
An Introduction to Digital
Communications Lab

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 1

Getting Started With LabVIEW

What you need to know to do the
Lab…

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 2

LabVIEW Vocabulary

• LabVIEW is a Graphical Programming Language. The
elements of the language are defined as
– Each Application is referred to as a “Virtual Instrument” or VI.

• Front Panel (user interface) and a block diagram.
• Block Diagram is composed of signals (lines) and subVIs (blocks or

reusable objects).

– A subVI is a software object with inputs and outputs that and is
configured using constants and controls.

• Constant can be either a number, an array or a data structure.
• Controls are constants and are visible on the front panel.
• Organized into palettes so they can be selected and placed.

– Signals are like wires and allow for the movement of data from
the output of one subVI to the input of another subVI.

• Composed of a single value, an array of values, a cluster (data
structure), a waveform , or a signal.

• Must have a source and sink point. (LabVIEW is very good at
reminding you of this.)

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 3

Creating A Virtual
Instrument

We are now going to create a Virtual Instrument so that you can experiment and
visualize how the LabVIEW works.

Select File and
then New VI

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 4

New VI Screens

A Block Diagram is created
by selecting and joining
objects from a standard
palette of objects.

The resulting Front Panel will be a collection
of controls (sources) and indicators or
charts (sinks)

Every VI Front Panel must have one or
more control (starting points) and
Indicator/charts (ending points) objects.

The resulting Block
Diagram is a network
of these objects.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 5

Accessing Palettes

• The subVIs have been organized into a system of palettes with
icons.

• A Diagram or Front Panel is build by dragging the icons from the
palettes and dropping on the

Block Diagram
Front Panel

(Controls and Indicators)

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 6

Accessing Help System
(Using Search Field)

• Using the help search field in the toolbar.

1. Enter what you want
to find in the field.
(Chebyshev Filter)

2. Select help on topic.

3. Help Screen for topic.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 7

Other Ways to Access Help
1. Right click on Icon in diagram 2. Right click on Icon in Palette

3. Placing cursor on icon and typing <Ctrl> H

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 8

Anatomy of A Help
Screen

Location on palettes

System Requirements

Descriptions

Help Navigation Description

Palette Navigation Description

Connector Identifications

Connector Descriptions

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 9

Picking Source Objects
(Block Diagram)

In this example we will place a constant in our diagram. The first step is to Right Click
in an open area of the block diagram to launch the palette browser.

3. Select subVI you wish place

4. Drag and drop onto
Block Diagram. 2. Select the

palette with the
constant object
in it. This is
done by
navigating
through the
menu system as
shown here.
(Note constants
are found on
the numeric
palette.)

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 10

Picking Source Objects
(Front Panel)

In this example we will place a constant in our Front Panel. The first step is to Right
Click in an open area of the block diagram to launch the palette browser.

2. Select the palette with
the constant object in it.
This is done by navigating
through the menu system
as shown here. (Note
constants are found on the
numeric controls.)

3. Select subVI you wish
place

4. Drag and
drop onto
Front Panel

Note: The selection of a
control will also result in a
block

being added to the block
diagram.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 11

Setting Values for
Constants and Controls

Double clicking on the numeric
control will take you to the control
data entry field on the front panel

Double clicking on the constant
will allow you to enter the value.

Floating point numbers
Integer numbers

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 12

Picking Sink Nodes
Right click on the connection point for the constant and the properties menu should appear.

2. Select the Create option
and then Indicator

Note: The selection of an
Indicator will also result in a
Indicator block being added
to the Front Panel.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 13

Adding an SubVI to the
Diagram

In this example we will place an addition SubVI in our diagram. The first step is to
Right Click in an open area of the block diagram to launch the palette browser.

Note: In our
labs we will
indicate how
to navigate to
a subVI in this
format

Finding connection
points on subVIs.
Placing the mouse
cursor on the edge
will cause the
connection’s label will
appear on the
drawing as shown
below

x

2

1) Move mouse to Constant block until connection
appears

2) Click and hold left mouse button and drag over to Add
subVI. A dashed line will mark the proposed path of
the wire.

3) Release mouse button when conection point on edge of
Add subVI appears. Dashed line will turn solid.

Drag and drop Add subVI
onto Block Diagram.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 14

Causing Diagram to
Execute

1. Use the Numeric
control to enter 3

3 5

3. Click on the start
button to execute
the diagram

2

2. Double clicking on
the constant will
allow you to enter 2

4. The Indicator will
be updated with the
result 2 + 3 = 5

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 15

Logic Structures (IF
THEN ELSE)

In the LabVIEW paradigm, signals are routed based on a logical test. For example, lets
examine the following statement, IF Numeric  2 THEN Numeric 2 is -1 ELSE Numeric 2 is 1.5.

Value chosen if test is TRUE

Value chosen if test is FALSE

Logical
Test Input

Using a case structure
allows you to
embedded additional
block diagrams in the
same way you would
use an IF THEN ELSE in
a program.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 16

Enumerated Data
(Block Diagram)

1. Select an enumerated
constant from the
Mathematics palette and drag
and drop onto the block
diagram.

2. Right click on the
enumerated constant
and selected “edit items
…” menu items.

3. Enter labels for each
number value

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 17

Enumerated Data
(Front Panel – Text Ring)

1. Select an enumerated
constant from the
Mathematics palette and drag
and drop onto the block
diagram.

2. Right click on the
enumerated constant
and selected “edit items
…” menu items.

3. Enter labels for each
number value

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 18

Case Statements

In the LabVIEW paradigm, signals are routed based on a logical test.

The input “Case 1”

The input “Case 2”

The input “Case 3”

The math function was
selected from the
Mathematics Library

Implements the following

switch (B)
 case 1:
 C = 0 + 1;
 case 2:
 C = 0 * 1;
 case 3:
 C = 0 – 1;
end

Variable B’s
Value

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 19

Iteration

• Generally software design uses iteration for
– Moving data from one structure to another.
– Repeating a set of instructions until some condition is

TRUE.
– Creating counts or accumulating data

• Moving Data
– LabVIEW supports all these behaviors but in a different

way than you are used to.
– LabVIEW assumes that the native data structure is an n-

dimensional array.
– Diagram execution automatically transfers data from one

subVI to another without the user having to do this
explicitly.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 20

Diagram Execution
Details

• LabVIEW the diagram is the set of instructions. LabVIEW executes
at a default interval determined by the fastest rate needed for the
subVIs to execute properly. (Without a looping structure the
diagram executes only once.)

• You need to use a loop to get the diagram to execute repeatedly
until the data collection task is complete.

f1(x(n))

f2{f1(x(n))} f5(f2(f1(x(n))),
f4[f3{f1(x[n])}])

f3{f1(x[n])}

f4[f3{f1(x[n])}]

Tie-breaker
execution

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 21

Looping Structures

In this example we will place a for loop and a while loop in our diagram by
dragging these from the Structures palette and dropping in the diagram.

Diagram execution
pauses until the loop
has executed its
contents N times

Diagram execution
pauses until the while
loop’s exit criteria has
been met.

Only the
indicators inside
the loops will
update

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 22

Details of Setting-up A
Looping Structure

Implements the following

for i = 1 , 100 {
 print(i);
}

stop = 0;
i = 0;
while (i < 99) & stop == 0 {
 print(i);
}

Note: Stop control is defaulted to FALSE

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 23

Data Latching & Counters
(Logic Overview)

The Signal latches at t2
seconds and remains so till
the VI is stopped.

t0 t1 t2 t3

0 0 1 0

t0 t1 t2 t3

0 0 0 1

t0 t1 t2 t3

0 0 1 1

?

1

T

0

F

3

t0 t1 t2 t3

0 0 0 0

t0 t1 t2 t3

0 0 0 1

Delays signal by one sample interval.

Digital representation of

if start == 1{
 sum[0] = 0;
 if sum[n] >=3 {
 sum[n] = 1;}
 else{
 sum[n] = sum[n-1] + 1;}
 }
}

where, n is the current sample

Counter start
pulse is sent at t2.

