV(e′) ⊆ h

Proof: By induction on the P derivation.
The next lemma establishes that the residual type of a specialization cannot be a

scheme variable (s).

Lemma 6.24. If ∆ | Γ ⊢
P

e : τ →֒ e′ : σ then there exist βj, ∆σ, and τ ′ such that
σ = ∀βj.∆σ ⇒ τ ′.

Proof: By induction on the P derivation.

6.3.3 Existence of principal specializations

Similar to the notion of well-typed terms, we say that a source term is specializable
under a given specialization assignment if there is a predicate assignment ∆, a residual
term e′, and a residual type scheme σ such that ∆ | Γ ⊢

P
e : τ →֒ e′ : σ. The purpose

of this section is to characterize the existence of a specific pair of residual term and type
corresponding to every specializable source term e of type τ . The notion of principal type
scheme, originally introduced in the study of combinatory logic [Curry and Feys, 1958;
Hindley, 1969], and studied by Mark Jones in the theory of qualified types, is particularly
useful, corresponding to the most general derivable typing with respect to the ordering
of types under a given assignment. We can state a similar result for specializations.

Definition 6.25. A principal type specialization of a source term e of type τ under the
specialization assignment Γ is a residual term e′

p
of type σp such that Γ ⊢

P
e : τ →֒ e′

p
:

σp and it is the case that for every ∆′ | Γ ⊢
P

e : τ →֒ e′ : σ there exist some conversion
C and substitution R satisfying C : R σp ≥ (∆′ | σ) and C [e′

p
] = e′.

The main result in this chapter is the existence of principal type specializations. The
complete proof is given in Chapter 7.

Theorem 6.26. Let us consider a specialization assignment Γ and a source term e of
type τ such that e is specializable under Γ. Then, there exists a principal type special-
ization of e under Γ.

Proof: deferred.
The proof follows the lines of the proof of principality for the theory of qualified

types [Jones, 1994a], the main difference being the rules for polyvariance and the use
of conversions inside the language of evidence. The proof proceeds in two steps: first,
we define ⊢

S
, a syntax directed version of ⊢

P
, and prove that they are equivalent (in an

appropriate way), and then, we define an algorithm ⊢
W

, and prove that the ⊢
S

system is
equivalent to ⊢

W
. The reason for this separation is that comparing the algorithm against

a syntax directed system is easier, and so the proofs are simpler. The algorithm ⊢
W

(based
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on the algorithm W [Milner, 1978]) has two interesting cases: in the rule for polyvariant
expressions, and in lambda abstractions when the domain type is polyvariant. In both
cases the algorithm introduces a new type scheme variable, and constrains it with an
appropriate IsMG predicate.

It is important to observe that the proof of principality is constructive, involving
an algorithm producing principal specializations (or failing when none exists). In the
next chapter we develop the proof in detail, and in Chapter 10 we present a prototype
implementation of it.

6.4 Examples

We revisit here some of the problematic examples presented in Section 4.4; the rest of
them are considered in Chapter 9, after extending the new formulation of type special-
ization to handle booleans, datatypes and recursion.

The examples discussed here show that more expressiveness is indeed possible with
the new approach. As a convention, from now on we use the following notation for
evidence variables: a superscript u will indicate a variable corresponding to a predicate
IsMG where the scheme variable is constrained by an upper bound, and a superscript ℓ,
the same but for lower bounds.

Example 6.27. The source terms in Example 4.7, which have static information missing
(and for that reason many different specializations for them can be obtained), can be
specialized with our approach as follows.

1. ⊢P λDx.x +S 1S : IntS →D IntS →֒ Λht, ht′ .λx′.• : ∀t, t′.IsInt t, t′ := t + 1̂ ⇒ t → t′

2. ⊢P poly (λDx.lift x +D 1D ) : poly (IntS →D IntD )
→֒ Λht.λx′.ht + 1 : poly (∀t.IsInt t ⇒ t → IntD )

3. ⊢P λDf.spec f @D 13S : poly (IntS →D IntD )→D IntD

→֒ Λhu, hℓ.λf ′.hℓ[f ′]@• : ∀s.IsMG (∀t.IsInt t ⇒ t → Int) s,

IsMG s (1̂3 → Int) ⇒ poly s → Int

Observe the use of evidence abstractions to wait for the residual static information. This
is one of the keys allowing principal specialization. In the first two cases, the evidence
are the numbers corresponding to the static values of x and resulting operations. In the
last case, the evidence are conversions, one as upper bound and one as lower bound;
the upper bound, introduced by the rule (SR-POLY) premise of rule (DLAM), constrains the
type of f ′ to respect the source type, and the lower bound establishes that f ′ is used
applied to a value of type 1̂3, the corresponding conversion (hℓ) converting f ′ to fit this
use.

One interesting thing about type specialization is the role played by the source type.
In the following example we can see that by changing the source type only, the residual
expression is different, because it expects for different evidence.
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Example 6.28. Compare this specialization with that in Example 6.27-3.

⊢
P

λDf.spec f @D 13S : poly (IntS →D IntS )→D IntS

→֒ Λhu, hℓ, ht′ .λf ′.hℓ[f ′]@• : ∀s, t′.IsMG (∀t.IsInt t ⇒ t → t′) s,

IsMG s (1̂3 → t′),
IsInt t′ ⇒ poly s → t′

Observe that we have changed the source type for f to return static integers instead
of dynamic ones; this change is reflected in the residual type with the replacement of
type Int by the residual type variable t′, constrained by the predicate IsInt t′, and in
the residual term by the abstraction of ht′ .

The inability to decide the size of the residual tuple in Example 4.8 is not present
here, because we express polyvariance with type schemes and evidence abstractions.

Example 6.29. The source term in Example 4.8 can be specialized in our system as
following.

⊢
P

letD f = poly (λDx.lift x +D 1D )
in (spec f @D 42S , spec f @D 17S , spec f)D

: (IntD , IntD , IntS →D IntD )D

→֒
Λht.let f ′ = Λh.λx′.h + 1

in (f ′((42))@•, f ′((17))@•, f ′((ht)))
: ∀t.IsInt t ⇒ (Int, Int, t → Int)

Remember that there is not enough information to determine which is the right special-
ization for the third component of the tuple! This can be easily expressed by the new
formulation, because polyvariance is represented as terms with abstracted evidence; in
this case, the evidence ht represents the number corresponding to the residual type t. To
obtain any of the specializations of Example 4.8, a postprocessing phase called evidence
elimination (modification of the constraint solving phase) is needed — see Chapter 8.

The next example shows how by applying a function we can alter its residual type.

Example 6.30. Observe that the source terms in the following specializations differ in
the way the functions are used in the dummy code — the first version is presented for
comparison purposes.

1. ⊢
P

poly (λDx.λDy.lift x +D lift y)
: poly (IntS →D IntS →D IntD )
→֒ Λhx.Λhy.λx.λy.hx + hy

: poly (∀tx, ty.IsInt tx, IsInt ty ⇒ tx → ty → Int)

2. ⊢
P

poly (letD g1 = λDx.λDy.lift x +D lift y
in letD dummy1 = g1 @D 5S in g1)

: poly (IntS →D IntS →D IntD )
→֒ Λhy.let g1 = λx.λy.5 + hy in let dummy1 = g1@ • in g1

: poly (∀ty.IsInt ty ⇒ 5̂ → ty → Int)



6.4. Examples 101

3. ⊢
P

poly (letD g2 = λDx.λDy.lift x +D lift y
in letD dummy2 = λDz.g2 @D z @D 6S in g2)

: poly (IntS →D IntS →D IntD )
→֒ Λhx.let g2 = λx.λy.hx + 6 in let dummy2 = λz.g2@z@ • in g2

: poly (∀tx.IsInt tx ⇒ tx → 6̂ → Int)

Every different use constrains differently the residual type.

The following example shows the need to use conversions in the rule (POLY).

Example 6.31. The source term

letD id = λD x .x
in letD f = poly (λD x .λD y .lift x +D lift y)
in letD f1 = id @D poly (letD g1 = λD x .λD y .0D

in letD dummy1 = g1 @D 5S in g1)
in letD f2 = id @D poly (letD g2 = λD x .λD y .1D

in letD dummy2 = λD z .g2 @D z @D 6S in g2)
in spec (id @D f )
:: IntS →D IntS →D IntD

can be specialized to the residual term and type

Λhu
s1

, hu
s2

, hu
s3

, ht , ht ′ , h
ℓ.

let id = λx .x
in let f = hu

s1
[Λhx , hy .λx .λy .hx + hy ]

in let f1 = id@hu
s2

[Λhy .let g1 = λx .λy .0
in let dummy1 = g1@• in g1]

in let f2 = id@hu
s3

[Λhx .let g2 = λx .λy .1
in let dummy2 = λz .g2@z@• in g2]

in hℓ[id@f ]
:: ∀t , t ′, s .IsMG (∀tx , ty .IsInt tx , IsInt ty ⇒ tx → ty → Int) s ,

IsMG (∀ty .IsInt ty ⇒ 5̂ → ty → Int) s ,
IsMG (∀tx .IsInt tx ⇒ tx → 6̂ → Int) s ,
IsInt t ,
IsInt t ′,
IsMG s (t → t ′ → Int)
⇒ t → t ′ → Int

Observe the use of a monovariant identity function to force all the residual types of the
different polys (from the previous example) to be unified. The residual term and type
of function f cannot be chosen until all the restrictions are known; is for that reason
that, in the original formulation, no specialization is done to the body of a poly until all
the context is known — that is, at the end of the specialization process. But with our
formulation we can adapt the specialization of f by constraining it with suitable upper
bounds; additional restrictions are expressed as new upper bounds. In the example, there
are three upper bounds, one for each poly declaration, and all constraining the same
scheme variable s; additionally, the lower bound express the specialization of f , which
can be seen in the use of the evidence variable hℓ. The final result can be calculated when
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there is no possibilities that new constraints may arrive — this is done by constraint
solving, which is presented in Chapter 8. In this case, the result after constraint solving
is the following:

let id = λx .x
in let f = λx .λy .5 + 6
in let f1 = id@let g1 = λx .λy .0

in let dummy1 = g1@• in g1
in let f2 = id@let g2 = λx .λy .1

in let dummy2 = λz .g2@z@• in g2
in id@f
:: 5̂ → 6̂ → Int

which is the same as the residual term and type obtained with the original formula-
tion. Observe how the constraints imposed by the residual types of f1 and f2 force the
arguments of f to the fixed numbers.

As a final example, we show how polyvariant functions can be used polyvariantly.

Example 6.32. The function g expects a polyvariant function as argument, and so, it
has to be polyvariant to be able to apply it to different functions (with different residual
types).

⊢
P

letD g = poly (λDf.spec f @D 13S )
in (spec g @D poly (λDx.x),

spec g @D poly (λDy.0S ))D

: (IntS , IntS )D

→֒ let g = Λhu, hℓ, hr.λf.hℓ[f ]@•
in (g((Λh.[]((h, h)), []((13)), 13))@(Λhx.λx.x),

g(([], []((13, 0)), 0))@(Λhy.λy.•))
: (1̂3, 0̂)

Observe that the evidence used in the residual of each spec g is different, corresponding
to the instantiation from the principal type of g to the type of the parameters; the
residual type of g is

∀t, s.IsMG (∀tx, tr.IsInt tx, IsInt tr ⇒ tx → tr) s,

IsMG s (1̂3 → t),
IsInt t ⇒ poly s → t



Chapter 7

The Algorithm and The Proof

The words of the spell toll inside his head. Burgess realizes that he couldn’t
stop now. Not even if he wanted to. . .

Preludes & Nocturnes – The Sandman
Neil Gaiman, Sam Kieth, and Mike Diringerberg

In this chapter we present the proof for the principality property of P (Theorem 6.26).
The proof follows the lines of the proof of principality for the theory of qualified

types [Jones, 1994a], the main difference being the rules for polyvariance and the use
of conversions inside the language of evidence. The proof proceeds in two steps: first,
in Section 7.1, we define ⊢

S
, a syntax directed version of ⊢

P
, and prove that they are, in

some sense, equivalent (Theorems 7.9 and 7.10), and then, in Section 7.2, we define an
algorithm ⊢

W
, and prove that ⊢

S
system is, in some sense, equivalent to ⊢

W
(Theorems 7.17

and 7.18). The main result is then obtained as a corollary (Corollary 7.19), combining
the four theorems stating the equivalence between the systems.

The importance of the proof is that it is constructive, because the algorithm ⊢
W

establishes how to calculate the principal specialization of a given source term.
We close the chapter with examples of the specializations generated by the algorithm,

and a discussion of the need for simplification, improvement, and constraint solving,
topics covered in Chapter 8.

The algorithm presented here is the basis of the prototype described in Chapter 10.

7.1 The Syntax Directed System, S

The rules given in the previous chapter to specify type specialization provide clear
descriptions of the treatment of each of the syntactic constructs of the term and type
languages. But they are not suitable for use in an algorithm, because they do not
completely follow the structure of a term (the are not syntax directed). The rules (QIN),
(QOUT), (GEN), and (INST), which provide a way to transform a type into a qualified type,
and this one into a type scheme, are the cause for the system ⊢

P
not being syntax

directed: there are apparently no restrictions on when these rules can be used because
the terms and types appearing on them are not restricted. But there are restrictions.
One that is common to all, the Hindley-Milner system, the theory of qualified types,
and our framework, is that the argument of a function has to be a monotype, and thus
every use of (QIN) or (GEN) before an application should be eliminated by a corresponding
(QOUT) or (INST). The essence of a syntax directed version of ⊢

P
is to restrict the places

where qualification and quantification are introduced to precisely those places where
they are really necessary, and doing so in such a way as to keep the generated types as

103
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general as they can be. The name syntax directed is due to an important property that
such a system has:

All derivations for a given term e, if there are any, have the same structure,
uniquely determined by the syntactic structure of e.

The syntax directed version allows us to explore the specification by establishing a
congruence between the two systems, in such a way that results on one of the systems
can be translated into results of the other one. The advantage of a syntax directed
version is that the rules are better suited for an algorithm, because there is at most one
rule applicable to every term, and only type expressions are involved in the process (type
schemes and qualified types are handled by a generalization operator). This approach
is the same as that taken by Jones [1994a], which in turn has been inspired by Clément
et al. [1986], who gives a deterministic set of typing rules for ML and outlines the
equivalence to the rules given by Damas and Milner [1982].

In both the Hindley-Milner system and the theory of qualified types the changes
are introduced in the rules for typing a let construct and a variable, because as those
systems provide an approach in which polymorphism is let-bound, the place where
qualification and quantification can be introduced or eliminated is there. But our system
is monomorphic in nature, and polymorphism is only used to express polyvariance. For
that reason, the places where qualification and quantification are introduced are those
annotated by the use of poly, so the rule that must change is (POLY).

We need to define first a way to generalize as many variables as possible under a
certain assignment. This corresponds to several uses of the rule (GEN).

Definition 7.1. Let A = (FV(∆) ∪ FV(τ ′))/(FV(Γ) ∪ FV(∆′)). We define

GenΓ,∆′(∆ ⇒ τ ′) = ∀A.∆ ⇒ τ ′

The correspondence of this notion of generalization with several applications of the rule
(GEN) can be stated as the following property.

Proposition 7.2. If ∆′ | Γ ⊢
P

e : τ →֒ e′ : ∆ ⇒ τ ′, then ∆′ | Γ ⊢
P

e : τ →֒ e′ :
GenΓ,∆′(∆ ⇒ τ ′), and both derivations only differ in the application of rule (GEN).

Proof: By repeated application of the rule (GEN).
Additionally, type schemes obtained by generalization with Gen can be related by

the ordering ≥, as stated in the following proposition.

Proposition 7.3. The relation ≥ satisfies that, for all Γand τ ′,

1. if h′ : ∆′ ⊢⊢ v : ∆ and C = []((v))
then C : GenΓ,∆′′(∆ ⇒ τ ′) ≥ (h′ : ∆′ | τ ′)

2. if h′ : ∆′ ⊢⊢ v : ∆ and C = Λh′.[]((v))
then C : GenΓ,∆′′(∆ ⇒ τ ′) ≥ GenΓ,∆′′(∆′ ⇒ τ ′)

3. for all substitutions R and all contexts ∆,
[] : R GenΓ,∆′(∆ ⇒ τ ′) ≥ GenR Γ,R ∆′(R ∆ ⇒ R τ ′)
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The actual notion of generalization used considers functional dependencies between
the arguments of predicates, as described in Section 5.6; this amounts also to change
the rule (GEN) accordingly. To do this, we need to define first the notion of closure of
a set wrt. a set of functional dependencies, and the notion of the set of dependencies
induced by a set of predicates.

Definition 7.4. If F is a set of functional dependencies, and A is a set of variables,
then the closure of A wrt. to F , written A+

F , is the smallest set containing A such that
if t1 ; t2 ∈ F and t1 ∈ A, then t2 ∈ A.

Definition 7.5. Every set of predicates ∆ induces a set of functional dependencies F∆

on the set of variables FV (∆), as follows:

F∆ = {FV(δ)X ; FV(δ)Y s.t. δ ∈ ∆, X ; Y ∈ Fδ}

where Fδ is the set of functional dependencies induced by δ — defined for each kind of
predicate separately — and the subindex X (resp. Y ) indicates the restriction of the set
to the variables in X (resp. Y ).

With the predicates defined so far the only functional dependency is the one in
predicate τ := τ1 + τ2, establishing that the value of τ depends on the values of τ1 and
τ2, that is τ1, τ2 ; τ . When introducing new predicates in Chapter 9, some additional
functional dependencies will be added.

Now, the generalization operation can be extended to include the idea of functional
dependencies.

Definition 7.6. Let A = FV(∆) ∪ FV(τ ′), B = FV(Γ) ∪ FV(∆′), and A′ = A/B+
F∆

.
We define

GenΓ,∆′(∆ ⇒ τ ′) = ∀A′.∆ ⇒ τ ′

The judgements for system ⊢
S

have the form ∆ | Γ ⊢
S

e : τ →֒ e′ : τ ′, with the same
intended meaning as those of P system — the main difference is that this system does
not produce residual type schemes but residual types only. The rules for S are presented
in Figure 7.1. Observe that the only differences between P and S are the rule (POLY),
and the absence of rules (QIN), (QOUT), (GEN), and (INST). The use of these rules in inner
nodes of the derivation is captured by the use of Gen in the rule (POLY), and the uses of
this rules at top level are captured in Theorem 7.10, by the use of conversion C ′

s.
The system S is well behaved with respect to entailment and substitutions, as stated

by the following propositions.

Proposition 7.7. If h : ∆ | Γ ⊢
S

e : τ →֒ e′ : τ ′ then h : S ∆ | S Γ ⊢
S

e : τ →֒ e′ : S τ ′

Proposition 7.8. If h : ∆ | Γ ⊢
S

e : τ →֒ e′ : τ ′ and ∆′ ⊢⊢ v : ∆, then

∆′ | Γ ⊢
S

e : τ →֒ e′[h/v] : τ ′

We are now able to establish the equivalence between S and P.

Theorem 7.9. If ∆ | Γ ⊢
S

e : τ →֒ e′ : τ ′ then ∆ | Γ ⊢
P

e : τ →֒ e′ : τ ′.
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(S-VAR)
x : τ →֒ x′ : τ ′ ∈ Γ

∆ | Γ ⊢
S

x : τ →֒ x′ : τ ′

(S-DINT) ∆ | Γ ⊢
S

nD : IntD →֒ n : Int

(S-D+)
(∆ | Γ ⊢

S
ei : IntD →֒ e′i : Int)i=1,2

∆ | Γ ⊢
S

e1 +D e2 : IntD →֒ e′1 + e′2 : Int

(S-LIFT)
∆ | Γ ⊢

S
e : IntS →֒ e′ : τ ′ ∆ ⊢⊢ v : IsInt τ ′

∆ | Γ ⊢
S
lift e : IntD →֒ v : Int

(S-SINT) ∆ | Γ ⊢
S

nS : IntS →֒ • : n̂

(S-S+)
(∆ | Γ ⊢

S
ei : IntS →֒ e′i : τ ′

i)i=1,2 ∆ ⊢⊢ v : τ ′ := τ ′
1 + τ ′

2

∆ | Γ ⊢
S

e1 +S e2 : IntS →֒ • : τ ′

(S-DTUPLE)
(∆ | Γ ⊢

S
ei : τi →֒ e′i : τ ′

i)i=1,..,n

∆ | Γ ⊢
S

(e1, . . . , en)D : (τ1, . . . , τn)D →֒ (e′1, . . . , e
′
n) : (τ ′

1, . . . , τ
′
n)

(S-DPRJ)
∆ | Γ ⊢

S
e : (τ1, . . . , τn)D →֒ e′ : (τ ′

1, . . . , τ
′
n)

∆ | Γ ⊢
S

πD

i,n e : τi →֒ πi,n e′ : τ ′
i

(S-DLAM)
∆ | Γ, x : τ2 →֒ x′ : τ ′

2 ⊢S
e : τ1 →֒ e′ : τ ′

1 ∆ ⊢
SR

τ2 →֒ τ ′
2

∆ | Γ ⊢
S

λDx.e : τ2 →
D τ1 →֒ λx′.e′ : τ ′

2 → τ ′
1

(x′ fresh)

(S-DAPP)
∆ | Γ ⊢

S
e1 : τ2 →

D τ1 →֒ e′1 : τ ′
2 → τ ′

1 ∆ | Γ ⊢
S

e2 : τ2 →֒ e′2 : τ ′
2

∆ | Γ ⊢
S

e1 @D e2 : τ1 →֒ e′1@e′2 : τ ′
1

(S-DLET)

∆ | Γ ⊢
S

e2 : τ2 →֒ e′2 : τ ′
2 ∆ | Γ, x : τ2 →֒ x′ : τ ′

2 ⊢S
e1 : τ1 →֒ e′1 : τ ′

1

∆ | Γ ⊢
S
letD x = e2 in e1 : τ1 →֒ let x′ = e′2 in e′1 : τ ′

1
(x′ fresh)

(S-POLY)
h′ : ∆′ | Γ ⊢

S
e : τ →֒ e′ : τ ′ h : ∆ ⊢⊢ v : IsMG σ′ σ

h : ∆ | Γ ⊢
S
poly e : poly τ →֒ v[Λh′.e′] : poly σ

(σ′=GenΓ,∅(∆′⇒τ ′))

(S-SPEC)
∆ | Γ ⊢

S
e : poly τ →֒ e′ : poly σ′ ∆ ⊢⊢ v : IsMG σ′ τ ′ ∆ ⊢

SR
τ →֒ τ ′

∆ | Γ ⊢
S
spec e : τ →֒ v[e′] : τ ′

Figure 7.1: Syntax Directed Specialization Rules.
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Theorem 7.10. If h : ∆ | Γ ⊢
P

e : τ →֒ e′ : σ, then there exist h′
s, ∆

′
s, e

′
s, τ

′
s, and C ′

s

such that

a) h′
s : ∆′

s | Γ ⊢
S

e : τ →֒ e′s : τ ′
s

b) C ′
s : GenΓ,∅(∆

′
s ⇒ τ ′

s) ≥ (h : ∆ | σ)

c) C ′
s[Λh′

s.e
′
s] = e′

Observe that Theorem 7.9 establishes that a derivation in S is also a derivation in
P. But the converse is not true: not every derivation in P is a derivation in S; however,
there is a way to relate derivations in both systems by using generalization, conversions,
and the ≥ ordering, as stated by Theorem 7.10.

7.2 The Inference Algorithm, W

In this section we present an algorithm to construct a type specialization for a given
typed source term, and prove that every specialization expressed by ⊢

S
system can be

expressed in terms of the output of this algorithm.
The algorithm is a modification of the algorithm of translation given by Mark

Jones [1994a] (in turn an extension of Milner’s algorithm W, [Milner, 1978]), and it
is presented in a similar way: as a set of inference rules that can be interpreted as an
attribute grammar (this, in turn, is attributed to Rèmy [1989]). The main advantage of
this style of presentation is that it highlights the relationship with the ⊢

S
system. The

presentation as the rules of an attribute grammar can also be described in the more con-
ventional style as a partial function W from (Γ, e, τ) to (∆, S, e′, τ ′), but its presentation
as a system of rules makes more clear the relationship with previous systems.

The algorithm uses a number of subsystems corresponding to algorithmic versions
of the different systems used in ⊢

P
and ⊢

S
. We use the letter W to identify algorithmic

versions of each system. We present each of those in a different subsection.

7.2.1 A unification algorithm

The unification algorithm is based on Robinson’s algorithm, with modifications to deal
with substitution under quantification (that is, inside polyvariant residual types). We
use a kind of “skolemisation” of quantified variables to avoid substituting them — to
do this, we extend residual type schemes with skolem constants, ranging over c, and
belonging to a countably infinite set with no intersection with any variables or types.

To specify the unification algorithm, we use a system of rules to derive judgements
of the form σc ∼

U σc, with U ranging over substitutions. These rules can be interpreted
as an attribute grammar in which both residual types are inherited attributes, and the
substitution is a synthesized one — that is, a partial function taking two residual types
and returning the substitution that unifies them, if it exists. The rules are presented in
Figure 7.2.

The following properties establish that the result of unification, if it exists, is really
a most general unifier.
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c ∼Id c

n̂ ∼Id n̂

Int ∼Id Int

α ∼Id α

α 6∈ FV(σ)

α ∼[α/σ] σ

α 6∈ FV(σ)

σ ∼[α/σ] α

τ ′
1 ∼

T τ ′′
1 T τ ′

2 ∼
U T τ ′′

2

τ ′
1 → τ ′

2 ∼
UT τ ′′

1 → τ ′′
2

τ ′
11 ∼

T1 τ ′
21 T1 τ ′

12 ∼
T2 T1 τ ′

22 . . . Tn−1 . . . T1 τ ′
1n ∼Tn Tn−1 . . . T1 τ ′

2n

(τ ′
11, . . . , τ

′
1n) ∼Tn...T1 (τ ′

21, . . . , τ
′
2n)

σ ∼U σ′

poly σ ∼U poly σ′

σ[α/c] ∼U σ′[α′/c]

∀α.σ ∼U ∀α′.σ′
(c fresh)

δ ∼U δ′ ρ ∼U ρ′

δ ⇒ ρ ∼U δ′ ⇒ ρ′

τ ∼U τ ′

IsInt τ ∼U IsInt τ ′

τ ∼T τ ′ T τ1 ∼
U T τ ′

1 UT τ2 ∼
V UT τ ′

2

τ := τ1 + τ2 ∼
V UT τ ′ := τ ′

1 + τ ′
2

σ1 ∼
T σ2 T σ′

1 ∼
U T σ′

2

IsMG σ1 σ′
1 ∼

UT IsMG σ2 σ′
2

Figure 7.2: Rules for unification.
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Proposition 7.11. If σ ∼U σ′ then U σ = U σ′.

Proposition 7.12. If S σ = S σ′, then σ ∼U σ′ and there exists a substitution T such
that S = TU .

7.2.2 An entailment algorithm

The idea of an algorithm for entailment is to calculate a set of predicates that should
be added to the current predicate assignment ∆ to be able to entail a given predicate
δ. The input is the current predicate assignment and the predicate δ to entail, and the
output is the set of predicates to add and the evidence proving δ. The result can be
easily achieved by adding δ to ∆ with a new variable h. So, one possible algorithm is
the one consisting on this only rule:

h : δ | ∆ ⊢⊢W h : δ (h fresh)

that is, generate a new fresh variable h and add h : δ to the current predicate assignment.
Observe that this choice makes the use of ∆ unnecessary; however, we keep the complete
formulation to allow future improvements.

More refined algorithms can be designed — for example, to handle ground predicates
(such as IsInt n̂) or predicates already appearing in ∆, but all these cases can be handled
by the phase of simplification and constraint solving — see Chapter 8. For that reason,
we limit ourselves to the basic choice.

It is very easy to verify that the following property holds.

Proposition 7.13. If ∆′ | ∆ ⊢⊢W δ then ∆′, ∆ ⊢⊢ δ.

Proof: By definition of ∆′ | ∆ ⊢⊢W δ and (Fst).

7.2.3 An algorithm for source-residual relationship

The source-residual relationship between types is calculated by providing the algorithm
with the source type as its input, so that it produces the residual type and a predicate
assignment expressing the restrictions on variables as output. It can be given by an
attribute grammar with judgements of the form ∆ ⊢

W-SR
τ →֒ τ ′, where τ is an

inherited attribute (that is, input to the algorithm), and ∆ and τ ′ are synthesized ones
(that is, output). The rules are given in Figure 7.3.

The following propositions relate the algorithm ⊢
W-SR

with the specification of the
relationship, ⊢

SR
.

Proposition 7.14. If ∆ ⊢
W-SR

τ →֒ τ ′ then ∆ ⊢
SR

τ →֒ τ ′.

Proposition 7.15. If ∆ ⊢
SR

τ →֒ σ then ∆′
w ⊢

W-SR
τ →֒ τ ′

w with all the residual
variables fresh, and there exists C ′

w such that C ′
w : Gen∅,∅(∆

′
w ⇒ τ ′

w) ≥ (∆ | σ).

This last property establishes that the residual type produced by ⊢
W-SR

can be gen-
eralized to a type that is more general than any other to which the source term can be
specialized. This is important when using ⊢

W-SR
to constrain the type of a lambda-bound

variable in rule (W-DLAM).
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h : IsInt t ⊢
W-SR

IntS →֒ t (t fresh)

∅ ⊢
W-SR

IntD →֒ Int

∆1 ⊢W-SR
τ1 →֒ τ ′

1 ∆2 ⊢W-SR
τ2 →֒ τ ′

2

∆1, ∆2 ⊢W-SR
τ2 →

D τ1 →֒ τ ′
2 → τ ′

1

(∆i ⊢W-SR
τi →֒ τ ′

i)i=1,...,n

∆1, . . . , ∆n ⊢
W-SR

(τ1, . . . , τn)D →֒ (τ ′
1, . . . , τ

′
n)

∆ ⊢
W-SR

τ →֒ τ ′

IsMG σ s ⊢
W-SR

poly τ →֒ poly s
(σ=Gen∅,∅(∆⇒τ ′) and s fresh)

Figure 7.3: Rules calculating principal source-residual relationship.

7.2.4 An algorithm for type specialization

The algorithm for type specialization takes an assignment Γ, a source term e and its
type τ and return a residual term e′, a residual type τ ′, a predicate assignment ∆,
and a substitution S that has to be applied to Γ to adjust the types appearing in
it. It is specified by means of a set of rules used to derive judgements of the form
∆ | S Γ ⊢

W
e : τ →֒ e′ : τ ′, with the same meaning as in the ⊢

P
system. The rules can

be interpreted as an attribute grammar in which e, τ , and Γ are inherited attributes,
and ∆, S, e′, and τ ′ are synthesized ones, and are presented in Figures 7.4 and 7.5.

The results obtained by W are equivalent, in the sense established in Theorems 7.17
and 7.18, to the results obtained by S. To establish the equivalence we use a notion of
similarity between substitutions defined in the same way as it was done by Jones [1994a],
that is, two substitutions R and S are similar (written R ≈ S), if they only differ in
a finite number of variables. This is useful to compare substitutions produced by the
algorithm, given that it introduces several fresh variables that will be substituted.

Lemma 7.16. If h : ∆ | S Γ ⊢
W

e : τ →֒ e′ : τ ′ then EV(e′) ⊆ h

Proof: By induction on the W derivation.

Theorem 7.17. If ∆ | S Γ ⊢
W

e : τ →֒ e′ : τ ′ then ∆ | S Γ ⊢
S

e : τ →֒ e′ : τ ′.

Theorem 7.18. If h : ∆ | S Γ ⊢
S

e : τ →֒ e′ : τ ′, then h′
w : ∆′

w | T ′
w Γ ⊢

W
e : τ →֒ e′w :

τ ′
w and there exist a substitution R and evidence v′

w such that

a) S ≈ RT ′
w

b) τ ′ = R τ ′
w

c) h : ∆ ⊢⊢ vw : R ∆′
w

d) e′ = e′w[h′
w/v′

w]

The meaning of this last theorem is that every residual term and type obtained by
the syntax directed system can be expressed as a particular case of the residual term
and type produced by the algorithm.
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(W-VAR)
x : τ →֒ x′ : τ ′ ∈ Γ

∅ | Id Γ ⊢
W

x : τ →֒ x′ : τ ′

(W-DINT) ∅ | Id Γ ⊢
W

nD : IntD →֒ n : Int

(W-D+)
∆1 | S1 Γ ⊢

W
e1 : IntD →֒ e′1 : Int ∆2 | S2 (S1 Γ) ⊢

W
e2 : IntD →֒ e′2 : Int

S2 ∆1, ∆2 | S2S1 Γ ⊢
W

e1 +D e2 : IntD →֒ e′1 + e′2 : Int

(W-LIFT)
∆ | S Γ ⊢

W
e : IntS →֒ e′ : τ ′ ∆′ | ∆ ⊢⊢W v : IsInt τ ′

∆′, ∆ | S Γ ⊢
W

lift e : IntD →֒ v : Int

(W-SINT) ∅ | Id Γ ⊢
W

nS : IntS →֒ • : n̂

(W-S+)

∆1 | S1 Γ ⊢
W

e1 : IntS →֒ e′1 : τ ′
1 ∆2 | S2 (S1 Γ) ⊢

W
e2 : IntS →֒ e′2 : τ ′

2 ∆ | S2 ∆1, ∆2 ⊢⊢W v : t := S2

∆, S2 ∆1, ∆2 | S2S1 Γ ⊢
W

e1 +S e2 : IntS →֒ • : t
(t fresh)

(W-DLAM)
∆ ⊢

W-SR
τ2 →֒ τ ′

2 ∆′ | S (Γ, x : τ2 →֒ x′ : τ ′
2) ⊢W

e : τ1 →֒ e′ : τ ′
1

∆′, S ∆ | S Γ ⊢
W

λDx.e : τ2 →
D τ1 →֒ λx′.e′ : S τ ′

2 → τ ′
1

(x′ fresh)

(W-DAPP)

∆1 | S1 Γ ⊢
W

e1 : τ2 →
D τ1 →֒ e′1 : τ ′

1 ∆2 | S2 (S1 Γ) ⊢
W

e2 : τ2 →֒ e′2 : τ ′
2 S2 τ ′

1 ∼
U τ ′

2 → t

US2 ∆1, U ∆2 | US2S1 Γ ⊢
W

e1 @D e2 : τ1 →֒ e′1@e′2 : U t
(t fresh)

(W-POLY)

h : ∆ | S Γ ⊢
W

e : τ →֒ e′ : τ ′ ∆′ | ∅ ⊢⊢W v : IsMG (GenS Γ,∅(∆ ⇒ τ ′)) s

∆′ | S Γ ⊢
W

poly e : poly τ →֒ v[Λh.e′] : poly s
(s fresh)

(W-SPEC)

∆ | S Γ ⊢
W

e : poly τ →֒ e′ : τ ′
σ τ ′

σ ∼U poly s ∆′ ⊢
W-SR

τ →֒ τ ′ ∆′′ | U ∆, ∆′ ⊢⊢W v : IsMG (

∆′′, U ∆, ∆′ | US Γ ⊢
W

spec e : τ →֒ v[e′] : τ ′

(s fresh)

Figure 7.4: Type Specialization Algorithm (first part).
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(W-DTUPLE)

∆1 | S1 Γ ⊢
W

e1 : τ1 →֒ e′1 : τ ′
1 . . . ∆n | Sn Sn−1 . . . S1 Γ ⊢

W
en : τn →֒ e′n : τ ′

n

Sn . . . S2 ∆1, . . . , ∆n | Sn . . . S1 Γ
⊢
W

(e1, . . . , en)D : (τ1, . . . , τn)D

→֒ (e′1, . . . , e
′
n) : (Sn . . . S2 τ ′

1, Sn . . . S3 τ ′
2, . . . , τ

′
n)

(W-DPRJ)
∆ | S Γ ⊢

W
e : (τ1, . . . , τn)D →֒ e′ : τ ′ τ ′ ∼U (t1, . . . , tn)

U ∆ | US Γ ⊢
W

πD

i,n e : τi →֒ πi,n e′ : U ti
(t1,...,tn fresh)

(W-DLET)

∆2 | S2 Γ ⊢
W

e2 : τ2 →֒ e′2 : τ ′
2 ∆1 | S1 (S2 Γ, x : τ2 →֒ x′ : τ ′

2) ⊢W
e1 : τ1 →֒ e′1 : τ ′

1

S1 ∆2, ∆1 | S1S2 Γ ⊢
W

letD x = e2 in e1 : τ1

→֒ let x′ = e′2 in e′1 : τ ′
1

(x′ fresh)

Figure 7.5: Type Specialization Algorithm (second part).

7.3 Proof of Principality of P

We are finally in position to prove Theorem 6.26; the result is a corollary of the theorems
established in the previous sections.

Corollary 7.19. [Proof of Theorem 6.26] Let us consider specialization assignment Γ
and a source term e of type τ such that e is specializable under Γ. Then, there exists a
principal type specialization e′

p
: σp of e.

Proof: Let us consider a specialization assignment Γ and a source term e of type
τ , specializable under Γ. Recall that a principal type specialization of e under Γ is a
residual term e′

p
of type σp such that Γ ⊢

P
e : τ →֒ e′

p
: σp , and for all ∆, e′, and σ,

such that ∆ | Γ ⊢
P

e : τ →֒ e′ : σ there exists a conversion C and a substitution R
satisfying C : R σp ≥ (∆ | σ) and C [e′

p
] = e′.

So, consider any derivation h : ∆ | Γ ⊢
P

e : τ →֒ e′ : σ. By Theorem 7.10, there
exist hs, ∆s, e

′
s, τ

′
s, and C s such that

(1) hs : ∆s | Γ ⊢
S

e : τ →֒ e′s : τ ′
s

(2) C s : GenΓ,∅(∆s ⇒ τ ′
s) ≥ (h : ∆ | σ)

(3) C s[Λhs.e
′
s] = e′

By Theorem 7.18 on (1), hw : ∆w | T Γ ⊢
W

e : τ →֒ e′w : τ ′
w and there exist a

substitution R and evidence vw such that

(4) Id ≈ RT

(5) τ ′
s = R τ ′

w

(6) hs : ∆s ⊢⊢ vw : R ∆w
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(7) e′s = e′w[hw/vw]

By Theorems 7.17 and 7.9, we have

h′
w : ∆′

w | T Γ ⊢
P

e : τ →֒ e′w : τ ′
w.

Using rules (QIN) and (GEN), we have

T Γ ⊢
P

e : τ →֒ Λh′
w.e′w : GenT Γ,∅(h

′
w : ∆′

w ⇒ τ ′
w),

and by Proposition 6.22, and using (4), we have that

Γ ⊢
P

e : τ →֒ Λh′
w.e′w : R GenT Γ,∅(h

′
w : ∆′

w ⇒ τ ′
w).

We take ep = Λh′
w.e′w, and σp = GenT Γ,∅(h

′
w : ∆′

w ⇒ τ ′
w).

