An Introduction to Digital Communications Lab

THE UNIVERSITY of NEW MEXICO

Getting Started With LabVIEW

What you need to know to do the Lab...

THE UNIVERSITY of NEW MEXICO

LabVIEW Vocabulary

- LabVIEW is a Graphical Programming Language. The elements of the language are defined as
- Each Application is referred to as a "Virtual Instrument" or VI.
- Front Panel (user interface) and a block diagram.
- Block Diagram is composed of signals (lines) and subVIs (blocks or reusable objects).
- A subVI is a software object with inputs and outputs that and is configured using constants and controls.
- Constant can be either a number, an array or a data structure.
- Controls are constants and are visible on the front panel.
- Organized into palettes so they can be selected and placed.
- Signals are like wires and allow for the movement of data from the output of one subVI to the input of another subVI.
- Composed of a single value, an array of values, a cluster (data structure), a waveform , or a signal.
- Must have a source and sink point. (LabVIEW is very good at reminding you of this.)

THE UNIVERSITY of NEW MEXICO

Creating A Virtual

Instrument

We are now going to create a Virtual Instrument so that you can experiment and visualize how the LabVIEW works.

New VI Screens

Untitled 1 Block Diagram
 File Edit View Project Operate Tools Window Help

A Block Diagram is created by selecting and joining objects from a standard palette of objects.

The resulting Block Diagram is a network of these objects.

```
47 Untitled 1 Front Panel
```

File Edit View Project Operate Tools Window Help

- Search

四

The resulting Front Panel will be a collection of controls (sources) and indicators or charts (sinks)

Every VI Front Panel must have one or more control (starting points) and Indicator/charts (ending points) objects.

Student Edition -

Printed on
9/1/2014

THE UNIVERSITY of NEW MEXICO

Accessing Palettes

- The subVIs have been organized into a system of palettes with icons.
- A Diagram or Front Panel is build by dragging the icons from the palettes and dropping on the Block Diagram

Front Panel
(Controls and Indicators)

- Using the help search field in the toolbar.

THE UNIVERSITY of

 NEW MEXICO Other Ways to Access Help1. Right click on Icon in diagram

Ibero-American Science \&
Technology Education Consortium
2. Right click on Icon in Palette

3. Placing cursor on icon and typing <Ctrl> H

Anatomy of A Help Screen

Chebyshev Filter VI

Owning Palette: Filters VIS

Requires: Full Development System
Generates a digital Chebyshev filter by calling the Chebyshev Coefficients VI. Wire data to the \mathbf{X} input to determine the polymorphic instance to use or manually select stance.

Details Example
Use the pull-down menu to select an instance of this VI.
Select an instance -
\pm Add to the block diagram Q Find on the palette

Chebyshev Filter (DBL)
$\left.\begin{array}{l}\text { filter type } \\ \text { sampling freq: } f \mathrm{fs} \\ \text { high cutoff freq: } \mathrm{fh} \\ \text { low cutoff freq: } \mathrm{fI} \\ \text { ripple(dB) } \\ \text { order }\end{array}\right)$

Tin filter type specifies the passband of the filter.

0	Lowpass
1	Highpass
2	Bandpass
3	Bandstop

[DBLI) \mathbf{X} is the input signal to filter.
DBE sampling freq: $\mathbf{f s}$ is the frequency in Hz at which you want to sample \mathbf{X} and must be greater than 0 . The default is 1.0 Hz . If sampling freq: $\mathbf{f s}$ is less than or equal to 0 , this VI sets Filtered \mathbf{X} to an empty array and returns an error. filter type is 2 (Bandpass) or 3 (Bandstop), high cutoff freq: fh must be greater than low cutoff freq: fl and observe the Nyquist criterion
DBL. Iow cutoff freq: $\mathbf{f l}$ is the low cutoff frequency in Hz and must observe the Nyquist criterion. The default is 0.125 Hz . If low cutoff freq: $\mathbf{f l}$ is less than or equal to 0 or greater than half the value of sampling freq: \mathbf{f}, the VI sets Filtered \mathbf{X} to an empty array and returns an error. When filter type is 2 (Bandpass) or 3 (Bandstop)

ripple is the ripple in the passband. ripple must be greater than zero and expressed in decibels. The default is 0.1 . If ripple is less than or equal to zero, the $V 1$ set Filtered \mathbf{X} to an empty array and returns an error.
order specifies the filter order and must be greater than 0 . The default is 2 . If order is less than or equal to 0 , the VI sets Filtered \mathbf{X} to an empty array and returns an error. init/cont controls the initialization of the internal states. The default is FALSE. The first time this VI runs or if init/cont is FALSE, LabVIEW initializes the internal states to 0 . If init/cont is TRUE, LabVIEW initializes the internal states to the final states from the previous call to this instance of this VI. To process a large data equence that consists of smaller block, set this input to FALSE for the first block and to TRUE for continuous filtering of all remaining blocks.