Digital representation of

start = 0;
if startPulse == 1{
 start = 1;
}

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 24

t0 t1 t2 t3

0 0 1 2

Note: “False” case outputs a “0”

Data Latching & Counters

t0 t1 t2 t3

0 0 1 0

Counter start
pulse is sent at t2.

t0 t1 t2 t3

0 0 1 2

Counter outputs
sequence 1,2,3
repeatedly.

t0 t1 t2 t3

0 0 1 0

Counter start
pulse is sent at t2.

t0 t1 t2 t3

0 0 1 2

Counter outputs
sequence 1,2,3
repeatedly.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 25

Feedback

Shift Register

Data Routing

• Signals or data flows along the lines connecting
the subVIs.

• It is strongly recommended that you think of the
lines not as wires but as data flows. The
following legend will help identify the data
flowing along the line.

Floating point numbers

Integer numbers (signed or unsigned)
Array of Floating point numbers

Array of Integer numbers
 (signed or unsigned)
Boolean or Logical values
Array of Boolean or Logical values

Waveform Cluster

Signal Cluster

USRP Status\Error

USRP Configuration Data

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 26

Accessing Data in
Waveforms

Get Component
subVIs allow you
to access the
elements that
have been
clustered to form
the waveform

Build Waveform
blocks allow you to
cluster elements
together to form the
waveform

At times it may be necessary to access the data in a data flow. The data is always
designated as Y.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 27

Converting Between
Data Types

• Conversions between data types can be found on the Conversion palette and the
Boolean Palette.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 28

Frequency-domain Characterization
of Signals: A Look at the Fourier

Transform

What you need to know to do the
Lab…

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 29

2. Number of
samples

3. Pulse
width (t)

-10 -5 0 5 10
-0.5

0

0.5

1

1.5

-4 -2 0 2 4
-0.5

0

0.5

1

1.5

At

5

t


3

t


1

t


1

t

3

t

5

t

-10 -5 0 5 10
-0.5

0

0.5

1

1.5

-4 -2 0 2 4
-0.5

0

0.5

1

1.5

A

0

2

t

2

t


Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Fourier Transforms
Using FFT

30

Band Width (2t)

Amplitude

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Measuring Bandwidth

31

1. Select Magnification
Button

2. Select Horizontal
Magnification

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Making Measurements
Using Zoom Feature

32

3. Select Horizontal
Range to be magnified
using tool’s cursor

4. Observe data and return to
non-magnified mode for next
observation.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Making Measurements
Using Zoom Feature (Concluded)

33

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

The top display (Acquired Signal) shows the quadrature signals (in-phase is
shown in red, and out-of-phase in white) sensed by the radio. The USRP is
designed use quadrature modulation and you will be using the radio’s
capability to adapt this modulation technique to support other modulation
approaches. For now you will focus only on the magnitude spectrum.

Making Measurements
Using Zoom Feature (Concluded)

34

Observed Spectrum

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 35

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Allocating Spectrum to
Subchannels

Conventional Multicarrier
Modulation (FMDA)

Frequency

subchannel 1

subchannel 2

subchannel 3
subchannel 4

subchannel 5

Allocated Spectrum

Guard
Band

Guard
Band

Guard
Band

Guard
Band

Guard
Band

Guard
Band

Frequency
Allocated Spectrum

s1 s2 s3 s4 s5

Orthogonal Frequency
Division Multiplexing
(OFDM)

36

Debugging Tools in NI LabVIEW

What you need to know to do the
Lab…

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 37

Introduction

• You may encounter two general types of software bugs:
– Those that prevent the program from running
– Those that generate bad results or incorrect behavior.

• If LabVIEW cannot run your VI

– Provides an Error List window with the specific reasons why the VI is
broken.

• Bad results or incorrect behavior is based on your desired behaviors

for LabVIEW VI and fixing these will require that you use the
interactive LabVIEW debugging tools
– You can watch your code as it executes
– Observe the data values in the dataflows
– Control the execution

http://www.ni.com/gettingstarted/labviewbasics/debug.htm

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 38

• Changes the run arrow to a broken icon (Click the broken Run button or select View»Error List to find out why
a VI is broken)

• Marks the data flow with the error

• Provides a description of the error in one of 2 ways(Context Help or right mouse click and select List Errors)

Finding The Errors

OR

http://www.ni.com/gettingstarted/labviewbasics/debug.htm

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 39

Overview of List
Errors Window

The Items with errors section
lists the names of all files
that have errors. If two or
more items have the same
name, this section shows the
specific application instance
for each item.

Click the Show Error button or double-click the
error description to highlight the area on the
block diagram or front panel that contains the
error.

Click the Help button to display a topic in
the LabVIEW Help that describes the error
in detail and includes step-by-step
instructions for correcting the error.

The Details section describes
the errors and in some cases
recommends how to correct
the errors.

The errors and warnings section
lists the errors and warnings for
the VI you select in the Items with
errors section.

http://www.ni.com/gettingstarted/labviewbasics/debug.htm
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 40

Common Causes of
Errors

• The following list contains common reasons why a VI is
broken while you edit it:
– The block diagram contains a broken wire because of a

mismatch of data types or a loose, unconnected end. Refer
to the Correcting Broken Wires topic of the LabVIEW Help
for information about correcting broken wires.

– A required block diagram terminal is unwired. Refer to the
Using Wires to Link Block Diagram Objects topic of the
LabVIEW Help for information about setting required
inputs and outputs.

– A subVI is broken or you edited its connector pane after
you placed its icon on the block diagram of the VI.

 http://www.ni.com/gettingstarted/labviewbasics/debug.htm

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 41

Fixing Incorrect
Behavior

• Next we will deal with using the debugging tools that allow you to trace the
execution of a block diagram.

– Using the trace tool to ensure there are no unintended connections.

– Controlling the execution flow

– Use of data probes

• These tools are accessed through the toolbar as shown below.

Control execution
Retain data values from last subVI execution
Trace diagram execution/data flow
Stop and Pause Execution

http://www.ni.com/gettingstarted/labviewbasics/debug.htm

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 42

Quick Review
Diagram Execution Details

• LabVIEW the diagram is the set of instructions. LabVIEW executes at a default
interval determined by the fastest rate needed for the subVIs to execute properly.
(Without a looping structure the diagram executes only once.)

• You need to use a loop to get the diagram to execute repeatedly until the data
collection task is complete.

f1(x(n))

f2{f1(x(n))} f5(f2(f1(x(n))),
f4[f3{f1(x[n])}])

f3{f1(x[n])}

f4[f3{f1(x[n])}]

Tie-breaker
execution

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 43

Tracing Execution

• Click the Highlight Execution button to display to confirm execution sequence
 an animation of the movement of data on the block diagram from one node to

another using bubbles that move along the wires, when you run the VI.

• Click the button again to disable execution highlighting.

• TIP: Use execution highlighting with single-stepping to see how data values move
from node to node in your VI.

Red bubbles move along
wires.

Note: Execution highlighting
greatly reduces the speed at
which the VI runs.

http://www.ni.com/gettingstarted/labviewbasics/debug.htm

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 44

Retain Wire Values
• Click the Retain Wire Values button to save the wire values at each point in the flow of

 execution so that when you place a probe on the wire you can immediately retain the most recent
value of the data that passed through the wire.

• Please keep in mind that each data flow has a set of variables associated with it. (Even though you
do not get to see them. These variables like any variable in a program get reused each time the
diagram is called or executed.

• You must successfully run the VI at least once before you can retain the wire values.

• To see the values place the cursor on the data flow and click.

• Click the button again to disable retaining values for probe.

 http://www.ni.com/gettingstarted/labviewbasics/debug.htm

p

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 45

Probe Watch Window

• Use the Probe Watch Window with execution highlighting, single-stepping,
and breakpoints to determine if and where data is incorrect.

• If data is available, the probe immediately updates and displays the data
in the Probe Watch Window during execution highlighting, single-
stepping, or when you pause at a breakpoint.

• When execution pauses at a node because of single-stepping or a
breakpoint, you also can probe the wire that just executed to see the
value that flowed through that wire.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 46

Control Execution

• You can control the execution of the diagram using the
– Step Into button will follow the execution into a subVI and

pause. When you click the Step Into button again, it executes
the first action and pauses at the next action of the subVI or
structure. Single-stepping through a VI steps through the VI
node by node. Each node blinks to denote when it is ready to
execute. You also can press the <Ctrl> and down arrow keys.