The needed conversion, C , is obtained by a composition between

• C s : GenΓ,∅(∆s ⇒ τ ′
s) ≥ (h : ∆ | σ) from (2),

• Λh′
s.[]((vw)) : GenΓ,∅(R ∆′

w ⇒ τ ′
s) ≥ GenΓ,∅(∆

′
s ⇒ τ ′

s), obtained from Proposi-
tion 7.3-2 on (6), and

• [] : R GenT Γ,∅(∆
′
w ⇒ τ ′

w) ≥ GenΓ,∅(R ∆′
w ⇒ τ ′

s), obtained from Proposition 7.3-3,
(4), and (5).

The equality C [e′
p
] = e′′ is obtained using βv, (7), and (3), and the result follows.

7.4 Examples

In this section we present the principal specialization of some of the examples considered
in previous chapters, as produced by the algorithm described, without any simplification
or improvement. It is notorious that the set of predicates produced is usually larger than
expected, a situation that is managed by the notions of simplification and improvement
discussed in Section 5.6. Additionally, those examples involving polyvariance specialize
to their most general forms, but are of little use without a process calculating particular
cases of it. The exact description and implementation of simplification, improvement,
and constraint solving are described in the next chapter.

Our first example shows that several copies of the same predicate are produced, even
ground. These cases are easily handled by simplification.

Example 7.20. The first copy of the predicate IsInt is produced by rule (W-DLAM), and
the second one by the rule (W-LIFT). In the second case, the type variable t is unified
with the residual of 54S .

1. ⊢
P

λDx.lift x : IntS →D IntD →֒ Λht, ht′ .λx.ht′ : ∀t.IsInt t, IsInt t ⇒ t → Int

2. ⊢
P

(λDx.lift x) @D 54S : IntD →֒ Λht, ht′ .(λx.ht′)@• : IsInt 5̂4, IsInt 5̂4 ⇒ 5̂4 → Int

Observe that the predicate set and quantification, and corresponding evidence abstrac-
tion, are added to the type by virtue of Corollary 7.19.
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When static operations (such as addition) are considered, the resulting predicate set
requires the use of improvements to be able to produce the final result, as can be seen
in the following example.

Example 7.21. The value of residual type variable t, introduced to express the result
of the static addition by rule (W-S+), is completely determined by the other arguments
in t := 1̂2 + 1̂. An improving substitution can use this fact to produce a better result.

1. ⊢
P

(λDx.lift (x +S 1S )) @D 12S : IntD

→֒ Λh12, ht, h
′
t.λx.h′

t : ∀t.IsInt 1̂2, t := 1̂2 + 1̂, IsInt t ⇒ Int

The next example shows that the principal specialization does not take decisions
involving polyvariant expressions.

Example 7.22. The source term is the same as in Examples 3.12 and 6.17.

⊢
P

letD f = poly (λDx.lift x +D 1D )
in (spec f @D 42S , spec f @D 17S )D

: (IntD , IntD )D

→֒ Λhu
s , h42, h

ℓ
s1

, h17, h
ℓ
s2

.let f = hu
s [Λhx, h

′
x.λx.h′

x + 1] in (hℓ
s1

[f ]@•, hℓ
s2

[f ]@•)
: ∀s.IsMG (∀t.IsInt t, IsInt t ⇒ t → Int) s,

IsInt 4̂2,

IsMG s (4̂2 → Int),

IsInt 1̂7,

IsMG s (1̂7 → Int)
⇒ (Int, Int)

Observe the use of evidence variables hu
s , hℓ

s1
, and hℓ

s2
expressing the (still unknown)

conversions adapting the actual data to the type expressed by the scheme variable s;
they are introduced in rules (W-POLY) and (W-SPEC).

The process of constraint solving described in the next chapter finds a suitable value
for s, and calculates the corresponding conversions, giving the same answer as in Exam-
ple 6.17.



Chapter 8

Constraint Solving and Postprocessing

“The cutting edge isn’t the weapon. The cutting edge is skill, the
endless effort of the inventor.”

Silent Shichirōbei

The Guns of Sakai – Lone Wolf and Cub
Kazuo Koike & Goseki Kojima

The algorithm presented in the previous chapter producing the principal specializa-
tion of a term introduces potentially many predicates, several of which are redundant or
expressible in simpler forms. Additionally, in cases when there are several possibilities
for a certain variable (as is the case for polyvariant expressions), the given algorithm
just defers the decision of which value to assign, adding predicates to the context to
express that decision.

In this chapter we describe a phase that takes a predicate assignment and solves
those variables whose solution can be calculated. As a first step we present a variation
of the process of simplification and improvement, introduced by Mark Jones [1994b],
whose goal is to reduce the number of predicates, eliminating the redundant ones, and
deciding the values of variables with a unique solution. This simplification is the basis
for the constraint solving phase, where the decisions that were deferred during the
previous phases are solved, when possible (observe that in general, some decisions depend
on contextual information that may still not be present). Finally, a variation of the
algorithm of constraint solving, called evidence elimination, is described; its purpose is to
eliminate some evidence abstraction and applications remaining after constraint solving,
in favour of tuples, following the original formulation, and thus producing output that
can be accepted by a standard arity raiser.

With this separation, the specialization can be regarded as a static analysis of the
program, performed locally and collecting the restrictions that specify the properties of
the final residual program; the constraint solving phase can be viewed as the implemen-
tation of the actual calculation of the residual.

The work presented in this section has been published by Mart́ınez López and
Badenes [2003].

We begin, in Section 8.1, by describing the process of simplification, which will be the
basis for the other phases. In Section 8.2 we present the constraint solving, calculating
solutions for those variables that have more than one possibility. Then, in Section 8.3
we present the evidence elimination phase. The chapter concludes with some examples.

115
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8.1 Simplification and Improvement

8.1.1 Motivation

The algorithm calculating the principal specialization of an expression introduces sev-
eral predicates to express the dependencies of subexpressions on static data. But, as
this algorithm operates locally, often redundant predicates are introduced. With the
goal of reducing the number of predicates, both because of legibility and to lower the
computational effort of subsequent phases, we introduce a process of simplification of
predicates.

For example, with the algorithm W presented in Figures 7.4 and 7.5, the specializa-
tion of the term

λDx.lift ((x +S 1S ) +S (x +S 1S )) : IntS →D IntD

is the following residual term and type:

Λht ha hb hc.λx.hc : ∀t t′ t′′. IsInt t,

t′ := t + 1̂,

t′′ := t + 1̂,
t′′′ := t′′ + t′ ⇒ t → Int

where the redundancy of predicates can be observed.
By the use of a simplification process, this residual can be converted into this other

one:
Λh, h′.λx.h′ : ∀t, t′, t′′′.t′ := t + 1̂, t′′′ := t′ + t′ ⇒ t → Int

which, in some sense, is ‘simpler’ than the original, but equivalent.

8.1.2 Specification

To establish formally the notion of simplification, we recall the properties we expect of
a simplification relation. We also use a special notation.

Notation 8.1. In a simplification we use conversions of the form (Λh.[])((v)) and com-
positions of these. To simplify the reading, we use a particular notation for this restricted
form of conversions (we call them replacements): h←v is denoting the previous conver-
sion, and the composition of replacements is written h←v ·C to denote (Λh.C)((v)) (the
operator · associates to the right) In this way, h1←v1 · . . . ·hn←vn denotes the conversion
(Λh1 . . . hn.[])((v1 . . . vn)).

The following property of the operator (·) will be very useful:

Lemma 8.2. A conversion h←h is neutral for · (observe that [] is a particular case of
this.) That is, for every conversion C and evidence variable h, it holds that h←h ·C =
C = C · h←h.

Proof: For all e′, (h←h · C)(([))e′] = (Λh.C)((h))[e′] = (Λh.C[e′])((h)) =βv
C[e′][h/h] =

C[e′] The last step is justified by Proposition 8.3. The case C = C ·h←h is analogous.
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Proposition 8.3. (Λh.e′)((h))=e′

Proof: By (βv) and an easy induction.
Now we are ready to define simplification:

Definition 8.4. A relation S; C | h : ∆ ¥ h′ : ∆′ is a simplification for ∆ if C = h←v
and the following conditions hold:

(i) h′ : ∆′ ⊢⊢ v : S∆
(ii) S∆ ⊢⊢ ∆′

The conditions establish that the predicate assignments are equivalent with respect
to entailment (under S); as we intend to use this process to replace one predicate
assignment with another, it is a natural condition to ask. The condition about the
form of conversion C expresses that it can be used to transform an expression assuming
predicates in ∆ into another one assuming predicates in ∆′.

Observe that with this definition, Id; [] | ∆ ¥ ∆ is a valid simplification for ∆.
However, we expect that any interesting simplification will be able to do more work, as
the following example shows.

Example 8.5. Given

∆1 = h1 : IsInt 9̂, h2 : IsInt t′′′, h3 : t := 1̂ + 2̂, h4 : t′ := t + 3̂, h5 : t′′′ := t′′ + t′

∆2 = h5 : t′′′ := t′′ + 6

we would like our implementation of ¥ to satisfy

S; C | ∆1 ¥ ∆2

where S = [t/3̂][t′/6̂] and C = h1←9 · h2←h5 · h3←3 · h4←6; the reasons for that are:

• h1 : IsInt 9̂ can be trivially simplified by (IsInt), and 9 is its evidence.

• h2 : IsInt t′′′ is entailed by the fifth predicate.

• h3 : t := 1̂ + 2̂ can be simplified calculating the result of 1 + 2 and generating the
substitution that changes t for 3̂ in the fourth predicate.

• h4 : t′ := t + 3̂, can be simplified in a similar way, once the value of t is known
(from the previous predicate).

To conclude this subsection, we present a closure property of the simplification rela-
tion with respect to substitutions. It states that if two predicate assignments are related,
the instances of them will be related (provided the substitutions are ‘well behaved’).

Definition 8.6. Two substitutions S and T are said to be compatible with respect to a
type τ , written S ∼τ T , if TSτ = STτ . This notion extends naturally to type schemes
σ, predicates δ, and predicate assignments ∆.

Lemma 8.7. Let T ; C | ∆ ¥ ∆′ be a simplification for ∆. If S and T are compatible
under ∆, i.e. S ∼∆ T , then T ; C | S∆ ¥ S∆′ is a simplification for S∆.

This property is important to ensure that sequential steps of an algorithm give a
sound solution. This is presented in Section 8.2, where we combine simplification with
constraint solving.
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(SimEntl)
h : ∆ ⊢⊢ vδ : δ

Id; hδ←vδ | h : ∆, hδ : δ ¥ h : ∆

(SimTrans)
S; C | h : ∆ ¥ h′ : ∆′ S ′; C ′ | h′ : ∆′ ¥ h′′ : ∆′′

S ′S; C ′ ◦ C | h : ∆ ¥ h′′ : ∆′′

(SimCtx)
S; C | h1 : ∆1 ¥ h2 : ∆2

S; C | h1 : ∆1, h
′ : ∆′ ¥ h2 : ∆2, h

′ : S∆′

(SimPerm)
S; h1, h2←v1, v2 | h1 : ∆1, h2 : ∆2 ¥ h′

1 : ∆′
1, h

′
2 : ∆′

2

S; h2, h1←v2, v1[h2/v2] | h2 : ∆2, h1 : ∆1 ¥ h′
2 : ∆′

2, h
′
1 : ∆′

1

Figure 8.1: Structural rules for simplification

8.1.3 Implementing a Simplification

Our next step is to define a set of rules implementing a simplification relation.
We start with structural rules, which should be present in any good simplification;

they are presented in Figure 8.1. Rule (SimEntl) allows the elimination of redundant
predicates; this includes both predicates that are deducible from others, but also those
that are true by their form. For example, predicates of the form IsInt n̂ for known
n̂s, or predicates IsMG σ σ′ for which it can be shown that C : σ ≥ σ′. The second
rule, (SimTrans), provides transitivity, giving us a way to compose simplifications. The
third rule, (SimCtx), expresses how to simplify only part of an assignment; it is important
to note the use of the substitution S on the right hand side to cancel variables that
may have been simplified. Finally, the last rule, (SimPerm), establishes that predicate
assignments can be treated as if they had no order, closing the relation with respect to
permutations.

The last two rules are complementary, and usually used together. In order to express
this, we define a derived rule, (SimCHAM), which allows the application of simplification in
any context, following the ideas of the Chemical Abstract Machine [Berry and Boudol,
1990].

(SimCHAM)
∆′

1 ≈ ∆1 S; C | ∆1 ¥ ∆2 ∆2 ≈ ∆′
2

S; C≈ | ∆′
1, ∆ ¥ ∆′

2, S∆

In this last rule ((SimCHAM)), the equivalence ≈ is defined as the least congruence on
predicate assignments containing ∆, δ, δ′, ∆′ ≈ ∆, δ′, δ, ∆′, allowing assignments to be
considered as lists without order for the application of the simplification rules. It is
important to note that the order of predicates can be changed only when they are
still labeled with evidence variables in a predicate assignment (h : δ); after they are
introduced in a type with the (QIN) rule of qualified types theory, the link from the
variables to their predicates is only given by the order in which they appear in the
expressions (Λh. in terms and δ ⇒ in types).

We have to prove that the given structural rules (in Figure 8.1) indeed define a
simplification relation according to Definition 8.4.
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(SimOpres)
t ∼S n̂

S; hδ←n | hδ : t := n̂1 ⊗ n̂2 ¥ ∅
(n=n1⊗n2)

(SimMGU)
C : σ2 ≥ σ1

Id; h2←h1 ◦ C | h1 : IsMG σ1 s, h2 : IsMG σ2 s ¥ h1 : IsMG σ1 s

Figure 8.2: Language-dependent simplification rules

Theorem 8.8. The rules (SimEntl), (SimTrans), (SimCtx), and (SimPerm) (of Figure 8.1) define
a simplification relation, and the derived rule (SimCHAM) is consistent with it.

As a second step in implementing a simplification, we complete the relation defined
by the structural rules with those given in Figure 8.2, dealing with some constructs of
our language. Rule (SimOpres) internalizes the computation of binary operators, when all
the operands are known. A similar rule will exist for unary operators as well. The rule
(SimMGU) eliminates redundant uses of predicate IsMG, when two upper bounds of the
same variable are comparable. A similar rule for lower bounds would not make sense in
this system: as lower bounds are produced by the rules (SPEC), they have types instead
of schemes; in addition, evidence elimination will need to use all the lower bounds (see
Section 8.3). Regarding predicates as IsInt n̂ or IsMG σ σ′ when both σ and σ′ are not
scheme variables, they can be simplified using rule (SimEntl), as the entailment relation
can deal with them.

Again we have to show that these rules define a simplification relation.

Theorem 8.9. A system defining a simplification relation, extended with rules (SimOpres)

and (SimMGU) still defines a simplification relation.

Although the rules presented here as an implementation may seem restricted, its
goal is to simplify exactly the predicates generated by the specialization algorithm (not
including a rule for lower bounds is an example of this tailoring). When designing a
system as this one, the trade off between generality and specificity has to be taken into
account — in one end, a very general but useless simplification, and in the other one, a
non-tractable or unsolvable simplification would be obtained.

Extensions to the system presented here are possible, and in the case of extending
the language of predicates, necessary. Some of those are presented in the discussion
below (see Section 8.1.5).

8.1.4 Simplification during specialization

To use simplification during the specialization phase, we need to add a rule to the system
P; this rule can be used in any place, but in practice is only needed before the use of a
(POLY), or at the end of the derivation.

(SIMP)
h : ∆ | Γ ⊢

P
e : τ →֒ e′ : σ S; C | h : ∆ ¥ h′ : ∆′

h′ : ∆′ | SΓ ⊢
P

e : τ →֒ C[e′] : Sσ

We can prove that the new rule is consistent with the rest of the system
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Theorem 8.10. If h : ∆ | Γ ⊢
P

e : τ →֒ e′ : σ and S; C | h : ∆ ¥ h′ : ∆′ then
h′ : ∆′ | SΓ ⊢

P
e : τ →֒ C[e′] : Sσ.

Proof: By Proposition 6.22, h : S∆ | SΓ ⊢
P

e : τ →֒ e′ : Sσ. By definition of ¥, we have
h′ : ∆′ ⊢⊢ v : S∆ and then, by Proposition 6.21, h′ : ∆′ | SΓ ⊢

P
e : τ →֒ e′[h/v] : Sσ.

Finally e′[h/v] = (Λh.[])((v))[e′] = C[e′].
As we have seen, the relation of simplification is not necessarily functional, and then

there is the possibility to choose among different assignments to replace the current
one. In practice, we use a function simplify such that simplify(h, ∆) returns a triple
-

v : ∆′, S, C
®

such that S; C | h : ∆ ¥ v : ∆′. This follows Mark Jones [1994b].
Continuing with this idea, we also extend the specialization algorithm with the fol-

lowing rule:

(W-POLY)
h : ∆ | S Γ ⊢

W
e : τ →֒ e′ : τ ′

h′′ : IsMG σ s | TS Γ ⊢
W

poly e : poly τ →֒ e′′ : poly s

where:
e′′ = h′′[Λh′.C[e′]]
(h′ : ∆′, T, C) = simplify(h : ∆)
σ = GenTSΓ,∅((T∆′ ⇒ Tτ ′))
s and h′′ fresh

With this version of the algorithm, predicate assignments are simplified before their
introduction in the type schemes of poly s. It is important to note, however, that not
all predicates can be completely simplified before being introduced in the type schemes:
predicates with free variables will remain unsolved, and will not be simplified until
constraint solving (although the free variables can take their final value much earlier).

With these rules we have completed our goal of incorporating the simplification to
the specialization process. Additional features and more possible rules are discussed as
new constructs are added to the specializer.

8.1.5 Discussion

We can observe that most of the rules presented for simplification do not introduce
new substitutions; the only exception is rule (SimOpres). The difference between this
rule and the rest coincides with the notions of simplification and improving presented
by Mark Jones [1994b]: improving rules establish the value of some variables, if it is
uniquely determined. This differentiation will be important when applying simplification
to guarded predicates (in Chapter 9, Section 9.2): improving rules cannot be applied
unless we are sure that the substitutions produced do not alter variables that can ‘escape’
a given guard, because if that guard is going to take a false value, the predicate will
simply disappear, and the value assigned to the variable will be unsound. We will
complete this discussion when introducing booleans in Section 9.2.

The notion of improvement suggests more rules to be added to the system. In
particular, we propose two rules related to the nature of binary operators:

(SimOPinv)
t ∼S n̂

S; h←n1 | h : n̂1 := t ⊗ n̂2 ¥ ∅
(∃ unique n : n1=n⊗n2)
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(SimOpneu)
t ∼S k̂

S; [] | h : t′ := t ⊗ t′ ¥ h : IsInt t′
(k neutral to ⊗)

Other rules may (and do) exist for other operators, and for other constructs of the
language, perhaps based on entailment or reduction (as booleans — Section 9.2, case
statements for datatypes — Section 9.6, static functions — Section 9.4, etc.).

Another point to observe is that the incorporation of simplification in the algorithm
is suboptimal — that is, using the rule presented to perform simplification during spe-
cialization does not always produce optimal results in the predicates appearing in type
schemes. This is not a big problem, because those predicates will be simplified when
the type scheme is simplified or solved. We show this small drawback with an example.

Example 8.11. Observe the predicate context in the upper bound of variable sf .

⊢
P

letD f = λDy.poly (λDx.(lift x, lift y)D )
in (spec (f @D 2S ) @D 3S , spec (f @D 2S ) @D 4S )D

: ((IntD , IntD )D , (IntD , IntD )D )D

→֒ Λhu
f .Λhℓ

f3
.Λhℓ

f4
.let f = λy.hu

f [Λhx.Λhy.λx.(hx, hy)]
in (hℓ

f3
[f@•]@•, hℓ

f4
[f@•]@•)

: ∀sf .IsMG (∀tx.hx : IsInt tx, hy : IsInt 2̂
⇒ tx → (Int, Int)) sf

IsMG sf (3̂ → (Int, Int))

IsMG sf (4̂ → (Int, Int))
⇒ ((Int, Int), (Int, Int))

The predicate IsInt 2̂ appears in this context because when it was produced, the value
of y was not known, and so, the predicate wasn’t simplified. As we have said, this is not
a problem, because the predicate will be simplified when performing constraint solving.

8.2 Constraint Solving

8.2.1 Motivation

In the presence of poly and spec annotations, the specializer does not decide the final
form of polyvariant expressions, but abstracts it with evidence variables (used in every
definition point poly and use point spec) until all the information can be gathered.
These evidence variables are a key component of principality, as they abstract the dif-
ferent instances of a term, and will be replaced by conversions when the values of scheme
variables are decided.

This section presents constraint solving, a process for deciding the final values of
scheme and type variables that cannot be decided by simplification, and thus cannot be
performed arbitrarily during specialization (in the general case, because global informa-
tion is needed — indeed, a principal specialization for a term is a kind of intermediate
form that takes its final value when integrated in a bigger context.) In this way, complete
specializations are produced by the combination of two clearly separated parts:
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• the specification part, where a description of the problem is constructed, corre-
sponding to the specialization described in previous chapters, and

• an implementation part, where a solution for the constructed description is found,
corresponding to the constraint solving presented in this section.

Following Aiken [1999], we can see that this approach treats type specialization as a
static program analysis where each part of the program is analyzed locally, and then
allows the application of resolution techniques for the generated constraints. In the field
of type specialization, this approach provides a language allowing to express problems
and to look for solutions in a uniform way.

An example of the need for constraint solving was given in the previous chapter, in
Example 7.22.

As we have done with simplification, we first specify the idea of constraint solving,
and then we implement an heuristic for our particular language, followed by a discussion
on different aspects of the notion.

8.2.2 Specifying Solutions

To begin with, we define when a substitution mapping scheme variables to type schemes
can be called a solution, when it can be performed, and what other components are
needed.

Definition 8.12. [Solving] A solving from a predicate assignment ∆1 to ∆2, requiring
the predicates of ∆′, is a relation

S, T ; C | ∆1 + ∆′
¤V ∆2

where S and T are substitutions, C a conversion and V a set of type variables, such
that

(i) T ; C | S∆1, ∆
′ ¥ ∆2

(ii) dom(S) ∩ (V ∪ FTV(∆′)) = ∅

We say that S is the solution of the solving, and that V restricts the application of
S.

While solving may appear similar to simplifying at a first glance, its consequences
are stronger. The substitution S, the solution, may decide the values of some scheme
variables and it is not required that the new (solved) predicate assignment entails the
original one (in contrast to simplifying, where both predicate assignments are equivalent
in some sense). It is for this reason that several different solutions may exist for a given
predicate assignment, although they can be compared using the notion of ‘more general’
on the type schemes substituted.

Example 8.13. Recalling Example 7.22, the residual term obtained was

let f = hu
s [Λhx.λx.hx + 1] in (hℓ

s1
[f ]@•, hℓ

s2
[f ]@•)
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and the predicate assignment calculated after simplification for the type (Int, Int) was

hu
s : IsMG (∀t.IsInt t ⇒ t → Int) s,

hℓ
s1

: IsMG s (4̂2 → Int),

hℓ
s2

: IsMG s (1̂7 → Int)

(simplification cannot eliminate these predicates without knowing the value of s.) This
assignment indicates that the value of s has to be a type scheme instance of (∀t.IsInt t ⇒
t → Int) more general than (4̂2 → Int) and (1̂7 → Int). In this case, the only value that
satisfies the restrictions is (∀t.IsInt t ⇒ t → Int) which is proved by the conversions

[] : (∀t.IsInt t ⇒ t → Int) ≥ (∀t.IsInt t ⇒ t → Int)

[]((42)) : (∀t.IsInt t ⇒ t → Int) ≥ (4̂2 → Int)

[]((17)) : (∀t.IsInt t ⇒ t → Int) ≥ (1̂7 → Int)

By using these conversions as evidence for hu
s , hℓ

s1
, and hℓ

s2
on the term, we obtain

(modulo reduction):

let f = Λhx.λx.hx + 1 in (f((42))@•, f((17))@•) : (Int, Int)

This last term can be transformed using the variation of constraint solving called evi-
dence elimination, described in Section 8.3, to a term using tuples for the residuals of
polyvariant expressions:

let f = (λx.42, λx.17)S in (πS

1,2 f, πS

2,2 f) : (Int, Int)

(Observe how the function f takes two residuals in this term.)

8.2.3 Solving and Specialization

We now study how solving can be performed during specialization, by incorporating it
to system P.

(SOLV)
∆1 | Γ ⊢

P
e : τ →֒ e′ : σ S, T ; C | ∆1 + ∆′ ¤FTV(Γ,σ) ∆2

∆2 | TΓ ⊢
P

e : τ →֒ C[e′] : Tσ

In contrast with the case of simplification, some cautions have to be taken to avoid
unsound results: if a variable is decided when some of the information affecting its set
of possible values is missing — which can happen if a scheme variable occurs anywhere
in the residual type or in the type assignment Γ— then it must not be solved. This
situation is captured in the rule by the use of the set FTV(Γ, σ) in the solving premise
(and there used for condition (ii) of Definition 8.12), and its effect shown in the following
example.

Example 8.14. Specializing the term e defined as:

letD f = poly (λDx.λDy.(lift x, lift y))
in (spec f @D 1S @D 2S , f)

: ((IntD , IntD ),poly (IntS → IntS→ (IntD , IntD )))
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gives the residual term

Λhu
f , h

ℓ
f .let f = hu

f [Λhx.Λhy.λx.λy.(hx, hy)]
in (hℓ

f [f ]@ • @•, f)
: ∀s.IsMG (∀t, t′.IsInt t, IsInt t′ ⇒ t → t′ → (Int, Int)) s,

IsMG s (1̂ → 2̂ → (Int, Int))
⇒ ((Int, Int),poly s)

Had the variable s been solved before moving the predicates from the context into the
type, a suitable solution would have been to choose σ = ∀t, t′.IsInt t, IsInt t′ ⇒ t → t′ →
(Int, Int), giving

let f = Λhx, hy.λx.λy.(hx, hy) in (f((1))((2))@ • @•, f) : ((Int, Int),poly σ)

However, this solution, although correct, is not general enough; if the original term e
appears in the following program (observe the use of monovariant identity functions to
force two expressions to have the same residual type):

letD e = . . .
in letD id1 = λDx.x
in letD id2 = λDx.x
in letD g = id2 @D poly (λDx.λDy.(lift (id1 @D x), lift (id1 @D y)))
in spec (id2 @D (snd e)) @D 4S @D 4S : (Int, Int)

and is specialized in a monolithic fashion, the result is

let e = . . .
in let id1 = λx.x
in let id2 = λx.x
in let g = id2@hu

g [(Λhxy.λ
Dx.λDy.(hxy, hxy))]

in (hℓ
e[(id2@(snd e))])@ • @• : (Int, Int)

with the following predicate assignment

hu
f : IsMG (∀t′, t′′.IsInt t′, IsInt t′′ ⇒ t′ → t′′ → (Int, Int))

(∀t, t′.IsInt t, IsInt t′ ⇒ t → t′ → (Int, Int)),
hu

g : IsMG (IsInt t ⇒ t → t → (Int, Int))
(∀t, t′.IsInt t, IsInt t′ ⇒ t → t′ → (Int, Int)),

hℓ
f : IsMG (∀t, t′.IsInt t, IsInt t′ ⇒ t → t′ → (Int, Int))

(1̂ → 2̂ → (Int, Int)),
hℓ

e : IsMG (∀t, t′.IsInt t, IsInt t′ ⇒ t → t′ → (Int, Int))

(4̂ → 4̂ → (Int, Int)),
ht : IsInt t

But this predicate assignment is not solvable! The reason is the second predicate, which
has a form forced by the premature decision about the value of s.

As with simplification, we give a proof that the rule (SOLV) is sound.

Theorem 8.15. Given ∆1 | Γ ⊢
P

e : τ →֒ e′ : σ, and if S, T ; C | ∆1 + ∆′ ¤FTV(Γ,σ) ∆2

then, it is also the case that

∆2 | TSΓ ⊢
P

e : τ →֒ C[e′] : TSσ.
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sσt
s σt′

ss = ∀t.IsInt t ⇒ t → t → t

s2̂ → 2̂ → 2̂ s 3̂ → 3̂ → 3̂

✁
✁
✁

❆
❆

❆

❆
❆
❆

✁
✁

✁

s σ′

sσ′
2

s σ′
3

s 2̂ → 3̂ → Int

❆
❆
❆

✁
✁

✁

✁
✁
✁

❆
❆

❆

IsMG σt s

IsMG σt′ s

IsMG s (2̂ → 2̂ → 2̂)

IsMG s (3̂ → 3̂ → 3̂)

IsMG σ′ s

IsMG s (2̂ → 3̂ → Int)

(a) Unique solution (b) Multiple solutions

where
σt = ∀t, t′.IsInt t, IsInt t′ ⇒ t → t′ → t

σt′ = ∀t, t′.IsInt t, IsInt t′ ⇒ t′ → t → t

σ′ = ∀t, t′.IsInt t, IsInt t′ ⇒ t → t′ → Int

σ′
2 = ∀t′.IsInt t′ ⇒ 2̂ → t′ → Int

σ′
3 = ∀t.IsInt t ⇒ t → 3̂ → Int

Figure 8.3: Lattice of solutions

8.2.4 Finding Solutions

In previous sections we have defined the notion of solving, and the way to include it
in the specialization process, but we have not said anything about how to actually
calculate a solution. The predicates which need the calculation of solutions are those
used to express polyvariance, and the scheme variables associated with them. We have
seen that IsMG predicates produced by the algorithm (and not simplified away) have
two possible forms: they are upper or lower bounds to some scheme variable. So, we
may use the lattice of type schemes induced by the ≥ order to guide the looking for
solutions. We can see this graphically in Figure 8.3. Any value satisfying the conditions
is a good solution — if any exists. This is discussed a bit further in Section 8.3.3.

To perform the constraint solving, we proceed incrementally: in the absence of dy-
namic recursion there is always a scheme variable that does not depend on any other,
and thus can be solved. We justify the incremental nature with the following lemma.

Lemma 8.16. Composition of solvings is a solving.
That is, if S2 ∼S1∆1,∆′ T1, S1, T1; C1 | ∆1 +∆′ ¤V ∆2, and S2, T2; C2 | ∆2 +∆′′ ¤V ∆3

then
S2S1, T2T1; C2 ◦ C1 | ∆1 + (S2∆

′, ∆′′) ¤V ∆3

In presence of recursion, we need a more powerful method. A discussion about this is
deferred to Sections 9.7 and 14.

What about arithmetic predicates whose variables are not functionally determined
by the context? This kind of situation may produce ambiguous cases for specialization,
as the following example shows.
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Example 8.17. Consider the following specialization:

⊢ letD f = λDx.lift x in 2D : Int

→֒ Λhx.let f = λx.hx in 2 : ∀tx.hx : IsInt tx ⇒ Int

Any value n̂ is good for tx (thus fixing hx), but none appears to be the right choice —
there is no relation between solutions. So, this term has an ambiguous specialization.

However, ambiguity may not arise: if the ambiguous term appears in a polyvariant
context that is never specialized, there is no need to solve the predicates.

Example 8.18. Consider the following specialization:

⊢ letD g = poly (λDx.lift x) in 2D : Int

→֒ let g = hu[Λhx.λx.hx] in 2 : Int

with the predicate assignment

hu : IsMG (∀tx.hx : IsInt tx ⇒ Int) s

which can be solved trivially by choosing s to be the value of the upper bound, with the
consequence that the predicate IsInt tx needs not to be solved.

8.2.5 An Algorithm for Constraint Solving

We have already defined the notion of resolution, and we have discussed some aspects
of possible solutions and how to find them. In this section we give an algorithmic
implementation of a heuristic to find, in those cases when it is possible, a resolution
for all the predicates in a specialization judgement. The goal of the presentation is to
establish the form in which solutions can be found, and how to use them, and not to
give a detailed executable implementation. For this reason, we present several functions
expressed in a pseudo-functional code.

Constraint solving is defined by the function stepSolve, that, given a predicate
assignment and a (scheme) variable to solve, finds a solution for it and simplifies the
resulting predicates.

We use vectorial notation for lists here: for example, σ̄ represents a list of type
schemes, while σi will denote each of its elements.

Function stepSolve is defined in terms of several functions, described below (from
the most primitive to the most complex ones):

• glb: it calculates the greatest lower bound of a list of qualified type schemes. For
simplicity, we describe the algorithm working on two schemes, as its generalization
is simple (either by iteration of couples or by a generalization of the method).

Given σ1 = ∀αi.∆1 ⇒ τ1 and σ2 = ∀βj.∆2 ⇒ τ2, and assuming αi ∩ βj = ∅ (in
other case, we can perform an α-conversion), the algorithm

1. calculates the most general unifier U for τ1 and τ2, τ1 ∼
U τ2.
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2. returns the generalization of the type, qualified with both predicate assign-
ments where U has been applied: glb(σ1, σ2) = Gen∅,∅(U∆1, U∆2 ⇒ Uτ1)

• conversion: given two type schemes σ and σ′, returns, if it exists, a conversion
C such that C : σ ≥ σ′.

• makeMoreGeneral: similar to conversion, but ‘forcing’ the schemes to be com-
parable (in case they weren’t) by adding predicates when necessary. Given two
type schemes σ and σ′, it returns a conversion C and a predicate assignment ∆
such that C : σ ≥ (∆ | σ′).

• findSolution: implements the searching of a solution, given the upper and lower
bounds for a scheme variable.

findSolution σ̄u σ̄ℓ s = let
σ = glb σ̄u

C̄ u = conversion (σ̄u , σ)
(C̄ ℓ, ∆̄f ) = makeMoreGeneral (σ, σ̄l)
∆f = concat ∆̄f

in
(C̄ u , C̄ ℓ, ∆f , σ)

• stepSolve: it is the main step of our constraint solving heuristic. It takes a
predicate assignment of the form

∆ = {hui
: IsMG σui

s},{hlj : IsMG s σlj},∆s

and a variable s with s /∈ FTV(∆s, σui
, σlj), it returns a substitution S, a conver-

sion C, two predicate assignments ∆f and ∆′ such that the resolution S, T ; C | ∆+
∆f ¤V ∆′ holds for any V not containing s. It is implemented as follows:

stepSolve chooseEv s ({hui
: IsMG σui

s}, {hlj : IsMG s σlj }, ∆s) =
let

(C̄ u , C̄ ℓ,∆f , σ) = findSolution (σ̄u , σ̄ℓ, s)
(C̄ u

2 , C̄ ℓ
2 ) = chooseEv (C̄ u , C̄ ℓ)

(T ,C ,∆′) = simplify (∆s ,∆f )
in

( [σ/s ], T , C ◦ ( h̄u←C̄ u
2 · h̄ℓ←C̄ ℓ

2 ), ∆f , ∆′ )

The argument chooseEv is a function receiving and returning a pair of lists of
conversions; it will be used in Section 8.3 to eliminate evidence from the term. If
evidence elimination does not have to be performed, id can be used.

Function stepSolve provides one step of the algorithm. As we have justified in
Lemma 8.16, constraint solving can be composed of several individual steps, in such a
way that their composition is a solution for the original assignment. The variable to be
solved in each individual step can be anyone, provided it satisfies the condition of not
being dependent on others — thus any of them can be chosen; an algorithm to select
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this variable must check this dependency condition, and pick any of those satisfying it.
The final algorithm is the composition of the function stepSolve with itself, iterating
over each of the solvable variables.

This iterative process can be optimized in several ways. For example, the dependence
between two type schemes can be “remembered” from one iteration to the next, forcing
the resolution order without further calculations.

Lemma 8.19. The heuristic presented is correct wrt. the definition of the constraint
solving relation. That is:

1. If σ = glb(σ1, σ2) then there exist conversions C1, C2 such that Ci : σi ≥ σ, and
for any σ′ such that σi ≥ σ′ it will be true that σ ≥ σ′.

2. findSolution finds a solution for s, respecting the given bounds. That is, the con-
versions for upper bounds satisfy that Cu

i : σu
i ≥ σ and similarly for lower bounds,

Cℓ
i : σℓ

i ≥ (∆ℓ
f | σ).

3. If (S, T, C, ∆f , ∆
′) = stepSolve id s ∆ and s /∈ V then

S, T ; C | ∆ + ∆f ¤V ∆′.

It is important to remark that the algorithm solve, obtained by the repeated com-
position of setpSolve with itself, is not defined for every predicate assignment. In
particular, those assignments that cannot be divided in three separate parts for a given
scheme variable: (i) its upper bounds, (ii) its lower bounds, and (iii) the predicates not
containing it. Such contexts are not generated by specialization for any expression in
our simplified language. However, additional constructs in the language may introduce
new predicate forms for which determining all the upper and lower bounds depends on
the resolution of that variable (and in fact they do: eg. dynamic recursion). This is
discussed in detail in Sections 9.7 and 14. For this reason we call this algorithm an
heuristic.

8.2.6 Examples

We provide a detailed example for the better understanding of the process of constraint
solving just defined. It shows, step by step, the application of the constraint solving
algorithm, motivating:

1. the iterated resolution of different scheme variables, showing how the solution for
one of them provides information to solve the following one.

2. the movement of predicates between the type and the contextual predicate assign-
ment (to and from polys),

3. the flow of evidence information between the term and its type, by means of
evidence variables and conversions.
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Additionally, it can also be observed that the final result of a constraint solving may
be excessively ‘complicated’, full of evidence expressions (abstractions and applications)
that are a byproduct of the internal representation of the process. These constructs are
eliminated using the evidence elimination procedure, a modification of the constraint
solving phase, described in Section 8.3.

Consider the following principal specialization:

∆ ⊢
P

letD f = poly (λDx.lift (x +S 2S))
in letD g = poly (λDy.spec f @D (y +S 1S))

in spec g @D 2S : IntD

→֒ let f = hu
f [Λhx.Λh′′

x.λx.h′′
x]

in let g = hu
g [Λhy.Λhℓ

f .Λh′
y.λy.hℓ

f [f ]@•]
in hℓ

g[g]@• : Int

where the context is given by the predicate assignment ∆:

∆ = hu
g : IsMG (∀ty, t

′
y.IsInt ty, IsMG sf (t′y → Int), t′y := ty + 1̂ ⇒ ty → Int) sg,

hℓ
g : IsMG sg (2̂ → Int),

hu
f : IsMG (∀tx, t

′′
x.IsInt tx, t

′′
x := tx + 2̂ ⇒ tx → Int) sf ,

In the expression there appear two polyvariant functions, each one with a single use.
But the application of f is inside the body of g, so the arguments of f will not be
known until all the possible forms for g have been determined (note that had g not
been applied anywhere, its code would have been the empty tuple, and the same for
f .) During specialization, when looking for a variable to solve, both variables sf and sg

satisfy the dependency condition, but only sg is solvable at this stage.
The value for sg is chosen to be the only upper bound, and the resulting predicate
assignment is simplified, producing 2̂ as the value for ty.