532 error returns any error or Praninigfompthe VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into an error cluster.
\} Location on palettes
\} System Requirements
\} Descriptions
Help Navigation Description

Palette Navigation Description

Connector Identifications

Connector Descriptions

Picking Source Objects (Block Diagram)

In this example we will place a constant in our diagram. The first step is to Right Click in an open area of the block diagram to launch the palette browser.
2. Select the palette with the constant object in it. This is done by navigating through the menu system as shown here. (Note constants are found on the numeric palette.)
3. Select subVI you wish place

THE UNIVERSITY of NEW MEXICO
 Picking Source Objects (Front Panel)

In this example we will place a constant in our Front Panel. The first step is to Right Click in an open area of the block diagram to launch the palette browser.
2. Select the palette with the constant object in it. This is done by navigating through the menu system as shown here. (Note constants are found on the numeric controls.)
3. Select subVI you wish place

Note: The selection of a control will also result in a block

being added to the block diagram.

Printed on
9/1/2014

Setting Values for Constants and Controls

 NEW MEXICO

Picking Sink Nodes

Right click on the connection point for the constant and the properties menu should appear.

Adding an SubVI to the Diagram

In this example we will place an addition SubVI in our diagram. The first step is to Right Click in an open area of the block diagram to launch the palette browser.

Finding connection
points on subVIs.
Placing the mouse cursor on the edge will cause the connection's label w appear on the drawing as shown below appears
the wire.
3) Release mouse button when conection point on edge of Add subVI appears. Dashed line will turn solid.

Note: In our labs we will indicate how to navigate to a subVI in this format

Causing Diagram to Execute

1. Use the Numeric control to enter 3
2. The Indicator will be updated with the result $2+3=5$

Logic Structures (IF THEN ELSE)

In the LabVIEW paradigm, signals are routed based on a logical test. For example, lets examine the following statement, IF Numeric ≥ 2 THEN Numeric 2 is -1 ELSE Numeric 2 is 1.5 .

Enumerated Data (Block Diagram)

Untitled 1 Block Disgram *

1. Select an enumerated

 constant from the Mathematics palette and drag and drop onto the block diagram. \(\square\)

123
2. Right click on the enumerated constant and selected "edit items ..." menu items.

Visible Items
Change to Control
Change to Indicator
Make Type Def.
Description and Tip...
Numeric Palette
Create
Replace
Data Operations
Advanced
Adapt To Entered Data
Representation
Display Format...
Add Item After
Add Item Before
Remove Item
Edit Items...
Disable Item
Properties

3. Enter labels for each number value

Printed on
9/1/2014

Enumerated Data

 (Front Panel - Text Ring)
3. Enter labels for each number value

THE UNIVERSITY of NEW MEXICO

Case Statements

In the LabVIEW paradigm, signals are routed based on a logical test.

Iteration

- Generally software design uses iteration for
- Moving data from one structure to another.
- Repeating a set of instructions until some condition is TRUE.
- Creating counts or accumulating data
- Moving Data
- LabVIEW supports all these behaviors but in a different way than you are used to.
- LabVIEW assumes that the native data structure is an ndimensional array.
- Diagram execution automatically transfers data from one subVI to another without the user having to do this

Diagram Execution

 Details- LabVIEW the diagram is the set of instructions. LabVIEW executes at a default interval determined by the fastest rate needed for the subVIs to execute properly. (Without a looping structure the diagram executes only once.)
- You need to use a loop to get the diagram to execute repeatedly until the data collection task is complete.

Tie-breaker

Printed on
9/1/2014

Looping Structures

In this example we will place a for loop and a while loop in our diagram by dragging these from the Structures palette and dropping in the diagram.

Only the
indicators inside the loops will update

Details of Setting-up A Looping Structure

Note: Stop control is defaulted to FALSE

THE UNIVERSITY of NEW MEXICO
 Data Latching \& Counters (Logic Overview)

Counter start
 pulse is sent at t_{2}.

Digital representation of
start = 0;
if startPulse ==1\{ start = 1;
\}

Delays signal by one sample interval.

t_{0}	t_{1}	t_{2}	t_{3}
0	0	0	1

Digital representation of

```
if start == 1{
    sum[0] = 0;
        if sum[n] >=3 {
            sum[n] = 1;}
        else{
            sum[n] = sum[n-1]+1;}
    }
}
```

where, n is the current sample

Printed on
9/1/2014

The Signal latches at t_{2} seconds and remains so till the VI is stopped.