– Step Over button will execute a node and pause at the next
node. By stepping over the node, you execute the node without
single-stepping through the node. You also can press the <Ctrl>
and right arrow keys.

– Step Out button will complete single-stepping through the
node entered by stepping into it and navigate to the next node
When the VI finishes executing, the Step Out button is dimmed.
You also can press the <Ctrl> and up arrow keys. By stepping out
of a node, you.
 http://www.ni.com/gettingstarted/labviewbasics/debug.htm

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 47

Probe Windows
(Constants & Signals)

Note: The data flow is labeled with a 4 to
match the label given in the probe window

Note: The format of the data
being displayed changes to
reflect the data source. For
example, the signal wire has a
data cluster.

If no data is available the display will be
grayed out.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 48

Probe Windows
(Waveforms)

Note: Execution probing a waveform can reduce the speed at which the VI runs. And
can cause memory issues. This should be done sparingly.

Better approach is to create a temporary waveform chart or graph indicator on the
front panel.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 49

Debugging Example

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 50

Debugging Example
(Background Information)

A digital communication packet structure consists of 10 bits- 1 START bit, 8 DATA
bits (one byte), and 1 STOP bit.

Commonly referred to as 8N1 (8 data bits, no parity, 1 stop bit).

0 1 1 0 0 1 1 0 0 1

Start Bit Stop Bit

Data Bits

Most Significant Bit
(MSB)

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 51

Debugging Example
(Serial Communications)

Serial communications follows this general pattern:

• In order to achieve synchronization with an incoming packet, the communication
wire idles in the HIGH (1) state in between packets. Since the START bit is always a
LOW, we know a packet has begun when this transition occurs.

• After we synchronize to the start of a packet, we use the known baud rate to
estimate the center of each data bit, and sample the voltage of the signal at this
point.

• After the receiver decodes the entire data packet, the bit order is reversed (to get
the original MSB->LSB) byte

• The stop bit simply returns the communications wire to the original IDLE (HIGH)
state, and the receiver begins waiting for the next START bit which signals the
beginning of the next packet.

Bit time Interval
determined by
baud rate

Received Signal

Sampling Timing

Bit Centers

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 52

Debugging Example
(Bit Stretching)

• Suppose that the signal is transmitted through a serial communications link
that causes every fourth bit to flip from 1 to 0 or vice versa.

• If the signal wave form is sampled only once, there is not enough information
to determine if the data received is the data sent.

• That is why the parity bit is used in the standard. However, the parity bit only
tells us the data is corrupted.

• To make things more robust we may want to send more than one copy of the
sampled value. The number depends on the error correction scheme being
used. In this example each bit is oversampled by a factor of 4.

Bit time Interval
determined by
baud rate

Received Signal

Sampling Timing

Bit time Interval
determined by
baud rate Printed on

9/1/2014 © 2014, Anees Abrol and Eric Hamke 53

Debugging Example
(Bit Stretching)

To this end we have developed the following VI to stretch the bits by making the
number of copies specified in for each bit in the signal array.

m = 0;
for k = 1 to length of the array
 bit = signalArray(k);
 i = 0;
 while not(i  NumberOfCopies)
 y(m) = bit;
 i = i + 1;
 m = m + 1;
 end
end

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 54

Right mouse click on the
and select list errors

The error is stating that we have an
array

and it is expecting

1 1 1

0 0 0

1 1 1

 
 
 
  

 1 1 1 0 0 0 1 1 1Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 55

Debugging Example
(Recovering Error

Information)

Debugging Example
(Fixing Error)

The fix: Reshape the matrix into a vector
Step 1: We need to know the dimensions of the matrix. We can find this using the

Step 2: The resulting vector will have a length of the number of rows times with
 number of columns. This found using an on the
 output of Step 1.

Step 3: We now have what we need to reshape the matrix using the

1. 2. 3.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 56

For the bit string with three copies we
should get

Debugging Example
(Unexpected Behavior)

 1 0 1 0 1

 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

However, the VI outputs

Each bit is being copied 4 instead of 3 times.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 57

Debugging Example
(Observing The Behavior)

We need to set a breakpoint so
we can observe the counter in
the while loop and why it is
over counting by 1 or how an
extra bit is added to the array.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 58

Debugging Example
(Placing 1st Probe)

Right clicking on the wire we wish
to observe and selecting probe
from the menu will result the wire
receiving a label and the probe
watch window will appear.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 59

Debugging Example
(Placing Remaining

Probe)

We not only wish to see the number of copies input but would like to observe the
counter (probe 2) and the results of the comparison (probe 3). The result of the
comparison will determine if the loop executes another time (FALSE) or stops (TRUE).

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 60

Debugging Example
(Observing the Matrix)

In addition we do not know if the problem is the way the matrix is being build up. So
have placed a probe at labels 4 (current element) and 5 (final matrix from the last pass).

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 61

Debugging Example
(First Pass Through

Diagram)

Diagram execution has halted on the Comparison block. Observing
the Probe Watch Window we see that
 Probe 1 is showing its value is 3 as expected.
 Probe 2 shows the counter has been initialized to 0 as expected.
 Probe 3 has not been executed yet. This is because we are
 halted just before the wire
 Probe 4 is showing the current bit has the value 1
 Probe 5 shows the output matrix from last pass is empty.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 62

Debugging Example
(Second Pass Through

Diagram)

After clicking on the continue button, diagram execution has again
halted on the Comparison block. Observing the Probe Watch
Window we see that
 Probe 1 is showing its value is 3 as expected.
 Probe 2 shows the counter has incremented by 1.
 Probe 3 Shows the result of the comparison from the last pass
 Probe 4 is showing the current bit has the value 1
 Probe 5 shows the output matrix from last pass has elements
 [1].

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 63

Debugging Example
(Third Pass Through

Diagram)

After clicking on the continue button, diagram execution has again
halted on the Comparison block. Observing the Probe Watch
Window we see that
 Probe 1 is showing its value is 3 as expected.
 Probe 2 shows the counter has incremented by 1 to 2.
 Probe 3 Shows the result of the comparison from the last pass
 Probe 4 is showing the current bit has the value 1
 Probe 5 shows the output matrix from last pass has elements
 [1 1].

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 64

Debugging Example
(Fourth Pass Through

Diagram)

After clicking on the continue button, diagram execution has again
halted on the Comparison block. Observing the Probe Watch
Window we see that
 Probe 1 is showing its value is 3 as expected.
 Probe 2 shows the counter has incremented by 1 to 3.
 Probe 3 shows the result of the comparison from the last pass
 Probe 4 is showing the current bit has the value 1
 Probe 5 shows the output matrix from last pass has elements
 [1 1 1].

At this point we know that the comparison will result in a TRUE ending the loop
and the matrix will receive an additional element because of this.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 65

Debugging Example
(The Correction)

Stop of the diagram execution by clicking on the stop button.

To correct the over counting we can subtract 1 from the number of
elements. This makes sense since the counter starts counting from
0 and not 1.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 66

Debugging Example
(Confirming the Fix)

For the bit string with three copies we
should get

 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

and as can be seen each bit is being copied just 3 times.

 1 0 1 0 1

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 67

Debugging Example
(Leaving the Debugging

Environment)

Closing the probe window
will remove all the probes
and labels from the drawing.

You also will need to remove
or clear the breakpoint on
the comparison block.

You MUST do this otherwise
it will be saved with the
corrected file and will be
come a nuisance in the
future.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 68

Introduction to USRP

Printed on
9/1/2014 69 © 2014, Anees Abrol and Eric Hamke

The USRP

Universal Software Radio Peripheral (USRP) is a
software-programmable radio transceiver and a
secondary receiver .
• Programmable with NI LabVIEW software,
• Physical layer communication and spectrum
monitoring

70
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

USRP Antennas

TX1/RX1 RX2

VERT400 Antenna

Tri-Band Vertical Antenna
 (144 MHz, 400 MHz, 1200 MHz)

VERT2450 Antenna

Dual-Band Vertical Antenna
(2.4 GHz, 5 GHz)

All of the labs will be using a
carrier frequency in the MHz
ranges. So you should be
using the VERT400.