The predicates appearing in the type scheme of the upper bound for sg are added
to the context, but with fresh variables. These predicates are those captured by the
assignment named ∆′ in the rule (SOLV). The result is

(1) h∗
1 : IsInt 2̂ = (IsInt ty)[2̂/ty]

(2) h∗
2 : IsMG sf (t′y → Int)

(3) h∗
3 : t′y := 2̂ + 1̂ = (t′y := ty + 1̂)[2̂/ty]

The first and third predicates are trivially simplified calculating the addition, and as-
signing the value 3̂ to the variable t′y; the second one is left in the remaining assignment.
In the term, the following evidence expressions were used during solving:

[] for hu
g

[]((2))((h∗
2))((3)) for hℓ

g

At this step, the specialization is (after applying the two conversions):

let f = hu
f [Λhx, h

′′
x.λx.h′′

x]
in let g = Λhy, h

ℓ
f , h

′
y.λy.hℓ

f [f ]@• in g((2))((h∗
2))((3))@• : Int
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with the following predicate assignment as its context

hu
f : IsMG (∀tx, t

′′
x.IsInt tx, t

′′
x := tx + 2̂ ⇒ tx → Int) sf ,

h∗
2 : IsMG sf (3̂ → Int)

The rest of the work is simple: there is only one single scheme variable to solve, and it
occurs in two predicates: an upper bound, and a lower one. Again the upper bound is
chosen as the solution for sf , with [] as the evidence for hu

f , and then, the last predicate
remaining is simplified,

h∗
2 : IsMG (∀tx, t

′′
x.IsInt tx, t

′′
x := tx + 2̂ ⇒ tx → Int) (3̂ → Int)

performing the unification between tx and 3̂, resulting in the value 5̂ for t′′x, so using
[]((3))((5)) as evidence for h∗

2. The solving process finishes, resulting in the term

let f = Λhx, h
′′
x.λx.h′′

x

in let g = Λhy, h
ℓ
f , h

′
y.λy.hℓ

f [f ]@• in g((2))(([]((3))((5))))((3))@• : Int

that is a term equivalent to the solution expected.
The equivalence concerns the use of evidence abstraction and application: if all the
uses of f and g are known, the applications of evidence can be ‘moved’ towards the
abstractions, and βv reductions performed (static tuples have to be used), resulting in:

let f = λx.5
in let g = λy.f@•

in g@• : Int

In the next section, Section 8.3, a process to calculate this kind of transformation is
defined, based on the process of context solving.

8.2.7 Discussion

There are some aspects of the constraint solving process that deserve to be discussed a
bit further.

The first issue is related with the implementation of the solving process. The rule
(SOLV) allows to perform resolution during specialization, and the heuristic defined allows
the solving of those variables whose information is completely provided. In the actual
implementation, some way to track down dependences among scheme variables would
allow us to perform this stage much more efficiently. Additionally, dynamic recursion
needs a different treatment, because of the form of constraints it imposes on variables;
however, we think that the present formalization clarifies the restrictions and complica-
tions of the task, and in doing so goes further into the proper definition of the problem
and its solution.

The second issue is the similarities and differences between simplification and solv-
ing. As processes, they look similar, instantiating variables and eliminating predicates.
However, the fundamental difference is the kind of decisions taken in each case:
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• simplifications work only on contexts, independently of the term under specializa-
tion, removing redundant predicates, or expressing them in simpler forms. For this
reason, all the values decided are unique (by virtue of the ‘equivalence’ given by
the double ⊢⊢), and thus deducible wrt. entailment from the context they appear.

• constraint solving, on the other hand, works both with the predicates and the
terms (by transforming them according to the evidence calculated). The process
has to take decisions about the values of variables, although those values are not
a direct consequence of the context — several possible solutions for some of them
may exist. The heuristic presented here chooses the greatest lower bound of all the
upper bounds, because it is a simple choice. We conjecture that all the possible
solutions are equivalent in some sense, although that needs further treatment to
be proved.

The decisions taken during constraint solving represent the answers to the problems
found during the specialization phase that cannot be solved locally. So, the predicates to
be solved depend essentially on the constructs present in the term under specialization.
Our work here has to be regarded mainly as a base for the search for solution algorithms
for more complex languages.

8.3 Evidence Elimination

The purpose of evidence elimination is to remove all the evidence constructs (abstrac-
tions and applications) introduced during the constraint solving phase, in favour of static
tuples, thus obtaining a residual term in the same language used by Hughes [1996b].
Additionally, the repeated abstraction and application of evidence has a computational
overhead, so the terms obtained with evidence elimination are more efficient (indeed
static tuples also have computational overhead, but the process of arity raising, de-
scribed by Hughes, removes it.) This process is obtained by a slight modification of the
process of constraint solving.

Consider again the principal specialization of Example 6.17.

⊢P letD f = poly (λDx.lift x +D 1D )
in (spec f @D 42S , spec f @D 17S )D : (IntD , IntD )D

→֒ Λh′, h1, h2.let f ′ = h′[Λh.λx′.h + 1] in (h1[f
′]@•, h2[f

′]@•)
: ∀s.IsMG (∀t.IsInt t ⇒ t → Int) s,

IsMG s (4̂2 → Int), IsMG s (1̂7 → Int) ⇒ (Int, Int)D

The constraint solving process generates one single version of function f , which is
then applied to different evidence:

let f = Λhx.λx.hx in (f((42))@•, f((17))@•) : (Int, Int)

One possible alternative residual term, equivalent to the previous one, but with two
versions for function f , would have been

let f = (λx.42, λx.17)S in (πS

1,2 f@•, πS

2,2 f@•) : (Int, Int) (8.1)
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We expect evidence elimination to remove all the abstractions and applications of
evidence possible, without introducing more elements than needed, and being ‘optimal’
in some sense (for example, not creating two versions of a function when only one is
needed).

In the rest of this section we present an extension to the constraint solving phase
performing evidence elimination.

8.3.1 Extensions to the language of evidence

As we have said, evidence constructs will be removed in favour of static tuples. For that
reason, we extend the language of evidence with new constructs for static tuples:

e′ = . . . | (e′, . . . , e′)S | πS

n,n e′

C = . . . | (C , . . . , C )c | πc

n,n []

The first construct is used to create static tuples (both in the languages of expressions
and conversions), and the second one is used to create projections for those tuples (again
in both languages). So, (e′1, . . . , e

′
n)S denotes a residual term for every natural number

n, and πS

i,n e′ projects the i-th component of a tuple e′ with n components, for all natural
numbers i and n such that i ≤ n. The special case of the empty tuple, ()S , is also a valid
expression, that can be regarded as a term with no information, similar to • (indeed
sometimes it is convenient not to distinguish them.)
In the case of conversions, the new forms construct tuples and projections in the following
way:

πc

i,n[e′] = πS

i,n e′

(C 1, . . . , C n)c [e′] = (C 1[e
′], . . . , C n[e′])S

The constructs are annotated with c to distinguish them from their counterparts in the
language of expressions — this new label is an annotation representing the fact that we
are expressing something in the language of conversions. Observe that the conversions
creating static tuples replicate the code of e′!

The reason for using static tuples is that this is not the final step of specialization:
these tuples can be removed by a later phase of arity raising.

8.3.2 Eliminating Evidence via Constraint Solving

To eliminate evidence expressions, we proceed, during constraint solving, to construct
different conversions as evidence for the predicates being solved. Those conversions are
constructed based on the set of upper and lower bounds for the scheme variable being
solved.

• Let s be the variable selected for solving. We know that it only appears in the
bounds, because the dependency condition must be satisfied.

• Let σu
i and σℓ

j be the sets of upper and lower bounds for s, respectively.

Two conditions hold: all the upper bounds are more general (wrt. ≥) than any lower
bound, and there exists the greatest lower bound of all of them, σglb = glb({σu

i }i=1..n);
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∆ ≡hu
1 : IsMG σu

1 s,
...

hn
1 : IsMG σu

n s,

hℓ
1 : IsMG s σℓ

1,
...

hℓ
m : IsMG s σℓ

m

rσu
1 ❅

❅
❅

❅
❅
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1
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1

¡
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C ℓ
1

r σℓ
j

C ℓ
j

r σℓ
m

❅
❅

❅
❅

❅
❅❘

C ℓ
m

rs = σglb = glb{σu
i }

The conversion between any σu
i and σℓ

j is obtained composing C ℓ
j ◦ C u

i .

Figure 8.4: Construction of conversions to eliminate evidence

this value, σglb is more general than any of the lower bounds σℓ
j, and it is the value

chosen by the algorithm as the value of s.
The conversions used as evidence for variable hu

i during the algorithm of Section 8.2
were Cu

i , which converts and expression of type σu
i in one of type σglb. Similarly, Cℓ

j was
used for hℓ

j, converting terms of type σglb into terms of the required type, σℓ
j. The reason

for this choice was that, in any point were a polyvariant expression is used (speced), an
expression of type σu

i has to be converted in one of type σℓ
j — that is obtained by the

composition of the conversions mentioned. This information is depicted graphically in
Figure 8.4.

This point is where evidence elimination differs from constraint solving: instead of
converting every expression producing upper bounds to the type σglb in the definition
points (polys), and the expressions producing lower bounds to the corresponding type
at the use points (specs), to perform evidence elimination the definition points will be
converted to all the possible forms required, by using the static tuples just introduced,
and the use points will only select the component needed by using the projections. This
is expressed by changing the evidence constructed to:

(C ℓ
1 ◦ C u

i , . . . , C
ℓ
m ◦ C u

i )
c for IsMG σu

i s
πc

j,m [] for IsMG s σℓ
j

The justification is that at every use (j-th lower bound) where the i-th definition is used,
the composition of (C ℓ

j ◦ C u
i )

c and πc

j,m [] is

πc

j,m [] ◦ (C ℓ
1 ◦ C u

i , . . . , C
ℓ
m ◦ C u

i )
c = C ℓ

j ◦ C u
i

which is equivalent to the conversion used in the previous algorithm.
For the implementation of this process, let’s recall that the function stepSolve takes

an argument that is a function for transforming two lists of conversions — during
constraint solving the identity functions was used. Instead, we define the function
eliminateEv such that the function stepSolve eliminateEv implements the desired pro-
cess:



134 Chapter 8. Constraint Solving and Postprocessing

eliminateEv (C̄
u

i=1..n , C̄
ℓ
j=1..m) =

let
ubs = { (C ℓ

1 ◦ C u
i , . . . , C ℓ

m ◦ C u
i )c }i=1..n

lbs = { πc

j ,m [] }j=1..m

in
(ubs , lbs)

Let’s see an example.

Example 8.20. Consider the following specialization:

∆ ⊢
P

letD f = poly (λDy.lift y) in spec f @D 7S : Int

→֒
let f = hu[Λhy.λy.hy] in hℓ[f ]@• : Int

where ∆ is
hu : IsMG (∀t.IsInt t ⇒ t → Int) s,

hℓ : IsMG s (7̂ → Int)

There are two possible solutions for s: the upper or the lower bound. In the first case,
the evidence will be [] for hu and []((7)) for hℓ, giving, by constraint solving, the term:

let f = Λhy.λy.hy in f((7))@• : Int

This term contains the evidence abstraction and application that has to be eliminated.
In the second case, the evidence should be []((7)) for hu and [] for hℓ, giving the term:

let f = λy.7 in f@• : Int

However, after evidence elimination, both solutions give the same result:

let f = (λy.7)S in πS

1,1 f@• : Int

8.3.3 Discussion

There are some issues that deserve further discussion.
The first one concerns the criteria used to decide how many elements a tuple should

have. As it has been said, polyvariance is the ability to produce different specializations
for a single term. But the processes of proper specialization and constraint solving
do not replicate code, so they are not able to give those different versions of the same
expression. It is during evidence elimination, by the use of conversions producing tuples,
that the code is replicated. It is important, when applying this method, to decide how
many copies of an expression will be produced. There are different criteria to decide
this.

• One for each use: That is, a different conversion for each occurrence of a spec—
but as there may be different specs with the same arguments, the resulting tuple
will usually contain repeated elements, which is not desirable.
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• One for each residual type: The conversions do not depend on the values of the
arguments of a polyvariant function, but on their types. So, another possibility is
to produce one element in the tuple for every residual type. However, this choice
still produces repeated elements.

• One for each conversion (syntactically): It is usual that two different lower bounds
can be satisfied by one conversion, so resulting in the same residual code. This
choice will require the syntactic comparison of conversions, something that can
be easily implemented, but that can produce few enhancements from the previous
choice.

• One for each conversion (extensionally): This variant is similar to the previous
case, but testing the conversions by the semantic equivalence. This option, how-
ever, is computationally unfeasible.

• One for each residual code: A new component will be created only if the result of
the composition of conversions produces a new residual code. However, to check
this every lower bound has to be compared with every upper bound, and the
process is then expensive.

The alternatives presented are ordered from the one identifying fewest elements to
the one identifying all of them. Having the implementation cost in mind, the most
reasonable one seems to be the second one, because, although it is not optimal, it
provides a good trade-off.

The lack of optimality for this choice can be seen in the following example.

Example 8.21. Consider the source term

λDy.letD f = poly (λDx.lift x)
in (spec f @D 13S , spec f @D 13S , spec f @D y)

: IntS →D (IntD , IntD , IntD )

The following specializations are possible:

1. Specialization as the one given by Hughes [1996b] (considering the term in isola-
tion; with a different context the result may vary):

λy. let f = (λx.13)S

in (πS

1,2 f@•, πS

1,2 f@•, πS

1,2 f@y) : 1̂3 → (Int, Int, Int)

2. Principal specialization (with simplification):

Λhu, hℓ
13, hy, h

ℓ
y.λy.let f = hu[Λhx.λx.hx]

in (hℓ
13[f ]@•, hℓ

13[f ]@•, hy[f ]@•)
: ∀ty, s.IsMG (∀tx.IsInt tx ⇒ tx → Int) s,

IsMG s (1̂3 → Int),
IsInt ty,
IsMG s (ty → Int) ⇒ ty → (Int, Int, Int)
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3. Principal specialization and constraint solving:

Λhy.λy.let f = Λhx.λx.hx

in (f((13))@•, f((13))@•, f((hy))@•)
: ∀t.IsInt t ⇒ t → (Int, Int, Int)

4. Constraint solving with evidence elimination:

Λhy.λy.let f = (λx.13, λx.hy)
S

in (πS

1,2 f@•, πS

1,2 f@•, πS

2,2 f@•)
: ∀t.IsInt ty ⇒ ty → (Int, Int, Int)

In the source term, there are two specializations of f for an argument with the same
residual type (1̂3), and another one for an argument with a type still unknown. When
specializing, two identical IsMG predicates are generated — and one of them is elimi-
nated by simplification — so the same (abstracted) evidence hℓ

13 is used. However, the
third case, spec f @D y, is more problematic: it cannot be known if the value of y will
be 13 or not; in the latter case a new specialization is needed, but in the former, there
isn’t. So, what decision should be taken?

In the specialization given by Hughes [1996b] (8.21-1), the function f is specialized to
a tuple with a single element, but keeping internally the possibility of further extension.
If during the specialization of the context (remember that in this case, the specialization
is monolithic), a different value for y is discovered, some backtracking is done, and a
new component is created in the tuple. When the specialization ends, the last task is to
‘close’ all the tuples, fixing the value of y to 13. This is a decision that is not desirable
for modular specialization.

The principal specialization (8.21-2) is the most general form, expressing all the
possible solutions. But the term is not in its final form: the value of the variable s has
not been decided.

When constraint solving is considered (8.21-3), there is no replication of code. How-
ever, some evidence constructs appear that cannot be eliminated, and the term differs
for the one desired (using different specializations for each spec).

Finally, in (8.21-4) the term after evidence elimination is presented. As there are
two predicates as lower bounds, the resulting tuple will have two components. But if
later this term were to be applied to an argument with value 13S , the second component
would be identical to the first one, and the process of evidence elimination would not
be able to identify this fact.

One possibility to fix this problem is to wait until all the lower bounds are closed,
but this contradicts our purpose of modularity. Another solution would be to formalize
a notion of ‘extensible tuples’, creating a tuple with a single component but ‘open’, thus
accepting further components in case they are needed.

Another issue to be discussed is the choice of the greatest lower bound as the solution
for a given variable. As we have seen, there are several possible solutions that we can
choose. But as we have shown in Example 8.20, after evidence elimination all of them
may give the same residual term. We conjecture that any choice of the possible values
for a given variable s will produce the same term after evidence elimination. There exists
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a parallel between this property and the notion of coherence as discussed in the theory
of qualified types [Jones, 1994a] (and originally defined by Breazu-Tannen et al. [1989]);
it means, basically, that ‘the meaning of a term does not depend on the way that is was
type checked’ [Jones, 1993].

In the case of Jones’ work, the key element for the proof of coherence was the
property of uniqueness of evidence. But in the presence of conversions in the language
of evidence, this property does no longer hold. However, we are working on a proof that
defines ‘levels’ of evidence, according to the number of nested conversions, and we think
that this will allow us to overcome the problems.

This completes our discussion.





Chapter 9

Extending the Source Language

Since practical programming languages are typically large and very complex,
programming language design involves careful and separate consideration of vari-
ous sublanguages. Of course, it is important to keep in mind that a small language
with only few constructs may give false impressions. We might conclude that a
programming language is much simpler than it really is, or we might rely on prop-
erties that are immediately destroyed when important features are added. There-
fore, good taste and careful judgment are required. In developing a programming
language theory, or applying theoretical analysis to practical situations, we must
always keep in mind the nature of our simplifying assumptions and how they may
affect the conclusions we reach.

Foundations of Programming Languages
John C. Mitchell

The language considered in the previous chapters is a small subset of a real language.
To consider examples of some interest, such as the interpreter for lambda-calculus, we
need to extend that language with new constructs, as we have done in Section 3.4, con-
sidering what the principal specialization of these constructs should be. Again, adding
static characters, strings, etc., and additional operations on numbers is very similar to
the treatment we have shown for numbers. Static let, booleans, static functions, re-
cursion, and datatypes will involve the same kinds of ideas, but the details have to be
worked out with more care.

In this chapter we describe these extensions to the source language, and the exten-
sions needed in the residual language to express their specialization, and in the constraint
solving to produce sensible results. We have implemented some of them in our proto-
type (described in Chapter 10), in order for it to be able to specialize the interpreter for
lambda calculus.

We consider the ability to fail (Section 9.1), dynamic and static booleans (Sec-
tion 9.2), static lets (Section 9.3), static functions (Section 9.4) and static recursion
(Section 9.5), static Haskell-like datatypes — that is, tagged recursive sums-of-products
— (Section 9.6), and dynamic recursion (Section 9.7). In almost all cases new kinds
of predicates are introduced, and constraint solving is extended to handle them. The
most notable exception is dynamic recursion: no new construct or predicate is needed;
however, as we have mentioned in Section 4.4.3, this feature involves complex manipu-
lations. Using the framework of principal specialization, we are able to show where the
problems are: in particular, constraint solving has to be more involved, because dynamic
recursive programs produce non-linear constraints — that is, constraints where the same
variable appears on both sides of an inequation. We discuss the problems, and suggest
a possible line to extend constraint solving to handle this case.

139
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9.1 Failure

The ability to fail when residual types do not match is very important, as we have
seen in Chapter 3, especially when we use specialization to perform type checking.
But in the original formulation, failure can only be obtained by forcing two source
expressions with different residual types into the same monovariant context (as in
ifD TrueD then e1 else e2 or letD i = λDx.x in (i @D e1, i @D e2)). This will produce
strange error messages if we use it when failure is needed — see Example 4.10.

Another characteristic of failure in the original formulation is that failure inside
a poly has to be delayed until the polyvariant expression is used in some spec —
see Example 4.9. In the system presented in Chapters 6 and 7, failure inside a poly
is reported when the polyvariant expression is being specialized. To have the same
failure behaviour as in the original formulation, we need to introduce a new predicate
expressing failure that will produce an actual failure when constraint solving tries to
produce a solution for it. Then we can define

δ ::= . . . | Fail String

with the notion that this predicate cannot be satisfied — there is no evidence for it —
and so constraint solving must fail if it tries to solve it. The failure predicate usually
results from failed unifications, but if these unifications appear inside a polyvariant
expression that is never used, the failure must not be raised.

The delaying effect of this predicate can be observed in the following example.

Example 9.1. Compare this specialization with that of Example 4.9.

⊢ letD f = poly (letD id = λDx.x in (id @D 1S , id @D 2S )D )
in 3D

: IntD →֒ let f = Λh.let id = λx.x in (id@•, id@•) in 3 : Int

The residual type of expression f is poly (∀t.Fail “Cannot unify 1̂ with 2̂” ⇒ (1̂, t)) and
the failure will only be produced if the f is specialized (so, for example, replacing 3D by
spec f will make the specialization fail with error message “Cannot unify 1̂ with 2̂”).

Another extension that we can make is to add a primitive for failure in the source
language, similar to the error primitive in Haskell. The dynamic version of it will be
copied in the residual language, but the static version will use the new predicate Fail to
express its specialization.

e ::= . . . | errorS String

The rule to specialize the new primitive is the following one.

(FAIL)
∆ ⊢

SR
τ →֒ τ ′ ∆ ⊢⊢ v : Fail s

∆ | Γ ⊢
P

errorS s : τ →֒ v : τ ′

This new construct can be used instead of WrongS in any of the examples for the
interpreter of lambda-calculus to produce a failure with an appropriate error message
(that is, the expression
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e ::= . . . | TrueD | FalseD | ifD e then e else e | e ==D e
τ ::= . . . | BoolD

e′ ::= . . . | True | False | if e′ then e′ else e′ | e′==e′

τ ′ ::= . . . | Bool

(DTRUE) ∆ | Γ ⊢
P

TrueD : BoolD →֒ True : Bool

(DFALSE) ∆ | Γ ⊢
P

FalseD : BoolD →֒ False : Bool

(DIF)
∆ | Γ ⊢

P
e : BoolD →֒ e′ : Bool (∆ | Γ ⊢

P
ei : τ →֒ e′i : τ ′)i=1,2

∆ | Γ ⊢
P

ifD e then e1 else e2 : τ →֒ if e′ then e′1 else e′2 : τ ′

(DEQ)
∆ | Γ ⊢

P
ei : τ →֒ e′i : τ ′

∆ | Γ ⊢
P

e1 ==D e2 : BoolD →֒ e′1==e′2 : Bool
(τ is a dynamic base type)

Figure 9.1: Syntax and specialization for dynamic booleans.

letS meval = preeval @S (λS x → WrongS )
in . . .

has to be replaced by

letS meval = preeval @S (λS x → errorS “Unbound variable”)
in . . .

and then the expression in Example 4.10 will fail with the message “Unbound variable”).
It is important to note that the failure will only be produced if the static function
expressing the environment is applied to an unbound variable — see Section 9.4.

9.2 Booleans

Booleans are a particular case of datatypes, and in Hughes’ work they are treated
precisely like that. However, the techniques needed to work with booleans are simpler
than those needed for arbitrary datatypes, and thus we have chosen to treat them
separately.

A dynamic version of booleans will generate boolean constants and operators in the
residual term, and does not introduce any new interesting problem. The syntax and
specialization rules to deal with dynamic booleans are given in Figure 9.1. Only if-then-
else and an equality operator are considered; other booleans and relational operators
follow the same idea.

The static version of booleans needs a more careful treatment. We begin by extending
the source language:

e ::= . . . | TrueS | FalseS | ifS e then e else e | e ==S e
τ ::= . . . | BoolS
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(STRUE) ∆ | Γ ⊢
P

TrueS : BoolS →֒ • : ˆTrue

(SFALSE) ∆ | Γ ⊢
P

FalseS : BoolS →֒ • : ˆFalse

(BLIFT)
∆ | Γ ⊢

P
e : BoolS →֒ e′ : τ ′ ∆ ⊢⊢ v : IsBool τ ′

∆ | Γ ⊢
P

lift e : BoolD →֒ v : Bool

(S==)
(∆ | Γ ⊢

P
ei : τ →֒ e′i : τ ′

i)i=1,2 ∆ ⊢⊢ v : τ ′ := τ ′
1==τ ′

2

∆ | Γ ⊢
P

e1 ==S e2 : BoolS →֒ • : τ ′
(τ is a static base type)

(SIF)

∆ | Γ ⊢
P

e : BoolS →֒ e′ : τ ′
b ∆ ⊢⊢ v : IsBool τ ′

b (∆i | Γ ⊢
P

ei : τ →֒ e′i : τ ′
i)i=1,2 ∆ ⊢⊢ IsIf τ ′

r τ ′
b τ

∆, τ ′
b?∆1, !τ

′
b?∆2 | Γ ⊢

P
ifS e then e1 else e2 : τ →֒ ifv v then e′1 else e′2 : τ ′

r

Figure 9.2: Rules to specialize static booleans.

The problem is that in the original formulation, only one of the branches of a static
conditional is specialized; but to obtain a principal specialization for it, we need to take
into account both branches, deferring the decisions involved in their specializations until
we know which branch to select. In addition to singleton types for boolean constants
( ˆTrue and ˆFalse) and predicates to express that a type may only represent a boolean
constant (IsBool τ ′), we will need conditional predicates (τ ′?δ, !τ ′?δ), predicates to
express the resulting type of a static if-then-else (IsIf τ ′

r τ ′
b τ ′

1 τ ′
2, establishing that the

resulting type of a static if-then-else, τ ′
r, is either τ ′

1 or τ ′
2 depending on the value of τ ′

b),
and a new construct in the residual term language to express the result of the static
conditional (ifv v then e′ else e′).

e ::= . . . | ifv v then e′ else e′

v ::= . . . | True | False | •

τ ′ ::= . . . | ˆTrue | ˆFalse

δ ::= . . . | IsBool τ ′ | IsIf τ ′ τ ′ τ ′ τ ′ | τ ′?δ | !τ ′?δ

Conditional predicates require that • be also considered as evidence, to be the evidence
for a predicate guarded by ˆFalse (and some others, as well).

The rules to specialize static booleans are presented in Figure 9.2. The most inter-
esting one is (SIF), specifying how to specialize a static if-then-else: the static boolean
condition is specialized and a reference v to its value is obtained using the predicate
IsBool τ ′

b; specializations of both branches with their own predicate assignments are
used to construct a residual evidence if-then-else that may be reduced as soon as the
value v is known — see Figure 9.3. The resulting type is expressed using the predicate
IsIf τ ′

r τ ′
b τ ′

1 τ ′
2, as described above.

To complete the presentation of static booleans we have to give the rules for entail-
ment of the new predicates, and the reduction rules for evidence if-then-else. They are
presented in Figure 9.3

To observe how conditional predicates work, see the following example.
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∆ ⊢⊢ b : IsBool b̂

∆ ⊢⊢ • : IsIf τ ′
1

ˆTrue τ ′
1 τ ′

2

∆ ⊢⊢ • : IsIf τ ′
2

ˆFalse τ ′
1 τ ′

2

∆ ⊢⊢ v : δ

∆ ⊢⊢ v : ˆTrue?δ

∆ ⊢⊢ • : ˆFalse?δ

∆ ⊢⊢ v : δ

∆ ⊢⊢ v :! ˆFalse?δ

∆ ⊢⊢ • :! ˆTrue?δ

ifv True then e′1 else e′2 ⊲ e′1

ifv False then e′1 else e′2 ⊲ e′2

Figure 9.3: Entailment and reduction rules associated with static booleans.

Example 9.2. Consider f = λDb.λDx.ifS b then x +S 1 else x +S 2. We specialize it
alone in the first case, and with a boolean argument in the second case.

1. ⊢
P

f : BoolS →D IntS →D IntS

→֒ Λhb, hx, hr, h1, h2.λb.λx.ifv hb then • else •
: ∀tb, tx, tr, t1, t2.IsBool tb,

IsInt tx,
IsIf tr tb t1 t2,

tb?t1 := tx + 1̂,

!tb?t2 := tx + 2̂
⇒ tb → tx → tr

2. ⊢
P

f @D TrueS : IntS →D IntS

→֒ Λhx, hr.(λb.λx.•)@•
: ∀tx, tr.IsInt tx, tr := tx + 1̂ ⇒ tx → tr

Observe that in f , the static conditional depends on the argument, which in the first case
is unknown, generating the evidence conditional ifv; in the residual type the calculation
of the resulting type is deferred using conditional predicates. In the second case, when
the boolean is known, the calculation may proceed, and the evidence conditional may
be reduced.

Simplification and constraint solving have to be extended for static booleans. The
main issue in this respect is how to solve guarded predicates. We have discussed in
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Section 8.1.5 the difference between pure simplifications and improvements (following
the ideas of Mark Jones [1994b]). This difference is important because improving rules
— those fixing the value of some variables — cannot be applied unless we are sure that
the substitutions produced do not alter variables that can ‘escape’ a given guard — if
that guard is going to take a false value, the predicate will simply disappear, and the
value assigned to the variable will be unsound. Let’s see this idea in an example.

Example 9.3. Observe how sometimes deciding the value of a variable appearing under
guards may produce unsound results.

∆ | ∅ ⊢
P

λDb.λDx. ifS b
then ifD True

then x+S (5S +S 7S )
else 13S

else x
: BoolS →D IntS →D IntS

→֒ λb.λx. ifv hb

then if True then • else •
else x

: tb → tx → tr

where
∆ = hx : IsInt tx, hb : IsBool tb, hr : IsInt tr,

h1 : tr := if tb then t13 else tx,

h2 : tb?t12 := 5̂ + 7̂,

h3 : tb?1̂3 := tx + t12,

Suppose now that we allow the extension of simplification rules to be applied under
guards without restrictions. Then, rules (SimOpres) is applied to tb?t12 := 5̂ + 7̂, deciding
the value of t12 to be 1̂2 — resulting in the simplified predicate assignment 1̂3 := tx + 1̂2.

This last predicate forces tx to be 1̂ (using the rule (SimOPinv) presented in Sec-
tion 8.1.5), and thus the function type takes the form tb → 1̂ → tr — in particular,
in the source code the function can only be applied in its second argument to an ex-
pression with value 1. But looking at the initial term, if variable b takes the value of
False, then the function behaves as the identity function for any number, not only for
1. This unsoundness was produced by the (wrong) decision about the value of tx. The
simplifications that can produce this effect are exactly those that Jones [1994b] named
improvements.

We can observe that any decision taken under a guard is restricted: those decisions
can only be taken when the variables involved appear only under the given guard.
For that reason, improvements can only be applied under guards if they do not alter
the context outside the guards (incidentally, pure simplifications produce the identity
substitution that never alters the context).

The best simplification that can be obtained in this example — without losing solu-
tions, until more information for b is available — is:

∆′ = hx : IsInt tx, hb : IsBool tb, hr : IsInt tr,

h1 : tr := if tb then 1̂3 else tx,

h3 : tb?1̂3 := tx + 1̂2,
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We do not consider, in the rest of this work, the application of improvements un-
der guards, keeping our formulation simple (this extension would require checking the
occurrence of type variables on contexts, which may be expensive).

Another example shows that unifications occurring in a branch of a static if-then-
else, produce the same kind of effect as improvements, and so they have to be deferred
as well, until the particular branch is selected.

Example 9.4. The monovariant function id is applied to different arguments in each of
the branches of the static if-then-else.

letD id = λDx.x
in λDb.ifS b

then id @D 2S

else id @D 4S

: BoolS →D IntS

The type variable expressing the type of the argument for id has to be unified with
either 2̂ or 4̂, depending on the value of b.

This deferring is easy to express using predicates: we have to introduce a new predicate
reifying the unification of two types, with the entailment rules for it capturing the
intended internalization.

δ ::= . . . | τ ′ ∼ τ ′

τ ′
1 ∼

S τ ′
2

∆ ⊢⊢ • : τ ′
1 ∼ τ ′

2

Additionally, all the rules in the algorithm that use unification have to replace that
use by an entailment of the new predicate. Simplification and improvement have to be
extended to resolve the unguarded unification predicates.

Example 9.4 will then specialize to

Λhx, hb, hr, h
′
r.let id = λx.x

in λb.ifv hb

then id@•
else id@•

: ∀tx, tb, tr, t2, t4.
IsInt tx,
IsBool tb,
IsIf tr tb t2 t4,
IsInt tr,

tb?((tx → tx) ∼ (2̂ → t2)),

!tb?((tx → tx) ∼ (4̂ → t4))
⇒ tb → tr

Observe that the residual type of x, tx, may be unified with 2̂ or 4̂, depending on the
residual type of b, tb. Another interesting point that this example shows is that some
simplification can be performed in the body of a guarded predicate, with the restriction
that no variable appearing free in some other place is unified (until the guard can be
removed); in this case, the predicate tb?((tx → tx) ∼ (2̂ → t2)) for example, can be
simplified to the set {tb?(tx ∼ 2̂), tb?(tx ∼ t2)}.
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9.3 Static Let

In the original formulation of type specialization, the addition of static let was easy:
the only difference between the new rule and the one for dynamic let was the degree
of unfolding allowed in the context Γ. However, in the principal specialization setting
the use of the context to express unfolding is not possible, because of evidence variables
that may escape their scopes, as the following example shows.

Example 9.5. During this example we assume that we have introduced a rule for static
let in the same way as in the original formulation.

x : IntD →֒ hz : Int ⊢
P

poly (λDy.x +D lift y) : poly (IntS →D IntD )
→֒ Λhz, hy.λy.hz + hy : poly (∀ty.IsInt tz, IsInt ty ⇒ ty → Int)

Observe that hz appears in the context, but there is no predicate in the predicate context
to bind it — instead, it is bound in the term! The problem is the use of the residual of
x in the context.

While this problem is not really manifested with the present formulation for complete
programs, because of the way environments are generated, we think that it is better to
have a system where all the specializations can be considered correct.

To solve this, we can use the reduction of evidence in the residual language to express
static beta reduction, simplifying the treatment of free variables — this is achieved by
the new construct e′@ve

′ and a corresponding reduction rule.

e′ ::= . . . | v@ve
′

v ::= . . . | e′

The reduction rule is standard beta reduction.

(@v) (λx′.e′1)@ve
′
2 ⊲ e′1[x

′/e′2]

With these elements, the new rule for static let can be defined now as follows.

(SLET)

∆ | Γ ⊢
P

e2 : τ2 →֒ e′2 : τ ′
2 ∆ | Γ, x : τ2 →֒ x′ : τ ′

2 ⊢P
e1 : τ1 →֒ e′1 : τ ′

1

∆ | Γ ⊢
P

letS x = e2 in e1 : τ1 →֒ (λx′.e′1)@ve
′
2 : τ ′

1
(x′ fresh)

Observe how in the result, the fresh variable x′ is abstracted from e′1, and further applied
to e′2 — the construction is thus equivalent to the reduction of this application, by virtue
of reduction of evidence.

This new construct is also useful in the next two sections, when defining static
functions and static recursion.

9.4 Static Functions

The addition of static functions in the source language is really easy: one simply adds
static abstraction and application in the following way.

e ::= . . . | λSx.e | e @S e
τ ::= . . . | τ →S τ
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The typing rules are identical to (ST-DLAM) and (ST-DAPP) from Figure 3.1, the only
change being that all annotations are S instead of D . This is possible because, as we
have discussed in Chapter 3, type specialization imposes no restrictions on annotations.

In the residual language things are not so easy. We have seen, in the original formu-
lation, that static abstractions are represented as closures containing static source code,
because the body of the static function may depend on values given by the context of
use. But having principal specializations, we can choose a different representation: the
closure will contain the principal specialization of the body, which can be instantiated
on each application. Additionally, for each static application it is possible to use the
@v-rule of the reduction of evidence to express the static beta reduction, simplifying
the treatment of free variables. Finally, a new predicate IsFunS is used to defer the
decision of the actual type of a closure until all the contextual information is present
— this is almost the same mechanism used with IsMG for polyvariance: upper bounds
to the type will be produced from function definitions, and lower bound from function
applications — the main difference is that in the case of functions some upper bounds
will also contain residual code.

Static closures are added to the residual type language, and also predicates expressing
constraints on them. To represent residual code in the static closures, a new syntactic
category is added: τ ′

e′ — it represents a new type composed by (residual) code. The
evidence corresponding to predicates involving static closures is the function stored in
the closure, which can be reduced when it appears as the body of the application @v.

τ ′
e′ ::= t | e′

τ ′ ::= . . . | clos(τ ′
e′ : σ′)

δ ::= . . . | IsFunS τ ′ τ ′

The rules for specialization are extended with (SLAM) and (SAPP). Free variables are
treated in a similar way to the original formulation of type specialization (see Chap-
ter 3), but we use the reduction of the special form of application to pass the variables
(remember that we cannot allow expressions to appear in contexts). In the rules, that
is expressed by using Γ′ instead of Γ in the premise of the rule, which replaces every
free variable in the static function by a projection on a new variable f ′ which is further
abstracted:

Γ = x1 : τ1 →֒ e′1 : τ ′
1, . . . , xn : τn →֒ e′n : τ ′

n

Γ′ = x1 : τ1 →֒ πS

1,n f ′ : τ ′
1, . . . , xn : τn →֒ πS

n,n f ′ : τ ′
n

τ ′
f = (τ ′

1, . . . , τ
′
n)

Instead of assigning a closure type directly, we use the predicate IsFunS to defer the
decision, for the same reason as in the rule (POLY)— that is, the context may impose
further restrictions on the actual type, and so the decision is taken by the constraint
solver.

(SLAM)

h′ : ∆′ | Γ′ ⊢
P

λDx.e : τx →
D τe →֒ e′ : τ ′′ ∆ ⊢⊢ IsFunS clos(Λh′.λf ′.e′ : σ) τ ′

∆ | Γ ⊢
P

λSx.e : τx →
S τe →֒ (e′1, . . . , e

′
n)S : τ ′

(f ′ fresh and σ=GenΓ′,∅(∆′⇒τ ′
f
→τ ′′))
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(SAPP)

∆ | Γ ⊢
P

e1 : τ2 →
S τ1 →֒ e′1 : τ ′ ∆ | Γ ⊢

P
e2 : τ2 →֒ e′2 : τ ′

2 ∆ ⊢⊢ v : IsFunS τ ′ clos(τ ′
e′ : τ ′

2 → τ

∆ | Γ ⊢
P

e1 @S e2 : τ1 →֒ v@ve
′
1@ve

′
2 : τ ′

1

Observe in rule (SAPP) that @v is used twice, once to pass the function the residual of its
free variables, and once to pass its actual argument.

The specification of specialization for static functions is completed with the rule for
entailment of IsFunS and the rule for source-residual relationship.

(IsFunS)
C : (∆ | σ′) ≥ (∆ | σ′′) e′′ = C [e′]

∆ ⊢⊢ e′′ : IsFunS clos(e′ : σ′) clos(e′′ : σ′′)

(SR-SFUN)

∆′ ⊢
SR

τx →
D τe →֒ τ ′′ ∆ ⊢⊢ IsFunS clos(τ ′

e′ : σ) τ ′

∆ ⊢
SR

τx →
S τe →֒ τ ′ (σ=Gen∅,∅(∆′⇒τ ′

f
→τ ′′))

We have said that the predicate IsFunS provides a similar mechanism for static
functions as the predicate IsMG does for polyvariance: each predicate provides either
an upper bound or a lower bound for a given closure, represented as a type variable
t (which the algorithm places instead of τ ′ in the rules (SLAM), (SAPP), and (SR-SFUN));
additionally, as a function ever applied must have been defined somewhere, we know
that one of the upper bounds will provide the function body (in the form of a principal
term). These facts are used to define the constraint solving algorithm for it: upper
bounds are collected, the greatest lower bound of all of them is calculated (and the
function body as well), and the variable t is replaced by it. The evidence for each
IsFunS provides the corresponding code.