\rightarrow| t_{0} | t_{1} | t_{2} | t_{3} |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 1 |

Data Latching \& Counters

Counter start pulse is sent at t_{2}.

t_{0}	t_{1}	t_{2}	t_{3}
0	0	1	0

Counter outputs sequence 1,2,3 repeatedly.

t_{0}	t_{1}	t_{2}	t_{3}
0	0	1	2

Counter start pulse is sent at t_{2}.

t.			
t_{0}	t_{1}	t_{2}	t_{3}
0	0	1	0

Counter outputs sequence 1,2,3 repeatedly.

t_{0}	t_{1}	t_{2}	t_{3}
0	0	1	2

Data Routing

- Signals or data flows along the lines connecting the subVIs.
- It is strongly recommended that you think of the lines not as wires but as data flows. The following legend will help identify the data flowing along the line.
_- Floating point numbers
__ Array of Floating point numbers
- Integer numbers (signed or unsigned)
—— Array of Integer numbers
(signed or unsigned)
Boolean or Logical values
Array of Boolean or Logical values

Accessing Data in
 Waveforms

At times it may be necessary to access the data in a data flow. The data is always designated as Y .

Get Component subVIs allow you to access the elements that have been clustered to form the waveform

Converting Between Data Types

- Conversions between data types can be found on the Conversion palette and the Boolean Palette.

Programming $L_{\text {Numeric }}$ $L_{\text {Conversion }}$				
EXT	(DBL	SGL	FXP	I64)
To Extended ... To Double Pr... To Single Pre... To Fixed-Point To Quad Inte...				
132	116	18	(1064)	(032)
To Long Inte...	To Word Inte...	To Byte Inte...	To Unsigned...	To Unsigned...
(16)	08	EXT	CDB	Cse
To Unsigned... To Unsigned... To Extended ... To Double Pr... To Single Pre...				
[\#\# $\cdot \cdots$	[\cdots]	21:0	[\#-(1)	[[18]
Number To ... [0]	Boolean Arra... IUNITT	Boolean To (... 四	To Time Sta...	String To Byt...
Byte Array T...	Convert Unit	Cast Unit Bas...	Color to RGB...	RGB to Color...

Programming
$L_{\text {Boolean }}$

A)	-v	[*>
And	Or	Exclusive Or
$\Delta>$		A)
Not	Compound ...	Not And
V)	[禺	\Rightarrow
Not Or	Not Exclusiv...	Implies
$\nabla>$		[\#[$-\cdots{ }^{\text {] }}$
And Array El...	Or Array Ele...	Num to Array
[\cdots I	21:0	-
Array to Num	Bool to (0,1)	True Constant
F		
False Constant		

Frequency-domain Characterization of Signals: A Look at the Fourier Transform

What you need to know to do the Lab...

THE UNIVERSITY of NEW MEXICO

Fourier Transforms Using FFT

Printed on
9/1/2014

$$
\Pi(t)=\left\{\begin{array}{l}
0,|t|>\tau / 2 \\
\frac{A}{2},|t|=\tau / 2 \\
A,|t|<\tau / 2
\end{array}\right.
$$

© 2014, Anees Abrol and Eric Hamke
$A \tau \operatorname{sinc}(\pi f \tau)=\frac{A \sin (\pi f \tau)}{\pi f \tau}$
GINET

THE UNIVERSITY of NEW MEXICO

Making Measurements Using Zoom Feature

1. Select Magnification

Button

2. Select Horizontal

Magnification

Printed on
9/1/2014

3. Select Horizontal

Range to be magnified using tool's cursor

The top display (Acquired Signal) shows the quadrature signals (in-phase is shown in red, and out-of-phase in white) sensed by the radio. The USRP is designed use quadrature modulation and you will be using the radio's capability to adapt this modulation technique to support other modulation approaches. For now you will focus only on the magnitude spectrum.

Observed Spectrum

THE UNIVERSITY of NEW MEXICO

Allocating Spectrum to Subchannels

THE UNIVERSITY of NEW MEXICO

Debugging Tools in NI LabVIEW

What you need to know to do the Lab...