Printed on
9/1/2014 71 © 2014, Anees Abrol and Eric Hamke

USRP Transmitter
(Transmitter Template)

72

The transmitter template consists of
4 elements:
• USRP Transmitter Configuration
• While-loop to control execution
 of lab.
• Write to the transmitter buffer
• USRP shutdown & status
 reporting

Your
application
goes here

Your
application
goes here

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

USRP Transmitter
(USRP Transmitter Config.)

73

The front panel for each application will have an USRP configuration panel. The panel
supports entering the following radio parameters:
• Device names – this configures the LabView interface to talk with the radio.
• IQ Rate - Specifies the sample rate of the baseband I/Q data for Tx or Rx in samples
 per second (Samples/second).
• Carrier frequency – The passband frequency to be used by the radios for modulation
• Gain – Amplification of the transmitted signal.
• Active antenna – Should always be set to TX1 (the USRP transreceiver)

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

USRP Transmitter
(Open Tx Session)

This sub-VI initiates the transmitter
session and generates a session
handle and an error cluster that are
propagated through all VIs.

74
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

USRP Transmitter
(Configure Signal)

Printed on
9/1/2014 75 © 2014, Anees Abrol and Eric Hamke

USRP Transmitter
(Write to USRP TX

Buffer)

76

The signal to be transmitted will consist
of an array of data, sampling period,
and an initial time for the time vector.

In some of the labs, you will generate
this array and repeatedly send the same
signal. In this case, your application will
be inserted outside the loop.

In others, the signal will change
dynamically with the controls on the
front panel. In this situation, your
application will be inside the loop.

All templates will come with a stop
button on the front panel. Use this to
stop execution of your application – it
will ensure the radio shuts down
properly.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

USRP Transmitter
(Writing to Transmit Buffer)

77
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

USRP Transmitter
(Transmitter Status)

78

Each transmitter template has a status
window.

If there are no errors in the transmission
of the data, you should have a status
display with a green check mark.

If there is an error in the
transmission of the data, you should
have a status display with a red x
mark with an error code and an
error message.

In this case, the message indicates
you are not connected to the radio
through the ethernet interface.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

USRP Receiver
(Receiver Template)

79

Your
application
goes here

The Receiver template consists of
4 elements:
• USRP Receiver Configuration
• While-loop to control execution
 of lab.
• Read from the receiver buffer
• USRP shutdown & status
 reporting

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

The front panel for each application will have an USRP configuration panel. The panel
supports entering the following radio parameters:
• Device names – this configures the LabView interface to talk with the radio.
• IQ Rate - Specifies the sample rate of the baseband I/Q data for Tx or Rx in samples
 per second (Samples/second).
• Carrier frequency – The passband frequency to be used by the radios for modulation
• Gain – Amplification of the received signal.
• Active antenna – Should be set to RX1 or RX2 (the USRP transceiver or secondary
 receiver)

USRP Receiver
(Configuration)

80
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

USRP Reciever
(Open Rx Session)

81

This sub-VI initiates the receiver session and generates a session handle and an
error cluster that are propagated through all VIs.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

USRP Receiver
(Initiate Reception of Data)

The niUSRP Initiate VI starts the waveform acquisition in a Rx session. You must initiate
the Rx session before you use a Fetch Rx Data (poly) VI to retrieve waveform data. You do
not need to call the niUSRP Initiate VI for Tx sessions; you initiate waveform generation
when you provide data using the Write Tx Data (poly) VI.

82
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

mk:@MSITStore:C:/Program Files/National Instruments/LabVIEW 2012/help/usrphelp.chm::/usrpviref.chm::/niUSRP_Write_Tx_Data_poly.html

USRP Receiver
(Read From USRP Buffer)

83

The signal of received data will consist of an array of data, sampling period, and an initial
time for the time vector.

All templates will come with a stop button on the front panel. Use this to stop execution of
your application – it will ensure the radio shuts down properly.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

USRP Receiver
(Reading From Receive Buffer)

84
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

USRP Receiver
(Receiver Shutdown &

Status)

85

Stops an acquisition previously started.
For finite acquisitions, calling this VI is optional
unless you want to stop the acquisition before it is
complete. If the acquisition aborts successfully, the
driver transitions to the Done state.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

USRP Receiver
(Receiver Status)

86

Each Receiver template has a status
window.

If there are no errors in the reception of
the data, you should have a status display
with a green check mark.

If there is an error in the reception of
the data, you should have a status
display with a red x mark with an error
code and an error message.

In this case, the message indicates you
are not connected to the radio through
the ethernet interface.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

87 © 2014, Anees Abrol and Eric Hamke

FIR digital filters:
Finite Impulse Response

• FIR filters: stands for Finite Impulse Response, is the simplest type of digital

filter, it is inherently estable, and always realizable.

• The C(k) coefficients of an FIR are actually the sampled values of the filter’s

impulse response.

• Given an FIR with “n” taps, the effect of an input vanishes in the output after

“n” delays. Thus its finite response.

• Can be designed to have a linear phase response

• Usually non recursive

+

X X X X

Z -1 Z -1 Z -1

C0 C1 C2

x(n)

C3

y(n)

Recursive FIR example? Think of an
average!!

0

() [] ()
N

i

y n C i x n i


 

Printed on
9/1/2014

ISTEC & G.Jaquenod 2002, All Rights Reserved.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Sample number (n)

M
a
g
n
it
id

e

FIR Response

Impulse

[] 0.0152 [] 0.126 [1]

0.3588 [2] 0.3588 [3]

0.126 [4] 0.0152 [5]

y n x n x n

x n x n

x n x n

  

   

   

1, 9
[]

0, Otherwise

n
x n


 


Finite Sequence
of 6

88

 The output signal y[n] of the filter in response to an impulse is limited only the

last N values of x[n], so after N+1 samples the response returns to zero. For

example, the response of a fifth order filter consists of a finite sequence of six

(N+1) samples
.

FIR digital filters:
FIR Example

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

© 2014, Anees Abrol and Eric Hamke

• An FIR filter performs the convolution between the filter’s impulse response

(C[..] coefficients) and the samples of the input signal (x[..]), thus, the

coefficients C[..] of an FIR are the sampled values of the filter’s impulse

response

• The filter’s transfer functions, in Z, is:

• This is a polynomial equation of order N, and the N roots of this polynomial

are the N zeros of the filter

Digital filters: FIR filters

0

() [] ()
N

i

y n C i x n i


 
Time response

H(z): filter’s transfer function

0

()
() []

()

N
i

i

Y z
H z h i z

X z





 

Printed on
9/1/2014 89

© 2014, Anees Abrol and Eric Hamke

IIR digital Filters :
Infinite Impulse Response

• The IIR is a more complex type of filter, where the output feedback enables

its response to extend infinitely in time

• They are usually more efficient (requiring less storage, lower complexity,

lower cost) than the FIR, although with more problems, namely stabilty and

numerical error propagation

• They can be desgined starting from analogies with existing analog filters

+
Z -1

X b0

X
-a1

x(k)

Z -1

Z -1

Z -1

X b1

X
-a2

X
b2

y(k)

“n” delays
of the
input signal

“m” delays of
the output
signal

0 1

() () ()i

N M

j

i j

y k b x k i a y k j
 

    

Printed on
9/1/2014

ISTEC & G.Jaquenod 2002, All Rights Reserved.

90

© 2014, Anees Abrol and Eric Hamke

Digital filters:
IIR Filters

• The IIR (Infinite Impulse Response) filters are a more complex type of filter,

with an output at time k, given by:

• The output is a linear combination of the current input I(k), N previous inputs,

but now, also of the previous M outputs, and its corresponding transfer

function is:

• This equation, in addition to having N zeros (as the FIR, the roots of N(z)), it

also has M poles (the roots of D(z)), which for a stable filter, are required to be

inside the unit circle in the z plane.