To compare our approach for static functions with that in the original formulation, we
consider again the source term of Example 3.18. Observe that the expression inside the
closure corresponding to the function has been processed — in the original formulation,
the closure keeps the source code of the function body.

Example 9.6. We consider first the function in isolation, and then the complete term;
but instead of offering the final result — which is the same as in the original formulation
— we give the principal specialization of it.

1. ⊢
P

letD x = (5S , 6D )D

in λSy.lift (fstD x +S y) +D sndD x
: IntS →S IntD

→֒ Λhf .let x = (•, 6) in x
: ∀t.IsFunS (clos(Λhy, hr.λf ′.λy.hr + snd πS

1,1 f ′

: ∀ty, tr.IsInt ty, tr := 5̂ + ty ⇒ (5̂, Int)S → ty → Int)) t ⇒ t
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2. ⊢
P

letD f = letD x = (5S , 6D )D

in λSy.lift (fstD x +S y) +D sndD x
in f @S 2S

: IntD

→֒ Λhf , ha.let f = let x = (•, 6) in x
in ha@vf@v•

: ∀t, t′.IsFunS (clos(Λhy, hr.λf ′.λy.hr + snd f ′

: ∀ty, tr.IsInt ty, tr := 5̂ + ty ⇒ ty → Int)) t,

IsFunS t clos(t′ : 2̂ → Int) ⇒ Int

When performing constraint solving in the second case, the evidence constructed for
the predicate IsFunS t clos(t′ : 2̂ → Int) will be the term λf ′.λy.7 + snd f ′, and when
this is assigned to ha, evidence reduction (in particular, rule (@v)) will produce the right
answer.

9.5 Static Recursion

As we have said in Section 3.4.4, static recursion is added to the source language by a
construct fixS , with its use restricted to functions producing static functions to ensure
termination of the specialization process. In the original formulation, the specialization
of this new construct was expressed by using a residual type rec, and the unfolding
was performed at application. In the principal specialization setting, we use a similar
approach, but we have to introduce also a new form of predicate, IsFixS, which expresses
the relation between the residual type of the argument to fixS and the residual type
of the result, bounding a type by a static function; the solution for this predicate is
expressed by the residual type rec(τe′ : σ′), corresponding to the principal version of
rec.

The rule to specialize a static fix is the following.

(SFIX)
∆ | Γ ⊢

P
e : τ →S τ →֒ e′ : τ ′ ∆ ⊢⊢ IsFixS τ ′ τ ′′

∆ | Γ ⊢
P

fixS e : τ →֒ e′ : τ ′′

Following the same principles as with polyvariance and static functions, the rule defers
the decision of the actual type to use as τ ′′ until all the information is present. The
rules for entailment for the new predicate and type provide the unfolding producing the
final residual code.

(IsFixS) ∆ ⊢⊢ IsFixS clos(τ ′
e′ : σ′) rec(τ ′

e′ : σ′)

(REC-CLOS)

∆ ⊢⊢ v : IsFunS clos(τ ′
e′ : σ′) clos(τ ′′′

e′ : rec(τ ′
e′ : σ′) → τ ′) ∆ ⊢⊢ v′ : IsFunS τ ′ clos(τ ′′

e′ : σ′′)

∆ ⊢⊢ λf.v′@v(v@vf@vf) : IsFunS rec(τ ′
e′ : σ′) clos(τ ′′

e′ : σ′′)
(f fresh)
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(CLOS-REC)

∆, IsFunS clos(τ ′
e′ : σ′) rec(τ ′′

e′ : σ′′)
⊢⊢ IsFunS clos(τ ′′

e′ : σ′′) clos(τ ′′′
e′ : rec(τ ′′

e′ : σ′′) → τ ′)
∆ ⊢⊢ IsFunS clos(τ ′

e′ : σ′) τ ′

∆ ⊢⊢ IsFunS clos(τ ′
e′ : σ′) rec(τ ′′

e′ : σ′′)

When the new type appears as the upper bound in the predicate for a static function,
a new unfolding is produced — observe the second argument of predicate IsFunS in the
first premise of rule (REC-CLOS). When the new type appears as the lower bound, the
predicate that we are trying to entail is used as (inductive) hypothesis — appearing
in the predicate assignment of the first premise in rule (CLOS-REC). The case when the
argument of a fixS is itself a fixS can be handled here by adding the following rule.

∆ ⊢⊢ IsFunS rec(τ ′
e′ : σ′) τ ′′ ∆ ⊢⊢ IsFixS τ ′′ τ ′

∆ ⊢⊢ IsFixS rec(τ ′
e′ : σ′) τ ′

It first calculates a residual type τ ′′ as the solution for the first rec, and then bounds τ ′

by it.
Constraint solving is performed in a very similar way to that of static functions,

relying on simplification to do the actual work.
Let’s revisit the example of a recursive static function considered in Section 3.4.4.

The source code was

letD n = 35D

in letD f = fixS (λSg.λSx.1D +D ifS x ==S 0S then n else g @S (x −S 1S ))
in f @S 2S

Its principal specialization is

Λh1, h2, h3.let n = 35 in let f = (n)S in h3@vf@v•
: ∀t, t′, t2.IsFunS closuref t,

IsFixS t t′,

IsFunS t′ clos(t2 : 2̂ → Int)
⇒ Int

where
closuref = clos(Λh4, h5.λfs, g.(g, πS

1,1 fs)
S

: ∀t3, t4, t5.IsFunS clos(t5 : ∀t6.IsInt t6 ⇒ t6 → Int) t3,
IsFunS closureg(t3) t4
⇒ t3 → t4)

closureg(t3) = clos(Λh3, h4, h5, h6.λf ′
s, x.1 + (ifv h4

then sndS f ′
s

else h6@vfst
S f ′

s@v•)
: ∀t7, t8, t9, t10.IsInt t7,

t8 := t7 == 0̂,

!t8?t9 := t7 − 1̂,
!t8?IsFunS t3 clos(t10 : t9 → Int)
⇒ t7 → Int)

The solution uses three predicates expressing the definition and use of the recursive
function. The first one is a IsFunS bounding the residual type of the function argument
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to fixS , the second one is a IsFixS expressing the application of fixS , and the third
one, a IsFunS expressing the application of the recursive function f to 2S . It is the
first predicate, the upper bound, which has all the information coming from the body
of the recursive function, while the last one, the lower bound, provides the value of the
parameter. The unfolding of the static recursive function is performed by the constraint
solver, resulting in

let n = 35
in let f = (n)S

in 1 + (1 + (1 + πS

1,1 f))
: Int

Observe that all the subexpressions of the form (1 + ) come from the evidence proving
the predicate IsFunS closureg(t3) t4, which is a function adding one to something that
depends on the value of the original x.

9.6 Datatypes

As we have said in Section 3.4.5, sum types are a very important addition to the lan-
guage. Instead of following the original approach of combining anonymous sums and
recursive types, we have chosen to use an approach closer to the Haskell language: we
extend our language with named sum types, allowing recursion only by using the name
of the type as the type of one of the arguments. We allow the use of type arguments in
datatype names, but, as the language is still monomorphic, this is only syntactic sugar
for declaring several types. We also allow constructors to have multiple arguments,
although this can also be obtained as syntactic sugar.

Here we only consider static datatypes. Dynamic datatypes can also be treated,
although there require a bit more work to generate the right residual datatype declara-
tions; for that reason we have left them for future work.

We extend the source language with declarations for static datatypes, adding them
in front of the expression. The form of datatype declarations resembles Haskell:

data D
S αi = C1 τ1,1 . . . τ1,a1 | . . . | Cp τ1,1 . . . τp,ap

where 0 ≤ i ≤arity(DS ) (so, αi represents a vector of arity(DS ) variables), p ≥ 1, and
aj ≥ 0, 0 ≤ lj ≤ aj for every j = 1, . . . , p. The names D and Cj are distinct identifiers
beginning with a capital letter, and the type variables αi are the only variables that can
appear in the τj,lj types. Every datatype name DS followed by arity(DS ) types forms a
new type, but every use of a datatype in the program has to be monomorphic (that is,
without type variables). Observe that any type can be the argument of a constructor,
including datatypes, and that all of them have a unique annotation. In particular, we
do not consider polychronic datatypes (datatypes with annotation arguments), as it was
done by Heldal [2001], although they can be used as syntactic sugar for several decla-
rations. Finally, constructors may be partially applied, because they are η-expanded
during source type checking to meet their types — for example, TwoS 1D is expanded
to (λSx.λSy.TwoS x y) @S 1D , because its type is TwoS : IntD →S τ →S ZOTS IntD τ
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for any given ground type τ (see upcoming Example 9.7); in this way, constructor’s
arguments are always variables, a fact that is used in rule (SCONSTR), below.

The specialization of static datatypes is very similar to the one for booleans. We
introduce the new residual construct casev, corresponding to ifv, and two new predi-
cates, IsConstrOf, that corresponds to IsBool, and IsCase, that corresponds to IsIf; the
evidence for these new predicates is a constructor’s residual name and void, respectively.
The rules to specialize constructors use the fact that every constructor is applied to the
right number of variables, because of the η-expansion performed; the specialization of
variables is captured by the rule (SLAM). We have left implicit the conditions stating
that every residual type introduced is in the source-residual relationship with its corre-
sponding source type — that is, for every τ ′ used, ∆ ⊢

SR
τ →֒ τ ′ — and those stating

the type of each Cj — that is Cj : τj,1 →
S . . . →S τj,aj

→S D
S τi — for j = 1, . . . , p.

(SCONSTR)
∆ | Γ ⊢

P
xk,lk : τk,lk →֒ e′k,lk

: τ ′
k,lk

∆ | Γ ⊢
P

C
S

k xk,lk : D
S τi →֒ (e′k,lk

)S : Ck τ ′
k,lk

(SCASE)

∆ | Γ ⊢
P

e : D
S τi →֒ e′ : τ ′

e

(∆j | Γ ⊢
P

λSxj,lj .ej : τj,lj →
S τ →֒ e′j : τ ′

j)j=1,...,p

∆ ⊢⊢ v : IsConstrOf (D S τi) τ ′
e ∆ ⊢⊢ τ ′

r := case τ ′
e of {Cj → τ ′

j}

∆, ((v is a Cj)?∆j)j=1,...,p | Γ ⊢
P

caseS e of {Cj xj,lj → ej} : τ
→֒ casev v of {Cj → e′jπlj ,aj

e′} : τ ′
r

()

Observe how each branch is specialized to a static function that is further applied using
the application , resulting in the expansion of variables matched in the case construct
with the right projection from the residual of the scrutinized expression.

The entailment rules for the new predicates are similar to their boolean counterparts,
except for the argument types. There are also rules for guarded predicates when the
guard is a tag-check.

∆ ⊢
SR

τk,lk →֒ τ ′
k,lk

∆ ⊢⊢ Ck : IsConstrOf (D S τi) (Ck τ ′
k,lk

)

∆ ⊢⊢ • : τ ′
k := case (Ck τ ′

k,lk
) of {Cj τ ′

j,lj
→ τ ′

j}

∆ ⊢⊢ v : δ

∆ ⊢⊢ v : (Ck is a Ck)?δ

∆ ⊢⊢ • : (Ck is a Cj)?δ (k 6=j)

Observe that the argument types have to match in order to select the appropriate
branch when entailing an IsCase predicate. Also observe that the evidence proving an
IsConstrOf predicate is the name of the tag, a fact used in the construct casev in rule
(SCASE).

Finally, we also need a reduction rule for casev, which simply selects the residual
expression corresponding to the tag given as evidence.

casev Ck of {Cj → e′j} ⊲ e′k
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The rules for simplification and improvement are essentially the same as for booleans,
but also considering the arguments of constructors. Constraint solving uses the rules
for static functions to reduce the applications of constructors to their arguments.

An interesting point that arises here is the need for rules with inverse flow of infor-
mation — we have discussed this idea in Section 8.1.5. For datatypes, the rule involved
is

(SimCASE1) Id; h←• | h : t := case τv of τp → τb ¥ h′′ : τv ∼ τp, h
′ : t ∼ τb (h′,h′′ fresh)

where τp → τb is the only branch in the IsCase predicate. It is less evident why the
flow of information works backwards, and a very good example of the power of type
specialization. When a static case with only one pattern is used, such expression can
only be specialized when used with an expression matching the pattern. So, the predicate
is simplified into two new ones: one forcing the residual type of the expression to unify
to that of the pattern, and another one forcing the residual type of the expression to
unify to the body of the case-statement.

While this optimization can be regarded as too particular, the examples in Chapter 4
(specially Example 4.4) produce several predicates of this kind — e.g. in every applica-
tion of the object program, the residual type corresponding to the function expression
is matched against the pattern Fun. Without this simplification rule those predicates
would have remained, and the final result would not be as desired.

It is worth considering some examples.

Example 9.7. These are simple examples, showing the specialization of constructors
with different number of arguments, and also partially applied. All items assume the
following definition:

data ZOTS t1 t2 = Zero | One t1 | Two t1 t2.

1. ⊢
P

ZeroS : ZOTS τ1 τ2 →֒ ()S : Zero

2. ⊢
P

OneS 1D : ZOTS IntD τ →֒ (1)S : One Int

3. ⊢
P

TwoS 17D 42S : ZOTS IntD IntS →֒ (17, •)S : Two Int 4̂2

4. ⊢
P

TwoS 17D : IntS →S ZOTS IntD IntS

→֒ Λh.(17)S : ∀t.IsFunS closuret t ⇒ t

where closuret = clos(Λh′.λfs.λx1.(π
S

1,1 fs, x1)
S : ∀t′.IsInt t′ ⇒ t′ → Two Int t′)

Observe in the last item how static functions are used to represent partially applied
constructors; when the constructor is fully applied, constraint solving may eliminate all
the predicates. For example, applying the last item to 42S gives the previous one.

Example 9.8. These examples show the use of the case construct, and how the decision
of the branch to specialize is deferred using casev.
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1. ⊢
P

(λDd.caseS d of
Zero → 0D

One x → x
Two x y → x +D lift y)

@D (TwoS 17D 42S )
: IntD

→֒ (λd.fstS d + 42)@(17, •)S : Int

2. ⊢
P

λDd.caseS d of
Zero → 0D

One x → x
Two x y → x +D lift y

: ZOTS IntD IntS →D IntD

→֒ Λhd, hr, hy.λd.casev hd of
Zero → 0
One → fstS d
Two → fstS d + hy

: ∀td, ty.IsConstrOf (ZOTS IntD IntS ) td,
Int := case td of

Zero → Int

One Int → Int

Two Int ty → Int,
(td is a Two)?IsInt ty
⇒ td → Int

The second item shows how the value of the second argument of constructor Two is
moved inside the body of the function; the predicate := case of expresses that
information flow, and for this reason it cannot be simplified.

Example 9.9. These examples show the specialization of values of a recursive datatype:
lists with static spine, defined as data ListS t = Nil | Cons t (ListS t)

1. ⊢
P

NilS : ListS τ →֒ ()S : Nil

2. ⊢
P

ConsS 17D NilS : ListS IntD →֒ (17, ()S )S : Cons Int Nil

3. ⊢
P

fixS (λSf.λSx.ConsS 1D (f @S x)) : IntD →S ListS IntD

→֒ Λh.()S : ∀t.IsFixS closurexs t ⇒ t
where closurexs = clos(Λhf , hr.λfs.λf.(f)S

: ∀tf , tr, te.IsFunS closuref (te) tf ,
IsFunS closurer(tf ) tr
⇒ tf → tr)

closuref (te) = clos(te : ∀txs.IsConstrOf (ListS IntD ) txs ⇒ Int → txs)
closurer(tf ) = clos(Λhys, hL.λSf ′

s.λ
Sx.(1, hL@vπ1,1 f ′

s@vx)S

: ∀tys, t
′
e.IsConstrOf (ListS IntD ) tys

IsFunS tf (clos(t′e : Int → tys))
⇒ Int → Cons Int tys)
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The type IntD is an arbitrary choice; any ground type can be used instead. The first two
items are similar to previous examples. It is the third example that is interesting; despite
its complexity, it shows that we can represent ‘infinite’ static structures using residual
types with predicates. In the original framework, this list can also be represented, but
with a residual type containing the source code; the real difference can be appreciated
in Example 9.11.

Example 9.10. This example shows a (non-recursive) function over the recursive data-
type of lists defined in the previous example.

⊢
P

letD head = λDxs.caseS xs of
Nil → errorS “Empty list!”
Cons y ys → y

in head
: ListS IntD →S IntD

→֒ Λhxs, hr, hf , hys.let head = λxs.casev hxs of
Nil → hf

Cons → fstS xs
in head

: ∀txs, tys.IsConstrOf (ListS IntD ) txs,
Int := case txs of

Nil → Int

Cons Int tys → Int,
(txs is a Nil)?Fail “Empty list!”,
(txs is a Cons)?IsConstrOf (ListS IntD ) tys

⇒ txs → Int

Observe how the partiality of head has been captured by a guarded predicate Fail; this
failure will be raised during specialization if the function is ever applied to the static
empty list, causing the whole specialization to fail. In the other item, observe how head
has been translated to the right projection (fstS in this case).

Example 9.11. This example shows the specialization of a term accessing a finite part
of an infinite static list. The specialization, shown in Fig. 9.4, is obtainable with our
approach, but there is no specialization in the original formulation for it. Both the pro-
totype made by Hughes [1997] and our present implementation will loop if the complete
specialization of this term is ever attempted; however, with our formulation, we have
the possibility to make a constraint solver taking care of static lazy evaluation: only one
unfolding of the recursive structure needs to be performed, because arity raising will
eliminate the rest. We return to this point in Chapter 14.

Our final example shows the specialization of the source term presented in Exam-
ple 4.6 with our approach.

Example 9.12. The term of Example 4.6 has the following specialization.

⊢
P
meval @S (LetS ’i’S (LamS ’x’S (VarS ’x’S ))

(AppS (AppS (VarS ’i’S ) (VarS ’i’S ))
(ConstS 0S )))



156 Chapter 9. Extending the Source Language

⊢
P

letD f = fixS (λSf.λSx.ConsS 1D (f @S x))
in caseS f @S ()S of

Cons x xs → x
: IntD

→֒ ΛhU , hL, hys
.let f = •
in fstS (hL@vf@v()

S )
: ∀t, txs

, tys
, te.IsFixS clxs

t,
IsFunS t clos(te : ()S → Cons Int tys

),
IsConstrOf (ListS IntD ) tys

⇒ Int

where
clxs

= clos(Λhf , hr.λfs.λf.(f)S

: ∀tf , tr, te.IsFunS clf (te) tf ,
IsFunS clr(tf ) tr
⇒ tf → tr)

clf (te) = clos(te : ∀txs
.IsConstrOf (ListS IntD ) txs

⇒ ()S → txs
)

clr(tf ) = clos(Λh′
ys

, h′
L.λSf ′

s.λ
Sx.(1, h′

L@vπ1,1 f ′
s@vx)S

: ∀t′ys
, t′e.IsConstrOf (ListS IntD ) t′ys

,
IsFunS tf clos(t′e : ()S → t′ys

)
⇒ ()S → Cons Int t′ys

)

Figure 9.4: A term using an infinite static list.

: ValueS

→֒ let v = Λh.(λv ′.v ′)S in π1,1 ((π1,1 (v((Fun)))@(v((Num)))))@(0)S

: Num Int

Observe that all residuals of ValueS are wrapped by a static tuple constructor, and
projected before their uses; these constructs are removed by arity raising.

The residual type of the variable v is

poly (∀t.IsConstrOf ValueS t ⇒ Fun (t → t))

showing that we can obtain a (qualified) polymorphic residual function from monomor-
phic code; in Chapter 11 we show how to make use of this to generate truly polymorphic
residuals.

9.7 Dynamic Recursion

Dynamic recursion is added in the same way as in the original formulation, with the
rule extended to consider predicates.

(DFIX)
∆ | Γ ⊢

P
e : τ →D τ →֒ e′ : τ ′ → τ ′

∆ | Γ ⊢
P

fixD e : τ →֒ fix e′ : τ ′
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The big difference is that in presence of dynamic recursion, the algorithm produces
non-linear IsMG constraints, that is, constraints with the same scheme variable appear-
ing on both sides of the inequation — this is produced by the unification performed by
the algorithm between the argument and result types of the residual type of e′. Let’s
revisit the example of the power function.

Example 9.13. The source expression for the power function is the following one.

letD power = fixD (λD p.poly (λD n.λD x .if S n == S 1S

then x
else x ∗D spec p @D (n −S 1) @D x ))

in spec power @D 3S

Its principal specialization, as produced by the algorithm, is the following one.

Λhu
s , hℓ

s .let power = fix (λp.hu
s [Λhn , hb , h

u
s2

, hn1.
λn.λx .ifv hb

then x
else x ∗ (hu

s2
[p]@ • @x)])

in hℓ
s [power ]@•

: ∀s .IsMG (∀tn , tb , tn1.IsInt tn ,
tb := tn == 1̂,
!tb?IsMG s (tn1 → Int → Int),
!tb?(tn1 := tn − 1̂)
⇒ tn → Int → Int)

s ,
IsMG s (3̂ → Int → Int)
⇒ Int → Int

Observe that in the upper bound for the residual scheme variable s, the variable appears
in a lower bound for itself! It is not clear what the solution for this kind of inequations
should be.

In particular, the constraint solving algorithm we have presented in Chapter 8 is not
adequate to handle this kind of ‘circular’ predicate. Let’s see an example.

Example 9.14. When an upper bound for a given scheme variable appears in the con-
text of another upper bound for it, our heuristic for constraint solving cannot calculate
the greatest lower bound of all the upper bounds as before. The reason is that this
heuristic relies on collecting all the upper bounds for a given scheme variable to calcu-
late its actual value.

Observe the following term,

letD f = fixD (λD f .
poly (λD n.λD x .λD y .

letD id = λD z .z
in letD g = id @D poly (λD n.λD x .λD y .y)

in if D n == D 0D

then x
else spec (id @D f ) @D (n −D 1D ) @D x @D y))

in spec f @D 3D @D 4S @D 4S
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its principal residual expression,

Λhu
s1

, hxy , h
ℓ
s1

.let f = fix (λf .
hu
s1

[Λhu
s2

, hx , hy , h
ℓ
s2

.
λn.λx .λy .
let id = λz .z
in let g = id@hu

s2
[Λh ′

x , h
′
y .λn.λx .λy .y ]

in if n == 0
then x
else hℓ

s2
[(id@f )]@(n − 1)@x@y ])

in hℓ
s1

[f ]@3@ • @•

and its principal residual type:

∀tx , s .IsMG (∀t ′, t2.IsMG (∀t3, t4.IsInt t3, IsInt t4
⇒ Int → t3 → t4 → t4)

s ,
IsInt t2,
IsInt t ′,
IsMG s (Int → t ′ → t2 → t ′)
⇒ Int → t ′ → t2 → t ′)

s ,
IsInt tx ,
IsMG s (Int → 4̂ → 4̂ → tx )
⇒ tx

Observe that both upper bounds are necessary to calculate the final solution, because
both provide information, restricting the type in the scheme for s to be Int → t → t → t.
However, the constraint solving heuristic presented in Chapter 8 cannot calculate it.

We consider again the examples of Section 4.4, that are those showing the problems
that the interaction between polyvariance and recursion brings. Their principal special-
izations use predicates, showing clearly where the problems appear — this is one of the
important contributions of our formulation.

Example 9.15. The source program from Example 4.11

letS not = λS b ′.if S b ′ then FalseS else TrueS

in
letD f = fixD (λD f .poly (λD b.spec f @D (not @S b)))
in spec f @D TrueS

making two calls to the function f — one for the value True and the other one for the
value False — has as principal specialization

Λh, hu
f , hℓ

f1
.let f = fix (λf .hu

f [Λhb , hr , h
ℓ
f2
, hnot .λb.hℓ

f2
[f ]@(hnot@v • @vb)])

in hℓ
f1
[f ]@•

with principal residual type
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∀tnot , s .h : IsFunS closurenot tnot

hu
f : IsMG (∀tb , tr , te . IsBool tb , IsBool tr ,

IsMG s (tr → Int),
IsFunS tnot clos(te : tb → tr)
⇒ tb → Int)

s ,
hℓ
f1

: IsMG s (True → Int)
⇒ Int

where

closurenot = clos(Λhb′ , hr , hr ′ . λfs .λb ′. if v hb′ then • else •
: ∀tb′ , tr .IsBool tb′ , IsBool tr

tr := if tb′ then ˆFalse else ˆTrue,
⇒ tb′ → tr)

It can be observed that the lower bounds for s are limited to those generated by the
values of type variable tr, which, in turn, is limited by the number of results of the static
function not. So, to be able to compute the correct residual program, constraint solving
needs to detect this bounded static variation of variable tr, or at least, some kind of
memoization of values already computed is needed.

Example 9.16. The source program from Example 4.12

letD f = fixD (λD f .poly (λD x .λD y .
if D lift x == D 0D

then x +S 1S

else spec f @D x @D y +S 0S ))
in λD z .spec f @D 3S @D z
: IntS →D IntS

has as principal specialization

Λhu
f , hz , hr , h

ℓ
f1
.let f = fix (λf.hu

f [Λhx, hy, h
′
x, h

′
y, h

ℓ
f2

.
λx.λy. if hx == 0

then •
else hℓ

f2
[f ]@x@•])

in λz.hℓ
f1

[f ]@ • @z
: ∀tz , tr , s .

IsMG(∀tx , ty , t
′
x , t

′
y .

IsInt tx ,
IsInt ty ,
t ′x := tx + 1̂,
t ′y := ty + 0̂,
IsMG s (tx → t ′y → t ′x )
⇒ tx → ty → t ′x )

s ,
IsInt tz ,
IsInt tr ,
IsMG s (3̂ → tz → tr)
⇒ tz → tr
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In this example, the values of tx and t′x are not related with those of ty and t′y;
moreover, the values of these last two variables will be the same, because of the predicate
t′y := ty +0̂, implying that there will be only one lower bound for s. However, these facts
have to be detected by the algorithm in order for the right residual to be produced.

Example 9.17. The source program from Example 4.14

letD id = λD z .z
in
letD f = fixD (λD f .

poly (λD b.λD x .λD y .
ifD lift b
then lift (id @D x +S id @D y)
else spec f @D b @D x @D y))

in λD b ′.(spec f @D b ′ @D 2S @D 2S , spec f @D b ′ @D 3S @D 3S )

has as principal specialization

Λhb′ , hx , h
u
f , hℓ

f1
, hℓ

f2
.

let id = λz .z
in
let f = fixD (λf .hu

f [Λhb , h
′
z , h

ℓ
f .

λb.λx .λy . if hb

then h′
z + h′

z

else hℓ
f [f ] @D b @D x @D y])

in λb ′.(hℓ
f1
[f ]@b ′@ • @•, hℓ

f2
[f ]@b ′@ • @•)

: ∀tb′ , tz , s .
hb′ : IsBool tb′ ,
hx : IsInt tz ,
hu
f : IsMG(∀tb .hb : IsBool tb ,

h ′
z : IsInt tz ,

hℓ
f : IsMG s (tb → tz → tz → Int)
⇒ tb → tz → tz → Int)

s ,
hℓ
f1

: IsMG s (tb′ → 2̂ → 2̂ → Int),

hℓ
f2

: IsMG s (tb′ → 3̂ → 3̂ → Int)
⇒ tb′ → (Int, Int)

which has no solution, because any solution requires that tz be unified with 2̂ and 3̂ at
the same time — observe that the residual type tz appears free in the upper bound for
s. That is caused because the monovariant function id is used with two different static
values!

The last example showed how an algorithm using guessing and backtracking can be
made to fall into a loop (this is the case for the original prototype of Hughes [1997]); the
constraint solving we have presented performs no backtracking, but it may be the case
that residual variables can be used as backtracking points: in this case, the fact that tz
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is not local to the upper bound of s can be used to identify the fact that the error is not
coming from the identification of lower bounds. This particular point requires further
research — see Chapter 14.

9.8 Other Features

There are other features that can be added to the source language to increase the
expressiveness; dynamic datatypes, polyvariant sums, and imperative (monadic) features
are some of them.

Dynamic datatypes can be defined using named (inductive) sums, and can be treated
with similar techniques as those used for polyvariance and static functions; surprisingly,
defined in this way, they are independent of the use of recursive types — remember that,
as we have mentioned in Section 3.4.5, the original formulation needs recursive types in
order to have inductive types. We can express constraints to the residual named sums
by new predicates, and let constraint solving produce the required residual types.

It is less clear how to add polyvariant sums and imperative features. The details
of the addition of dynamic datatypes and the addition of the other features are left for
future work — see Chapter 14.





Chapter 10

The Prototype

Es una linda ración,
con un defecto (con uno o dos).
Y es un cóctel que no se mezcla solo.1

Un Poco de Amor Francés
La Mosca y La Sopa

Patricio Rey y sus Redonditos de Ricota

To put the ideas into practice, we have developed a small prototype implementation
of a type specializer following our development of previous chapters — that is, the
algorithm expressed by the system ⊢

W
. The intention was to test the ideas with small

programs, obtaining feedback for the detection of errors in the development and the
finding of new problems and ideas. The prototype accepts a program written in the
source language, performs source type inference for it, and then proceed with its type
specialization, producing a residual term and residual type. There are flags controlling
whether the output should be the principal specialization, the solution found by the
constraint solver, or an evidence eliminated residual term. All the examples presented
in this thesis were produced by the prototype. We have used the functional language
Haskell [Peyton Jones and Hughes (editors), 1999] as our implementation language.

In this chapter we describe the prototype, its features, and the lessons we have
learned by implementing it. We start in Section 10.1 with a brief tutorial of how to use
the specializer. Then we describe, in Section 10.2, the main elements of its architecture,
and some of its relevant features. In Section 10.3 we discuss the insights and lessons we
have learned by implementing this prototype, and conclude the chapter in Section 10.4
discussing the things we think are needed to produce a specializer handling more realistic
programs.

10.1 A Brief Tutorial

To start with, we present a small tutorial on how to use our specializer. Its interface is
intended to have a similar look as the Hugs interpreter. For that reason, the specializer
presents a prompt with the name of the last file loaded. At the beginning, when no file
has been loaded, the prompt says so.

1

It’s a fine portion,
with one defect (one or two).
And it’s a cocktail that does not blend itself.

163
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The behaviour of the specializer consists in accepting a command, performing the
requested action, and if the command was not the one to quit, returning to the waiting
state. The commands accepted can be divided in the following categories: general
commands, file management, and expression management.

The general commands are two:

• :h, :? — present a small help describing the basic commands.

• :q — quit the specializer.

File management is the process of loading expressions from different files into the
specializer. Each file should contain exactly one expression. The last file loaded is the
default one, unless changed by a command. The default file is taken into account by
the commands for expression management. The files containing expressions for the type
specializer are assumed to have the extension .pts, but the names used in the commands
must not contain it. In the case of using expressions, the names of the files can be used
as variables representing the corresponding expressions — see the example below. The
commands for file management are:

• :a < directory > — (a)dd a new directory to the default path; all the commands
in this group look for files in the current directory and in those of the default path.

• :o < directory > — rem(o)ve the given directory from the default path.

• :l < file name > — (l)oad a file, parsing the expression in it.

• :r [file name] — (r)eload the file; if issued without arguments, reload the default
file.

• :d [file name] — (d)elete the file from the list of loaded files; if issued without
arguments, the default file is deleted.

• :c — (c)lear all loaded files.

• :f — show the names of all loaded (f)iles.

• :s < file name > — (s)witch the default file to that specified.

• :u < script name > — r(u)n a script; a script is a special file containing commands
for the specializer, and can be used to automate common tasks, such as setting a
path.

The commands in the expression management group are the ones implementing the
work proper to the specialization process. Each one of them accepts either a file name,
or an expression; in the case of receiving a file name, the set of loaded files is searched,
and the corresponding expression is used. They can also be invoked without arguments,
taking the default file as the one to process. The commands in this group are the
following ones:

• :e [expression] — show the (e)xpression
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• :t [expression] — infer the (t)ype of the expression

• :ts [expression] — perform the principal (t)ype (s)pecialization of the expression,
without constraint solving.

• :cs [expression] — perform the specialization of the expression, with (c)onstraint
(s)olving, but without evidence elimination.

• :ee [expression] — perform the specialization of the expression, with (c)onstraint
(s)olving and (e)vidence (e)limination.

• :ar [expression] — perform the specialization of the expression, with all the post-
processing phases; it has not been implemented, because we have not treated arity
raising in this thesis.

Supposing that the examples to specialize are contained in the directory examples,
and that they are called ex01.pts (with expression \x -> x), ex02.pts (with expression
\x -> lift x), and ex03.pts (with expression (\x -> lift x) @ 2), the example
given in Figures 10.1 and 10.2 is a typical run.

10.2 Overall Architecture and Relevant Features

The prototype is organized into two clearly differentiated parts. The first part includes
all the modules providing operations on the source language, including parsing, type
inference, and pretty printing. The second part contains those modules involving the
residual language and the specialization process, including constraint solving. They are
integrated by a module providing interaction with the user.

Parsing is implemented using an variation of monadic parsing combinators in the
style of Hutton and Meijer [1998]. Pretty printing is implemented using the library
designed by Hughes [1995]. The grammar for the language separates the precedence
of different operators, which allows the use of a minimal number of parenthesis when
writing expressions; both parsing and printing combinators take advantage of that and
thus the user needs only a minimal number of parenthesis.

Source type inference is implemented using a state monad, representing substitutions
by a table that associates variables to types, in a very similar way as it is done in the first
implementation presented by Sheard [2001]. The state captures the generation of fresh
variables and the substitution of type and annotation variables. An interesting feature
of our source type inference is that it performs annotation inference: all constructs
without explicit annotations are assigned annotation variables, and those variables are
unified in accordance with the type inference rules. In this way, if a construct (e.g. a
function) is declared static, all its uses (i.e. applications) are automatically inferred as
static too — and vice-versa: if any use is static, the construct is inferred static. At the
very end, all annotation variables that remain uninstantiated are set dynamic — this is
an arbitrary, but conservative, choice. Another arbitrary choice is that, as the source
language is monomorphic, all type metavariables that remain uninstantiated at the end
are set to Int.
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PPPP TTTTT SSSS 1 5555

P P T S 11 5

PPPP T SSS v v 1 5555

P T S v v 1 .. 5

P T SSSS v 111 .. 5555

by Pablo E. Martı́nez López (Fidel)

E-mail: fidel@info.unlp.edu.ar

March 2005

No file loaded> :a examples

No file loaded> :l ex01

Parsing ex01...

ex01> :e

\x -> x

ex01> :t

Source program.

---------------

\x -> x

::

Int -> Int

ex01> :l ex02

Parsing ex02...

ex02> :l ex03

Parsing ex03...

ex03> :f

Loaded files:

ex03

ex02

ex01

ex03> :ts

Source program.

---------------

( \x -> lift x ) @ 2^S

::

Int

Figure 10.1: Example of run from the type specializer (I).



10.2. Overall Architecture and Relevant Features 167

PTS...

Its principal type specialization.

----------------------------------

( \x -> 2 ) @ *

::

Int

ex03> :ts ex02

Source program.

---------------

\x -> lift x

::

Int^S -> Int

PTS...

Its principal type specialization.

----------------------------------

/\h2. \x -> h2

::

\/gt. h2 :: IsInt gt => gt -> Int

ex03> :ts ex02 @ 4

let^S ex02 = \x -> lift x in ex02 @ 4

Source program.

---------------

let^S ex02 = \x -> lift x in ex02 @ 4^S

::

Int

PTS...

Its principal type specialization.

----------------------------------

( \x -> 4 ) @ *

::

Int

ex03> :q

It was good to specialize with you. Bye!

Figure 10.2: Example of run from the type specializer (II).
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The specialization is also implemented using a state monad, following the same
ideas as those used in the source type monad. The main differences are the use of
different constructors for universally quantified variables in type schemes, as done by
Jones [1999], but using de Bruijn indices to avoid alpha conversions [de Bruijn, 1972;
de Bruijn, 1978]. Predicate assignments are implemented using lists of predicates, and
simplification and constraint solving just traverses those lists multiple times.

10.3 What Have We Learned?

By implementing the prototype we have learned several things, both about type spe-
cialization and about Haskell and typing disciplines.

The most important lesson is related to constraint solving. At the beginning of this
thesis, we naively believed that collecting the constraints was enough to express type
specialization. This changed substantially after looking at the predicates generated from
the most simple examples. Gradually we began to understand that the real challenge
in our formulation of type specialization lies in the way constraints are solved. In
this thesis we have presented a very primitive constraint solver, not able to manage
some complex examples; but we also have detected several different problems posed by
type specialization, that have to be tackled before our approach can be used for real
programs. While some of those problems were addressed in the prototype of the original
formulation, they were very difficult to express with that approach, forcing us to think
in terms of their implementation, and thus limiting our ability to understand them; and
the solutions proposed (e.g. backtracking) also introduce their own problems (i.e. non-
termination of some failing examples). We are convinced that our ability to generate
constraints for any source program, even erroneous ones, is important because it allows
us to understand the problems, and to help in the searching of solutions. We also
explain, in the next chapter, how by modifying the constraint solving phase, different
heuristics can be tested, thus showing the significance of constraint solving.

Another lesson was to confirm in practice once again the importance of a disciplined
use of types. Not only the Haskell type system has been extremely helpful to avoid
hundreds of common mistakes, but also the judicious use of evidence as typed objects
(although we have not designed an explicit type system, there is a correspondence be-
tween each evidence and the predicates it proves) has been invaluable in avoiding bugs.
In particular, every time we have to apply a conversion to an expression e′, we checked
that e′ has the right type scheme (see Theorem 6.12), and use the result as having the
resulting scheme. The correspondence between evidence and predicates has been also
useful, on occasions, to find errors during the formulation of some rules: our first at-
tempt for the evidence used in rule (REC-CLOS) was wrong, and that was discovered by a
type mismatch in the implementation (but not caught by the Haskell type system! It
may have been better to design some type system for conversions, after all. . . ).

The third lesson we have learned is the absolute need for annotation inference. Our
first version of the prototype only performed annotation checking, and to write a program
of certain size that passes the source typecheck was a difficult task, involving several
iterations. After we have implemented annotation inference, it was much easier to
produce the desired annotations. However, it is still difficult to detect all the points
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where decisions have to be taken. For that purpose, an interactive tool performing
annotation completion would be essential. This is not separate from the issue of semi-
automatic binding time analysis, but it is much easier to achieve, and for that reason
we consider that it is an important help to have in a tool.

One important issue that we find by using the prototype is that the size of constraints
generated grew quickly with the size of the program. This can be alleviated by simpli-
fying the constraints, as described in Chapter 8, and also by using local declarations,
as those we have used in some examples (which also improves readability). The num-
ber and size of the constraints have an important impact in the efficiency of constraint
solving, which constitutes the most expensive operation in the prototype. However, it
remains to be determined if this complexity is inherent to type specialization, or if it is
something introduced by our approach.