Introduction

- You may encounter two general types of software bugs:
- Those that prevent the program from running
- Those that generate bad results or incorrect behavior.
- If LabVIEW cannot run your VI
- Provides an Error List window with the specific reasons why the VI is broken.
- Bad results or incorrect behavior is based on your desired behaviors for LabVIEW VI and fixing these will require that you use the interactive LabVIEW debugging tools
- You can watch your code as it executes
- Observe the data values in the dataflows
- Control the execution

Printed on
9/1/2014

THE UNIVERSITY of NEW MEXICO

Finding The Errors

- Changes the run arrow to a broken icon (Click the broken Run button or select View»Error List to find out why a VI is broken)

- Marks the data flow with the error

- Provides a description of the error in one of 2 ways(Context Help or right mouse click and select List Errors)

| Context Help
 Broken wire
 TTE (boolean (TRUE or FALSE))
 You have connected two terminals
 of different types.
 The type of the source is boolean
 (TRUE or FALSE).
 The type of the sink is double [64-
 bit real (~ 15 digit precision)].
 Detailed help |
| :--- | :--- |
| 国国 |

http://www.ni.com/gettingstarted/labviewbasics/debug.htm
Printed on
9/1/2014
© 2014, Anees Abrol and Eric Hamke
39

Overview of List

Errors Window

The errors and warnings section lists the errors and warnings for the VI you select in the Items with errors section.

Click the Show Error button or double-click the error description to highlight the area on the block diagram or front panel that contains the error.

Click the Help button to display a topic in the LabVIEW Help that describes the error in detail and includes step-by-step instructions for correcting the error.
http://www.ni.com/gettingstarted/labviewbasics/debug.htm

Printed on

9/1/2014
© 2014, Anees Abrol and Eric Hamke
40
The Details section describes the errors and in some cases recommends how to correct the errors.

Common Causes of

 Errors- The following list contains common reasons why a VI is broken while you edit it:
- The block diagram contains a broken wire because of a mismatch of data types or a loose, unconnected end. Refer to the Correcting Broken Wires topic of the LabVIEW Help for information about correcting broken wires.
- A required block diagram terminal is unwired. Refer to the Using Wires to Link Block Diagram Objects topic of the LabVIEW Help for information about setting required inputs and outputs.
- A subVI is broken or you edited its connector pane after you placed its icon on the block diagram of the VI.
http://www.ni.com/gettingstarted/labviewbasics/debug.htm
－Next we will deal with using the debugging tools that allow you to trace the execution of a block diagram．
－Using the trace tool to ensure there are no unintended connections．
－Controlling the execution flow
－Use of data probes
－These tools are accessed through the toolbar as shown below．

12 Untitled 2 Block Diagram＊												
File Edit View Project Operate Tools Window Help												
	9 家	II	1	（P）	㫛 40 吕 ${ }^{\text {f }}$		15pt Application Font		品	$\stackrel{\square 0}{ }$	凂	\％
Control execution Retain data values from last subVI execution Trace diagram execution／data flow Stop and Pause Execution												

http：／／www．ni．com／gettingstarted／labviewbasics／debug．htm

Quick Review

 NEW MEXICO Diagram Execution Details- LabVIEW the diagram is the set of instructions. LabVIEW executes at a default interval determined by the fastest rate needed for the subVIs to execute properly. (Without a looping structure the diagram executes only once.)
- You need to use a loop to get the diagram to execute repeatedly until the data collection task is complete.

THE UNIVERSITY of NEW MEXICO

Tracing Execution

- Click the Highlight Execution button to display to confirm execution sequence an animation of the movement of data on the block diagram from one node to another using bubbles that move along the wires, when you run the VI.

Red bubbles o move along wires.

Note: Execution highlighting greatly reduces the speed at which the VI runs.

- Click the button again to disable execution highlighting.
- TIP: Use execution highlighting with single-stepping to see how data values move from node to node in your VI.
http://www.ni.com/gettingstarted/labviewbasics/debug.htm

THE UNIVERSITY of NEW MEXICO

Retain Wire Values

- Click the Retain Wire Values button 四四to save the wire values at each point in the flow of execution so that when you place a probe on the wire you can immediately retain the most recent value of the data that passed through the wire.
- Please keep in mind that each data flow has a set of variables associated with it. (Even though you do not get to see them. These variables like any variable in a program get reused each time the diagram is called or executed.
- You must successfully run the VI at least once before you can retain the wire values.
- To see the values place the cursor on the data flow and click.

Click the button
http://www.ni.com/gettingstarted/labviewbasics/debug.htm

THE UNIVERSITY of NEW MEXICO
 Probe Watch Window

- Use the Probe Watch Window with execution highlighting, single-stepping, and breakpoints to determine if and where data is incorrect.
- If data is available, the probe immediately updates and displays the data in the Probe Watch Window during execution highlighting, singlestepping, or when you pause at a breakpoint.
- When execution pauses at a node because of single-stepping or a breakpoint, you also can probe the wire that just executed to see the value that flowed through that wire.