)z(D

)z(N

z.a1

z.b
)z(H

M

1j
j

j

N

0i
i

i















0 1
() . () . ()i

N M

ji j
O k b I k i a O k j

 
    

Printed on
9/1/2014

ISTEC & G.Jaquenod 2002, All Rights Reserved.

91

92

The output signal y[n] of the filter in response to an impulse The output signal

of the filter can be non-zero infinitely, even when the input signal has a value of

zero. In theory, when a recursive filter is excited by an impulse, the output will

persist forever.
.

FIR digital filters:
IIR Example

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

Sample number (n)

M
a
g
n
it
id

e

IIR Response

Impulse      sinc
n

y n x n a n




 

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Preliminaries
(Absolute)

Digital Signal Processing Using MATLAB® ,Third Edition, Vinay K. Ingle John G. Proakis

A typical absolute specification of a lowpass filter is shown below,

in which the filter response has been normalized to 1 in the passband

|H
(f

)|

Passband edge
frequency (fP)

Stopband edge
frequency (fS)

Frequency

transitio

n

band
Highest

frequency in
source

P

S

2

Sf

passband

tolerance (or ripple) in the
ideal passband response

tolerance (or ripple) in
the stopband response

1

0

Printed on
9/1/2014 93 © 2014, Anees Abrol and Eric Hamke

Preliminaries
(dB Relative Specifications)

Digital Signal Processing Using MATLAB® ,Third Edition, Vinay K. Ingle John G. Proakis

A typical relative specification of a lowpass filter is shown below, in which

• Rp is the passband ripple in dB, and

• As is the stopband attenuation in dB.

The parameters given in these two specifications are obviously related.

Since |H(f)| in absolute specifications is equal to (1 + P), we have

RP

AS

Passband edge
frequency (fP)

Stopband edge
frequency (fS)

Frequency

Highest frequency
in source

2

Sf

d
ec

ib
el

s

10

1
20log

1

P
P

P

R




 
   

 
1020log

1

S
S

P

A




 
   

 

Printed on
9/1/2014 94 © 2014, Anees Abrol and Eric Hamke

Preliminaries
(Absolute vs. Relative)

LabVIEW is

looking for relative

specifications

Printed on
9/1/2014 95 © 2014, Anees Abrol and Eric Hamke

Amplitude Modulation

What you need to know to do the Lab…

Printed on
9/1/2014 96 © 2014, Anees Abrol and Eric Hamke

AM Overview

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

Time

A
m

p
lit

u
d
e

Message Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

Time

A
m

p
lit

u
d
e

Carrier Signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-20

0

20

Time

A
m

p
lit

u
d
e

AM Signal

If 𝑚 𝑡 is a baseband “message” signal with a peak value 𝑚𝑝 , and 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡 is a “carrier” signal at carrier

frequency, 𝑓𝑐 , then we can write the AM signal 𝑔 𝑡 as

𝑔 𝑡 = 𝐴𝑐 1 + 𝜇

𝑚 𝑡

𝑚𝑝
 cos 2𝜋𝑓𝑐𝑡 (1)

where the parameter 𝜇 is called the “modulation index” and takes values in the range 0 < 𝜇 ≤ 1 (0 to

100%) in normal operation.

Modulation:
MathScript Node

 a = 2*b – max (d);
 p = log(a)*a;
 s = a*exp(2*pi*p*j);

“Equations” “Text-based scripts”

98
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

4. Select “Add Output”

[For variables not declared in
the text-based script, use
“undetected variable”]

1. Right-click

2. Select “Add Input”

3. Name the Input

Modulation Index

Message Signal
Max Amplitude

Message Signal

5. Wire inputs and outputs to respective terminals

Baseband Signal

Complex form of
Baseband Signal

Setting up I/Ps & O/Ps
in a MathScript node

4. Add & name the
outputs

“Click on undetected
variable and type
variable name for
undeclared outputs”

99
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Array Max & Min VI

100
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Get Waveform
Components VI

“Waveform attribute selection”

1. Select, hold and drop VI

2. Click on bottom line, hold
and extend

3. Right-click on attributes, scroll to
“Select Item” and pick the
attribute.

101
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

niUSRP Write Tx
Data VI

“Buffer to transmit data to receiver”

102
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

niUSRP Fetch Rx Data VI

“Buffer to receive data from transmitter”

103
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

“Set filter parameters as constants”

Demodulation: Filters

“Chebyshev clears noise around carrier frequency”
“Butterworth implemented after full wave rectification to complete envelope detection”

104
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Complex to
Real/Imaginary

“Extract real part from
complex data values”

105
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Absolute Value VI

“Full-wave Rectifier”

106
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Build Waveform VI

“Waveform attribute selection”
Same as “Get Waveform Components”

107
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Frequency Modulation

What you need to know to do the Lab…

Printed on
9/1/2014 108 © 2014, Anees Abrol and Eric Hamke

FM Overview
(Modulation)

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 109

0 0.02 0.04 0.06 0.08 0.1
-1

0

1

Time

A
m

pl
itu

de

Message Signal

0 0.02 0.04 0.06 0.08 0.1
-1

0

1

Time

A
m

pl
itu

de

Carrier Signal

0 0.02 0.04 0.06 0.08 0.1
-1

0

1

Time

A
m

pl
itu

de

FM Signal

0 0.02 0.04 0.06 0.08 0.1
-1

0

1

Time

A
m

pl
itu

de

Message Signal

0 0.02 0.04 0.06 0.08 0.1
-1

0

1

Time

A
m

pl
itu

de

Carrier Signal

0 0.02 0.04 0.06 0.08 0.1
-1

0

1

Time

A
m

pl
itu

de

FM Signal

0 0.02 0.04 0.06 0.08 0.1
-1

-0.5

0

0.5

1

Time

A
m

pl
itu

de

Message Signal

0 0.02 0.04 0.06 0.08 0.1
-1

-0.5

0

0.5

1

Time

A
m

pl
itu

de

Carrier Signal

0 0.02 0.04 0.06 0.08 0.1
-1

-0.5

0

0.5

1

Time

A
m

pl
itu

de

FM Signal

INTEGRATOR
PHASE

MODULATOR

 max
0

2
t

f m d      cos 2c cA f t t 
 t  cx t m t

cf

kf = 1 kf = 0.5

FM Overview
(Demodulation)

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 110

DIFFERENTIATOR
IDEAL

DESCRIMATOR

1

2
D

d
K

dt





 Dy t e t rx t
 r

d
x t

dt

FM demodulation can be divided into three broad categories: Frequency discrimination,
Phase-shift discrimination, and Phase-locked loop (PLL). This lab focuses solely on
frequency discrimination

Multi-Tone
Message Generator

Printed on
9/1/2014 111 © 2014, Anees Abrol and Eric Hamke

Get Waveform
Components

Printed on
9/1/2014 112 © 2014, Anees Abrol and Eric Hamke

Normalize Message
Sequence

Printed on
9/1/2014 113 © 2014, Anees Abrol and Eric Hamke

Implement IIR Filter

Printed on
9/1/2014 114 © 2014, Anees Abrol and Eric Hamke

Convert from Polar
to Complex form

Printed on
9/1/2014 115 © 2014, Anees Abrol and Eric Hamke

niUSRP Write Tx Data
VI

“Buffer to transmit data to receiver”

116
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

niUSRP Fetch Rx
Data VI

“Buffer to receive data from transmitter”