Finally, we want to remark that the simplicity of the prototype is based almost
completely in the right level of detail and the clarity provided by the use of Mark Jones’
framework of qualified types. The neat separation of type information from evidence
information allowed the separation of those issues in (almost) independent modules,
facilitating both coding and maintenance.

10.4 Towards a Proper Implementation

The prototype just described is a small toy to test ideas, and specialize small examples.
To be able to perform specialization of bigger and more realistic programs, a full-fledged
implementation would have to be constructed. We finish the discussion about the pro-
totype discussing those points we consider essential to produce that implementation of
our approach for type specialization.

The use of heap profiling confirmed that the most expensive part of the specializer is
the constraint solver. For that reason, it is very important to have an efficient implemen-
tation of that phase; our current implementation just performs several iterations over
lists of constraints, without any concern for efficiency. There are several possibilities
to achieve efficiency. On the one hand, using a representation of predicate assignments
that distinguishes them will help in determining which rule can be applied; this is possi-
ble because of the separation of constraint solving rules according to the different kinds
of predicates. On the other hand, having more compact representation of predicates
will help as well; the current implementation uses an algebraic datatype that follows
the grammar, with several operations traversing the trees (for example, equality com-
parisons or unifications). Finally, static recursion gives rise to several predicates that
have to be checked but that do not contribute with evidence. With our present solver,
those checks can sometimes be repeated; more care in the treatment of those cases will
improve the efficiency of programs using static recursion.

Another issue that we detect as a possible source of inefficiency is the use of nested
static lambda abstractions. Every static lambda generates a residual closure, and then,
nested lambdas generate nested closures. When those nested closures are processed by
the constraint solver, they will have to be traversed to obtain the final evidence. For
that reason, finding a better representation for nested closures can be helpful to improve
efficiency. The main problem consists in the expression of partial applications of those
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nested closures.
It is one of our goals to produce a realistic implementation following the ideas de-

scribed here, but we have left the task for future work (Chapter 14).
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Type Specializing Polymorphism
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Chapter 11

Inherited Limit: Polymorphism

You’ll reap the harvest you have sown.

Dogs – Animals
Pink Floyd

In this chapter we present an extension of principal type specialization that can
produce polymorphic residual programs from monomorphic source ones. This is done
to show the possibilities of our approach. However, the result has not been thoroughly
tested, and we think that it needs some improvements before being able to state that
the inherited limit of polymorphism has been completely removed.

This result is obtained by a new annotation, polym, whose behaviour is similar to
polyvariance, but with a different rule for evidence elimination: instead of introducing
a tuple with copies for each specialization, polym forces all the copies to be the same,
and thus generates one single element with a more general, polymorphic, type. To
check whether all the different specializations of a given expression will be the same,
some form of usage analysis on evidence variables is needed; but, as we are generating
code, instead of performing a separate analysis, we can add some information to the
predicates in such a way that the usage information is collected during the construction
of the residual term. This usage information can also be used to improve the treatment
of polyvariance.

The chapter is organized as follows. In Section 11.1 we revisit the example of the
monomorphizer for lambda-calculus given in Chapter 3, showing what is the principal
specialization of it, and analyzing it to motivate the need for the new annotation. In
Section 11.2 we introduce the new annotation, polym, and the rules specifying its
behaviour during specialization; the most important change is in the rules for evidence
elimination. In Section 11.3 we show how the new annotation can be used to annotate the
interpreter for lambda-calculus of the previous example in such a way that by specializing
it, we can produce polymorphic residual code. Finally, in Section 11.4 we discuss how
the ideas that we used to introduce polymorphism can be used to improve the treatment
of polyvariance.

11.1 Monomorphizing Lambda-calculus, Revisited

The interpreter of lambda-calculus we have considered in Chapter 3 can be used to
produce a monomorphizer for a let-bound polymorphic lambda calculus; the annotated
program to do this was presented in Figure 4.3 (function meval), and an example of
its specialization using the original formulation of type specialization was presented in

173
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Example 4.6. In that example, the polyvariant term expressing the polymorphic use
of a let-bound expression gave rise to a tuple of monomorphic copies. By using our
formulation, the same example can be specialized to a different residual code, using
evidence abstraction and application.

Example 11.1. The result of specializing the expression

meval @S (LetS ′i′ (LamS ′x′ (VarS ′x′))
(AppS (AppS (VarS ′i′) (VarS ′i′))

(ConS 0S )))

is the expression

let v = Λh.λv ′.v ′

in (v((Fun))@(v((Fun))))@0
:: Num Int

Observe how the residual of the let-bound identity function is an evidence abstraction,
instead of a tuple; its type is

poly (∀t .IsResidualOf t ValueS ⇒ Fun (t → t))

— the evidence variable h is waiting for evidence that type t is the residual type of
an expression of source type ValueS . So, in order to use the function, it must first
be provided with suitable evidence that the corresponding instance of t satisfies the
predicate, which is done by evidence application; the first Fun is the evidence that

Fun ((Fun (Num Int → Num Int)) → (Fun (Num Int → Num Int))

is the residual of ValueS , and that of the second one is the evidence that

Fun (Num Int → Num Int)

is also a residual of ValueS .

As can be seen, the evidence h does not play any role in the construction of the
residual term; it is needed to distinguish the different uses of the overloaded expression.
When performing evidence elimination, every evidence application with a different type
will produce a new element in the resulting tuple, but as can be seen, all these elements
are equal. This is a key observation that allows us to introduce, in the next section, a
new annotation that produces polymorphic code.

11.2 An Annotation to Generate Polymorphism

We begin by extending the source language with a new annotation, polym, and its
corresponding annotation to eliminate it, inst. These are similar to poly and spec,
and thus they will also be reflected in source types in a similar way.

e ::= . . . | polym e | inst e
τ ::= . . . | polym τ
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The rules of source typing for the new annotations are identical to the the ones
corresponding to poly — see Section 6.3.1.

(ST-POLYM)
Γ
ST

⊢
ST

e : τ

Γ
ST

⊢
ST

polym e : polym τ

(ST-INSTC)
Γ
ST

⊢
ST

e : polym τ

Γ
ST

⊢
ST

inst e : τ

For the specification of the specialization of polym expressions, we need to introduce
a new residual type constructor, polym, and a new predicate similar to IsMG, but with
a different behaviour during evidence elimination.

τ ′ ::= . . . | polym σ
δ ::= . . . | IsMGmorph σ σ

Using the new constructs, the rules to specialize polym are almost identical to those
for poly — see Section 6.3.2.

(POLYM)
∆ | Γ ⊢

P
e : τ →֒ e′ : σ′ ∆ ⊢⊢ v : IsMGmorph σ′ σ

∆ | Γ ⊢
P

polym e : poly τ →֒ v[e′] : polym σ

(INSTC)

∆ | Γ ⊢
P

e : polym τ →֒ e′ : polym σ ∆ ⊢⊢ v : IsMGmorph σ τ ′ ∆ ⊢
SR

τ →֒ τ ′

∆ | Γ ⊢
P

inst e : τ →֒ v[e′] : τ ′

The source-residual relationship must also be extended with a rule for polym.

(SR-POLYM)
∆ ⊢

SR
τ →֒ σ′ ∆ ⊢⊢ IsMGmorph σ′ σ

∆ ⊢
SR

polym τ →֒ polym σ

And finally, rules for the entailment of the new predicate are needed. They are
identical to the rules for IsMG.

(IsMGmorph)
C : (∆ | σ′) ≥ (∆ | σ)

∆ ⊢⊢ C : IsMGmorph σ′ σ

(MorphComp)
∆ ⊢⊢ v : IsMGmorph σ1 σ2 ∆ ⊢⊢ v′ : IsMGmorph σ2 σ3

∆ ⊢⊢ v′ ◦ v : IsMGmorph σ1 σ3

The key difference between poly and polym is the way evidence elimination is
performed. For polyvariant expressions, each different lower bound will generate a tuple
element, specialized to the evidence proving that the predicates in the upper bound are
satisfied — this can be seen in Examples 11.1 and 4.6. But to generate polymorphism,
all the uses of the expression have to share the same residual term; this means that
the polymorphic residual term have to be equal for all the different uses of evidence —
that is, if some evidence has more than one different value, then that evidence must
not be used in the construction of the term. This restriction has to be enforced during
evidence elimination for polym, and thus we need information about the usage of the
evidence appearing in evidence applications corresponding to lower bounds. Consider
the following example.
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Example 11.2. The expression

letD f = polym (λDx.lift x +D 1D )
in (inst f @D 42S , inst f @D 17S )D

: (IntD , IntD )D

cannot be specialized. Observe the use of polym, and compare this term with that in
Example 3.12-1, which uses poly. The problem here is that polym enforces that all
the possible specializations of its argument expression must have the same form, that
is, they must not depend on the evidence abstracted. But the expression Λht.λx′.ht + 1
that is the residual of f uses the evidence ht, and thus it must raise an error.

On the other hand, the following specialization is possible

⊢
P

letD f = polym (λDx.x +S 1S )
in (inst f @D 42S , inst f @D 17S )D

: (IntS , IntS )D

→֒
let f ′ = Λh, h′.λx′.•
in (f ′((42, 43))@•, f ′((17, 18))@•)
: (4̂3, 1̂8)

and when evidence is eliminated, it will produce the following residual term:

let f ′ = λx′. • in (f ′@•, f ′@•) : (4̂3, 1̂8)

Observe that evidence elimination simply removes the evidence abstraction Λh, h′. . . .,
and the corresponding evidence applications. The residual term of function f ′ is then
polym (∀t, t′.t → t′) — the predicates relating t with t′ were removed by the evidence
elimination, because they have no effect in the residual term.

It is important to note that after introducing this change, the residual type produced
is no longer in the typing relation for the residual language (the system ⊢

RT
). It is

necessary to modify such typing relation to have polymorphic types into account. We
left this as future work.

The way to enforce this restriction is by classifying the predicates in two groups: those
whose evidence is actually used (as the one in the first case of the previous example), and
those whose evidence is not used. The algorithm calculating the principal specialization
for a polym has to add to the upper bound only those predicates whose evidence will
not be used, leaving the rest in the predicate assignment — the effect of this is that
those predicates will not be quantified and thus will be forced to have only one form.

To keep track of the usage of evidence, we use an abstract domain with two elements,
N for not used and U for used, and let every predicate be annotated with one of these.
The order in the domain is N ≤ U , meaning that it is always safe to consider as used
something that it is not used. In the inference process, usage variables a will be used to
propagate unknown usage information.

Specialization rules will propagate the usage information. Each time some evidence
is actually used, the information will be set to U — this occurs in the rules (LIFT), (POLY),
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(LIFT)
∆ | Γ ⊢

P
e : IntS →֒ e′ : τ ′ ∆ ⊢⊢ v : IsIntU τ ′

∆ | Γ ⊢
P

lift e : IntD →֒ v : Int

(POLY)
∆ | Γ ⊢

P
e : τ →֒ e′ : σ′ ∆ ⊢⊢ v : IsMGU σ′ σ

∆ | Γ ⊢
P

poly e : poly τ →֒ v[e′] : poly σ

(SPEC)
∆ | Γ ⊢

P
e : poly τ →֒ e′ : poly σ ∆ ⊢⊢ v : IsMGU σ τ ′ ∆ ⊢

SR
τ →֒ τ ′

∆ | Γ ⊢
P

spec e : τ →֒ v[e′] : τ ′

(QOUT)
∆ | Γ ⊢

P
e : τ →֒ e′ : δa ⇒ ρ ∆ ⊢⊢ v : δa

∆ | Γ ⊢
P

e : τ →֒ e′((v)) : ρ

Figure 11.1: Specialization rules extended with usage information.

(IsInt) ∆ ⊢⊢ n : IsInta n̂

(IsOp) h : ∆ ⊢⊢ n : n̂:= a n̂1 + n̂2 (whenever n=n1+n2)

(IsOpIsInt) ∆, h : τ ′:= a τ ′
1 + τ ′

2, ∆
′ ⊢⊢ h : IsInta τ ′

(IsMG)
C : (∆ | σ′) ≥ (∆ | σ)

∆ ⊢⊢ C : IsMGa σ′ σ

(Comp)
∆ ⊢⊢ v : IsMGa′ σ1 σ2 ∆ ⊢⊢ v′ : IsMGa′′ σ2 σ3 a ≤ a′ a ≤ a′′

∆ ⊢⊢ v′ ◦ v : IsMGa σ1 σ3

Figure 11.2: Entailment for evidence construction with usage information.

(SPEC), (POLYM), and (INSTC), presented in Figure 11.1. Additionally, the rule (QOUT) for
discharging a predicate from the assignment will propagate usage information.

Rules for entailment must also propagate usage information, as presented in Fig-
ure 11.2

The usage information will be taken into account by the rule (W-POLYM), in order to
decide which predicates will be included in the upper bound, and which ones won’t.

(W-POLYM)

h : ∆ | S Γ ⊢
W

e : τ →֒ e′ : τ ′ ∆U , ∆′ | ∅ ⊢⊢W v : IsMGmorph (GenS Γ,∅(∆
N ⇒ τ ′)) s

∆′ | S Γ ⊢
W

polym e : polym τ →֒ v[Λh.e′] : polym s
(s fresh)

where the notation ∆U (∆N ) means those predicates of ∆ marked as used (not used).
The next example shows that, to have all the usage information available when

specializing a polym, a naive algorithm is not enough.

Example 11.3. Observe that function f has to pass its evidence to g, and it is the
latter which decides if the evidence will be used or not. In the first example it does not
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use it, and in the second one, it does; moreover, the two argument functions presented
use different evidence.

1. ⊢
P

letD f = λDg.poly (λDx.spec g @D x @D x)
in ( spec (f @D poly (λDy1.λ

Dy2.0
D ))

, spec (f @D poly (λDy1.λ
Dy2.1

D ))
)D

: (IntS →D IntD , IntS →D IntD )D

→֒ Λh1, h2.
let f = λg.Λhx, h

ℓ
g.λx.hℓ

g[g]@x@x
in ((f@(Λhy1 , hy2 .λy1.λy2.0))((h1))(([]((h1))((h1))))

, (f@(Λhy1 , hy2 .λy1.λy2.1))((h2))(([]((h2))((h2)))))
: ∀t1, t2.IsInt t1,

IsInt t2,
⇒ (t1 → Int, t2 → Int)

2. ⊢
P

letD f = λDg.poly (λDx.spec g @D x @D x)
in ( spec (f @D poly (λDy1.λ

Dy2.lift y1))
, spec (f @D poly (λDy1.λ

Dy2.lift (y1 +D y2)))
)D

: (IntS →D IntD , IntS →D IntD )D

→֒ Λh1, h2, h
′
1, h

′
2.

let f = λg.Λhx, h
ℓ
g.λx.hℓ

g[g]@x@x
in ((f@(Λhy1 , hy2 , hy12 .λy1.λy2.hy1))((h1))(([]((h1))((h1))((h

′
1))))

, (f@(Λhy1 , hy2 , hy12 .λy1.λy2.hy12))((h2))(([]((h2))((h2))((h
′
2)))))

: ∀t1, t2, t
′
1, t

′
2.IsInt t1,

IsInt t2,
t′1 := t1 + t1,
t′2 := t2 + t2
⇒ (t1 → Int, t2 → Int)

Had we used polym instead of poly in the previous examples, the specialization
of the body of function f would not have all the usage information available, until the
arguments of f will be known.

This shows that this approach needs further development; however, as our goal is only
to show the potential of principal type specialization we will not proceed further, leaving
this as a future work — see Chap. 14.

In Section 8.3.3 we have discussed the different possibilities to perform evidence
elimination. The new annotation polym will be eliminated by considering the last
option mentioned — that is, the production of different residual codes — but forcing
the process to guarantee that only a one element tuple will be produced. The usage
information can be used to avoid repeated computations.
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data LExpS = Var CharS | Const IntS

| Lam CharS LExpS | App LExpS LExpS

| Let CharS LExpS LExpS

data ValueS = Num IntD | Fun (ValueS →D ValueS ) | Wrong

data MPS = M ValueS | P (polym ValueS )

letS bind = λS x → λS v → λS env →
λS y → if S x == y then v else env @S y

in
letS preeval =

fixS (λS eval → λS env → λS expr →
caseS expr of

Var x → caseS (env @S x ) of
M v → v
P v → inst v

Const n → NumS (lift n)
Lam x e → FunS (λD v →

letS env ′ = bind @S x @S v @S env
in eval @S env ′ @S e)

App e1 e2 → caseS (eval @S env @S e1) of
Fun f → f @D (eval @S env @S e2)

Let x e1 e2 → letD v = PS (polym eval @S env @S e1)
in letS env ′ = bind @S x @S v @S env

in eval @S env ′ @S e2
)

in
letS meval = preeval @S (λS x → MS WrongS )
in h. . . i

Figure 11.3: An evaluator for lambda-calculus with let-bound polymorphism.

11.3 Generating Polymorphism

We can use the new annotation in the let-bound polymorphic version of the interpreter
for lambda-calculus to produce polymorphic code. The resulting annotated program
is given in Figure 11.3. Observe that every poly was replaced by a polym, and that
every spec was replaced by an inst; in this way, the let-bound term will produce a
polymorphic residual.

We can observe the effect of the new annotation in the term of Example 11.1.

Example 11.4. After evidence elimination, the result of specializing the expression

meval @S ( LetS ′i ′ (LamS ′x ′ (VarS ′x ′))
( AppS (AppS (VarS ′i ′) (VarS ′i ′))

(ConstS 0)
)

)
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is the expression

let v = λv ′ → v ′

in (v v) 0
:: Num Int

where the function bound to v has type

polym (∀t .Fun (t → t))

We can see that the resulting residual code uses let-bound polymorphism, although the
source code of meval was completely monomorphic. This shows that the inherited limit
of polymorphism was removed for this example. However, the usage analysis may fall
short when considering more complex terms. For that reason, this approach needs a
deeper consideration to be able to state that the inherited limit of polymorphism has
been removed. We have presented this basic treatment here to show the possibilities of
our approach.

11.4 Improving Polyvariance

The information about the usage of evidence collected to permit the generation of poly-
morphism can be used also to have a better treatment of polyvariance. When evidence
eliminating polyvariance, every different lower bound will generate a different element
in the resulting tuple. But some of those elements may have the same residual term,
and thus they not need to be different. Consider the following example.

Example 11.5. Observe how the evidence corresponding to the first parameter is used,
but that of the second is not.

⊢
P

letD f = poly (λDx.λDy.(lift x, y)D )
in (spec f @D 2S @D 4S , spec f @D 2S @D 8S ,

spec f @D 3S @D 9S , spec f @D 3S @D 27S )D

: ((IntD , IntS )D , (IntD , IntS )D , (IntD , IntS )D , (IntD , IntS )D )D

→֒ let f = Λhx, hy.λx.λy.(hx, y)
in (f((2, 4))@ • @•, f((2, 8))@ • @•,

f((3, 9))@ • @•, f((3, 27))@ • @•)
: ((Int, 4̂), (Int, 8̂), (Int, 9̂), (Int, 2̂7))

The type of the residual function f is

τf = poly (∀tx, ty.IsInt tx, IsInt ty ⇒ tx → ty → (Int, ty))

and the types of the lower bounds are

IsMG τf (2̂ → 4̂ → (Int, 4̂))

IsMG τf (2̂ → 8̂ → (Int, 8̂))

IsMG τf (3̂ → 9̂ → (Int, 9̂))

IsMG τf (3̂ → 2̂7 → (Int, 2̂7))

Observe that the four are different.
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When evidence elimination is performed, four different lower bounds will generate a
four-tuple, that is

let f = (λx.λy.(2, y), λx.λy.(2, y), λx.λy.(3, y), λx.λy.(3, y))
in (π1,4 f@ • @•, π2,4 f@ • @•,

π3,4 f@ • @•, π4,4 f@ • @•)

But if we take the usage information into account, the type of the function f is

τf = poly (∀tx, ty.IsIntU tx, IsIntN ty ⇒ tx → ty → (Int, ty))

which means that the evidence for ty is not used in the body of the function. Thus,
instead of having one element for each different lower bound, we may allow one element
for each different evidence marked as used. This will result in the following term

let f = (λx.λy.(2, y), λx.λy.(3, y))
in (fst f@ • @•, fst f@ • @•,

snd f@ • @•, snd f@ • @•)

The formulation of type specialization using predicates and evidence has been shown
to be very useful. We believe that it can be used also to improve the treatment of
unresolved issues in type specialization, such as the interaction between polyvariance
and dynamic recursion.
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Chapter 12

About Jones’ Optimality

. . . it has the words DON’T PANIC inscribed in large friendly letters on its
cover.

The Hitch Hicker’s Guide to the Galaxy
Douglas Adams

In Chapter 2 we have described the notion of compilation by specialization, and
we have presented the inherited limit of types based on the compilation using typed
interpreters. We also have said that several solutions have been proposed to this problem,
including Type Specialization.

However, as we were working in this thesis, we have discovered that indeed the prob-
lem of the inherited limit of types is not really there: it takes only a simple representation
shift to show that ordinary partial evaluation is Jones-optimal. The representation shift
amounts to read the type tags as constructors for higher-order abstract syntax. We
substantiate our observation by considering a typed self-interpreter whose input ab-
stract syntax is higher-order — specializing it with respect to a source program yields
a residual program that is textually identical to the source program, modulo renaming.

This new way to look at the problem of the inherited limit of types was discovered in
joint work with Olivier Danvy, and published by Danvy and Mart́ınez López [2003]. For
that reason this chapter departs slightly from the rest of the work — e.g. the examples
are self-contained, and developed from scratch — in presenting the ideas that allows us
to say that for more than ten years the partial evaluation community has produced a
number of really interesting developments while trying to solve a problem that was not
really there!

12.1 The Problem

Partial evaluation can be used to compile a program having only an interpreter of a
language: by specializing the interpreter to an object program, we can obtain a program
written in another language that performs the same task — this scenario was described
in Section 2.3. This approach can be used to measure, in some way, the power of the
specialization method: if there exists a self-interpreter that, when compiling a program
by specialization, is able to obtain essentially the same program (or even a better one),
then we can be sure that there is no feature of the interpreter that imposes a limit on
the form of residual programs. This phenomenon is referred in the literature by the
term Jones-optimality, and can be expressed with the following formula:

[[mix]]L self-interpreter program =α program
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A partial evaluator such as lambda-Mix, for example, is Jones optimal [Gomard and
Jones, 1991; Jones et al., 1993].

A typed interpreter, however, requires a universal data type to represent expressible
values, and specializing it with an ordinary partial evaluator yields a residual program
with many tag and untag operations. Ordinary, Mix-style, partial evaluation is thus not
Jones optimal [Jones, 1988b].

Obtaining Jones optimality for typed interpreters has proved a source of inspiration
for a number of new forays into partial evaluation [Makholm, 2000], e.g., constructor
specialization [Dussart et al., 1995; ?], type specialization [Dussart et al., 1997b; Hughes,
1996b; Hughes, 1996a; Hughes, 1998a; Hughes, 2000; Mart́ınez López and Hughes, 2002],
coercions [Danvy, 1998a], and more recently tag elimination [Taha et al., 2001] and
staged tagless interpreters [Pasalic et al., 2002].

To state the problem in full form, we present a self-interpreter for a lambda-calculus
with sum-types that is able to represent the universal data type needed to express values,
and a generating extension for it. This interpreter is the minimal one able to perform
self-interpretation — we present it completely to show what it takes to have sum-types
and self-interpretation, and to provide enough information to assess that it is indeed a
self-interpreter. The example has been programmed in Haskell, including a type FOLam

to represent object programs, an evaluation function eval, and a generating extension
geval.

The definition of the language is as follows:

data Lam = Var String | Lam (String, Lam) | App (Lam, Lam)

| Let ((String, Lam), Lam)| Fix Lam

| Pair (Lam,Lam) | Fst Lam | Snd Lam

| Con (String, Lam) | Case (Lam, [((String,String),Lam)])

| Unit ()

| Num Int

| Bool Bool | If (Lam,(Lam,Lam))

| Str String

| Prim (String, Lam)

data Val = F (Val -> Val)

| P (Val, Val) | C (String, Val) | U ()

| N Int | B Bool | S String

where Val is the type of computed values, and Lam, the type of expressions in the
language. The language has primitive functions, where we consider basic arithmetic
operations (here only (+), for simplicity), equality, and a function error to provide
failure.

The evaluation of closed expressions of the language represented by elements of Lam
is realized by the function eval from Lam into Val. To define eval, we have to use
another function, preeval, that evaluates any expression, even those with free variables
— the usual technique of environments is applied.

type Env = (String -> Val)



12.1. The Problem 187

bind :: String -> Val -> Env -> Env

bind x v env = \y -> if x==y then v else env y

env0 x = error (x ++ " not bound!")

eval te = preeval te env0

-- This function is used to perform the search of the right branch

lookForC :: String -> [((String,String),Lam)]

-> ((String,Lam) -> d) -> d

lookForC c [] _ = error ("Non-complete case: " ++ c ++ " not found.")

lookForC c (cxe:bs) k = if c==fst (fst cxe)

then k (snd (fst cxe),snd cxe)

else lookForC c bs k

preeval :: Lam -> Env -> Val

preeval te env =

case te of

Var x -> env x

Lam xe -> F (\v -> let env2 = bind (fst xe) v env

in preeval (snd xe) env2)

App e12 -> appVal (preeval (fst e12) env) (preeval (snd e12) env)

Let xe21 -> let v = preeval (snd (fst xe21)) env

in let env2 = bind (fst (fst xe21)) v env

in preeval (snd xe21) env2

Fix e -> fixVal (preeval e env)

Pair e12 -> P (preeval (fst e12) env, preeval (snd e12) env)

Fst e -> fstVal (preeval e env)

Snd e -> sndVal (preeval e env)

Con ce -> C (fst ce, preeval (snd ce) env)

Case ebs -> case preeval (fst ebs) env of

C cv -> lookForC (fst cv) (snd ebs)

(\xei ->

let env2 = bind (fst xei) (snd cv) env

in preeval (snd xei) env2)

Unit u -> U u

Num n -> N n

Bool b -> B b

If be12 -> ifVal (preeval (fst be12) env)

(preeval (fst (snd be12)) env)

(preeval (snd (snd be12)) env)

Str s -> S s

Prim ope -> runPrimitive (fst ope) (preeval (snd ope) env)

_ -> error "Unexpected Lam constructor!"
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This function uses several auxiliary functions that can easily be defined. For example,
the function appVal that performs the application of a function to its parameter is
defined as

appVal :: Val -> Val -> Val

appVal v x = case v of

F f -> f x

_ -> error "appVal"

the function fixVal that computes fixpoints (that uses function appVal), as

fixVal :: Val -> Val

fixVal vf =

case vf of

F f -> F (\v -> appVal (f (F (\v2 -> appVal (fixVal vf) v2)))) v)

_ -> error "fixVal"

the function runPrimitive, that executes a primitive function, as

runPrimitive :: String -> Val -> Val

runPrimitive p v =

if p == "+"

then case v of

P v12 -> opNumVal (+) (fst v12) (snd v12)

_ -> error ("Bad arguments to primitive (+)!")

else if p == "=="

then case v of

P v12 -> eqVal (fst v12) (snd v12)

_ -> error ("Bad arguments to primitive (==)!")

else if p == "error"

then case v of

S msg -> error msg

_ -> error ("Bad arguments to primitive error!")

else error ("Unknown primitive: " ++ p)

(and uses two other auxiliaries, opNumVal and eqVal)

opNumVal :: (Int -> Int -> Int) -> Val -> Val -> Val

opNumVal op (Val v1) (Val v2) =

case v1 of

N n -> case v2 of

N m -> N (op n m)

_ -> error "opNumVal"

_ -> error "opNumVal"

opNumVal _ _ _ = error "opNumVal"

eqVal :: Val -> Val -> Val

eqVal (Val v1) (Val v2) =
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case (v1,v2) of

(P v12 , P v12’) -> case eqVal (fst v12) (fst v12’) of

B b -> if b

then eqVal (snd v12) (snd v12’)

else B False

_ -> error "eqVal"

(C cv , C cv’) -> if fst cv == fst cv’

then eqVal (snd cv) (snd cv’)

else B False

(U u , U u’) -> B (u == u’)

(N n , N m) -> B (n == m)

(B b , B b’) -> B (b == b’)

(S s , S s’) -> B (s == s’)

_ -> error "eqVal"

eqVal _ _ = error "eqVal"

and the rest, as

ifVal :: Val -> Val -> Val -> Val

ifVal vb ve1 ve2 = case vb of

B b -> if b then ve1 else ve2

_ -> error "ifVal"

fstVal, sndVal :: Val -> Val

fstVal v = case v of

P v12 -> case fst v12 of

Val v -> v

_ -> error "fstVal"

_ -> error "fstVal"

sndVal v = case v of

P v12 -> case snd v12 of

Val v -> v

_ -> error "sndVal"

_ -> error "sndVal"

The interpreter has been programmed in such a way that it is simple to see that
it is indeed a self-interpreter. For example, the object program corresponding to the
function eval can be defined as follows (assuming the names of object programs for the
other functions):

oeval =

Let (("opNumVal", oopNumVal),

Let (("eqVal", oeqVal),

Let (("runPrimitive", orunPrimitive),

Let (("appVal", oappVal),

Let (("fixVal", ofixVal),
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Let (("ifVal", oifVal),

Let (("fstVal", ofstVal) , Let (("sndVal", osndVal),

Let (("lookForC", olookForC),

Let (("bind", obind) , Let (("env0", oenv0),

Let (("eval", Fix (Lam ("preeval", Lam ("te", Lam ("env"

Case (Var "te",

[ (("Var", "x"), App (Var "env", Var "x"))

, (("Lam", "xe")

, Con ("F", Lam ("v"

, Let (("env2", App (App (App

(Var "bind", Fst(Var "xe"))

, Var "v")

, Var "env"))

, App (App (Var "eval", Snd(Var "xe"))

, Var "env2")))))

, (("App", "e12")

, App (App (Var "appVal"

, App (App (Var "eval", Fst(Var "e12")), Var "env"))

, App (App (Var "eval", Snd(Var "e12")), Var "env")))

, (("Let", "xe21")

, Let (("v", App (App

(Var "eval", Snd (Fst (Var "xe21"))), Var "env"))

, Let (("env2", App (App (App

(Var "bind", Fst(Fst(Var "xe21")))

, Var "v"), Var "env"))

, App (App (Var "eval", Snd(Var "xe21"))

, Var "env2"))))

, (("Fix", "e")

, App (Var "fixVal"

, App (App (Var "eval", Var "e"), Var "env")))

, (("Pair", "e12")

, Con ("P"

, Pair ( App (App (Var "eval", Fst(Var "e12"))

, Var "env")

, App (App (Var "eval", Snd(Var "e12"))

, Var "env"))))

, (("Fst", "e")

, App (Var "fstVal"

, App (App (Var "eval", Var "e"), Var "env")))

, (("Snd", "e")

, App (Var "sndVal"

, App (App (Var "eval", Var "e"), Var "env")))
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, (("Con", "ce")

, Con ("C", Pair ( Fst(Var "ce")

, App (App (Var "eval", Snd(Var"ce"))

, Var "env"))))

, (("Case", "ebs")

, Case (App (App (Var "eval", Fst(Var "ebs")), Var "env")

, [ (("C", "cv")

, App (App (App

(Var "lookForC"

, Fst(Var "cv"))

, Snd(Var "ebs"))

, Lam ("xei",

Let (("env2", App (App (App (Var "bind"

, Fst(Var "xei"))

, Snd(Var "cv"))

, Var "env"))

, App (App (Var "eval"

, Snd(Var "xei"))

, Var "env2")))))

]))

, (("Unit", "u"), Con ("U", Var "u"))

, (("Num", "n"), Con ("N", Var "n"))

, (("Bool", "b"), Con ("B", Var "b"))

, (("If", "be12")

, App (App (App (

Var "ifVal",

App (App (Var "eval", Fst(Var "be12")), Var "env")),

App (App (Var "eval", Fst(Snd(Var "be12"))), Var "env")),

App (App (Var "eval", Snd(Snd(Var "be12"))), Var "env")))

, (("Str", "s"), Con ("S", Var "s"))

, (("Prim", "ope")

, App (App (Var "runPrimitive", Fst(Var "ope")),

App (App (Var "eval", Snd(Var "ope")), Var "env")))

])))))),

Lam ("te"

, App (App (Var "eval", Var "te"), Var "env0"))))))))))))))

Observe how constructors of type Lam are used to represent program expressions, and
how strings are used to represent variables and program constructors. All the auxiliary
functions can be defined in the same way.

This shows that our language Lam is indeed a self-interpreter. The next step is to
define a generating extension for the interpreter — that is, a program that given a
representation of an object program, returns the residual of specializing the interpreter
to it. To construct it, we need a representation for residual programs, and a function



192 Chapter 12. About Jones’ Optimality

mapping object programs into residual ones. The representation for residual programs
and values is given by the types GLam and GVal respectively:

data GLam = RES_Val GVal

| RES_App (GLam, GLam)

| RES_Let (GLam, GLam -> GLam)

| RES_Fix GLam

| RES_Case (GLam, [(String,GLam -> GLam)])

| RES_Fst GLam

| RES_Snd GLam

| RES_Eq (GLam,GLam)

| RES_If (GLam,(GLam,GLam))

| RES_Prim (String, GLam)

data GVal = RES_F (GLam -> GLam)

| RES_C (String, GLam)

| RES_P (GLam,GLam)

| RES_U ()

| RES_N Int

| RES_B Bool

| RES_S String

The function mapping object programs to residual code is called geval, and is defined
as follows.

geval e = gpreeval e genv0

gpreeval :: Lam -> GEnv -> GLam

gpreeval (Var x) env = env x

gpreeval (Lam (x,e)) env = res_valF

(\v -> let env2 = gbind x v env

in gpreeval e env2)

gpreeval (App (e1,e2)) env = RES_App (gpreeval e1 env

,gpreeval e2 env)

gpreeval (Let ((x,e2),e1)) env = RES_Let

(gpreeval e2 env

,\v -> let env2 = gbind x v env

in gpreeval e1 env2)

gpreeval (Fix e) env = RES_Fix (gpreeval e env)

gpreeval (Unit u) _ = res_valU u

gpreeval (Con (c,e)) env = res_valC (c, gpreeval e env)

gpreeval (Case (e,bs)) env = RES_Case

(gpreeval e env

,map

(\((ci,xi),ei) ->

(ci

,\v -> let env2 = gbind xi v env

in gpreeval ei env2
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)) bs

)

gpreeval (Pair (e1,e2)) env = res_valP (gpreeval e1 env

,gpreeval e2 env)

gpreeval (Fst e) env = RES_Fst (gpreeval e env)

gpreeval (Snd e) env = RES_Snd (gpreeval e env)

gpreeval (Num n) _ = res_valN n

gpreeval (Bool b) _ = res_valB b

gpreeval (Eq (e1,e2)) env = RES_Eq (gpreeval e1 env

,gpreeval e2 env)

gpreeval (If (b,(e1,e2))) env = RES_If (gpreeval b env

,(gpreeval e1 env

,gpreeval e2 env))

gpreeval (Str s) _ = res_valS s

gpreeval (Prim (op,e)) env = RES_Prim (op, gpreeval e env)

where environments are defined as

type GEnv = (String -> GLam)

gbind :: String -> GLam -> GEnv -> GEnv

gbind x v env = \y -> if x==y then v else env y

genv0 :: GEnv

genv0 _ = error "Variable not found"

and the functions res_valX are defined as

res_valF = RES_Val . RES_F

res_valC = RES_Val . RES_C

res_valP = RES_Val . RES_P

res_valU = RES_Val . RES_U

res_valN = RES_Val . RES_N

res_valB = RES_Val . RES_B

res_valS = RES_Val . RES_S

With all this elements, now we are ready to state the problem: the specialization of
the interpreter eval to a term is not optimal.

For example, if we consider the specialization of the interpreter eval to the term
given by "\x.x x", we obtain

RES_Val (RES_F (\v -> RES_App (v, v)))

and this term is not α-equivalent to the original one.
For a bit bigger example we may consider the specialization of the interpreter to the

code of the function appVal, that is:

"\v -> \x ->

case v of

F f -> f x"
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whose result is

RES_F (\v -> RES_F (\x ->

RES_Case (v,

[ ("F",\f -> RES_App (f,x))]

)

))

Again we can see that the specialization is not α-equivalent to the source code.
One more example, involving primitive functions, is given by the specialization of the

function "runPrimitive" (we assume defined the operations "opNumVal" and "eqVal"):

"\p -> \v ->

if p == "+"

then case v of

P v12 -> opNumVal (+) (fst v12) (snd v12)

else if p == "=="

then case v of

P v12 -> eqVal (fst v12) (snd v12)

else if p == "error"

then case v of

S msg -> error msg

else error ("Unknown primitive: " ++ p)"

whose result is

RES_F (\p -> RES_F (\v ->

RES_If (RES_Eq (p,RES_S "+"),

(RES_Case (v,

[ ("P",\v12 ->

RES_App (RES_App (RES_App (

opNumVal

,RES_F (\x -> RES_F (\y ->

RES_Prim ("+",RES_P (x, y)))))

,RES_Fst v12)

,RES_Snd v12)

)]),

RES_If (RES_Eq (p,RES_S "=="),

(RES_Case (v,

[ ("P",\v12 ->

RES_App (RES_App (

eqVal

,RES_Fst v12)

,RES_Snd v12)

)]),

RES_If (RES_Eq (p,RES_S "error"),

(RES_Case (v,
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[ ("S",\msg ->

RES_Prim ("error",msg)

)]),

RES_Prim ("error",RES_S "Unknown primitive!"))

)))))))))))

One more time, the specialization is not producing an α-equivalent version.
Thus, we cannot say that our self-interpreter is Jones-optimal.

12.2 Regaining Jones Optimality

To show that we can have Jones optimality with partial evaluation, we rewrite the
self-interpreter, using higher-order abstract syntax as introduced by Pfenning and El-
liott [1988] and used by Thiemann, Thiemann [1999a, 1999b]. We also provide a gener-
ating extension for this coding of the language. The example has been programmed in
Haskell; the definition is as follows:

data HOVal = F (HOLam -> HOLam) -- Functions

| P (HOLam,HOLam) -- Pairs

| C (String, HOLam) -- Tagged expressions

| U () -- Unit value

| N Int -- Numbers

| B Bool -- Booleans

| S String -- Strings

data HOLam = Val HOVal -- Value injection

| App (HOLam, HOLam) -- Functions

| Let (HOLam, HOLam -> HOLam) -- Let expression

| Fix HOLam -- Recursion

| Case (HOLam,

[(String, HOLam -> HOLam)]) -- Tagged selection

| Fst HOLam -- Pair operations

| Snd HOLam

| If (HOLam, (HOLam, HOLam)) -- Boolean operations

| Prim (String, HOLam) -- Primitive functions

valF = Val . F -- Functions

valP = Val . P -- Pairs

valC = Val . C -- Tagged expressions

valU = Val . U -- Unit value

valN = Val . N -- Numbers

valB = Val . B -- Booleans

valS = Val . S -- Strings

where HOVal is the type of values of the language, and HOLam, the type of other ex-
pressions. The functions valF, valU, etc. are used to cast values into expressions (the
intended meaning of each of the tags is added as a comment in the code.) The language
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has primitive functions, where we consider basic arithmetic operations (here only (+),
for simplicity), equality, and a function error to provide failure.