THE UNIVERSITY of NEW MEXICO

Control Execution

- You can control the execution of the diagram using the
- tol Step Into button will follow the execution into a subVI and pause. When you click the Step Into button again, it executes the first action and pauses at the next action of the subVI or structure. Single-stepping through a VI steps through the VI node by node. Each node blinks to denote when it is ready to execute. You also can press the <Ctrl> and down arrow keys.
- 1 Step Over button will execute a node and pause at the next node. By stepping over the node, you execute the node without single-stepping through the node. You also can press the <Ctrl> and right arrow keys.
- 固Step Out button will complete single-stepping through the node entered by stepping into it and navigate to the next node When the VI finishes executing, the Step Out button is dimmed. You also can press the <Ctrl> and up arrow keys. By stepping out of a node, you.
http://www.ni.com/gettingstarted/labviewbasics/debug.htm

Probe Windows
(Constants \& Signals)

Probe Windows (Waveforms)

Note: Execution probing a waveform can reduce the speed at which the VI runs. And can cause memory issues. This should be done sparingly.

Better approach is to create a temporary waveform chart or graph indicator on the front panel.

Printed on
9/1/2014

THE UNIVERSITY of NEW MEXICO

Debugging Example

THE UNIVERSITY of Debugging Example NEW MEXICO

A digital communication packet structure consists of 10 bits- 1 START bit, 8 DATA bits (one byte), and 1 STOP bit.

Commonly referred to as 8 N 1 (8 data bits, no parity, 1 stop bit).

THE UNIVERSITY of Debugging Example (Serial Communications)

Serial communications follows this general pattern:

- In order to achieve synchronization with an incoming packet, the communication wire idles in the HIGH (1) state in between packets. Since the START bit is always a LOW, we know a packet has begun when this transition occurs.
- After we synchronize to the start of a packet, we use the known baud rate to estimate the center of each data bit, and sample the voltage of the signal at this point.

- After the receiver decodes the entire data packet, the bit order is reversed (to get the original MSB->LSB) byte
- The stop bit simply returns the communications wire to the original IDLE (HIGH) state, and the receiver begins waiting for the next START bit which signals the beginning of the next packet.

Debugging Example (Bit Stretching)

- Suppose that the signal is transmitted through a serial communications link that causes every fourth bit to flip from 1 to 0 or vice versa.
- If the signal wave form is sampled only once, there is not enough information to determine if the data received is the data sent.
- That is why the parity bit is used in the standard. However, the parity bit only tells us the data is corrupted.
- To make things more robust we may want to send more than one copy of the sampled value. The number depends on the error correction scheme being used. In this example each bit is oversampled by a factor of 4.

Received Signal

Printed on
9/1/2014
Bit time Interval determined by baud rate
Bit time Interval
determined by
baud rate

Debugging Example (Bit Stretching)

To this end we have developed the following VI to stretch the bits by making the number of copies specified in for each bit in the signal array.

Printed on
9/1/2014

THE UNIVERSITY of NEW MEXICO

Debugging Example (Recovering Error Information)

Right mouse click on the -***). and select list errors

The error is stating that we have an array

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

The fix: Reshape the matrix into a vector
Step 1: We need to know the dimensions of the matrix. We can find this using the Array Size Function
\square
Step 2: The resulting vector will have a length of the number of rows times with number of columns. This found using an Multiply Array Elements Function on the output of Step 1.

Step 3: We now have what we need to reshape the matrix using the

Reshape Array Function

Debugging Example (Unexpected Behavior)

For the bit string $\left[\begin{array}{llllllllllll}1 & 0 & 1 & 0 & 1\end{array}\right]$ with three copit
should get
$\left[\begin{array}{lllllllllllllll}1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1\end{array}\right]$
However, the VI outputs
$\longrightarrow\left[\begin{array}{llllllllllllllllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$

Each bit is being copied 4 instead of 3 times.

Debugging Example NEW MEXICO (Observing The Behavior)

THE UNIVERSITY of NEW MEXICO

Debugging Example 'Placing 1 ${ }^{\text {st }}$ Probe)

Printed on
9/1/2014

Debugging Example (Placing Remaining Probe)

We not only wish to see the number of copies input but would like to observe the counter (probe 2) and the results of the comparison (probe 3). The result of the comparison will determine if the loop executes another time (FALSE) or stops (TRUE).

Debugging Example (Observing the Matrix)

In addition we do not know if the problem is the way the matrix is being build up. So have placed a probe at labels 4 (current element) and 5 (final matrix from the last pass).

Debugging Example (First Pass Through Diagram)

Diagram execution has halted on the Comparison block. Observing the Probe Watch Window we see that

Probe 1 is showing its value is 3 as expected.
Probe 2 shows the counter has been initialized to 0 as expected.