117
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Finding the Phase

Get Angle (Phase) component by converting from Complex to Polar form

Printed on
9/1/2014 118 © 2014, Anees Abrol and Eric Hamke

Unwrap the Phase
Angle

Printed on
9/1/2014 119 © 2014, Anees Abrol and Eric Hamke

Implement Difference
Equation

FIR Co-efficients

Printed on
9/1/2014 120 © 2014, Anees Abrol and Eric Hamke

FIR Coefficients Array

Printed on
9/1/2014 121 © 2014, Anees Abrol and Eric Hamke

Envelope
Detector

Implementation

Low-pass Butterworth Filter

Printed on
9/1/2014 122 © 2014, Anees Abrol and Eric Hamke

Build Waveform VI

Printed on
9/1/2014 123 © 2014, Anees Abrol and Eric Hamke

Pulse Position Modulation

What you need to know to do the Lab…

Printed on
9/1/2014 124 © 2014, Anees Abrol and Eric Hamke

PPM Overview
Analog Signals

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 125

y1
y2 y3 y4 y5

y6 y7 y8
y9

y10

y11

t1 t2 t3 t4 t5
t6 t7 t8 t9 t10 t11

time

time

time

Message

Clock

PPM

y1
y2 y3 y4 y5

y6 y7 y8
y9

y10

y11

time

Message

time

TX Clock

t1 t2 t3 t4 t5
t6 t7 t8 t9 t10 t11

time

PPM time

RX Clock

PPM Overview
Analog Demod

Printed on
9/1/2014 126 © 2014, Anees Abrol and Eric Hamke

time

TX Clock

th te tl tl to tspace tw to tr tl td

time

PPM time

RX Clock

Message h e l l o w ‘ ‘ o r l d

PPM Overview
Digital Demod

Printed on
9/1/2014 127 © 2014, Anees Abrol and Eric Hamke

PPM Implementation

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 128

0 100 200 300 400 500 600 700
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Carrier
Frequency

Encoded
Pulse
  nrect t nT t 

 () sin cg t f t

Transmitted/Received
Pulse

t1

t1

0 100 200 300 400 500 600 700
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Simulate Signal VI

129
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Convert From
Dynamic Data subVI

“Single Scalar”

Printed on
9/1/2014 130 © 2014, Anees Abrol and Eric Hamke

Sine and Square
Waveform subVIs

131
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Merge Signals VI

132
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Basic Level Trigger
Detection VI

133
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Basic Level Trigger
Interface

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 134

1. Select, hold and drop VI

2. Double click to set time delay in seconds.

Time Delay VI

135
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Random Process, Crosscorrelation
and Power Spectral Density

What you need to know to do the
Lab …

Printed on
9/1/2014 136 © 2014, Anees Abrol and Eric Hamke

Crosscorrelation

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 137

Cross-correlation is a measure of similarity of two waveforms (pulse and return signal) as a function
of time-lags. Given two real-valued sequences 𝑝 𝑛 and 𝑟 𝑛 of finite energy, the cross-correlation
of 𝑝 𝑛 and 𝑟 𝑛 is a sequence 𝑟𝑝𝑟 𝑙 defined as

𝑟𝑝𝑟 𝑙 = 𝑝∗ 𝑛 𝑟[𝑛 + 𝑙]
∞

𝑛=−∞
 (1)

Observed value is 0.13273 sec

The propagation delay of the echo (𝜏) is 𝜏 = 2 r c where, c is the speed
of light (2.98 𝑥 108𝑚/𝑠𝑒𝑐)

Power Spectral Density

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 138

Observed value is 0.307

The Power Spectral Density can also be used to estimate the distance. In this approach the
return signal and the pulse signal are multiplied together. The product contains the sum and
difference frequencies. The sum of frequencies is approximately 2𝑓𝑐 . This frequency is beyond
the frequencies the electronics can respond to. Only the terms related to the difference
frequencies are retained (1).

 𝑚 𝑡 = 𝑎3 cos 𝜙 𝑡 − 𝜙 𝑡 − 𝜏

= 𝑎3 cos 2𝜋𝑓𝑏𝑒𝑎𝑡 𝑡 + 2𝜋𝑓𝑐𝜏 −
𝜋𝐵

𝑇𝑚
𝜏2

(1)

LAB Tasks

• Build Beat Frequency analysis subVI.
• Build Cross Correlation analysis subVI.
• Wire your VIs into the J2 V2 RADAR VI.
• Basic procedure

– You have been supplied with a set of templates and supporting VIs
– Build both VIs and wire them in.
– Debugging strategy

• Use simulation page in J2 V2 RADAR VI.
• Test case for 20,000 km

• Please refer to debugging presentation for tools and techniques

Table I – 20,000km Test Case Reference
Simulated

Distance to
Target. (km)

Return Signal Ramp
Reset Time (Sec)

Return Time (Sec) Beat Frequency (Hz)

20000 0.86728 (see Fig. 19) 0.13272 (see Fig. 20) 0.337 (see Fig. 21)

139
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Beat Frequency SubVI
These are provided

in the template
These are new blocks
to be used in the lab

These are blocks you have
used in previous labs

Input Controls

Output Indicators

Block Diagram with blocks

140
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

The FFT Block

(Fast Fourier Transform)

Computes the fast Fourier transform (FFT) of the input sequence X.

141
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Array Data Processing

Returns the number of elements
in each dimension of array.

Returns the maximum and
minimum values found in
array, along with the indexes
for each value.

142
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Cross Correlation and
Return Time Analyzer

These are new blocks
to be used in the lab

Input Controls

Output Indicators

These are blocks you be
used in previous labs

143
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Cross Correlation

Computes the cross correlation of the input
sequences X and Y. Wire data to the X and Y
inputs to determine the polymorphic instance
to use or manually select the instance.

144
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Sub VIs Provided

145
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Demodulate SubVI

146
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

AM Envelope
Detector

Should look familiar since you designed one on the AM Lab

147
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Next Power of 2

 
 

 2

ln
log

ln 2

x
x 

Rounds the input to the next highest
integer.

For example, if the input is 3.1, the
result is 4. If the input is –3.1, the
result is –3. The connector pane
displays the default data types for this
polymorphic function.

148
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Amplitude Modulation with
Additive Gaussian White Noise

What you need to know to do the Lab…

Printed on
9/1/2014 149 © 2014, Anees Abrol and Eric Hamke

Noise Floor
The Noise Floor reflects the effect of random processes that are the result of many
natural sources, such as:

– Thermal noise is the result of vibrations of atoms in conductors resulting thermal
energy;

– Shot noise is the result of random fluctuations in the movement of current in discrete
electric charge quanta or electrons.

– Electromagnetic radiation emitted by the sun, earth and other large masses in thermal
equilibrium.

– In the case of this lab, the distance between the transmitter and receiver, and
background radiation from other nearby transmitters.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 150

Noise Floor
at 0.005 dBm

Changing the Noise
Floor Using AGWN

• Additive white Gaussian noise (AWGN) is used to simulate
the effect of many random processes too complicated to
model explicitly.
– The model is assumed to be linear so that the noise can be

super imposed or added to the message or modulated signal.
– A white noise process is assumed to uniformly affect all

frequencies in the signal’s spectrum.
– A mean of zero is used since the process is not expected add a

DC bias.

• The AGWN is simulated using a pseudorandom number
generator whose statistical profile is a normal distribution
with zero-mean and a standard variance (s2). The variance
represents the power in the noise signal.

 Printed on

9/1/2014 © 2014, Anees Abrol and Eric Hamke 151

 a = 2*b – max (d);
 p = log(a)*a;
 s = a*exp(2*pi*p*j);

“Equations” “Text-based scripts”

Amplitude Modulation:
MathScript Node

Printed on
9/1/2014 152 © 2014, Anees Abrol and Eric Hamke

White Gaussian Noise
Generation

Printed on
9/1/2014 153 © 2014, Anees Abrol and Eric Hamke

To Case Statement
1) Select Switch and Round LED
from Front Panel Controls Menu

2) Arrange the LED and switch on the
front panel

3) Arrange the LED and switch in the
block diagram

Boolean Switch
and LED

Printed on
9/1/2014 154 © 2014, Anees Abrol and Eric Hamke

Signal to Noise &
Distortion Ratio

Analysis

Printed on
9/1/2014 155 © 2014, Anees Abrol and Eric Hamke

Find Point by Point
Mean

Printed on
9/1/2014 156 © 2014, Anees Abrol and Eric Hamke

Plot Power
Spectrum

Printed on
9/1/2014 157 © 2014, Anees Abrol and Eric Hamke

Rx Filter Selection
Logic

Switch and LED Settings

Switches Indicator LEDs

LPF Filter Selector LPF Chebyshev Butterworth

Off Chebyshev Off On Off

Off Butterworth Off Off On

On Chebyshev On On Off

On Butterworth On Off On

Printed on
9/1/2014 158 © 2014, Anees Abrol and Eric Hamke

Rx Filter Selection
Logic (contd.)