The evaluation of the language represented by HOLam expressions is performed by a
function from HOLam into HOVal,

lookForC :: String -> [(String, HOLam -> HOLam)]

-> ((HOLam -> HOLam) -> d) -> d

lookForC c [] _ = error ("Non-complete case: " ++ c ++ " not found.")

lookForC c (ce:bs) k = if c==fst ce

then k (snd ce)

else lookForC c bs k

eval :: HOLam -> HOVal

eval te = case te of

Val x -> case x of

P e12 -> P (Val (eval (fst e12)), Val (eval (snd e12)))

C ce -> C (fst ce, Val (eval (snd ce)))

_ -> x

App e12 -> eval $ appVal (eval (fst e12)) (Val (eval (snd e12)))

Let e21 -> let v = Val (eval (fst e21))

in eval ((snd e21) v)

Fix e -> fixVal eval (eval e)

Case ebs -> case eval (fst ebs) of

C cv -> lookForC (fst cv) (snd ebs)

(\ei -> eval (ei (snd cv)))

Fst e -> fstVal (eval e)

Snd e -> sndVal (eval e)

If be12 -> ifVal (eval (fst be12))

(eval (fst (snd be12)))

(eval (snd (snd be12)))

Prim ope -> runPrimitive (fst ope) (eval (snd ope))

_ -> error "Unexpected HOLam constructor!"

This function uses auxiliary functions that are similar to those used by the first order
version; functions appVal, runPrimitive, opNumVal, eqVal, ifVal, fstVal and sndVal

are defined in exactly the same way, but with different types. Function fixVal that
computes fixpoints using function appVal has to be redefined slightly, as

fixVal :: (HOLam -> HOVal) -> HOVal -> HOVal

fixVal ev vf =

case vf of

F f -> F (\v -> appVal

(ev (f (valF (\v2 -> appVal (fixVal ev vf) v2))))
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v)

_ -> error "fixVal"

The object version of the interpreter, showing that it is indeed a self-interpreter, is
defined as follows:

oeval =

Let (oopNumVal, \opNumVal ->

Let (oeqVal, \eqVal ->

Let (orunPrimitive eqVal opNumVal, \runPrimitive ->

Let (oappVal, \appVal ->

Let (ofixVal appVal, \fixVal ->

Let (oifVal, \ifVal ->

Let (ofstVal, \fstVal ->

Let (osndVal, \sndVal ->

Let (olookForC, \lookForC ->

Fix (valF (\eval -> valF (\te ->

Case (te,

[ ("Val", \x ->

Case (x,

[ ("P",\e12 ->

valC ("P", valP( valC ("Val", App (eval, Fst e12))

, valC ("Val", App (eval, Snd e12)))))

, ("C",\ce ->

valC ("C", valP ( Fst ce

, valC ("Val", App (eval, Snd ce)))))

, ("U",\_ -> x)

, ("N",\_ -> x)

, ("B",\_ -> x)

, ("S",\_ -> x)

, ("F",\_ -> x)

]))

, ("App", \e12 ->

App (eval, App (App (appVal

, App (eval, Fst e12))

, valC ("Val", App (eval, Snd e12)))))

, ("Let", \e21 ->

Let (valC ("Val", App (eval, Fst e21)), \v ->

App (eval, App (Snd e21, v))))

, ("Fix", \e -> App (App (fixVal, eval), App (eval, e)))

, ("Case", \ebs ->

Case (App (eval, Fst ebs)

, [ ("C", \cv ->

App (App (App

(lookForC

, Fst cv)
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, Snd ebs)

, valF (\xei ->

App (eval, App (xei, Snd cv)))))

]))

, ("Fst", \e -> App (fstVal, App (eval, e)))

, ("Snd", \e -> App (sndVal, App (eval, e)))

, ("If", \be12 -> App (App (App (

ifVal, App (eval, Fst be12))

, App (eval, Fst(Snd be12)))

, App (eval, Snd(Snd be12))))

, ("Prim", \ope ->

App (App (runPrimitive, Fst ope), App (eval, Snd ope)))

])))))))))))))

Observe how constructors of type HOLam are used (as well as the functions valF, etc.)
to represent program expressions, and how strings are used to represent program con-
structors. Notice as well how higher order syntax allows the use of ordinary variables to
represent let-bounded expressions, and how runPrimitive and fixVal take parameters
to represent the use of other functions (appearing in the original code as free variables).
All the auxiliary functions can be defined in the same way.

The generating extension for this language is extremely easy to define (we reuse the
types GLam and GVal, and the functions res_valX ):

geval :: HOLam -> GLam

geval e = holam2glam e

holam2glam :: HOLam -> GLam

holam2glam (Val x) = RES_Val (hoval2gval x)

holam2glam (App (e1,e2)) = RES_App (holam2glam e1, holam2glam e2)

holam2glam (Let (e2,e1)) = RES_Let (holam2glam e2

,\ge -> holam2glam

(e1 (glam2holam ge)))

holam2glam (Fix e) = RES_Fix holam2glam (holam2glam e)

holam2glam (Case (e,bs)) = RES_Case

(holam2glam e

,map (\(ci,fei) ->

(ci,\gei ->

holam2glam

(fei (glam2holam gei))

)) bs)

holam2glam (Fst e) = RES_Fst (holam2glam e)

holam2glam (Snd e) = RES_Snd (holam2glam e)

holam2glam (Eq (e1,e2)) = RES_Eq (holam2glam e1, holam2glam e2)

holam2glam (If (b,(e1,e2))) = RES_If (holam2glam b, (holam2glam e1

,holam2glam e2))

holam2glam (Prim (op,e)) = RES_Prim (op, holam2glam e)
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This function uses another three auxiliary ones, representing the ‘inverse’ function
glam2holam, from GLam to HOLam, and the corresponding conversion functions for values,
hoval2gval and gval2hoval.

glam2holam :: GLam -> HOLam

glam2holam (RES_Val gv) = Val (gval2hoval gv)

glam2holam (RES_App (ge1,ge2)) = App (glam2holam ge1

,glam2holam ge2)

glam2holam (RES_Let (ge,gfe)) = Let (glam2holam ge

,\v -> glam2holam

(gfe (holam2glam v))

)

glam2holam (RES_Fix _ ge) = Fix (glam2holam ge)

glam2holam (RES_Case (ge,gbs)) = Case

(glam2holam ge

,map (\(ci,fgei) ->

(ci,\ei ->

glam2holam

(fgei (holam2glam ei))

)

) gbs

)

glam2holam (RES_Fst ge) = Fst (glam2holam ge)

glam2holam (RES_Snd ge) = Snd (glam2holam ge)

glam2holam (RES_Eq (ge1,ge2)) = Eq (glam2holam ge1

,glam2holam ge2)

glam2holam (RES_If (ge,(ge1,ge2))) = If (glam2holam ge

, (glam2holam ge1

,glam2holam ge2))

glam2holam (RES_Prim (op,ge)) = Prim (op, glam2holam ge)

-- gval2hoval

gval2hoval :: GVal -> HOVal

gval2hoval (RES_F fg) = F (\e -> glam2holam

(fg (holam2glam e)))

gval2hoval (RES_C (c, ge)) = C (c, glam2holam ge)

gval2hoval (RES_P (ge1,ge2)) = P (glam2holam ge1, glam2holam ge2)

gval2hoval (RES_U u) = U u

gval2hoval (RES_N n) = N n

gval2hoval (RES_B b) = B b

gval2hoval (RES_S s) = S s

-- hoval2gval

hoval2gval :: HOVal -> GVal

hoval2gval (F f) = RES_F (\gv -> holam2glam (f (glam2holam gv)))

hoval2gval (C (c,e)) = RES_C (c, holam2glam e)
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hoval2gval (P (e1,e2)) = RES_P (holam2glam e1, holam2glam e2)

hoval2gval (U u) = RES_U u

hoval2gval (N n) = RES_N n

hoval2gval (B b) = RES_B b

hoval2gval (S s) = RES_S s

This finishes the presentation of the generating extension for this language.
Considering again the specialization of the interpreter eval for the codification using

higher order syntax (i.e. the function geval) to the term given by "\x.x x" (that is,
geval (Val (F (\x -> App (x, x))))), we obtain

RES_Val (RES_F (\v -> RES_App (v, v)))

being very easy to verify that it is indeed α-equivalent to the coded version of "\x.x x".
Before ending this chapter, let’s consider the higher order versions of the examples

ending Section 12.1, to see the specialization of programs using sum-types and primitives.
First we consider the case of the function appVal, \v.\x.case v of F f -> f x".

The higher order encoding for this function is

Val (F (\v -> Val (F (\x ->

Case (v,

[("F",\f -> App (f,x))]

)))))

When the generating extension geval is applied to it, the result is

RES_Val (RES_F (\x_0 -> RES_Val (RES_F (\x_1 ->

RES_Case (x_0,

[ ("F",\x_2 -> RES_App (x_2,x_1))]

)))))

which is α-equivalent to the encoding.
The last example is the function runPrimitive. Its encoding, assuming opNumVal

and eqVal already defined, is

valF (\p -> valF (\v ->

If (Eq (p, valS "+")

,( Case (v,

[ ("P", \v12 ->

App (App (App

(opNumVal, valF (\x -> valF (\y ->

Prim ("+", valP (x, y))

))),

Fst v12), Snd v12)

)

])

,

If (Eq (p, valS "==")
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,( Case (v,

[ ("P", \v12 ->

App (App (eqVal, Fst v12), Snd v12)

)

])

,

If (Eq (p, valS "error")

,( Case (v,

[ ("S", \msg ->

Prim ("error", msg)

)

])

, Prim ("error", valS "Unknown primitive!")

))

))))))))

))

and the resulting specialization is

RES_Val (RES_F (\x_0 -> RES_Val (RES_F (\x_1 ->

RES_If (RES_Eq (x_0,RES_Val (RES_S "+")),

(RES_Case (x_1,

[("P",\x_2 ->

RES_App (RES_App (RES_App (

eqVal

,RES_Val (RES_F (\x_3 -> RES_Val (RES_F (\x_4 ->

RES_Prim ("+",RES_Val (RES_P (x_3, x_4))))))))

,RES_Fst x_2)

,RES_Snd x_2)

)]),

RES_If (RES_Eq (x_0,RES_Val (RES_S "==")),

(RES_Case (x_1,

[("P",\x_11 ->

RES_App (RES_App (

opNumVal

,RES_Fst x_11)

,RES_Snd x_11)

)]),

RES_If (RES_Eq (x_0,RES_Val (RES_S "error")),

(RES_Case (x_1,

[("S",\x_12 -> RES_Prim ("error",x_12))])

,RES_Prim ("error",RES_Val (RES_S "Unknown primitive!"))

))))))))))

One more time, both versions are α-equivalent.
Thus, if we consider this new way of reading terms, we are allowed to say that our

self-interpreter is Jones-optimal.
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12.3 Conclusions

Our simple observation complements Danvy [1998a]’s take on coercions for Jones op-
timality. In hindsight, a similar reading is implicit for Taha et al. [2001]’s E function.
More than that we cannot say, e.g., about the various other solutions to Jones optimality,
or about the frameworks it has inspired.

The generating extension of a lambda-interpreter provides an encoding of a lambda-
term into the term model of the meta language of this interpreter. For an untyped self-
interpreter, the translation is the identity transformation. For an untyped interpreter
in continuation-passing style (CPS), the translation is the untyped CPS transformation.
For an untyped interpreter in state-passing style (SPS), the translation is the untyped
SPS transformation. And for an untyped interpreter in monadic style, the translation
is the untyped monadic-style transformation.

In that light, what we have done here is to identify a similar reading for a typed
self-interpreter, identifying its domain of universal values as a representation of higher-
order abstract syntax. With this reading, type tags are not a bug but a feature and
ordinary partial evaluation is Jones optimal. In particular, for a typed interpreter in
CPS, the translation is the typed CPS transformation into higher-order abstract syntax,
and similarly for state-passing style, etc., without extraneous type tags but with higher-
order abstract syntax.



Chapter 13

Related Work

Will considered what to do. When you choose one way out of many, all the
ways you don’t take are snuffed out like candles, as if they’d never existed.
At the moment, all Will’s choices existed at once. But to keep them all in
existence meant doing nothing. He had to choose, after all.

The Amber Spyglass
Philip Pullman

There are many different approaches to program specialization, and each one has
different expressive power, and different features. Some of them also solve the optimal
specialization of typed interpreters, by alternative ways to the specialization of types
considered in this thesis. In this chapter we describe alternative approaches to program
specialization, and compare them to our approach, to place type specialization in context
with them.

We consider in first place, the approach of partial evaluation, because it is the most
popular and well-known (Section 13.1); secondly, we consider other methods that use
type information to guide the specialization (Section 13.2); and at the end (Section 13.3)
we conclude the section with methods that do not fit in any of the previous categories.

13.1 Partial Evaluation

Partial evaluation [Jones et al., 1993; Consel and Danvy, 1993; Mogensen, 1998b] is a
technique that produces the residual programs by using a generalized form of reduction:
subexpressions with known arguments are replaced by the result of their evaluation, and
combined with those computations that cannot be performed. Different techniques to
combine the residual code and the calculated values for static code lead to different kinds
of partial evaluation, with different features; polyvariance [Bulyonkov, 1984; Bulyonkov,
1988], constructor specialization [?], partially static data structures [Mogensen, 1988],
etc. are just some of those.

The main difference between partial evaluation and type specialization is in the treat-
ment of types. Assuming that the source language has the subject reduction property
(i.e. reduction preserves types), the overall type of the residual program obtained by
a partial evaluation technique will be exactly the same as the type of the source one.
Thus, although the types of subexpressions can change when performing the specializa-
tion, arbitrary types cannot be created by partial evaluation, and then it constitutes
an inherited limit [Mogensen, 1996], which prevents the optimal specialization of typed
interpreters. This problem was stated by Neil Jones in 1987 as one of the open problems
in the partial evaluation field [Jones, 1988b]. On the other hand, type specialization is
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designed so as to produce both a residual term and a residual type, allowing the pro-
duction of arbitrary types from a given source program, thus the inherited limit of types
have been removed. This allows type specialization to obtain optimal specialization for
typed interpreters.

Another, more technical, difference between both approaches is that of annotations.
Because of the nature of partial evaluation (specialization by evaluation), a dynamic
function cannot have static arguments: the only way in which the actual parameter
may be known in the body of the function is by reduction of the function itself, which
cannot happen because it is dynamic! This means that the annotation in this example

λDx.x +S 1

is not valid for partial evaluation because there is no way to determine the value of
x to perform the static addition. Continuation passing style (CPS for short) is used
to improve the binding time annotations, removing some of the restrictions imposed on
them. By using continuations, some static constructions can be specialized in a dynamic
context. For example, when specializing a dynamic if-then-else its continuation
can be moved on each branch, thus allowing more constructions to be declared static.
Consider the function

λDb.1 +S ifD b then 2 else 3

Using a direct style partial evaluator makes the annotation incorrect, because the second
operand of the sum depends on dynamic computations, and so it cannot be known —
no improvement is possible. But a CPS evaluator can move the 1 +S [] context on each
branch, thus obtaining

λDb.ifD b then 3 else 4

However, there are improvements that cannot be achieved by a CPS partial evaluator:
the assumption is that the contexts to be moved are themselves static, but that is not
always the case. For example, in the following case, the annotation is invalid even for a
CPS partial evaluator.

Example 13.1. Observe that the result of the recursive function f contains a static
part, but it appears under a dynamic recursion, and thus, under a potentially infinite
number of distinct dynamic contexts.

⊢
P

letS f = fixD (λDf.λDn.
ifD n == D 0D

then (1S , 2D )D

else letD p = f @D (n −D 1D )
in (fstD p, sndD p ∗D sndD p)D )

in λDn.lift (fstD (f @D n))
: IntD →D IntD

→֒ λn.1 : Int → Int

Restrictions in annotations imply the existence of a “best” way to annotate a pro-
gram that can be computed automatically by means of an analysis called Binding Time
Analysis (or BTA) [Jones et al., 1993; Glenstrup and Jones, 1996]. In type specializa-
tion, though, we have shown that annotations are not restricted (except by a kind of
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‘correctness’ formation), and thus, there does not exist anything such as a best annota-
tion; for that reason, we have made annotations part of the input. This issue has been
misunderstood in the past, with several people asking “why worry about this contrived
annotation, while this other one will do?”: because by deciding the annotations, we de-
cide which specializations are allowed and which not; indeed, the only difference between
an interpreter for lambda-calculus in untyped and simply typed versions is the way it
is annotated — see Chapter 4. As we have shown in this work, type specialization has
features that cannot be obtained by any partial evaluator; for example, type checking
of an object program by specialization.

Inspired by type specialization, Peter Thiemann has proposed a partial evaluator
with first-class polyvariance and co-arity raising [Thiemann, 2000a]. He shows that
these two features are enough to have optimal specialization of typed interpreters. He
has also shown that by writing a typed interpreter using dependent types, optimality
can also be achieved [Thiemann, 1999c].

13.1.1 Similix

Similix [Bondorf and Danvy, 1991; Bondorf, 1993] is a self-applicable partial evaluator
for a large higher-order subset of the strict functional language Scheme [Abelson et al.,
1998], that uses CPS style, and can handle partially static data structures [Mogensen,
1988]. It also handles source programs that use a limited class of side-effects, for in-
stance input/output operations. The order in which effects are performed is preserved,
and thus also the termination behaviour of the program; this is achieved by a process
called let-insertion, which also avoid unnecessary duplication of computations. In type
specialization, we could take a different approach to preservation of termination: we can
have non-terminating programs specialized to terminating ones. Let’s see an example.

Example 13.2. Consider the following source term:

1S +S ifD TrueD

then fixD (λDx.x)
else 2S

: IntS

Clearly, the term is non-terminating, as the fixpoint of the identity function is not
defined. However, as we ask both branches of a dynamic conditional to have the same
residual type, the specialization of this term is • : 3̂, which is saying that the result of
the program is the number 3.

As we are considering a pure language — i.e. one with the only effect of non-
termination — we have more freedom regarding termination: we can either try to
preserve the termination behaviour of the source program in the residual one, or we
allow the two to have different termination behaviours. Preservation of termination can
be achieved by introducing extra computations that may loop in the residual, but at
the cost of efficiency of the generated program — these extra computations take time
to run. For example, in the case of the previous example, the residual program with
the extra computations may look like fix (λx.x); • : 3̂ indicating that, if the residual
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computation terminates, its result must be 3 — and in this case, the residual compu-
tation does not terminate. Although some of these extra computations can be removed
afterwards when it is clear they don’t loop, it is clearly impossible to remove all of them.
So we have taken the approach of not introducing them in the first place, thus altering
the termination behaviour of some programs.

13.1.2 Polymorphic and modular partial evaluation

Regarding polymorphism and modules, we can mention the works of Heldal [Heldal,
2001; Heldal and Hughes, 2000; Dussart et al., 1997a; Heldal and Hughes, 1997], and of
Helsen and Thiemann [?; ?].

Heldal shows

• how to generate a residual program with different modules from a single source
program, by staging the static data — thus removing the inherited limit of mod-
ules,

• how to partially evaluate polymorphic programs, with a stress on the BTA re-
quired, making essential use of coercions as arguments to polymorphic functions,
and

• how to specialize a multi-module program, although in an orthogonal way to the
first result.

However, this approach cannot produce polymorphic programs from monomorphic ones.

13.1.3 Other works on partial evaluation

Peter Thiemann [1999c, 2000a] has been inspired by Hughes’ original work on type
specialization, and produced some works in the field of partial evaluation closely related
to it.

Thiemann [1999c] presents a formalization of partial evaluation for a two-level lambda
calculus in a Martin-Löf-style type theory [Nordström et al., 1990] with some non-
standard extensions. A typed source program generates a residual expression from its
dynamic part, a residual (dependent) type from its static part, and a residual kind from
its type. A big difference with type specialization is that residual types do not form a
free algebra, but a quotient algebra based on a computation relation. Another important
difference is that annotated source programs have to be well-annotated in order for the
specialization to proceed; this restriction basically establishes that all subexpressions
from a dynamic expression have to be dynamic — it is related to the existence of a
translation function from fully dynamic types to monotypes. These two features make
this approach fundamentally different wrt. to our work, because the free nature of resid-
ual types and the unrestricted nature of source annotations are fundamental ingredients
of it, as we have shown throughout this thesis.

Thiemann [2000a] identifies the minimum number of features from type specialization
needed to solve the type specialization problem as stated by Neil Jones [1988b]. He states
that these features amount to first class polyvariance and what he calls co-arity raising.
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Co-arity raising is the dual of arity raising: while the latter is the splitting of a function’s
argument into many arguments (and thus raising the arity of the function), the former is
the splitting of a function’s result into many results (which have to be further reinserted
in the proper places in the code). Hughes [1996b] presents this feature as part of the
whole process of arity raising. An important consequence of co-arity raising is that
the usual restrictions on annotations are no longer needed, thus resulting in similar
annotation requirements as in our work. Thiemann [2000b] showed type soundness
of his system, and implemented it on his partial evaluation system for Scheme. This
approach is the closest to type specialization, but it contains only a minimum number
of features — it is not clear if all the possibilities of type specialization can be achieved
by extending it or not. However, this contribution is very important because it clearly
explains why type specialization is able to perform the optimal specialization of typed
interpreters.

13.2 Type Directed Methods

To overcome the limitation imposed by partial evaluation on the type of the residual
program, several methods for program specialization have been developed that make
use of type information to guide the process. We review three of them: Olivier Danvy’s
type directed partial evaluation, Walid Taha’s tag elimination, and Atshushi Ohori’s
approach to the compilation of polymorphic primitives.

13.2.1 Type Directed Partial Evaluation

Type-directed partial evaluation [Danvy, 1996; Sheard, 1997; Danvy, 1998b] is a simple
method for implementing powerful partial evaluators that uses reification in a key way.
Reification is a translation from a semantic domain back to an equivalent expression in
the syntactic domain; it can be viewed as the reverse process of evaluation. In this way,
arbitrary static expressions can be used in dynamic contexts. One important property
of reification is that the returned expressions are always in normal form, and then, by
composing an evaluator with a reification function, static computations can be carried
out without any notion of symbolic computation.

TDPE has been implemented in Scheme [Danvy, 1996], Haskell [Rose, 1998], and ML
[Sheard, 1997], the latter allowing the specialization of polymorphic functions. Similarly
to our work, different residual terms can be obtained from the same source one, and
this is achieved by varying the type guiding the reification. The key difference with our
work, then, is that the residual type is an input to the specialization process, and thus
types cannot be produced by specialization: the residual term is adapted to meet the
desired type. So, similarly to partial evaluation, no annotations are needed in TDPE —
but the residual type is!

The benefit of TDPE over type specialization is that it is a simpler approach, where
the symbolic reduction mechanism is the operational semantics of the language. In our
approach, constraint solving is used for symbolic reduction and it remains to be proved
that it coincides with the semantics.
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The fact that the generated programs returned by a type directed partial evaluator
are always in (long βη-)normal form eliminates the need for polyvariance: if a function
is applied, then it will be unfolded, and if it is not applied, it will be reified accordingly
with the desired type.

A difficulty of TDPE is that to handle sum types, an abstraction of control [Felleisen,
1988; Danvy and Filinski, 1990; Danvy and Filinski, 1992] is needed, because, as de-
scribed in the case of CPS partial evaluation, the context of a case over the sum is moved
on every branch.

Although the ML implementation of TDPE can handle polymorphism in the source
terms, there is no attempt to take polymorphic types to guide the reification, so the
residual terms have no more polymorphism than the source program.

13.2.2 Tag-elimination

Tag elimination [Taha and Makholm, 2000; Taha et al., 2001] is a transformation that
removes type tags as a post-processing phase to traditional partial evaluation. Similarly
to TDPE, it uses the desired residual type as input, and performs a type checking of
the subject program after the interpretation, removing those tags that are superfluous.

TE is described as “specialization of types” (quoted in the original paper [Taha and
Makholm, 2000]), but it is presented as a transformation that needs the residual type
as input. We would like to see a presentation of TE showing that there is no need for
the residual type to be provided as input.

The main contribution of TE is that theoretical results about the process can be
easily proved: for example, it can be shown that Jones-optimality is obtained for a typed
language, and that performing tag elimination is exactly the same as type-checking
the term being interpreted; the only theoretical results about the power of TS are
its correctness [Hughes, 2000], and the principality established in this thesis, although
there is an example showing that optimal interpretation for the typed lambda calculus
can be achieved [Hughes, 1996b]. Jones-optimality requires self-interpretation of the
interpreter, and the application of the second and third Futamura projections [Jones et
al., 1993] require self-specialization; we are far from self-specialization, yet, but that is
one of the goals that guide our efforts to make TS more expressive.

13.2.3 Ohori’s specialization

Ohori [1999] has developed a framework that can be used to implement a language with
polymorphic primitives efficiently. His work resembles that of Mark Jones [1994a] (his
kinds corresponds to Mark Jones’ predicates), and it is very similar in some technical
aspects to the work presented here. His transformation of a polymorphic primitive into
a pair of a low-level generic operation and a type attribute required for executing it on a
given type resembles closely our treatment of polyvariant functions. The key difference
is that his work is intended to be used as a compilation mechanism (it cannot be used
to generate polymorphic programs; only to compile them), while ours is intended to
generate arbitrary typed programs.
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13.3 Other Approaches

There are several other methods for program specialization. We consider three of them
here: supercompilation, generalized partial computation, and data specialization.

13.3.1 Supercompilation

Supercompilation [Turchin, 1986; Turchin, 1985; Sørensen and Glück, 1998; Sørensen
et al., 1996; Secher and Sørensen, 2000] is an approach to program specialization more
general than partial evaluation. The idea is that a supercompiler supervises the evalu-
ation of a program, and compiles a residual program for it, even when no input data is
present. Instead of proceeding by a step-by-step transformation, a supercompiler builds
a model of the program under treatment, and uses it to produce an equivalent version
of the program, but more efficient — the authors state that this is the most important
feature of the method. These results are obtained by using two techniques called driving
and generalization. Driving consists in the construction of a possibly infinite process
tree from the text of a program, and generalization consists in a criterion of when to
stop driving and what to do with the nodes in the process tree, so warranting that it
becomes finite.

An important difference of supercompilation with respect to partial evaluation is
that in driving across case-expressions it uses the information that the pattern suc-
ceeded when specializing a given branch. This is achieved by propagating information
by unification — this is called positive supercompilation [Sørensen et al., 1996] — in a
similar way as in type specialization. But the type of information propagation is dif-
ferent; consider the function λx.if x == 3 then x + 1 else x: it can be transformed
into λx.if x == 3 then 4 else x by supercompilation, because x is unified with 3.
Although this example is not obtainable with type specialization, a similar propagation
of information under the branches of a case expression is possible with our method, as
we have shown in Example 3.22.

Another possibility is that also the else branch uses some information from the test.
This is achieved by constraint-based propagation of information, and then the technique
is called perfect supercompilation [Turchin, 1986; Secher and Sørensen, 2000]. This is
similar to what we achieve with predicates in the case of static conditionals — the main
difference is that in perfect supercompilation this is done with arbitrary conditionals.

An interesting feature of supercompilation is related to the order in which nested
function calls are treated. In contrast to partial evaluation, it uses a call-by-name-
style strategy: inner calls are treated first. This is called outside-in evaluation by
Turchin [1986], and it is a feature that enables the method to eliminate intermediate
structures [Sørensen and Glück, 1998], in a very similar way as deforestation.

13.3.2 Generalized Partial Computation

Generalized Partial Computation (GPC) was first proposed by Futamura and Nogi [1988a],
and its power further demonstrated through examples [Futamura and Nogi, 1988b;
Futamura et al., 1991]. The original approach has been designed for a restricted form of
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a language, but it has been extended also to first-order functional languages, with both
strict and lazy semantics [Takano, 1991].

GPC is a program transformation technique based on partial evaluation and theorem
proving [Takano, 1991; Futamura et al., 2002]: instead of relying on the information
coming from the values of static data, GPC also uses the logical structure of programs,
axioms for abstract data types, and algebraic properties of primitive functions, obtained
by means of the theorem prover.

It is a technique very similar to supercompilation, but the use of a theorem prover
to propagate information makes it more powerful — while supercompilation can only
propagate structural predicates (assertions and restrictions about atoms and construc-
tors), GPC can propagate arbitrary predicates. Like supercompilation, when using a
call-by-name-style strategy it can eliminate intermediate structures.

Regarding the relation of GPC with our work, the same comments as in the case of
supercompilation apply.

13.3.3 Data specialization

Data specialization is an approach to program specialization where the results of static
computations are stored in an intermediate data structure, instead of being coded as
a residual program. It was introduced by Barzdins and Bulyonkov [1988], and further
explored by Malmkjær [1989]; later, the technique was developed for a subset of C and
applied to graphics applications by Knoblock and Ruf [1996], and afterwards combined
with classical program specialization by Chirokoff et al. [1999].

The idea of data specialization is that the program to be specialized will produce
two programs:

• one, called the loader, will calculate all the static values, and store those needed
by dynamic computations into a data structure, called the cache;

• the other, called the reader, will perform the dynamic computations, using the
cache when static data is needed.

Several considerations apply when deciding what data should be stored in the cache,
because it is important that the size of the cache does not grow too big, and accessing
it must not be more expensive than recalculating the value accessed.

In practice, data specialization is best suited for programs working with huge amounts
of data and with big data dependencies, because it does not modify the control flow of the
source program in any way. One advantage of this technique is that it solves the problem
of code explosion arising with the usual program specialization when the amount of data
is big. Good results can also be obtained by combining it with program specialization.

Regarding our work, a program with unknown static parts is specialized to a residual
program using predicates, which can be further used in the calculation of the right
version when the static data is available. This residual program can be, in some way,
compared with the reader from the data specialization method. Despite the fact that
we do not store static values in intermediate data structures, the ideas coming from this
approach may be used to improve type specialization in some way, by exploiting the
similarity we have mentioned.
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We conclude this chapter with the observation that no specialization method is a
panacea: each one of them has its strengths and weaknesses, and our method is no
exception. Some methods, such as partial evaluation, have the great advantage that
are very well engineered, and thus have wider applicability. However, the rich cross-
fertilization of ideas produced by the consideration of variations is worth enough to
justify the exploration of the possibilities.
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Future Work

Then he waited, marshaling his thoughts and brooding over his still untested
powers. For (. . . ) he was not quite sure what to do next.

But he would think of something.

2001. A Space Odyssey
Arthur C. Clarke

As we are approaching the end of this thesis, we found that there are several possi-
bilities, weaknesses, extensions, and improvements that we have not considered because
of time limitations. In this chapter we describe some of those things that are worth
considering.

We begin, in Section 14.1, by describing the improvements needed in the constraint
solver. As we have said, there are several programs that cannot be specialized to their
final forms with our current solver, dynamic recursive programs being the most noto-
rious. Our idea is to change the constraint solver to allow incremental solutions for
the upper bound of a polyvariant residual type. Then, in Section 14.2, we describe
another important need: a better implementation. The prototype we have presented is
just an inefficient implementation designed to test the ideas, and is not suitable for the
specialization of large programs. These two features are extremely important to turn
type specialization into a usable tool. In other line of work, more extensions to the
source language have to be considered, such as dynamic sum types, polyvariant sums,
completing the specialization of polymorphism, and considering the specialization of
lazy languages. We are already working on dynamic sum types, and we expect to have
some results soon. All the extensions we plan are discussed in Section 14.3. Finally, in
Section 14.4, we discuss the possibilities to generate a binding time assistant. As we
have said, no automatic binding time analysis is possible for type specialization, but we
may think of a tool helping the annotation of a program, perhaps by highlighting the
sensible points in a program, or suggesting different possible choices.

We have found that our work has opened several different lines of research, and by
following them we can get closer to a type specializer for Haskell.

14.1 Improving Constraint Solving

Constraint solving proved to be the most important part in our approach to type spe-
cialization — it is here where the actual calculation of static data, and the movement
of information between different parts of a program is performed.

Our present heuristic is able to solve only simple cases, when a strong side condition
is satisfied: all upper and lower bounds for some scheme variable should be present
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to be able to calculate a solution for it. However, that condition is not met when one
considers programs with dynamic recursion. For that reason, one important future work
is the search for better algorithms for constraint solving, including dynamically recursive
programs.

Another point where constraint solving shows its importance is in the production of
polymorphic programs. Our attempts to perform this extension are based on a modified
version of the evidence elimination phase (that is, in turn, an extension of constraint
solving). However, we found that a more involved development is needed to tackle this
problem in its full length. This means that more work has to be done in the development
of this variation of constraint solving as well.

Finally, when adding static functions and static recursion we have done it with
straightforward rules. The result for this is that when curried static functions are used
in the source program, the residual type contains a lot of nested closures. We think that
a more compact representation will be much more efficient, but of course, constraint
solving has to be taken into account when this improved representation is designed.
In the same spirit, static recursion is also not optimal, because it generates a lot of
predicates that have to be checked for consistency, but which actually do not contribute
with evidence or with new information to the solving. We think that some property
relaxing the need for checking those predicates can be established, thus reducing the
amount of work needed during constraint solving.

14.2 Better Implementation

Working with a complex theory like the one we have presented cannot be complete
without an appropriate tool to test the ideas; additionally, as our final goal is to produce
programs automatically, a proper implementation is a must.

The prototype we have designed with this work is very naive, and we have made
no attempts to make it efficient. As a result, only small examples can be tested, be-
cause when the examples grew bigger, the time needed to produce the residual program
increases to unfeasible limits.

There are many opportunities for improvement in this tool. The most time con-
suming part is that of constraint solving, so working on better algorithms as have been
pointed out in the previous section, will surely improve the performance of the whole
process (for example, by avoiding checking redundant predicates as in static recursion).
However, there are also implementation enhancements that can be done — for example,
storing the predicates in different structures depending on their nature, which will min-
imize the effort needed to look them up to detect solvable variables. Another possible
enhancement is related with the way terms, types, and conversions are represented, so
that comparison for equality between those, performing substitutions to them, etc. is
much more efficient.

From another perspective, the compilation of the Haskell code has been done plainly,
with no hints to the compiler on how to optimize the final code, and no profiling of
the memory has been performed. It is usual that Haskell programs can be improved
by performing minor changes related with memory consumption and lazy evaluation —
examples have been given by Röjemo and Runciman [1996], Röjemo [1995], and Mart́ınez
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López [1998].
Introducing all these observations into the tool, to turn the prototype into a full-

fledged implementation, is one work remaining to be done.

14.3 Extensions to the Source Language

The language for which we have developed the theory in its full dimension is a very
small one. Even considering the extensions presented in Chapter 9, there are a number
of important features that can be added to the source language to improve the level of
expressiveness.

Among the features that can be added, we can mention the specialization of dynamic
sum types, and the specialization of dynamic recursion. These two features are impor-
tant to have a complete language to work with. As we have mentioned in Section 14.1,
to be able to specialize dynamic recursion we only need to design a better algorithm
for constraint solving. Dynamic sum types, on the other hand, need a more involved
work, including the design of new predicates to express their specialization, and the
corresponding constraint solving for them. We are already working on this topic, in
collaboration with Alejandro Russo, and we expect to publish some results soon.

Two important features that were considered in John Hughes’ work that we have
not included here are type specialization for imperative features (monads), and poly-
variant sums. The specialization of monadic operations has been presented by Dussart
et al. [1997b], and we think that those ideas can be easily introduced in our framework.
Polyvariant sums, on the other hand, provide a form of constructor specialization, and
it is not so obvious how to provide principal specialization for programs using them.
However, the work on dynamic sum types can enlighten this task, providing a way to
tackle the problems presented.

On another dimension, we have features that have not been considered before, either
in type specialization or in any other known framework of program specialization. We are
referring to advanced features of modern languages, such as parametric polymorphism
(in the source language), specialization of ad-hoc polymorphism, or overloading (type
classes, for example), and specialization of programs with lazy behaviour.

Regarding source polymorphism, it seems like an easy addition, once residual poly-
morphism has been issued — see Chapter 11 and Section 14.1 for discussion on how to
obtain residual polymorphism.

Regarding type classes, both source and residual, our framework has already predi-
cates expressing other constructs, so it looks like an easy extension to have type classes
— consider Section 5.3 that shows how Haskell type classes can be expressed with pred-
icates and qualified types.

Finally, the specialization of languages with lazy evaluation semantics was never
considered before. The main problem is that if a fragment of a program containing
an infinite computation is marked static, it seems necessary that the specializer has to
compute all the meaning of that expression before proceeding. However, as we have
shown in Example 9.11, it is possible to combine constraint solving with arity raising to
compute only those parts that are really needed, thus obtaining a framework with the
ability to specialize lazy programs.
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All these extensions can be addressed in isolation, showing that our formulation has
indeed brought new potentials to the field of program specialization.

14.4 Binding Time Assistant

One important difference between type specialization and partial evaluation is the role
of binding time annotations. As we have illustrated in Chapters 4 and 11, in type
specialization we can choose the semantics of the object language just by varying the
annotations.

It is important to note that we consider the constructs for lifting and polyvariance as
annotations, even though they are not directly binding time annotations, as considered
by the partial evaluation community. Polyvariance is first class in this framework, and
thus it needs to be explicitly indicated by the programmer, which affects the way in
which a program is specialized — observe the monomorphizer of Section 4.3, where
polyvariance plays a central role.

For that reason, it is impossible to calculate the ‘best’ annotation automatically, as is
done in partial evaluation. However, we have observed that usually there are some rules
of thumb on how to annotate a given program, and perhaps it is possible to construct
a tool for assisting the annotation process.

The assistant we are thinking of will suggest program points where it may be a good
idea to make an expression polyvariant, or where some variable is better considered as
dynamic (for example, because it is the control variable of a recursive function), and
when the programmer fixes one particular annotation, it will calculate other annotations
that are consequences of the given one. Even though this process is similar to the
annotation inference we perform in the prototype, we also think of suggesting where to
place specs to specialize a polyvariant expression, which cannot be inferred.

A binding time assistant will be an excellent complement in an environment for
automatic program production.
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Conclusions

One never reaches a horizon. It is not a line; it has no place; it enclosed
no field; its location is always relative to the view. To move toward a horizon is
simply to have a new horizon.

Finite and Infinite Games. A Vision of Life as Play and Possibility
James P. Carse

Despite the fact that it was introduced in 1996, Type Specialization is still not well-
known and well-understood. There are several subtleties and dark alleys in the process of
moving static information into the type. Those problems produced the impression that
type specialization is just a weird way to do partial evaluation. However, as the examples
have shown, it is a powerful method for specialization, including the possibility to type
check an object program or to perform closure conversion on it, just by specializing it.

In this thesis we have contributed to the field of program specialization by designing
a way to perform type specialization that clarifies some of the difficult aspects of the
process, and that allows the possibility of trying different heuristics in the finding of
solutions when calculating the final form of the residual program. We have shown
that by varying some parts of the solving process we can produce polymorphic residual
programs from monomorphic ones, thus introducing the possibility to break the inherited
limit of the degree of polymorphism. In the process we have used the theory of qualified
types, adapting it when necessary. The clear separation of concepts provided by that
theory was a great help during the development of our framework.