Printed on
9/1/2014
© 2014, Anees Abrol and Eric Hamke

Debugging Example
 (Second Pass Through Diagram)

Debugging Example (Third Pass Through Diagram)

```
F# Debug example.vi Block Diagram *
*)
```

 Continue
 After clicking on the continue button, diagram execution has again halted on the Comparison block. Observing the Probe Watch Window we see that

Probe 1 is showing its value is 3 as expected.
Probe 2 shows the counter has incremented by 1 to 2 .
Probe 3 Shows the result of the comparison from the last pass
Probe 4 is showing the current bit has the value 1
Probe 5 shows the output matrix from last pass has elements [11].

Printed on
9/1/2014
© 2014, Anees Abrol and Eric Hamke
64

Debugging Example
 (Fourth Pass Through Diagram)

```
7% Debug example.vi Block Diagram *
File Edit View Prgject Operate Tools Window Help
```



```
        Continue
```

After clicking on the continue button, diagram execution has again halted on the Comparison block. Observing the Probe Watch
 Window we see that

Probe 1 is showing its value is 3 as expected.
Probe 2 shows the counter has incremented by 1 to 3 .
Probe 3 shows the result of the comparison from the last pass
Probe 4 is showing the current bit has the value 1
Probe 5 shows the output matrix from last pass has elements

Printed on
9/1/2014

Debugging Example (The Correction)

P7 Debug example.vi Block Diagram *

Stop of the diagram execution by clicking on the stop button.

To correct the over counting we can subtract 1 from the number of

Debugging Example (Confirming the Fix)

For the bit string $\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 1\end{array}\right]$ with three copies we should get

$$
\left[\begin{array}{lllllllllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

and as can be seen each bit is being copied just 3 times.

Debugging Example (Leaving the Debugging Environment)

Closing the probe window will remove all the probes and labels from the drawing.

You also will need to remove or clear the breakpoint on the comparison block.

You MUST do this otherwise it will be saved with the corrected file and will be come a nuisance in the future.

Printed on
9/1/2014

THE UNIVERSITY of NEW MEXICO

Introduction to USRP

The USRP

Universal Software Radio Peripheral (USRP) is a software-programmable radio transceiver and a secondary receiver .

- Programmable with NI LabVIEW software,
- Physical layer communication and spectrum monitoring

THE UNIVERSITY of NEW MEXICO

USRP Antennas

All of the labs will be using a carrier frequency in the MHz ranges. So you should be using the VERT400.

Printed on
9/1/2014

USRP Transmitter
(Transmitter Template)

The transmitter template consists of 4 elements:

- USRP Transmitter Configuration
- While-loop to control execution of lab.
- Write to the transmitter buffer
- USRP shutdown \& status reporting

USRP Transmitter

(USRP Transmitter Config.)

The front panel for each application will have an USRP configuration panel. The panel supports entering the following radio parameters:

- Device names - this configures the LabView interface to talk with the radio.
- IQ Rate - Specifies the sample rate of the baseband I/Q data for Tx or Rx in samples per second (Samples/second).
- Carrier frequency - The passband frequency to be used by the radios for modulation
- Gain - Amplification of the transmitted signal.
- Active antenna - Should always be set to TX1 (the USRP transreceiver)

USRP Transmitter (Open Tx Session)

This sub-VI initiates the transmitter session and generates a session handle and an error cluster that are propagated through all VIs.

I/0. device names specifies the name(s) or IP address(es) of the device(s).

TF reset specifies whether to reset the device(s) to a known initialization state.

Note This parameter has no effect in NI-USRP. All properties are set to their default values when a session is created.

D-: error in describes error conditions that occur before this node runs. This input provides standard error in functionality.
I/0 session handle out passes a reference to your instrument session to the next VI.
session handle out is obtained from this VI and identifies this Tx session.
error out contains error information. This output provides standard error out functionality.

USRP Transmitter (Configure Signal)

session handle identifies your instrument session.
session handle is obtained from the niUSRP Open Tx Session VI or the niUSRP Open Rx Session VI and identifies a particular Tx or Rx session.
abct channel list specifies the channel(s) to configure.
Refer to Using Properties for more information about using the channel list parameter.
IQ rate specifies the rate of the baseband I/Q data in samples per second (S / s).carrier frequency specifies the carrier frequency, in $H z$, of the RF signal.
active antenna specifies the antenna port to use for this channel.
Refer to NI USRP-2920, NI USRP-2921, or NI USRP-2922 for a list of antenna names that this parameter accepts.
gain specifies the aggregate gain, in dB, applied to the RF signal.
error in describes error conditions that occur before this node runs. This input provides standard error in functionality.
session handle out passes a reference to your instrument session to the next VI.
session handle out is obtained from the niUSRP Open Tx Session VI or the niUSRP Open Rx Session VI and identifies a particular Tx or Rx session.
coerced IQ rate returns the actual I/Q rate, in samples per second (S / s), for this session, coerced to a value supported by the device.
coerced carrier frequency returns the actual carrier frequency, in Hz , for this session, coerced to a value supported by the device.
coerced gain returns the actual gain, in $d B$, for this session, coerced to a value supported by the device.