To outside case
statement

To inside case
statement

Printed on
9/1/2014 159 © 2014, Anees Abrol and Eric Hamke

From Bandpass

To outside case
statement

From Sample Info

Filtered
Signal

Filtered
Signal

Filtered
Signal

Outer Case Structure is FALSE

Outer Case Structure is TRUE

Inner Case Structure is FALSE
(Chebyshev Filter)

Inner Case Structure is TRUE
(Butterworth Filter)

From Bandpass

To outside case
statement

From Sample Info

To inside case
statement

From Bandpass

To outside case
statement

From Sample Info

To inside case
statement

Outer Case Structure is TRUE

Rx Filter Selection
Logic (contd.)

Printed on
9/1/2014 160 © 2014, Anees Abrol and Eric Hamke

“Set filter parameters as constants”

Demodulation: Filters

“Chebyshev clears noise around carrier frequency”
“Butterworth implemented after full wave rectification to complete envelope detection”

161
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Low Cutoff Frequency fl

1) Place cursor on
terminal (terminal
label will appear)

2) Right Click and menu
will appear

3) Control on the front panel

Setting Filter
Parameters/

Specifications

Printed on
9/1/2014 162 © 2014, Anees Abrol and Eric Hamke

Frequency Modulation with
Additive Gaussian White Noise

What you need to know to do the Lab…

Printed on
9/1/2014 163 © 2014, Anees Abrol and Eric Hamke

White Gaussian Noise
Generation

Printed on
9/1/2014 164 © 2014, Anees Abrol and Eric Hamke

To Case Statement
1) Select Switch and Round LED
from Front Panel Controls Menu

2) Arrange the LED and switch on the
front panel

3) Arrange the LED and switch in the
block diagram

Switch and LED

Printed on
9/1/2014 165 © 2014, Anees Abrol and Eric Hamke

Signal to Noise &
Distortion Ratio

Analysis

Printed on
9/1/2014 166 © 2014, Anees Abrol and Eric Hamke

Find Point by Point
Mean

Printed on
9/1/2014 167 © 2014, Anees Abrol and Eric Hamke

Plot Power Spectrum

Printed on
9/1/2014 168 © 2014, Anees Abrol and Eric Hamke

niUSRP Write Tx Data VI

“Buffer to transmit data to receiver”

169
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

niUSRP Fetch Rx
Data VI

“Buffer to receive data from transmitter”

170
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Get Angle (Phase) component by converting
from Complex to Polar form

Printed on
9/1/2014 171 © 2014, Anees Abrol and Eric Hamke

Unwrap the Phase
Angle

Printed on
9/1/2014 172 © 2014, Anees Abrol and Eric Hamke

Implement Difference
Equation

FIR Co-efficients

Printed on
9/1/2014 173 © 2014, Anees Abrol and Eric Hamke

FIR Coefficients Array

Printed on
9/1/2014 174 © 2014, Anees Abrol and Eric Hamke

Rx Filter Selection Logic

Switch and LED Settings

Switches Indicator LEDs

LPF Filter Selector LPF Chebyshev Butterworth

Off Chebyshev Off On Off

Off Butterworth Off Off On

On Chebyshev On On Off

On Butterworth On Off On

Printed on
9/1/2014 175 © 2014, Anees Abrol and Eric Hamke

Rx Filter Selection
Logic (contd.)

To outside case
statement

To inside case
statement

Printed on
9/1/2014 176 © 2014, Anees Abrol and Eric Hamke

From Bandpass

To outside case
statement

From Sample Info

Filtered
Signal

Filtered
Signal

Filtered
Signal

Outer Case Structure is FALSE

Outer Case Structure is TRUE

Inner Case Structure is FALSE
(Chebyshev Filter)

Inner Case Structure is TRUE
(Butterworth Filter)

From Bandpass

To outside case
statement

From Sample Info

To inside case
statement

From Bandpass

To outside case
statement

From Sample Info

To inside case
statement

Outer Case Structure is TRUE

Rx Filter Selection
Logic (contd.)

Printed on
9/1/2014 177 © 2014, Anees Abrol and Eric Hamke

“Set filter parameters as constants”

Demodulation: Filters

“Butterworth implemented after full
wave rectification to complete
envelope detection”

178

“Chebyshev clears noise around
carrier frequency”

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Low Cutoff Frequency fl

1) Place cursor on
terminal (terminal
label will appear)

2) Right Click and menu
will appear

3) Control on the front panel

Setting Filter
Parameters/

Specifications

Printed on
9/1/2014 179 © 2014, Anees Abrol and Eric Hamke

Build Waveform VI

Printed on
9/1/2014 180 © 2014, Anees Abrol and Eric Hamke

Frequency Domain Multiplexing

What you need to know to do the
Lab

Printed on
9/1/2014 181 © 2014, Anees Abrol and Eric Hamke

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Allocating Spectrum to
Subchannels

Conventional Multicarrier
Modulation (FMDA)

Frequency

subchannel 1

subchannel 2

subchannel 3
subchannel 4

subchannel 5

Allocated Spectrum

Guard
Band

Guard
Band

Guard
Band

Guard
Band

Guard
Band

Guard
Band

Frequency
Allocated Spectrum

s1 s2 s3 s4 s5

Orthogonal Frequency
Division Multiplexing
(OFDM)

182

FDM Concepts

0 1 2 3 4 5 6 7 8
0.8

1

1.2

1.4

1.6

1.8

2

Consecutive OFDM Subcarriers in Time domain

Subcarrier index

A
m

pl
itu

de

sub-carrier 1

sub-carrier 2

sub-carrier 3

In this experiment you will be
using two frequencies or sub
carriers.

You will build a transmitter and
receiver VI and will examine the
affects of inter-carrier or
subchannel interference.

Printed on
9/1/2014 183 © 2014, Anees Abrol and Eric Hamke

PRE-LAB Tasks

• A template for the transmitter has been provided in
the file FDM_Tx_Template.vi. To complete the
transmitter you will be asked to perform two tasks:
– Create a sub-vi that modulates a message using Amplitude

Modulation.
– Update the transmitter template to combine the

modulated messages to form the OFDM signal.

• A template for the receiver is also provided,
FDM_Rx_Template.vi. To complete the lab, you will
need to
– Design a band pass filter to isolate each message signal.
– Create an envelope detector similar to the one designed in

Amplitude Modulation Lab.

184
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

AM_on_Sub-carrier subVI

(AM modulation Review)

Printed on
9/1/2014 185 © 2014, Anees Abrol and Eric Hamke

 a = 2*b – max (d);
 p = log(a)*a;
 s = a*exp(2*pi*p*j);

“Equations” “Text-based scripts”

Modulation:
MathScript Node

Printed on
9/1/2014 186 © 2014, Anees Abrol and Eric Hamke

Inputs

Outputs

Generate sub-carrier

   sin 90 cos   

 
11

p

m t
A

m


 
 

  

 
()

()
max m(t)

p

m t
m t 

SubVI Overview

Printed on
9/1/2014 187 © 2014, Anees Abrol and Eric Hamke

Array Max & Min VI

188
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Get Waveform
Components VI

“Waveform attribute selection”

1. Select, hold and drop VI

2. Click on bottom line, hold
and extend

3. Right-click on attributes, scroll to
“Select Item” and pick the
attribute.

189
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Combine the Modulated
Messages

Printed on
9/1/2014 190 © 2014, Anees Abrol and Eric Hamke

Superposition

cos(2f1t)

cos(2f2t)

m1(t)

m2(t)

AM_on_Sub-carrier subVI

Determine the
 size of ()g t

()g t

Scale the Magnitude
of ()g t

Initialize a
vector of zeros

()g t

Form complex
sequence

Scale signal
for

Modulation

()g t

Printed on
9/1/2014 191 © 2014, Anees Abrol and Eric Hamke

“Set filter parameters as constants”

Demodulation: Filters

“Chebyshev clears noise around carrier frequency”
“Butterworth implemented after full wave rectification to complete envelope detection”

192
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Complex to
Real/Imaginary

“Extract real part from
complex data values”

193
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Absolute Value VI

“Full-wave Rectifier”

194
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Build Waveform VI

“Waveform attribute selection”
Same as “Get Waveform Components”

195
Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke

Entropy and Coding Efficiency

What you need to know to do the
Lab…

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 196

Source
Encoder

Channel
Encoder

C
h

an
n

el

Source
Decoder

Channel
Decoder

Digital Communication
Block Diagram

• The source encoder
converts the source to a
binary sequence

• The channel encoder (often
called includes the
modulator and redundancy
coding) . It processes the
binary sequence for
transmission over the
channel.