The main property of the system we have introduced — principality — is of cen-
tral importance in this process, because it allows to start the process of specialization
of program fragments without the need for the whole program, opening the door for
modular specialization. Principality is obtained by separating the specialization process
in two phases: first traverse the syntactic tree of the source term collecting restrictions,
and then solve those restrictions. Additionally, some criteria of when it is safe to solve
certain restrictions can be established; for example, when a scheme variable is no longer
free in the type, all its upper and lower bounds are present, then its value can be decided.

There were times during our search for a formulation allowing principality when it
looked like there was a property that cannot be established. Several different attempts
on how to formulate the rules were made, and discarded, before the right path was
found. This is something that deserves to be mentioned, because when one looks at a
finished type system, it usually seems that the rules are obvious. But when designing it,
the properties one wants the system to have impose several restrictions on the way to
formulate them. This is a warning to people thinking on entering the fascinating world
of designing type systems, and one that we have learned in the hard way.
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Our formulation, on the other hand, has shown enormous potential for obtaining
new developments in the field of program specialization: specialization of polymorphism,
lazy evaluation, and type classes are the most important ones. There are a lot of open
paths to follow, and we are sure that they will end in a type specializer for the Haskell
language.



Appendix A

Proofs

– ‘How do you know I’m mad?’ said Alice.
– ‘You must be,’ said the Cat, – ‘or you wouldn’t have come here.’

Alice’s Adventures in Wonderland
Lewis Carroll

In this appendix, we present the proofs of propositions, lemmas, and theorems used
to prove the property of principality for the specialization framework introduced in this
thesis.

A.1 Proof of proposition 6.7 from section 6.1

Proposition 6.7. The following assertions hold when σ, σ′, σ′′ are not scheme variables:

1. [] : (∆ | σ) ≥ (∆ | σ)

2. if C : (∆ | σ) ≥ (∆′ | σ′) and C ′ : (∆′ | σ′) ≥ (∆′′ | σ′′) then

C ′ ◦ C : (∆ | σ) ≥ (∆′′ | σ′′)

Proof:

1. We can assume that σ = ∀α.∆σ ⇒ τσ. To prove this item, we only need to prove
that

letv x = Λh.[] in Λhσ.x((h))((hσ)) = []

(which can be done using (letv), Proposition 8.3, and (ηv)) and then use Defini-
tion 6.5.

2. Suppose that σ = ∀α.∆σ ⇒ τσ, σ′ = ∀β.∆′
σ ⇒ τ ′

σ, σ′′ = ∀γ.∆′′
σ ⇒ τ ′′

σ . Then,
applying Definition 6.5 to the hypothesis, we know that there exist substutions S
and S ′, and evidence v, vσ, v

′, v′
σ such that

τ ′
σ = S τσ (A.1)

h′ : ∆′, h′
σ : ∆′

σ ⊢⊢ v : ∆, vσ : S ∆σ (A.2)

C = (letv x = Λh.[] in Λh′
σ.x((v))((vσ))) (A.3)

and

τ ′′
σ = S ′ τ ′

σ (A.4)

h′′ : ∆′′, h′′
σ : ∆′′

σ ⊢⊢ v′ : ∆′, v′
σ : S ′ ∆′

σ (A.5)

C ′ = (letv x′ = Λh′.[] in Λh′′
σ.x

′((v′))((v′
σ))) (A.6)
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Let’s call v′′ = v[h′, h′
σ/v

′, v′
σ], and v′′

σ = vσ[h′, h′
σ/v

′, v′
σ]. As dom(S) = α, by (Close)

on A.2,
h′ : ∆′, h′

σ : S ′ ∆′
σ ⊢⊢ v : ∆, vσ : S ′S ∆σ (A.7)

and by (Trans) on A.5 and A.7,

h′′ : ∆′′, h′′
σ : ∆′′

σ ⊢⊢ v′′ : ∆, v′′
σ : S ′S ∆σ (A.8)

The result follows from Definition 6.5, using A.1 and A.4, A.8, and

C ′ ◦ C = (letv x = Λh.[] in Λh′′
σ.x((v′′))((v′′

σ))) (A.9)

obtained using (letv) and the fact that h′, h′
σ only appear free on v, vσ.

A.2 Proof of proposition 6.8 from section 6.1

Proposition 6.8. The following assertions hold:

1. If C : (∆ | σ) ≥ (∆′ | σ′), then C : S (∆ | σ) ≥ S (∆′ | σ′).

2. If C : (∆ | σ) ≥ (∆′ | ∀α.σ′), and dom(S) = α then C : (∆ | σ) ≥ (∆′ | S σ′).

Proof:

1. Suppose C : (∆ | σ) ≥ (∆′ | σ′), with σ = ∀αi.∆σ ⇒ τσ, and σ′ = ∀βj.∆
′
σ ⇒ τ ′

σ,
and such that none of the variables αi, βj are involved in S.

By Definition 6.5, we know that there exist types τi, and evidence v, vσ such that

τ ′
σ = τσ[αi/τi] (A.10)

h′ : ∆′, h′
σ : ∆′

σ ⊢⊢ v : ∆, vσ : ∆σ[αi/τi] (A.11)

C = (letv x = Λh.[] in Λh′
σ.x((v))((vσ))) (A.12)

We can apply S to A.10, and the fact that none of αi are involved in S to obtain

S τ ′
σ = S (τσ[αi/τi]) = (S τσ)[αi/S τi] (A.13)

By the same reasoning applied to A.11 (using (Close)), we know that

h′ : S ∆′, h′
σ : S ∆′

σ ⊢⊢ v : S ∆, vσ : (S ∆σ)[αi/S τi] (A.14)

The result follows from Definition 6.5 using A.13, A.14, and A.12.

2. It is easy to see that C : (∆ | σ) ≥ (∆′ | σ′) and then, using the previous item, C :
(S ∆ | S σ) ≥ (S ∆′ | S σ′) The result follows from the fact that α 6∈ ∆, ∆′ ⇒ σ.
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A.3 Proof of proposition 6.9 from section 6.1

Proposition 6.9. For any qualified type ρ and predicate assignments h : ∆ and h′ : ∆′,

1. Λh′.[] : (∆, h′ : ∆′ | ρ) ≥ (∆ | ∆′ ⇒ ρ)

2. []((h′)) : (∆ | ∆′ ⇒ ρ) ≥ (∆, h′ : ∆′ | ρ)

3. if C : (∆ | σ) ≥ (∆′ | σ′) and h′′′ : ∆′′′ ⊢⊢ v′′ : ∆′′, then

C ′ : (∆, ∆′′ | σ) ≥ (∆′, ∆′′′ | σ′)

where C ′ = (letv x = Λh′′′.C [] in x((v′′)))

4. if C : (∆ | σ) ≥ (∆′ | σ′) and α 6∈ FV(∆, ∆′ ⇒ σ), then

C : (∆ | σ) ≥ (∆′ | ∀α.σ′)

Proof:

1. The result is immediate using Definition 6.5, and the equality

(letv x = Λh, h′.[] in Λh′.x((h))((h′))) = Λh′.[]

2. []((h′)) : (∆ | ∆′ ⇒ ρ) ≥ (∆, h′ : ∆′ | ρ)

The result is immediate using Definition 6.5, and the equality

(letv x = Λh.[] in x((h))((h′))) = []((h′))

3. Suppose that σ = ∀α.∆σ ⇒ τσ, and σ′ = ∀β.∆′
σ ⇒ τ ′

σ. Then, applying Defini-
tion 6.5 to the hypothesis, we know that there exist a substution S and evidence
expressions v, vσ such that

τ ′
σ = S τσ (A.15)

h′ : ∆′, h′
σ : ∆′

σ ⊢⊢ v : ∆, vσ : S ∆σ (A.16)

C = (letv x = Λh.[] in Λh′
σ.x((v))((vσ))) (A.17)

It is easy to obtain, from A.16 and the hypothesis that

h′ : ∆′, h′′′ : ∆′′′, h′
σ : ∆′

σ ⊢⊢ v : ∆, v′′ : ∆′′, vσ : S ∆σ (A.18)

We also need the equality

(letv x = Λh.C [] in x((v))) = (letv x = Λh, h′′′.[] in Λh′
σ.x((v, v′′))((vσ))) (A.19)

which follows from (letv), (βv), and the fact that h′′′ is not free in v, vσ.

The result follows from Definition 6.5 using A.15, A.18, and A.19.

4. The result follows immediately from Definition 6.5.
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A.4 Proof of proposition 6.11 from section 6.1

Proposition 6.11. If h : ∆ | Γ
R
⊢
RT

e′ : σ, and ∆′ ⊢⊢ v : ∆, then ∆′ | Γ
R
⊢
RT

e′[h/v] : σ.

Proof: By induction on the RT derivation. The only interesting case is that of (RT-QIN);
the rest follows from IH, and (Trans) when necessary.

Case (RT-QIN): We know that

(RT-QIN)
h : ∆, hδ : δ | Γ

R
⊢
RT

e′ : ρ

h : ∆ | Γ
R
⊢
RT

Λhδ.e
′ : δ ⇒ ρ

By (Fst), (Snd), and (Univ) on the hypothesis, we know that

∆′, hδ : δ ⊢⊢ v : ∆, hδ : δ

By IH on the premise, we know that,

∆′, hδ : δ | Γ
R
⊢
RT

e′[h/v] : ρ (A.20)

The result follows from (RT-QIN) on A.20 and the facts that h 6= hδ and hδ 6∈ EV(v).

A.5 Proof of theorem 6.12 from section 6.1

Theorem 6.12. If h : ∆ | Γ
R

⊢
RT

e′ : σ, and C : (h : ∆ | σ) ≥ (h′ : ∆′ | σ′), then
h′ : ∆′ | Γ

R
⊢
RT

C [e′] : σ′.

Proof: By Definition 6.5 on the second hypothesis, we know that σ = ∀αi.∆τ ⇒ τ and
σ′ = ∀βj.∆

′
τ ⇒ τ ′, with αi, βj only appearing in the bodies of σ, σ′ respectively, and

there are a substutition S, evidence variables hτ and h′
τ , and evidence expressions v and

v′ such that:

τ ′ = S τ (A.21)

h′ : ∆′, h′
τ : ∆′

τ ⊢⊢ v : ∆, v′ : S ∆τ (A.22)

C = (letv x = Λh.[] in Λh′
τ .x((v))((v′))) (A.23)

By (RT-INST) on the first hypotesis, we know that

h : ∆ | Γ
R
⊢
RT

e′ : S (∆τ ⇒ τ) (A.24)

Then, by (RT-QIN) on A.24

∅ | Γ
R
⊢
RT

Λh.e′ : ∆, S ∆τ ⇒ S τ (A.25)

By Proposition 6.11 on A.25 and then (RT-QOUT) on the result and A.22,

h′ : ∆′, h′
τ : ∆′

τ | Γ
R
⊢
RT

(Λh.e′)((v))((v′)) : S τ (A.26)
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Then, by (RT-QIN) on A.26 (also using A.21),

h′ : ∆′ | Γ
R
⊢
RT

Λh′
τ .(Λh.e′)((v))((v′)) : ∆′

τ ⇒ τ ′ (A.27)

Finally, by (RT-GEN) on A.27

h′ : ∆′ | Γ
R
⊢
RT

Λh′
τ .(Λh.e′)((v))((v′)) : ∀βj.∆

′
τ ⇒ τ ′ (A.28)

The result follows from A.28, using A.23 and (letv) to show that

C [e′] = Λh′
τ .(Λh.e′)((v))((v′))

A.6 Proof of proposition 6.13 from section 6.3

Proposition 6.13. If ∆ ⊢
SR

τ →֒ σ then S ∆ ⊢
SR

τ →֒ S σ.

Proof: By induction on the SR derivation using IH and (Close). In the cases (SR-GEN) and
(SR-INST), we can assume that α 6∈ dom(S) by α-conversion, and then apply IH.

A.7 Proof of proposition 6.14 from section 6.3

Proposition 6.14. If ∆ ⊢
SR

τ →֒ σ and ∆′ ⊢⊢ ∆, then ∆′ ⊢
SR

τ →֒ σ.

Proof: By induction on the SR derivation, using (Trans) when necessary.

A.8 Proof of theorem 6.15 from section 6.3

Theorem 6.15. If ∆ ⊢
SR

τ →֒ σ and C : (∆ | σ) ≥ (∆′ | σ′) then ∆′ ⊢
SR

τ →֒ σ′.

Proof: By Definition 6.5 on the second hypothesis, we know that σ = ∀αi.∆τ ⇒ τ and
σ′ = ∀βj.∆

′
τ ⇒ τ ′, with αi, βj only appearing in the bodies of σ, σ′ respectively, and

there is a substutition S such that:

τ ′ = S τ (A.29)

∆′, ∆′
τ ⊢⊢ ∆, S ∆τ (A.30)

By (SR-INST) on the first hypotesis, we know that

h : ∆ ⊢
SR

τ →֒ S (∆τ ⇒ τ) (A.31)

Then, by (SR-QIN) on A.31
∅ ⊢

SR
τ →֒ ∆, S ∆τ ⇒ S τ (A.32)
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By Proposition 6.14 on A.32 and then (SR-QOUT) on the result and A.30,

∆′, ∆′
τ ⊢

SR
τ →֒ S τ (A.33)

Then, by (SR-QIN) on A.33 (also using A.29),

∆′ ⊢
SR

τ →֒ ∆′
τ ⇒ τ ′ (A.34)

Finally, by (SR-GEN) on A.34

∆′ ⊢
SR

τ →֒ ∀βj.∆
′
τ ⇒ τ ′ (A.35)

finishing the proof.

A.9 Proof of theorem 6.19 from section 6.3

Theorem 6.19. If ∆ | Γ ⊢
P

e : τ →֒ e′ : σ, and for all x : τx →֒ x′ : τ ′
x ∈ Γ,

∆ ⊢
SR

τx →֒ τ ′
x, then ∆ ⊢

SR
τ →֒ σ.

Proof: By induction on the P derivation.

A.10 Proof of theorem 6.20 from section 6.3

Theorem 6.20. If ∆ | Γ ⊢
P

e : τ →֒ e′ : σ, then ∆ | Γ
(RT)

⊢
RT

e′ : σ.

Proof: By induction on the P derivation.

A.11 Proof of proposition 6.21 from section 6.3

Proposition 6.21. If h : ∆ | Γ ⊢
P

e : τ →֒ e′ : τ ′ and h′ : ∆′ ⊢⊢ v : ∆, then
h′ : ∆′ | Γ ⊢

P
e : τ →֒ e′[h/v] : τ ′

Proof: By induction on the P derivation. The only interesting case is (QIN); the rest
follows from IH, and (Trans) when necessary.

Case (QIN): We know that

(QIN)
h : ∆, hδ : δ | Γ ⊢

P
e : τ →֒ e′ : ρ

h : ∆ | Γ ⊢
P

e : τ →֒ Λhδ.e
′ : δ ⇒ ρ

By (Fst), (Snd), and (Univ) on the hypothesis, we know that

∆′, hδ : δ ⊢⊢ v : ∆, hδ : δ

By IH on the premise, we know that,

∆′, hδ : δ | Γ ⊢
P

e : τ →֒ e′[h/v] : ρ (A.36)

The result follows from (QIN) on A.36 and the facts that h 6= hδ and hδ 6∈ EV(v).
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A.12 Proof of proposition 6.22 from section 6.3

Proposition 6.22. If ∆ | Γ ⊢
P

e : τ →֒ e′ : σ then S ∆ | S Γ ⊢
P

e : τ →֒ e′ : S σ.

Proof: By induction on the P derivation using IH, Proposition 6.13, and (Close). In the
cases (GEN) and (INST), we can assume that α 6∈ dom(S) by α-conversion, and then apply
IH.

A.13 Proof of proposition 7.3 from section 7.1

Proposition 7.3. The relation ≥ satisfies that, for all Γand τ ′,

1. if h′ : ∆′ ⊢⊢ v : ∆ and C = []((v))
then C : GenΓ,∆′′(∆ ⇒ τ ′) ≥ (h′ : ∆′ | τ ′)

2. if h′ : ∆′ ⊢⊢ v : ∆ and C = Λh′.[]((v))
then C : GenΓ,∆′′(∆ ⇒ τ ′) ≥ GenΓ,∆′′(∆′ ⇒ τ ′)

3. for all substitutions R and all contexts ∆,
[] : R GenΓ,∆′(∆ ⇒ τ ′) ≥ GenR Γ,R ∆′(R ∆ ⇒ R τ ′)

Proof:

1. Let’s assume that h′ : ∆′ ⊢⊢ v : ∆ and take C = []((v)). The result C :
GenΓ,∆′′(∆ ⇒ τ ′) ≥ (h′ : ∆′ | τ ′) follows from Definition 6.5, taking Id as the
substitution, using the hypothesis as the entailment needed, and using (letv) to
show that []((v)) = letv x = [] in x((v)).

2. Let’s assume that h′ : ∆′ ⊢⊢ v : ∆. By the previous item, we know that

C v : GenΓ,∆′′(∆ ⇒ τ ′) ≥ (h′ : ∆′ | τ ′) (A.37)

where C v = []((v)).

By Proposition 6.9-1,

Λh′.[] : (h′ : ∆′ | τ ′) ≥ ∆′ ⇒ τ ′ (A.38)

By Proposition 6.7-2 on A.37 and A.38,

C : GenΓ,∆′′(∆ ⇒ τ ′) ≥ ∆′ ⇒ τ ′ (A.39)

where C = Λh′.C v[] = Λh′.[]((v))

The result follows from A.39 by Proposition 6.9-4.
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3. Let {αi} = (FV(∆)∪FV(τ ′))/(FV(Γ)∪FV(∆′)), and choose new variables γi not
involved in R, such that

R GenΓ,∆′(∆ ⇒ τ ′) = ∀γi.R (∆ ⇒ τ ′)[αi/γi] = ∀γi.T ∆ ⇒ T τ ′

where S = [αi/γi], and T = RS.

Let {βj} = (FV(R ∆) ∪ FV() Rτ ′)/(FV() RΓ ∪ FV() R∆′), so we have

GenR Γ,R ∆′(R ∆ ⇒ R τ ′) = ∀βj.R ∆ ⇒ R τ ′

We can observe that none of the variables βj appear free in R GenΓ,∆′(∆ ⇒ τ ′)
(suppose that β ∈ FV(R GenΓ,∆′(∆ ⇒ τ ′)); then, β ∈ FV(R α) for some α ∈
FV(∆ ⇒ τ ′)/{αi}, which in turn implies that α ∈ (FV(Γ) ∪ FV(∆′)), and hence
that β ∈ FV(R α) ⊆ (FV(R Γ)∪FV(R ∆′)); it follows that β 6∈ {βj} = (FV(R ∆)∪
FV() Rτ ′)/(FV() RΓ ∪ FV() R∆′)).

Note that
R τ ′ = (T τ ′)[R αi/γi]

and
h : R ∆ ⊢⊢ h : R ∆ = (T ∆)[R αi/γi]

The result follows from Definition 6.5:

[] : ∀γi.T ∆ ⇒ T τ ′ ≥ ∀βj.R ∆ ⇒ R τ ′

A.14 Proof of proposition 7.7 from section 7.1

Proposition 7.7. If h : ∆ | Γ ⊢
S

e : τ →֒ e′ : τ ′ then h : S ∆ | S Γ ⊢
S

e : τ →֒ e′ : S τ ′

Proof: By induction on the S derivation. The only interesting case is that of (S-POLY);
all the rest follow from IH and the same rule, using, when needed Proposition 6.13 or
(Close).

For the case (S-POLY), we have the following proof.

Case (S-POLY): We know that

(S-POLY)
h′ : ∆′ | Γ ⊢

S
e : τ →֒ e′ : τ ′ h : ∆ ⊢⊢ v : IsMG σ′ σ

h : ∆ | Γ ⊢
S
poly e : poly τ →֒ v[Λh′.e′] : poly σ
(σ′=GenΓ,∅(∆′⇒τ ′))

By IH on the first premise, we have that

h′ : S ∆′ | S Γ ⊢
S

e : τ →֒ e′ : S τ ′ (A.40)

By (Close) on the second premise,

h : S ∆ ⊢⊢ v : IsMG (S σ′) (S σ) (A.41)
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By Proposition 7.3-3,

[] : S GenΓ,∅(∆
′ ⇒ τ ′) ≥ GenS Γ,∅(S ∆′ ⇒ S τ ′) (A.42)

and using (Comp) on A.41 and A.42,

h : S ∆ ⊢⊢ v : IsMG GenS Γ,∅(S ∆′ ⇒ S τ ′) (S σ) (A.43)

The result follows from (S-POLY) on A.40 and A.43.

A.15 Proof of proposition 7.8 from section 7.1

Proposition 7.8. If h : ∆ | Γ ⊢
S

e : τ →֒ e′ : τ ′ and ∆′ ⊢⊢ v : ∆, then

∆′ | Γ ⊢
S

e : τ →֒ e′[h/v] : τ ′

Proof: By induction on the S derivation. The only interesting case is that of (S-POLY);
all the rest follow from IH and the same rule.

For the case (S-POLY), we have the following proof.

Case (S-POLY): We know that

(S-POLY)

h′′ : ∆′′ | Γ ⊢
S

e : τ →֒ e′ : τ ′ h : ∆ ⊢⊢ vσ : IsMG σ′ σ

h : ∆ | Γ ⊢
S
poly e : poly τ →֒ vσ[Λh′′.e′] : poly σ

(σ′=GenΓ,∅(∆′′⇒τ ′))

By (Trans) on the second hypotesis and the second premise, we have that

h′ : ∆′ ⊢⊢ vσ[h/v] : IsMG σ′ σ (A.44)

On the other hand, by Lemma 6.23 on the first premise we know that h 6∈ EV(e′),
and thus

(vσ[h/v])[Λh′′.e′] = (vσ[Λh′′.e′])[h/v] (A.45)

The result follows from (S-POLY) on the first premise and A.44, and using A.45.

A.16 Proof of theorem 7.9 from section 7.1

Theorem 7.9. If ∆ | Γ ⊢
S

e : τ →֒ e′ : τ ′ then ∆ | Γ ⊢
P

e : τ →֒ e′ : τ ′.

Proof: By induction on the S derivation. The only interesting case is that of (S-POLY);
all the rest follow from IH and the corresponding rule in system P.

For the case (S-POLY), we have the following proof.
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Case (S-POLY): We know that

(S-POLY)
h′ : ∆′ | Γ ⊢

S
e : τ →֒ e′ : τ ′ h : ∆ ⊢⊢ v : IsMG σ′ σ

h : ∆ | Γ ⊢
S
poly e : poly τ →֒ v[Λh′.e′] : poly σ
(σ′=GenΓ,∅(∆′⇒τ ′))

By IH on the first premise, we have that

h′ : ∆′ | Γ ⊢
P

e : τ →֒ e′ : τ ′ (A.46)

Using rule (QIN) on A.46 several times, we get

∅ | Γ ⊢
P

e : τ →֒ Λh′.e′ : ∆′ ⇒ τ ′ (A.47)

and then, using rule (GEN) several times on this equation, we get

∅ | Γ ⊢
P

e : τ →֒ Λh′.e′ : GenΓ,∅(∆
′ ⇒ τ ′) (A.48)

Using Proposition 6.21 on this last equation, we obtain

h : ∆ | Γ ⊢
P

e : τ →֒ Λh′.e′ : σ′ (A.49)

The result follows from (POLY) on A.49 and the second premise.

A.17 Proof of theorem 7.10 from section 7.1

Theorem 7.10. If h : ∆ | Γ ⊢
P

e : τ →֒ e′ : σ, then there exist h′
s, ∆

′
s, e

′
s, τ

′
s, and C ′

s

such that

a) h′
s : ∆′

s | Γ ⊢
S

e : τ →֒ e′s : τ ′
s

b) C ′
s : GenΓ,∅(∆

′
s ⇒ τ ′

s) ≥ (h : ∆ | σ)

c) C ′
s[Λh′

s.e
′
s] = e′

Proof: By induction on the P derivation. Several cases are similar to others, so we will
present only the proof of some of them, representative of the rest.

Case (VAR): We know that

(VAR)
x : τ →֒ e′ : τ ′ ∈ Γ

h : ∆ | Γ ⊢
P

x : τ →֒ e′ : τ ′

Let’s take h′
s = h, ∆′

s = ∆, e′s = e′, τ ′
s = τ ′, and C ′

s = []((h)).

Item a) holds by (S-VAR) on the premise.

h : ∆ | Γ ⊢
S

x : τ →֒ e′ : τ ′
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Item b) holds by Proposition 7.3-1.

[]((h)) : GenΓ,∅(∆ ⇒ τ ′) ≥ (h : ∆ | τ ′)

Item c) holds by Proposition 8.3.

(Λh.e′)((h)) = e′

Case (D+): We know that

(D+)
(h : ∆ | Γ ⊢

P
ei : IntD →֒ e′i : Int)i=1,2

h : ∆ | Γ ⊢
P

e1 +D e2 : IntD →֒ e′1 + e′2 : Int

By IH on the premise, we have that for i = 1, 2 there exist h′
Ii, ∆′

Ii, e′Ii, τ ′
Ii, and

C ′
Ii such that

h′
Ii : ∆′

Ii | Γ ⊢
S

ei : IntD →֒ e′Ii : τ ′
Ii (A.50)

C ′
Ii : GenΓ,∅(∆

′
Ii ⇒ τ ′

Ii) ≥ (h : ∆ | Int) (A.51)

C ′
Ii[Λh′

Ii.e
′
Ii] = e′i (A.52)

By Definition 6.5 on A.51, there exist, for i = 1, 2, S ′
Ii and v′

Ii such that

Int = S ′
Ii τ

′
Ii (A.53)

h : ∆ ⊢⊢ v′
Ii : S ′

Ii ∆
′
Ii (A.54)

C ′
Ii = []((v′

Ii)) (A.55)

By Propositions 7.7 and 7.8 on A.50 and A.54, and using A.53, we have for i = 1, 2

h : ∆ | Γ ⊢
S

ei : IntD →֒ e′Ii[h
′
Ii/v

′
Ii] : Int (A.56)

Finally, by replacing A.55 on A.52, and then using (βv), we obtain

e′Ii[h
′
Ii/v

′
Ii] = e′i (A.57)

Let’s take h′
s = h, ∆′

s = ∆, e′s = e′I1[h
′
I1/v

′
I1] + e′I2[h

′
I2/v

′
I2], τ ′

s = Int, and C ′
s =

[]((h)).

Item a) holds by (S-D+) on A.56.

h : ∆ | Γ ⊢
S

e1 +D e2 : IntD →֒ e′I1[h
′
I1/v

′
I1] + e′I2[h

′
I2/v

′
I2] : Int

Item b) holds by Proposition 7.3-1.

[]((h)) : GenΓ,∅(∆ ⇒ Int) ≥ (h : ∆ | Int)

Item c) holds by Proposition 8.3 and A.57.

(Λh.e′I1[h
′
I1/v

′
I1] + e′I2[h

′
I2/v

′
I2])((h)) = e′1 + e′2
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Case (POLY): We know that

(POLY)
∆ | Γ ⊢

P
e : τ →֒ e′ : σ′ ∆ ⊢⊢ v : IsMG σ′ σ

∆ | Γ ⊢
P

poly e : poly τ →֒ v[e′] : poly σ

By IH on the first premise, there exist h′
I , ∆′

I , e′I , τ ′
I , and C ′

I such that

h′
I : ∆′

I | Γ ⊢
S

e : τ →֒ e′I : τ ′
I (A.58)

C ′
I : GenΓ,∅(∆

′
I ⇒ τ ′

I) ≥ (h : ∆ | σ′) (A.59)

C ′
I [Λh′

I .e
′
I ] = e′ (A.60)

By Lemma 6.24, there exist βj, ∆σ, and τ ′ such that βj does not appear free in ∆
or Γ, and

σ′ = ∀βj.∆σ ⇒ τ ′ (A.61)

Then, by Definition 6.5 on A.59 and A.61, there exist S ′
I and v′

I such that

τ ′ = S ′
I τ ′

I (A.62)

h : ∆, hσ : ∆σ ⊢⊢ v′
I : S ′

I ∆′
I (A.63)

C ′
I = Λhσ.[]((v

′
I)) (A.64)

By Proposition 7.7 on A.58,

h′
I : S ′

I ∆′
I | Γ ⊢

S
e : τ →֒ e′I : S ′

I τ ′
I (A.65)

and by Proposition 7.8 on A.65 and A.63, and using A.62,

h : ∆, hσ : ∆σ | Γ ⊢
S

e : τ →֒ e′I [h
′
I/v

′
I ] : τ ′ (A.66)

Let’s define
σ′′ = GenΓ,∅(∆, ∆σ ⇒ τ ′) (A.67)

As βj does not appear free in ∆, all the variables of ∆ appear free on σ′, and thus,
by Definition 6.5,

C ′′ : (∆ | σ′′) ≥ (∆ | σ′) (A.68)

where C ′′ = Λhσ.[]((h, hσ)), and using (IsMG) on A.68, we have that

∆ ⊢⊢ C ′′ : IsMG σ′′ σ′ (A.69)

Now, using (Comp) on A.69 and second premise,

∆ ⊢⊢ v ◦ C ′′ : IsMG σ′′ σ (A.70)

On the other hand, by replacing A.64 on A.60, and then using (βv), we obtain

Λhσ.e
′
I [h

′
I/v

′
I ] = e′ (A.71)

and by Proposition 8.3, and A.71,

C ′′[Λh, hσ.e
′
I [h

′
I/v

′
I ]] = e′ (A.72)

Let’s take h′
s = h, ∆′

s = ∆, e′s = v[C ′′[Λh, hσ.e
′
I [h

′
I/v

′
I ]]], τ ′

s = poly σ, and
C ′

s = []((h)).
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Item a) holds by (S-POLY) on A.66 and A.70, using A.67.

h : ∆ | Γ ⊢
S
poly e : poly τ →֒ v[C ′′[Λh, hσ.e

′
I [h

′
I/v

′
I ]]] : poly σ

Item b) holds by Proposition 7.3-1.

[]((h)) : GenΓ,∅(∆ ⇒ poly σ) ≥ (h : ∆ | poly σ)

Item c) holds by Proposition 8.3 and A.72.

(Λh.e′s)((h)) = v[e′]

Case (QIN): We know that

(QIN)
∆, hδ : δ | Γ ⊢

P
e : τ →֒ e′ : ρ

∆ | Γ ⊢
P

e : τ →֒ Λhδ.e
′ : δ ⇒ ρ

By IH on the first premise, there exist h′
I , ∆′

I , e′I , τ ′
I , and C ′

I such that

h′
I : ∆′

I | Γ ⊢
S

e : τ →֒ e′I : τ ′
I (A.73)

C ′
I : GenΓ,∅(∆

′
I ⇒ τ ′

I) ≥ (h : ∆, hδ : δ | ρ) (A.74)

C ′
I [Λh′

I .e
′
I ] = e′ (A.75)

By Lemma 6.24, there exist ∆ρ and τ ′
ρ such that

ρ = ∆ρ ⇒ τ ′
ρ (A.76)

Then, by Definition 6.5 on A.74 and A.76, there exist S ′
I and v′

I such that

τ ′
ρ = S ′

I τ ′
I (A.77)

h : ∆, hδ : δ, hρ : ∆ρ ⊢⊢ v′
I : S ′

I ∆′
I (A.78)

C ′
I = Λhρ.[]((v

′
I)) (A.79)

Let’s take h′
s = h′

I , ∆′
s = ∆′

I , e′s = e′I , τ ′
s = τ ′

I , and C ′
s = Λhδ, hρ.[]((v

′
I)).

Item a) holds by A.73.
h′

I : ∆′
I | Γ ⊢

S
e : τ →֒ e′I : τ ′

I

Item b) holds by Definition 6.5 on A.77 and A.78, using S ′
I as substitution.

Λhδ, hρ.[]((v
′
I)) : GenΓ,∅(∆

′
I ⇒ τ ′

I) ≥ (h : ∆ | δ ⇒ ρ)

Item c) holds by expanding A.79 on A.75.

Λhδ, hρ.(Λh′
I .e

′
I)((v

′
I)) = Λhδ.e

′

Case (QOUT): We know that
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(QOUT)
∆ | Γ ⊢

P
e : τ →֒ e′ : δ ⇒ ρ ∆ ⊢⊢ vδ : δ

∆ | Γ ⊢
P

e : τ →֒ e′((vδ)) : ρ

By IH on the first premise, there exist h′
I , ∆′

I , e′I , τ ′
I , and C ′

I such that

h′
I : ∆′

I | Γ ⊢
S

e : τ →֒ e′I : τ ′
I (A.80)

C ′
I : GenΓ,∅(∆

′
I ⇒ τ ′

I) ≥ (h : ∆ | δ ⇒ ρ) (A.81)

C ′
I [Λh′

I .e
′
I ] = e′ (A.82)

By Lemma 6.24, there exist ∆ρ and τ ′
ρ such that

ρ = ∆ρ ⇒ τ ′
ρ (A.83)

Then, by Definition 6.5 on A.74 and A.83, there exist S ′
I and v′

I such that

τ ′
ρ = S ′

I τ ′
I (A.84)

h : ∆, hδ : δ, hρ : ∆ρ ⊢⊢ v′
I : S ′

I ∆′
I (A.85)

C ′
I = Λhδ, hρ.[]((v

′
I)) (A.86)

Using (Trans) on A.85 and second premise, we get

h : ∆, hρ : ∆ρ ⊢⊢ v′
I [hδ/vδ] : S ′

I ∆′
I (A.87)

Let’s take h′
s = h′

I , ∆′
s = ∆′

I , e′s = e′I , τ ′
s = τ ′

I , and C ′
s = Λhρ.[]((v

′
I [hδ/vδ])).

Item a) holds by A.80.
h′

I : ∆′
I | Γ ⊢

S
e : τ →֒ e′I : τ ′

I

Item b) holds by Definition 6.5 on A.84 and A.87, using S ′
I as substitution.

Λhρ.[]((v
′
I [hδ/vδ])) : GenΓ,∅(∆

′
I ⇒ τ ′

I) ≥ (h : ∆ | ρ)

Item c) holds by expanding A.86 on A.82, using (βv), and the fact that hδ 6∈ EV(e′I)
(because hδ is fresh).

Λhρ.(Λh′
I .e

′
I)((v

′
I [hδ/vδ])) = e′((vδ))

Case (GEN): We know that

(GEN)
∆ | Γ ⊢

P
e : τ →֒ e′ : σ

∆ | Γ ⊢
P

e : τ →֒ e′ : ∀α.σ
(α 6∈FV(∆)∪FV(Γ))

By IH on the first premise, there exist h′
I , ∆′

I , e′I , τ ′
I , and C ′

I such that

h′
I : ∆′

I | Γ ⊢
S

e : τ →֒ e′I : τ ′
I (A.88)

C ′
I : GenΓ,∅(∆

′
I ⇒ τ ′

I) ≥ (h : ∆ | σ) (A.89)

C ′
I [Λh′

I .e
′
I ] = e′ (A.90)

Let’s take h′
s = h′

I , ∆′
s = ∆′

I , e′s = e′I , τ ′
s = τ ′

I , and C ′
s = C ′

I .
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Item a) holds by A.88.
h′

I : ∆′
I | Γ ⊢

S
e : τ →֒ e′I : τ ′

I

Item b) holds by A.89 and the fact that α does not appear free on GenΓ,∅(∆
′
I ⇒

τ ′
I) because of the side condition α 6∈ FV(∆) ∪ FV(Γ).

C ′
I : GenΓ,∅(∆

′
I ⇒ τ ′

I) ≥ (h : ∆ | ∀α.σ)

Item c) holds by A.90.
C ′

I [Λh′
I .e

′
I ] = e′

Case (INST): We know that

(INST)
∆ | Γ ⊢

P
e : τ →֒ e′ : ∀α.σ

∆ | Γ ⊢
P

e : τ →֒ e′ : S σ
(dom(S)=α)

By IH on the first premise, there exist h′
I , ∆′

I , e′I , τ ′
I , and C ′

I such that

h′
I : ∆′

I | Γ ⊢
S

e : τ →֒ e′I : τ ′
I (A.91)

C ′
I : GenΓ,∅(∆

′
I ⇒ τ ′

I) ≥ (h : ∆ | ∀α.σ) (A.92)

C ′
I [Λh′

I .e
′
I ] = e′ (A.93)

Let’s take h′
s = h′

I , ∆′
s = ∆′

I , e′s = e′I , τ ′
s = τ ′

I , and C ′
s = C ′

I .

Item a) holds by A.91.
h′

I : ∆′
I | Γ ⊢

S
e : τ →֒ e′I : τ ′

I

Item b) holds by transitivity of ≥ with A.92 and Proposition 6.8-2.

C ′
I : GenΓ,∅(∆

′
I ⇒ τ ′

I) ≥ (h : ∆ | S σ)

Item c) holds by A.93.
C ′

I [Λh′
I .e

′
I ] = e′

A.18 Proof of proposition 7.11 from section 7.2

Proposition 7.11. If σ ∼U σ′ then U σ = U σ′.

Proof: By induction on the derivation of σ ∼U σ′.
Cases c ∼Id c, n̂ ∼Id n̂, Int ∼Id Int, and α ∼Id α are completely trivial. Cases

α ∼[α/σ] σ, τ ′
1 → τ ′

2 ∼UT τ ′′
1 → τ ′′

2 , and ∀α.σ ∼U ∀α′.σ′ are presented below. For
σ ∼[α/σ] α, the proof is identical to its symmetrical case. For all the rest, the result
follows from IH and the definition of substitution.

Case α ∼[α/σ] σ: We know that
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α 6∈ FV(σ)

α ∼[α/σ] σ

It is clear that, as α 6∈ FV(σ) by the premise, then α[α/σ] = σ[α/σ].

Case τ ′
1 → τ ′

2 ∼
UT τ ′′

1 → τ ′′
2 : We know that

τ ′
1 ∼

T τ ′
2 T τ ′′

1 ∼U T τ ′′
2

τ ′
1 → τ ′

2 ∼
UT τ ′′

1 → τ ′′
2

By IH on the first premise, we have that

T τ ′
1 = T τ ′′

1 (A.94)

and then, it is clear that

UT τ ′
1 = UT τ ′′

1 (A.95)

Again by IH, but this time on the second premise, we have that

U T τ ′
2 = U T τ ′′

2 (A.96)

The result follows from A.95 and A.96 by definition of substitution.

Case ∀α.σ ∼U ∀α′.σ′: We know that

σ[α/c] ∼U σ′[α′/c]

∀α.σ ∼U ∀α′.σ′
(c fresh)

By α-conversion on type schemes, we can assume that both α and α′ do not appear
free on U . By IH on the premise,

U (σ[α/c]) = U (σ′[α′/c]) (A.97)

and then

(U σ)[α/c] = (U σ′)[α′/c] (A.98)

The result follows from the definition of substitution, and the fact that α and α′

do not appear free on U .
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A.19 Proof of proposition 7.12 from section 7.2

Proposition 7.12. If S σ = S σ′, then σ ∼U σ′ and there exists a substitution T such
that S = TU .