[^0]9/1/2014
© 2014, Anees Abrol and Eric Hamke

The signal to be transmitted will consist of an array of data, sampling period, and an initial time for the time vector.

In some of the labs, you will generate this array and repeatedly send the same signal. In this case, your application will be inserted outside the loop.

In others, the signal will change dynamically with the controls on the front panel. In this situation, your application will be inside the loop.

All templates will come with a stop button on the front panel. Use this to stop execution of your application - it will ensure the radio shuts down properly.

USRP Transmitter
 （Writing to Transmit Buffer）

session handle identifies your instrument session．
session handle is obtained from the niUSRP Open Tx Session VI and identifies a particular Tx session．
data specifies the baseband samples to transmit as complex，double－precision floating－point data in a cluster，which also includes sampling information．
data accepts complex，double－precision floating－point values whose real and imaginary components range from 1.0 to -1.0 ．The maximum complex magnitude is 1．0．Use the following equation to determine the complex magnitude of the signal：
complex magniude $=\sqrt{\text { Reaf }{ }^{2}+\text { Imaginary }^{2}}$to NI－USRP ignores this value．
DBL dt specifies the time between values in the \mathbf{Y} array．
［CDB］ \mathbf{Y} specifies the complex－valued baseband waveform．The real and imaginary parts of this complex data array correspond to the in－phase（I）and quadrature－ phase（ Q ）data，respectively．
timeout specifies the time to wait，in seconds，before returning an error if the requested number of samples have not been generated．
A negative value indicates to the driver to wait indefinitely．
end of data？specifies whether this is the last call to the niUSRP Write Tx Data VI for the current contiguous transmit operation．The default value is FALSE．
TRUE \quad Specifies that the data input contains the end of the data transmission．The transmission aborts when the last data sample generates．
FALSE Specifies that you will provide more data．
channel list specifies the channel（s）to which to write the data．
Refer to Using Properties for more information about using the channel list parameter．
use waveform dt for IQ rate？specifies whether the dt subparameter of the data waveform overrides the I／Q rate．The default value is FALSE．

TRUE	Specifies that the waveform dt overrides the I／Q rate．

FALSE \mid Specifies that the waveform dt does not override the I／Q rate．
error in describes error conditions that occur before this node runs．This input provides standard error in functionality．
session handle out passes a reference to your instrument session to the next VI．
session handle out is obtained from the niUSRP Open TX Session VI and identifies a particular Tx session．
error out contains error information．This output provides standard error out functionality．

Each transmitter template has a status window.

If there are no errors in the transmission of the data, you should have a status display with a green check mark.

If there is an error in the
 transmission of the data, you should have a status display with a red x mark with an error code and an error message.

In this case, the message indicates you are not connected to the radio through the ethernet interface.

USRP Receiver

(Receiver Template)

The Receiver template consists of 4 elements:

- USRP Receiver Configuration
- While-loop to control execution of lab.
- Read from the receiver buffer
- USRP shutdown \& status reporting

USRP Receiver (Configuration)

The front panel for each application will have an USRP configuration panel. The panel supports entering the following radio parameters:

- Device names - this configures the LabView interface to talk with the radio.
- IQ Rate - Specifies the sample rate of the baseband I/Q data for Tx or Rx in samples per second (Samples/second).
- Carrier frequency - The passband frequency to be used by the radios for modulation
- Gain - Amplification of the received signal.
- Active antenna - Should be set to RX1 or RX2 (the USRP transceiver or secondary

Printed on
9/1/2014
 NEW MEXICO

USRP Reciever (Open Rx Session)

This sub-VI initiates the receiver session and generates a session handle and an error cluster that are propagated through all VIs.

$\square / 0$ device names specifies the name(s) or IP address(es) of the device(s).
\square TF, reset specifies whether to reset the device(s) to a known initialization state.

Note This parameter has no effect in NI-USRP. All properties are set to their default values when a session is created.error in describes error conditions that occur before this node runs. This input provides standard error in functionality.session handle out passes a reference to your instrument session to the next VI.
session handle out is obtained from this VI and identifies this Rx session.error out contains error information. This output provides standard error out functionality.