• The channel decoder
(demodulator) recreates the
incoming binary sequence

• The source decoder
recreates the source output.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 197

English Language
Statistics

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 198

Relative Frequency of Letters in the English Language

Letter
Relative

Frequency
Letter

Relative
Frequency

Letter
Relative

Frequency

a 3256 j 60 s 2524

b 596 k 308 t 3612

c 1108 l 1604 u 1100

d 1696 m 960 v 392

e 5184 n 2692 w 940

f 888 o 2992 x 60

g 804 p 768 y 788

h 2432 q 36 z 28

i 2780 r 2388 -- --

Huffman Code Letters in the English Language

Letter
Huffman

Code
Letter

Huffman
Code

Letter
Huffman

Code

e 100 d 11111 p 110001

t 000 l 11110 b 110000

a 1110 c 01001 v 001000

o 1101 u 01000 k 0010011

i 1011 m 00111 j 001001011

n 1010 w 00110 x 001001010

s 0111 f 00101 q 001001001

h 0110 g 110011 z 001001000

r 0101 y 110010 -- --

A typical example of the number of
times (relative frequency) we would
expect to see the letters (symbols)
appear in a random piece of English
text consisting of 40,000 letters..

A typical Huffman code generated for this
sample of text. The average number of bits
used to transmit the symbols in the text is
approximately 4.25 bits/symbol

Pulling the Data
Together

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 199

Table XLII -Relative Frequency of Letters in the English Language

Letter Length
Relative

Frequency
Letter Length

Relative

Frequency
Letter Length

Relative

Frequency

a 4 0.0814 j 9 0.0401 s 4 0.0275

b 6 0.0149 k 7 0.0240 t 3 0.0098

c 5 0.0277 l 5 0.0673 u 5 0.0235

d 5 0.0424 m 5 0.0748 v 6 0.0015

e 3 0.1296 n 4 0.0192 w 5 0.0197

f 5 0.0222 o 4 0.0009 x 9 0.0007

g 6 0.0201 p 6 0.0597 y 6 0.02750

h 4 0.0608 q 9 0.0401 z 9 0.0098

i 4 0.0695 r 4 0.0240 -- -- --

Efficiency

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 200

In the following sections of the lab, you will be asked to determine the average word length Error! Reference source not

found. and efficiency of the code Error! Reference source not found. given by

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 𝐿 = 𝐸{ℓ} = p 𝑥𝑖 ℓ𝑖

𝑛

𝑖=1

and,

𝐸𝑓𝑓𝑖𝑐𝑒𝑛𝑐𝑦 = 𝐻(𝑥) 𝐿

where p 𝑥𝑖 is the probability set of the random variable, ℓ𝑖 is the length of ith word, and 𝐻 𝑥 is the entropy of the
source.

Using the frequency table and the Huffman code along with the equations, the average word length is 4.2015 average
bits and the entropy is 4.1722 average bits. So the code’s efficiency is 0.9930.

The Entropy is essentially the measure of uncertainity of a random variable with an associated probability
set, p 𝑥𝑖 .

𝐻 𝑋 = − p 𝑥𝑖 log⁡p(𝑥𝑖)

𝑛

𝑖=1

3 3 3 3 3 3

3 3 3 3 3 3

3 3 1 1 1 1

3 3 1 2 2 2

3 3 1 2 2 2

3 3 1 2 2 0

Image Compression

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 201

Image Frequency Counts

Color

(Node Number)

Relative Frequency

(Count)

0

1

2

3

Complete the table by counting the number of squares with the color code. This is the
data you will need to perform the experimental procedure. Note there are 4 color codes
so N equals 4.

Entering The Data

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 202

Step. 3

Step. 4

Interpreting the
Output

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 203

Node 6:
C=34

Node 5:
C=16

Node 4:
C=8

New Node

Input Node

Node: 0
C=1

Node: 1
C=7

 0 Child 1 Child

Node: 2
C=8

 0 Child 1 Child

Node: 3
C=18

 0 Child 1 Child

Asynchronous Serial
Communication

What you need to know to do the
Lab

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 204

What You Are Doing

• You will be responsible for building the receiver portion of
the UART for this lab.
– This lab addresses the link between source coding/decoding and

channel encoding/decoding.
– Starts with a text string already encoded using the American

Standard Code for Information Interchange (ASCII).
– Additional 3 copies of each bit are used as the channel

encoding.
– The link is a serial interface that uses an UART to convert the

encoded text into a sequence or stream.
– To simplify the lab, the transmitted bit stream is passed directly

to a UART receiver that reconverts the stream into the ASCII
codes.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 205

The Serial Data
Packet

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 206

0 0 0 1 1 0 0 1 1 1

Start Bit Stop Bit

Data Bits in Reverse Order

Least Significant Bit
(LSB)

t0 t10 t10 > t0

Bit time Interval
determined by baud
rate

0 0 Received Signal

Sampling Timing

5v

0 v

Start Bit 1 1 0 0 1 1 Stop Bit

Redundancy Bits
Added

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 207

Bit time Interval
determined by
baud rate

0 0 Received Signal

Sampling Timing

5v

0 v

Start Bit 1 1 0 0 1 1 Stop Bit

Bit time Interval
determined by baud
rate

0 0
Received Signal

Sampling Timing

5v

0v

Start Bit 1 1 0 0 1 1 Stop Bit

Bit time Interval
determined by baud
rate

Receiver State
Machine

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 208

IDLE READ

Received 4 Start Bit Samples

Received 8 Data Bits (32 Bit Samples)

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 209

Case Statement (cases match
enumerated type)

For loop

Enumerated Type
(Defines State Labels)

Shift Register with State Selection
Mechanism

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 210

Case Statement (cases match
enumerated type)

Shift Register with State
Selection Mechanism

Data Latching & Counters

t0 t1 t2 t3 t4 t5

0 0 1 0 0 0

Counter start
pulse is sent at t2.

t0 t1 t2 t3 t4 t5

0 0 1 2 3 1

Counter outputs
sequence 1,2,3
repeatedly.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 211

Shift Register

t0 t1 t2 t3 t4 t5

0 0 1 1 1 1

Latch Sets at t2.

Printed on
9/1/2014 212 © 2014, Anees Abrol and Eric Hamke

Printed on
9/1/2014 213 © 2014, Anees Abrol and Eric Hamke

Printed on
9/1/2014 214 © 2014, Anees Abrol and Eric Hamke

Printed on
9/1/2014 215 © 2014, Anees Abrol and Eric Hamke

Binary Phase Shift Keying

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 216

In PSK (Phase Shift Keying), the phase of a carrier is changed between two
values according to the binary signal level[3]. The information about the bit
stream is contained in the phase changes of the transmitted signal.

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 217

Transmissi
on Frame

0 0 1 1 0 0 0 1

‘1’
Character:

Binary Code: 0 1

BPSK Signal:

(t)

ASCII Code:
3 1

0x31

Start
Bit

Stop
Bit

Binary Signal
s(t)

0Vdc

5Vdc

Tc

Nc

Tc

Nc

Tc

Nc

Tc

Nc

Tc

Nc

Tc

Nc

Tc

Nc

Tc

Nc

Tc

Nc

Tc

Nc

Source
Encoder

Channel
Encoder

has Nc samples, 1c cT f

Implementation

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 218

To BPSK
Demodulator

From
UART TX

PSK Symbol
Mapper

Resampler

Carrier Sine
Wave

BPSK Modulated
UART Waveform

BPSK Modulator

1, 1
()

1, 0

m(t)
p t

m(t)


 

 

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 219

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 220

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 221

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 222

Printed on
9/1/2014 © 2014, Anees Abrol and Eric Hamke 223