Proof:
We first have to show that every derivation of σ ∼U σ′ is finite. To do that, we

define a complexity measure consisting on the pair (n,m) where n is the number of free
variables and m is the number of constructors in σ and σ′; the lexicographic ordering
on this measure is well-founded. The premises of every rule have a smaller complexity
than the conclusion (we need the property that the free variables in the range of U are
included in the set of free variables of σ, σ′), and so every derivation tree must be finite.

By well-founded induction on the derivation of σ ∼U σ′. There are four cases to
consider: either

1. σ and σ′ are identical, and no unification is necessary,

2. σ and σ′ are of the form σ = ∀α.σI and σ′ = ∀α′.σ′
I , with α, α′ not involved in S

and S σI = S σ′
I ,

3. σ is a variable α not in σ′, or vice versa, or

4. both types began with the same constructor, and their corresponding parts are
unified by S.

In the first case, it can be shown by induction on the derivation σ ∼U σ′ that U = Id,
and the result trivilly follows.

In the second case, as α, α′ are not involved in S, S (σI [α/c]) = (S σI)[α/c] =
(S σ′

I)[α
′/c] = S (σ′

I [α
′/c]) for a fresh constant c. The result follows from IH and the

rule for type schemes.
In the third case, the algorithm produces the substitution U = [α/σ′]; but, as we

know that S α = S σ′, then S U α = S σ′ = S α, and S U β = S β, for β 6= α. Hence,
S = SU , finishing the case.

In the fourth case, we have to apply IH to the premises, and construct the result.
We present the case for function types as example; the rest are analogous. We know
that

τ ′
1 ∼

U ′

τ ′
2 U ′ τ ′′

1 ∼U ′′

U ′ τ ′′
2

τ ′
1 → τ ′

2 ∼
U ′′U ′

τ ′′
1 → τ ′′

2

where U = U ′′U ′, and we want to find a substitution T such that S = TU = TU ′′U ′. By
IH on the first premise, we have that there exists a substitution T ′ such that S = T ′U ′.
Then we can rewrite S τ ′

i as T ′ U ′ τ ′
i , and so, applying the IH to the second premise, we

obtain that there exists T ′′ such that T ′ = T ′′U ′′. We observe that composing the two
equalities S = T ′U ′ and T ′ = T ′′U ′′, we obtain S = T ′′U ′′U ′, and so the result follows
by taking T = T ′′.
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A.20 Proof of proposition 7.14 from section 7.2

Proposition 7.14. If ∆ ⊢
W-SR

τ →֒ τ ′ then ∆ ⊢
SR

τ →֒ τ ′.

Proof: By induction on the derivation of ∆ ⊢
W-SR

τ →֒ τ ′.

Case Int
S : The result follows from (SR-SINT) on the trivial judgment IsInt t ⊢⊢ IsInt t.

Case Int
D : The result follows from (SR-DINT).

Case τ2 →
D τ1: We know that

∆1 ⊢W-SR
τ1 →֒ τ ′

1 ∆2 ⊢W-SR
τ2 →֒ τ ′

2

∆1, ∆2 ⊢W-SR
τ2 →

D τ1 →֒ τ ′
2 → τ ′

1

By IH on the premises, we know that ∆1 ⊢SR
τ1 →֒ τ ′

1 and ∆2 ⊢SR
τ2 →֒ τ ′

2

Then, by Proposition 6.14 on those, we know that

∆1, ∆2 ⊢SR
τ1 →֒ τ ′

1 (A.99)

and
∆1, ∆2 ⊢SR

τ2 →֒ τ ′
2 (A.100)

The result follows from (SR-DFUN) on A.99 and A.100.

Case (τ1, . . . , τn)D : We know that

(∆1 ⊢W-SR
τ1 →֒ τ ′

1)i=1,...,n

∆1, . . . , ∆n ⊢
W-SR

(τ1, . . . , τn)D →֒ (τ ′
1, . . . , τ

′
n)

The result is obtained applying IH to the premises, then Proposition 6.14 to the
resulting judgments to obtain the same predicate assignment on all of them, and
finally using (SR-TUPLE) on those.

Case poly τ : We know that

∆ ⊢
W-SR

τ →֒ τ ′

IsMG σ s ⊢
W-SR

poly τ →֒ poly s
(σ=Gen∅,∅(∆⇒τ ′) and s fresh)

By IH on the premise, we know that ∆ ⊢
SR

τ →֒ τ ′

Then, by (SR-QIN), ⊢
SR

τ →֒ ∆ ⇒ τ ′ and by (SR-GEN), ⊢
SR

τ →֒ Gen∅,∅(∆ ⇒ τ ′)

Finally, by Proposition 6.14

IsMG σ s ⊢
SR

τ →֒ Gen∅,∅(∆ ⇒ τ ′) (A.101)

The result follows from (SR-POLY) on A.101 and IsMG σ s ⊢⊢ IsMG σ s.
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A.21 Proof of proposition 7.15 from section 7.2

Proposition 7.15. If ∆ ⊢
SR

τ →֒ σ then ∆′
w ⊢

W-SR
τ →֒ τ ′

w with all the residual
variables fresh, and there exists C ′

w such that C ′
w : Gen∅,∅(∆

′
w ⇒ τ ′

w) ≥ (∆ | σ).

Proof: By induction on the SR derivation.

Case (SR-DINT): We know that

(SR-DINT) ∆ ⊢
SR

IntD →֒ Int

The result follows from ∅ ⊢
W-SR

IntD →֒ Int.

Case (SR-SINT): We know that

(SR-SINT)
∆ ⊢⊢ IsInt τ ′

∆ ⊢
SR

IntS →֒ τ ′

Applying the algorithm, we have that IsInt t ⊢
W-SR

IntS →֒ t, with t fresh. The
fact that there exists C ′

w such that

C ′
w : (∀t.IsInt t ⇒ t) ≥ (∆ | τ ′)

follows from Definition 6.5 using the premise for the required entailment.

Case (SR-DFUN): We know that

(SR-DFUN)
∆ ⊢

SR
τ1 →֒ τ ′

1 ∆ ⊢
SR

τ2 →֒ τ ′
2

∆ ⊢
SR

τ2 →
D τ1 →֒ τ ′

2 → τ ′
1

By IH on the first premise,

∆′
w1

⊢
W-SR

τ1 →֒ τ ′
w1

(A.102)

with all the variables fresh, and there exists C ′
w1

such that

C ′
w1

: Gen∅,∅(∆
′
w1

⇒ τ ′
w1

) ≥ (∆ | τ ′
1) (A.103)

that is, by Definition 6.5, there exist S ′
w1

and v′
w1

such that

τ ′
1 = S ′

w1
τ ′
w1

(A.104)

h : ∆ ⊢⊢ v′
w1

: S ′
w1

∆′
w1

(A.105)

C ′
w1

= []((v′
w1

)) (A.106)

By IH on the second premise,

∆′
w2

⊢
W-SR

τ2 →֒ τ ′
w2

(A.107)
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with all the variables fresh, and there exists C w2 such that

C ′
w2

: Gen∅,∅(∆
′
w2

⇒ τ ′
w2

) ≥ (∆ | τ ′
2) (A.108)

that is, by Definition 6.5, there exist S ′
w2

and v′
w2

such that

τ ′
2 = S ′

w2
τ ′
w2

(A.109)

h : ∆ ⊢⊢ v′
w2

: S ′
w2

∆′
w2

(A.110)

C ′
w2

= []((v′
w2

)) (A.111)

We define S ′
w such that dom(S ′

w) = dom(S ′
w1

) ∪ dom(S ′
w2

) and S ′
w t = S ′

wi
t, if

t ∈ dom(S ′
wi

) (it is well defined because all the variables are fresh). Then, it is
easy to check (using A.104, A.105, A.109, and A.110) that

τ ′
2 → τ ′

1 = S ′
w (τ ′

w2
→ τ ′

w1
) (A.112)

h : ∆ ⊢⊢ v′
w1

: S ′
w1

∆′
w1

, v′
w2

: S ′
w2

∆′
w2

(A.113)

and we can define C ′
w = []((v′

w1
, v′

w2
)).

By application of the corresponding rule in the algorithm to A.102 and A.107, we
can infer that

∆′
w1

, ∆′
w2

⊢
W-SR

τ2 →
D τ1 →֒ τ ′

w2
→ τ ′

w1
(A.114)

and the variables are fresh, as obtained by IH. Finally,

C ′
w : Gen∅,∅(∆

′
w1

, ∆′
w2

⇒ τ ′
w2

→ τ ′
w1

) ≥ (∆ | τ ′
2 → τ ′

1) (A.115)

by Definition 6.5 using A.112 and A.113.

Case (SR-TUPLE): Analogous to (SR-DFUN).

Case (SR-POLY): We know that

(SR-POLY)
∆ ⊢

SR
τ →֒ σ′ ∆ ⊢⊢ IsMG σ′ σ

∆ ⊢
SR

poly τ →֒ poly σ

By IH on the first premise,

∆′
wI

⊢
W-SR

τ →֒ τ ′
wI

(A.116)

with all the variables fresh, and there exist C ′
wI

such that

C ′
wI

: Gen∅,∅(∆
′
wI

⇒ τ ′
wI

) ≥ (∆ | σ′) (A.117)

Let’s call σwI
to Gen∅,∅(∆

′
wI

⇒ τ ′
wI

).

Using (IsMG) on A.117, we have that

∆ ⊢⊢ IsMG σwI
σ′

and then by (Comp) on this and the second premise,

∆ ⊢⊢ IsMG σwI
σ (A.118)

The first part of the result follows from the application of the corresponding rule
of the algorithm to A.116, and the second part by Definition 6.5 using A.118 for
the entailment needed.
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Case (SR-QIN): We know that

(SR-QIN)
∆, δ ⊢

SR
τ →֒ ρ

∆ ⊢
SR

τ →֒ δ ⇒ ρ

By IH on the premise,
∆′

wI
⊢
W-SR

τ →֒ τ ′
wI

(A.119)

with all the variables fresh, and there exist C ′
wI

such that

C ′
wI

: Gen∅,∅(∆
′
wI

⇒ τ ′
wI

) ≥ (∆, δ | ρ) (A.120)

that is, by Definition 6.5, there exist S ′
wI

and v′
wI

such that

τρ = S ′
wI

τ ′
wI

(A.121)

h : ∆, hδ : δ, hρ : ∆ρ ⊢⊢ v′
wI

: S ′
wI

∆′
wI

(A.122)

C ′
wI

= Λhρ.[]((v
′
wI

)) (A.123)

(assuming ρ = ∆ρ ⇒ τρ).

The first part of the result is exactly A.119. The second part follows from Defini-
tion 6.5 using A.121, A.122, and the conversion C ′

w = Λhδ, hρ.[]((v
′
wI

)).

Case (SR-QOUT): We know that

(SR-QOUT)
∆ ⊢

SR
τ →֒ δ ⇒ ρ ∆ ⊢⊢ δ

∆ ⊢
SR

τ →֒ ρ

By IH on the first premise,

∆′
wI

⊢
W-SR

τ →֒ τ ′
wI

(A.124)

with all the variables fresh, and there exist C ′
wI

such that

C ′
wI

: Gen∅,∅(∆
′
wI

⇒ τ ′
wI

) ≥ (∆ | δ ⇒ ρ) (A.125)

that is, by Definition 6.5, there exist S ′
wI

and v′
wI

such that

τρ = S ′
wI

τ ′
wI

(A.126)

h : ∆, hδ : δ, hρ : ∆ρ ⊢⊢ v′
wI

: S ′
wI

∆′
wI

(A.127)

C ′
wI

= Λhδ, hρ.[]((v
′
wI

)) (A.128)

(assuming ρ = ∆ρ ⇒ τρ).

By (Trans) on the second premise and A.127

h : ∆, hρ : ∆ρ ⊢⊢ v′
wI

[hδ/vδ] : S ′
wI

∆′
wI

(A.129)

The first part of the result is exactly A.124. The second part follows from Defini-
tion 6.5 using A.126, A.129, and the conversion C ′

w = Λhρ.[]((v
′
wI

[hδ/vδ])).
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Case (SR-GEN): We know that

(SR-GEN)
∆ ⊢

SR
τ →֒ σ

∆ ⊢
SR

τ →֒ ∀α.σ
(α 6∈FV(∆))

By IH on the first premise,

∆′
wI

⊢
W-SR

τ →֒ τ ′
wI

(A.130)

with all the variables fresh, and there exist C ′
wI

such that

C ′
wI

: Gen∅,∅(∆
′
wI

⇒ τ ′
wI

) ≥ (∆ | σ) (A.131)

The first part of the result is exactly A.130. The second part follows immediately
from A.131, because α 6∈ FV(∆).

Case (SR-INST): We know that

(SR-INST)
∆ ⊢

SR
τ →֒ ∀α.σ

∆ ⊢
SR

τ →֒ S σ
(dom(S)=α)

By IH on the first premise,

∆′
wI

⊢
W-SR

τ →֒ τ ′
wI

(A.132)

with all the variables fresh, and there exist C ′
wI

such that

C ′
wI

: Gen∅,∅(∆
′
wI

⇒ τ ′
wI

) ≥ (∆ | ∀α.σ) (A.133)

that is, by Definition 6.5, there exist S ′
wI

and v′
wI

such that

τσ = S ′
wI

τ ′
wI

(A.134)

h : ∆, hσ : ∆σ ⊢⊢ v′
wI

: S ′
wI

∆′
wI

(A.135)

C ′
wI

= Λhσ.[]((v
′
wI

)) (A.136)

(assuming σ = ∀αi.∆σ ⇒ τσ).

By (Close) on A.135 (and using the fact that α does not appear free on ∆ or S ′
wI

∆′
wI

),
we have that

h : ∆, hσ : S ∆σ ⊢⊢ v′
wI

: S ′
wI

∆′
wI

(A.137)

The first part of the result is exactly A.132. The second part follows from Defini-
tion 6.5 on A.134, A.137, and A.136.
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A.22 Proof of theorem 7.17 from section 7.2

Theorem 7.17. If ∆ | S Γ ⊢
W

e : τ →֒ e′ : τ ′ then ∆ | S Γ ⊢
S

e : τ →֒ e′ : τ ′.

Proof: By induction on the W derivation. We have to use Propositions 7.7 and 7.8,
Proposition 7.13, Proposition 7.14, Propositions 6.13 and 6.14, and Proposition 7.11 —
in addition to the IH — depending on the premises on each of the rules.

A.23 Proof of theorem 7.18 from section 7.2

Theorem 7.18. If h : ∆ | S Γ ⊢
S

e : τ →֒ e′ : τ ′, then h′
w : ∆′

w | T ′
w Γ ⊢

W
e : τ →֒ e′w :

τ ′
w and there exist a substitution R and evidence v′

w such that

a) S ≈ RT ′
w

b) τ ′ = R τ ′
w

c) h : ∆ ⊢⊢ vw : R ∆′
w

d) e′ = e′w[h′
w/v′

w]

Proof: By induction on the S derivation. We show the interesting cases; the rest are
shown analogously.

Case (S-VAR): We know that

(S-VAR)
x : τ →֒ e′ : τ ′ ∈ S Γ

∆ | S Γ ⊢
S

x : τ →֒ e′ : τ ′

From the premise, we can conclude, by definition of substitution on assignments,
that there exists τ ′

s such that

x : τ →֒ e′ : τ ′
s ∈ Γ (A.138)

and
S τ ′

s = τ ′ (A.139)

By (W-VAR) on A.138,
∅ | Id Γ ⊢

W
x : τ →֒ e′ : τ ′

s (A.140)

Let’s take R = S.

Item a) holds trivially from the definition of Id.

S ≈ SId

Item b) holds by A.139.
τ ′ = S τ ′

s



242 Appendix A. Proofs

Item c) holds trivially from the definition of entailment.

∆ ⊢⊢ ∅

Item d) holds trivially (because there are no evidence variables to replace).

e′ = e′

Case (S-D+): We know that

(S-D+)
(∆ | S Γ ⊢

S
ei : IntD →֒ e′i : Int)i=1,2

∆ | S Γ ⊢
S

e1 +D e2 : IntD →֒ e′1 + e′2 : Int

By IH on the premise, with i = 1,

h′
w1

: ∆′
w1

| T ′
w1

Γ ⊢
W

e1 : IntD →֒ e′w1
: Int (A.141)

and there exist R1 and v′
w1

such that

S ≈ R1T
′
w1

(A.142)

h : ∆ ⊢⊢ v′
w1

: R1 ∆′
w1

(A.143)

e′1 = e′w1
[h′

w1
/v′

w1
] (A.144)

Writing S Γ as R1 (T ′
w1

Γ) by A.142, we can use HI on the premise with i = 2 to
get

h′
w2

: ∆′
w2

| T ′
w2

(T ′
w1

Γ) ⊢
W

e1 : IntD →֒ e′w2
: Int (A.145)

and there exist R2 and v′
w2

such that

R1 ≈ R2T
′
w2

(A.146)

h : ∆ ⊢⊢ v′
w2

: R2 ∆′
w2

(A.147)

e′2 = e′w2
[h′

w2
/v′

w2
] (A.148)

Using (W-D+) on A.141 and A.145,

h′
w1

: T ′
w2

∆′
w1

, h′
w2

: ∆′
w2

| T ′
w2

T ′
w1

Γ ⊢
W

e1 +D e2 : IntD →֒ e′w1
+ e′w2

: Int (A.149)

Let’s take R = R2 and vw = (v′
w1

, v′
w2

).

Item a) holds by A.142 and A.146.

S ≈ R2T
′
w2

T ′
w1

Item b) holds trivially.
Int = R2 Int

Item c) holds by A.143 (using A.146) and A.147.

h : ∆ ⊢⊢ v′
w1

: R2 (T ′
w2

∆′
w1

), v′
w2

: R2 ∆′
w2
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Item d) holds by A.144 and A.148, using Lemma 7.16 on A.141 and A.145.

e′1 + e′2 = (e′w1
+ e′w2

)[h′
w1

, h′
w2

/v′
w1

, v′
w2

]

Case (S-DLAM): We know that

(S-DLAM)
∆ | S Γ, x : τ2 →֒ x′ : τ ′

2 ⊢S
e : τ1 →֒ e′ : τ ′

1 ∆ ⊢
SR

τ2 →֒ τ ′
2

∆ | S Γ ⊢
S

λDx.e : τ2 →
D τ1 →֒ λx′.e′ : τ ′

2 → τ ′
1

(x′ fresh)

Let t2 be a fresh variable and define S ′ such that S ′ t2 = τ ′
2 and S ′ t′ = S t for all

t 6= t2. So, the derivation for e in the first premise can be rewritten

∆ | S ′ (Γ, x : τ2 →֒ x′ : t2) ⊢S
e : τ1 →֒ e′ : τ ′

1 (A.150)

By IH on A.150, we have that

h′
w1

: ∆′
w1

| T ′
w1

Γ ⊢
W

e : τ1 →֒ e′w1
: τ ′

w1
(A.151)

and there exist R1 and v′
w1

such that

S ′ ≈ R1T
′
w1

(A.152)

τ ′
1 = R1 τ ′

w1
(A.153)

h : ∆ ⊢⊢ v′
w1

: R1 ∆′
w1

(A.154)

e′ = e′w1
[h′

w1
/v′

w1
] (A.155)

By Proposition 7.15 on the second premise,

∆′
w2

⊢
W-SR

τ2 →֒ τ ′
w2

(A.156)

with all variables fresh, and there exists C w2 : Gen∅,∅(∆
′
w2

⇒ τ ′
w2

) ≥ (∆ | τ ′
2), that

is (by Definition 6.5), there exist R2 and v′
w2

such that

τ ′
2 = R2 τ ′

w2
(A.157)

h : ∆ ⊢⊢ v′
w2

: R2 ∆′
w2

(A.158)

C ′
w2

= []((v′
w2

)) (A.159)

By (W-DLAM) on A.151 and A.156,

h′
w1

: ∆′
w1

, h′
w2

: T ′
w1

∆′
w2

| T ′
w1

Γ ⊢
W

λDx.e : τ2 →
D τ1

→֒ λx′.e′w1
: (T ′

w1
τ ′
w2

) → τ ′
w1

(A.160)

Additionally, as the variables in ∆′
w2

⇒ τ ′
w2

are all fresh, we know that T ′
w1

∆′
w2

=
∆′

w2
and T ′

w1
τ ′
w2

= τ ′
w2

.

Let’s take R such that R t = R2 t if t ∈ dom(R2), and R t = R1 t if t 6∈ dom(R2),
and v′

w = (v′
w1

, v′
w2

).
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Item a) holds by A.152, and the fact that S ′ ≈ S and R ≈ R1 by definition.

S ≈ RT ′
w1

Item b) holds by A.157, A.153, and the definition of R.

τ ′
2 → τ ′

1 = R (τ ′
w2

→ τ ′
w1

)

Item c) holds by A.154, A.158, and the definition of R.

h : ∆ ⊢⊢ v′
w1

: R ∆′
w1

, v′
w2

: R ∆′
w2

Item d) holds by A.155.

λx′.e′ = λx′.(e′wI
[h′

w1
, h′

w2
/v′

w1
, v′

w2
])

Case (S-DAPP): We know that

(S-DAPP)
∆ | S Γ ⊢

S
e1 : τ2 →

D τ1 →֒ e′1 : τ ′
2 → τ ′

1 ∆ | S Γ ⊢
S

e2 : τ2 →֒ e′2 : τ ′
2

∆ | S Γ ⊢
S

e1 @D e2 : τ1 →֒ e′1@e′2 : τ ′
1

By IH we have that

h′
w1

: ∆′
w1

| T ′
w1

Γ ⊢
W

e1 : τ2 →
D τ1 →֒ e′w1

: τ ′
w1

(A.161)

and there exist R1 and v′
w1

such that

S ≈ R1T
′
w1

(A.162)

τ ′
2 → τ ′

1 = R1 τ ′
w1

(A.163)

h : ∆ ⊢⊢ v′
w1

: R1 ∆′
w1

(A.164)

e′1 = e′w1
[h′

w1
/v′

w1
] (A.165)

Writing S Γ as R1 (T ′
w1

Γ) by A.162, we can use HI on the second premise to get

h′
w2

: ∆′
w2

| T ′
w2

(T ′
w1

Γ) ⊢
W

e2 : τ2 →֒ e′w2
: τ ′

w2
(A.166)

and there exist R2 and v′
w2

such that

R1 ≈ R2T
′
w2

(A.167)

τ ′
2 = R2 τ ′

w2
(A.168)

h : ∆ ⊢⊢ v′
w2

: R2 ∆′
w2

(A.169)

e′2 = e′w2
[h′

w2
/v′

w2
] (A.170)

Let’s define R′ such that R′ t = τ ′
1 for a fresh variable t, and R′ t′ = R2 t′ for every

t′ 6= t. By A.168 and A.163 (using A.167)

R′ T ′
w2

τ ′
w1

= R′ (τ ′
w2

→ t) (A.171)
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By Proposition 7.12 on A.171 (and the fact that t is fresh), there exist substitutions
U and R such that

T ′
w2

τ ′
w1

∼U τ ′
w2

→ t (A.172)

and

R′ = RU (A.173)

Using (W-DAPP) on A.161, A.166, and A.172,

h′
w1

: UT ′
w2

∆′
w1

, h′
w2

: U ∆′
w2

| UT ′
w2

T ′
w1

Γ
⊢
W

e1 @D e2 : τ1 →֒ e′w1
@e′w2

: U t
(A.174)

Let’s take vw = (v′
w1

, v′
w2

).

Item a) holds by A.162, A.167, A.173, and the fact that R′ ≈ R2.

S ≈ RUT ′
w2

T ′
w1

Item b) holds by A.173 and definition of R′.

τ ′
1 = R (U t)

Item c) holds by A.173, A.164 (using A.167), A.169, and the fact that R′ ≈ R2.

h : ∆ ⊢⊢ v′
w1

: R (UT ′
w2

∆′
w1

), v′
w2

: R U ∆′
w2

Item d) holds by A.165 and A.170, using Lemma 7.16 on A.161 and A.166.

e′1@e′2 = (e′w1
@e′w2

)[h′
w1

, h′
w2

/v′
w1

, v′
w2

]

Case (S-POLY): We know that

(S-POLY)

h′ : ∆′ | S Γ ⊢
S

e : τ →֒ e′ : τ ′ h : ∆ ⊢⊢ v : IsMG σ′ σ

h : ∆ | S Γ ⊢
S
poly e : poly τ →֒ v[Λh′.e′] : poly σ
(σ′=GenS Γ,∅(∆′⇒τ ′))

By IH on the first premise, we have that

h′
wI

: ∆′
wI

| T ′
wI

Γ ⊢
W

e : τ →֒ e′wI
: τ ′

wI
(A.175)

and there exist RI and v′
wI

such that

S ≈ RIT
′
wI

(A.176)

τ ′ = RI τ ′
wI

(A.177)

h′ : ∆′ ⊢⊢ v′
wI

: RI ∆′
wI

(A.178)

e′ = e′wI
[h′

wI
/v′

wI
] (A.179)
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Let’s define σ′
wI

= Gen(T ′
wI

Γ),∅(∆
′
wI

⇒ τ ′
wI

). Then, for s and h′
w fresh, we have

that

h′
w : IsMG σ′

wI
s | ∅ ⊢⊢W h′

w : IsMG σ′
wI

s (A.180)

On the other hand, by Definition 6.5 on A.177 and A.178.

Λh′.[]((v′
wI

)) : Gen(RIT ′
wI

Γ),∅(RI ∆′
wI

⇒ RI τ ′
wI

) ≥ Gen(S Γ),∅(∆
′ ⇒ τ ′) (A.181)

Finally, by (W-POLY) on A.175 and A.180,

h′
w : IsMG σ′

wI
s | T ′

wI
Γ ⊢

W
poly e : poly τ →֒ h′

w[Λh′
wI

.e′wI
] : poly s (A.182)

Let’s take R such that R s = σ and R t = RI t for all t 6= s, and v′
w = v ◦

(Λh′.[]((v′
wI

))).

Item a) holds by A.176 and because R ≈ RI by definition.

S ≈ RT ′
wI

Item b) holds trivially, by definition of R.

poly σ = poly (R s)

Item c) holds by using (Comp) on A.181 (combining it with Proposition 7.3-3) and
the second premise.

h : ∆ ⊢⊢ v′
w : IsMG (R σ′

wI
) σ

Item d) holds by definition of v′
w, (βv), and A.179.

v[Λh′.e′] = (h′
w[Λh′

wI
.e′wI

])[h′
w/v′

w]

A.24 Proof of lemma 8.7 from section 8.1

Lemma 8.7. Let T ; C | ∆ ¥ ∆′ be a simplification for ∆. If S and T are compatible
under ∆, i.e. S ∼∆ T , then T ; C | S∆ ¥ S∆′ is a simplification for S∆.

Proof: If T ; C | ∆ ¥ ∆′, then h′ : ∆′ ⊢⊢ v : T∆ y T∆ ⊢⊢ ∆. Applying ⊢⊢Clos we
obtain h′ : S∆′ ⊢⊢ v : ST∆ and ST∆ ⊢⊢ S∆. As S ∼∆ T , this is equivalent to
h′ : S∆′ ⊢⊢ v : TS∆ and TS∆ ⊢⊢ S∆, which is the same as T ; C | S∆ ¥ S∆′.
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A.25 Proof of theorem 8.8 from section 8.1

Theorem 8.8. The rules (SimEntl), (SimTrans), (SimCtx), and (SimPerm) (of Figure 8.1) define
a simplification relation, and the derived rule (SimCHAM) is consistent with it.

Proof: By induction in the derivation of the simplification:

• (SimEntl): Using the hypotesis h : ∆ ⊢⊢ vδ : δ, we obtain, by (Univ) that (i) h :
∆ ⊢⊢ h : ∆, vδ : δ. Similarly, it is also true that (ii) h : ∆, hδ : δ ⊢⊢ vδ : δ.
Moreover, the conversion statisfies the conditions in the definition, because (iii)
hδ←δ = h←h · hδ←δ, as it has been proved in Lemma 8.2.

• (SimTrans): The Inductive Hypothesis are those corresponding to the definition of
simplification on the premises of the rule: (i) h′ : ∆′ ⊢⊢ v : S∆ y h′′ : ∆′′ ⊢⊢ v′ :
S ′∆′; (ii) S∆ ⊢⊢ ∆′ y S ′∆′ ⊢⊢ ∆′′; (iii) C = h←v y C ′ = h′←v′. We obtain the
evidence v∗ = v[v′/h′].
To obtain (i) the two IH from the first condition is used. Applying (Close) (from
Figure 5.4) with substitution S ′ on the first hypothesis, it holds that h′ : S ′∆′ ⊢⊢ v :
S ′S∆. Then, by (Trans) on this last sentence and the second hypothesis, we get
h′′ : ∆′′ ⊢⊢ v[v′/h′] : S ′S∆, as needed (observe that the evidence thus obtained is
v[v′/h′] = v∗).
To prove (ii) the two corresponding IH is considered. Applying the same rules as
in the previous case, it holds that S ′S∆ ⊢⊢ ∆′′.
Finally, (iii) holds by observing the composition of conversions from the hypothesis:
(C ′ ◦ C)[e′] = e′[v[v′/h′]/h] = (h←v∗)[e′], then C ′ ◦ C = h←v∗ as needed.

• (SimCtx): The Inductive Hypotesis establish that h2 : ∆2 ⊢⊢ v : S∆1 and S∆1 ⊢⊢ ∆2.
adding h′ : S∆′ to the first one, and S∆′ to the second one, the conditions
for (i) and (ii) are obtained. It should be noted that the original conversion,
h1←v1, is equal (under the congruence used) to the conversion needed for the rule:
h1, h

′←v, h′

• (SimPerm): This rule is an extension of the closure property for permutations in
the predicate assignments in the entailment relationship. The only difficulties in
the proof are that the conversion C∗ may not be the same (because the order of
abstraction and application of evidence matters), and the manipulation of predi-
cates.
The condition (i) is obtained immediately from the corresponding IH.
Given the following IH

h′
1 : ∆′

1, h
′
2 : ∆′

2 ⊢⊢ v1 : S∆1, v2 : S∆2,

condition (ii) is obtained in the following way: the left hand side is permuted, and
the right hand side is enlarged with v2 : ∆2), it holds that

h′
2 : ∆′

2, h
′
1 : ∆′

1 ⊢⊢ h′
1 : ∆′

1, h
′
2 : ∆′

2, v2 : S∆2.
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Using once more the original hypothesis, this time for v1 : S∆1, and adding h2 : ∆2

to its left hand side, it holds that

h′
1 : ∆′

1, h
′
2 : ∆′

2, h2 : S∆2 ⊢⊢ v1 : S∆1.

The last two judgments can be composed using (Trans), to obtain

h′
2 : ∆′

2, h
′
1 : ∆′

1 ⊢⊢ v1[h
′
1/h

′
1][h

′
2/h

′
2][v2/h2] : S∆1

wich is equivalent to h′
2 : ∆′

2, h
′
1 : ∆′

1 ⊢⊢ v1[v2/h2] : S∆1. Additionally, the IH
implies that h′

2 : ∆′
2, h

′
1 : ∆′

1 ⊢⊢ v2 : S∆2, and by (Univ), the judgment

h′
2 : ∆′

2, h
′
1 : ∆′

1 ⊢⊢ v2 : S∆2, v1[h2/v2] : S∆1

is obtained, and thus the condition (ii) .

So, we have shown the first part (structural rules define a simplification relation).
To conclude the proof, we show how to obtain rule (SimCHAM): If ∆1 ≈ ∆′

1 and
∆2 ≈ ∆′

2, then ∆1 can be obtained in a finite number of exchanges between sub-
lists of ∆′

1, in the way established by (SimPerm) — and similarly for ∆2 y ∆′
2. In this

way, if S; C | ∆1 ¥ ∆2 then S; C≈ | ∆′
1

¥ ∆′
2 to the right conversion (as it is ex-

plained in the definition of the rule). A final application of (SimCtx) allows obtaining
S; C≈ | ∆′

1, ∆ ¥ ∆′
2, S∆, as needed.

A.26 Proof of theorem 8.9 from section 8.1

Theorem 8.9. A system defining a simplification relation, extended with rules (SimOpres)

and (SimMGU) still defines a simplification relation.

Proof: The proof is, as in the case of basic rules, by induction on the derivation, taking
one case for each rule:

• (SimOpres): (i) It holds that ∅ ⊢⊢ n : n̂ := n̂1 + n̂2, and also (ii) n̂ := n̂1 + n̂2 ⊢⊢ ∅.
The conversion is exactly as required.

• (SimMGU): (i) As C : σ2 ≥ σ1 by (IsMG), it holds that IsMG σ2 σ1. Additionally,
h1 : IsMG σ1 s, so applying (Trans), h1 ◦ C : IsMG σ2 s is obtained. (ii) holds
trivially, with the required conversion C = h2←(h1 ◦ C) = h1←h2 · h2←(h1 ◦ C).

A.27 Proof of theorem 8.15 from section 8.2

Theorem 8.15. Given ∆1 | Γ ⊢
P

e : τ →֒ e′ : σ, and if S, T ; C | ∆1 + ∆′ ¤FTV(Γ,σ) ∆2

then, it is also the case that

∆2 | TSΓ ⊢
P

e : τ →֒ C[e′] : TSσ.
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Proof: The premise S, T ; C | ∆1 +∆′ ¤FTV(Γ,σ) ∆2 implies, by definition of resoulution,
that the following simplification holds

T ; C | S∆1, ∆
′

¥ ∆2

where dom(S) ∩ (FTV(Γ, σ) ∪ FTV(∆′)) = ∅.
Enriching the context of the hypotesis ∆1 | Γ ⊢

P
e : τ →֒ e′ : σ with ∆′ (by Th. A.12

of [Mart́ınez López and Hughes, 2001]) the following judgment is obtained:

∆1, ∆
′ | Γ ⊢

P
e : τ →֒ e′ : σ.

Then, applying the substitution S to the judgment (Proposition 6.22) it holds that

S∆1, S∆′ | SΓ ⊢
P

e : τ →֒ e′ : Sσ.

Because of the restrictions in the domain of S, we know that S∆′ = ∆′, SΓ = Γ y
Sσ = σ, and then, the previous judgment is equivalent to

S∆1, ∆
′ | Γ ⊢

P
e : τ →֒ e′ : σ.

Finally, using the premise T ; C | S∆1, ∆
′ ¥ ∆2, the rule (SIMP) can be applied, obtaining

∆2 | TΓ ⊢
P

e : τ →֒ C[e′] : Tσ

as needed.

A.28 Proof of lemma 8.16 from section 8.2

Lemma 8.16. Composition of solvings is a solving.
That is, if S2 ∼S1∆1,∆′ T1, S1, T1; C1 | ∆1 +∆′ ¤V ∆2, and S2, T2; C2 | ∆2 +∆′′ ¤V ∆3

then
S2S1, T2T1; C2 ◦ C1 | ∆1 + (S2∆

′, ∆′′) ¤V ∆3

Proof: By hypothesis in the first resolution, it holds that

T1; C1 | S1∆1, ∆
′

¥ ∆2.

By comptibility between S2 and T1 (Lemma 8.7), substitution S2 can be applied to this
simplification, obtaining

T1; C1 | S2S1∆1, S2∆
′

¥ S2∆2.

Enlarging both lists of predicates, using (SimCHAM), we obtain

T1; C1 | S2S1∆1, S2∆
′, ∆′′

¥ S2∆2, ∆
′′,

Moreover, the first resolution establish that

T2; C2 | S2∆2, ∆
′′

¥ ∆3,

and, by composing the last two simplifications (rule (SimTrans)), given that the required
restrictions on the substitutions hold by hypothesis, it is true that

S2S1, T2T1; C2 ◦ C1 | ∆1 + (S2∆
′, ∆′′) ¤V ∆3
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ogy, Göteborg, Sweden, 1995.



Bibliography 259

[Romanenko, 1990] Sergei Romanenko. Arity raising and its use in program specialisation. In
Neil D. Jones, editor, Proceedings of 3rd European Symposium on Programming (ESOP’90),
volume 432 of Lecture Notes in Computer Science (LNCS), pages 341–360, Copenhagen,
Denmark, May 1990. Springer-Verlag.

[Rose, 1998] Kristoffer H. Rose. Type-directed partial evaluation in Haskell. In Preliminary
Proceedings of the 1988 APPSEM Workshop on Normalization by Evaluation (NbE ’98),
Chalmers Universty, Sweden, May 1998. BRICS Note Series number NS-98-1, Department
of Computer Science, University of Aarhus.

[Secher and Sørensen, 2000] Jens Peter Secher and Morten Heine B. Sørensen. On perfect
supercompilation. In D. Bjørner, M. Broy, and A. Zamulin, editors, Proceedings of Perspec-
tives of System Informatics, volume 1755 of Lecture Notes in Computer Science (LNCS),
pages 113–127. Springer-Verlag, 2000.

[Sestoft, 1985] Peter Sestoft. The structure of a self-applicable partial evaluator. In Ganzinger
and Jones [1985], pages 236–256.

[Sheard, 1997] Tim Sheard. A type-directed, on-line, partial evaluator for a polymorphic
language. In Gallagher [1997], pages 22–35.

[Sheard, 2001] Tim Sheard. Generic unification via two-level types and parameterized mod-
ules. In Proceedings of the Sixth ACM SIGPLAN International Conference on Functional
Programming (ICFP ’01), pages 86–97, Florence, Italy, September 2001.

[Shields and Meijer, 2001] Mark Shields and Erik Meijer. Type-indexed rows. In Proceedings
of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’01), pages 261–275, London, United Kingdom, January 2001.

[Singh and McKay, 1998] Satnam Singh and Nicholas McKay. Partial evaluation of hardware.
In Hatcliff et al. [1998], pages 221–230.

[Smolka, 2000] Gert Smolka, editor. Proceedings of 9th European Symposium on Programming
(ESOP 2000), volume 1782 of Lecture Notes in Computer Science (LNCS). Springer-Verlag,
March/April 2000.

[Sørensen et al., 1996] Morten Heine Sørensen, Robert Glück, and Neil D. Jones. A positive
supercompiler. Journal of Functional Programming, 6(6):811–838, 1996.

[Sørensen and Glück, 1998] Morten Heine Sørensen and Robert Glück. Introduction to super-
compilation. In Hatcliff et al. [1998], pages 246–270.

[Taha and Makholm, 2000] Walid Taha and Henning Makholm. Tag elimination - or - type
specialisation is a type-indexed effect. In APPSEM Workshop on Subtyping & Dependent
Types in Programming, Ponte de Lima, Portugal, July 2000.

[Taha et al., 2001] Walid Taha, Henning Makholm, and John Hughes. Tag elimination and
Jones-optimality. In Danvy and Filinski [2001], pages 257–275.

[Taha, 2000] Walid Taha, editor. Proceedings of the First Workshop on Semantics, Applica-
tions, and Implementation of Program Generation (SAIG 2000), volume 1924 of Lecture
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