The niUSRP Initiate VI starts the waveform acquisition in a Rx session．You must initiate the Rx session before you use a Fetch Rx Data（poly）VI to retrieve waveform data．You do not need to call the niUSRP Initiate VI for Tx sessions；you initiate waveform generation when you provide data using the Write Tx＿Data（poly）VI．

$\square / 0$ session handle identifies your instrument session．
session handle is obtained from the niUSRP Open Rx Session VI and identifies a particular Rx session．

可國 error in describes error conditions that occur before this node runs．This input provides standard error in functionality．
$1 / 0$ session handle out passes a reference to your instrument session to the next VI．
session handle out is obtained from the niUSRP Open Rx Session VI and identifies a particular Rx session．

品品 error out contains error information．This output provides standard error out functionality．

The signal of received data will consist of an array of data, sampling period, and an initial time for the time vector.

All templates will come with a stop button on the front panel. Use this to stop execution of your application - it will ensure the radio shuts down properly.

Printed on
9/1/2014 NEW MEXICO (Reading From Receive Buffer)
session handle identifies your instrument session.
session handle is obtained from the niUSRP Open $R \times$ Session VI and identifies a particular $R x$ session.
number of samples specifies the number of samples to fetch from the acquisition channel.
timeout specifies the time to wait, in seconds, before returning an error if the requested number of samples have not been acquired.
A negative value indicates to the driver to wait indefinitely.
channel list specifies the channel(s) from which to fetch the data.
Refer to Usinq Properties for more information about using the channel list parameter.
error in describes error conditions that occur before this node runs. This input provides standard error in functionality.
session handle out passes a reference to your instrument session to the next VI.
session handle out is obtained from the niUSRP Open Rx Session VI and identifies a particular Rx session.
[-i data returns the received baseband samples as complex, double-precision floating-point data in a cluster, which also includes sampling information.
0 OBL $\mathbf{t 0}$ specifies the trigger (start) time of the acquired \mathbf{Y} array.dt specifies the time between values in the \mathbf{Y} array.
[CDB] Y specifies the complex-valued baseband waveform. The real and imaginary parts of this complex data array correspond to the in-phase (I) and quadrature-phase (Q) data, respectively.
timestamp returns the timestamp of the first $R x$ sample returned and indicates the time associated with the first sample of the waveform, according to the onboard device timer.
timestamp is the time of the clock in seconds, interpreted as whole seconds.fractional seconds.whole seconds is the integer number of seconds for the time associated with the first sample of the waveform, according to the onboard device timer.
\triangle DBL fractional seconds is the double-precision, floating-point value representing the remaining fraction of a second for the time associated with the first sample of the waveform, according to the onboard device timer.
[i] error out contains error information. This output provides standard error out functionality.
Printed on
9/1/2014
© 2014, Anees Abrol and Eric Hamke

USRP Receiver (Receiver Shutdown \&

 Status)Stops an acquisition previously started. For finite acquisitions, calling this VI is optional unless you want to stop the acquisition before it is complete. If the acquisition aborts successfully, the driver transitions to the Done state.

$\square 1 / 0$ session handle identifies your instrument session.
session handle is obtained from the niUSRP Open Rx Session VI and identifies a particular Rx session.
[Find error in describes error conditions that occur before this node runs. This input provides standard error in functionality.
I/0
session handle out passes a reference to your instrument session to the next VI.
session handle out is obtained from the niUSRP Open $R \times$ Session VI and identifies a particular $R x$ session.
[喿包 error out contains error information. This output provides standard error out functionality.

USRP Receiver
 (Receiver Status)

Each Receiver template has a status window.

If there are no errors in the reception of the data, you should have a status display with a green check mark.


```
\atus code
```

source
niUSRP Open Rx Session.vi<ERR>A runtime or
configuration error occurred.
Code: 1299
Details: LookupError: KeyError: No devices found
for ----->
Device Address:
addr0: 192.168.10.2 NEW MEXICO Finite Impulse Response

$$
y(n)=\sum_{i=0}^{N} C[i] x(n-i)
$$

- FIR filters: stands for Finite Impulse Response, is the simplest type of digital filter, it is inherently estable, and always realizable.
- The C(k) coefficients of an FIR are actually the sampled values of the filter's impulse response.
- Given an FIR with " n " taps, the effect of an input vanishes in the output after " n " delays. Thus its finite response.
- Can be designed to have a linear phase response
- Usually non recursive \qquad Recursive FIR example? Think of an ISTEC \& G.Jaquenod 2002, AllRights_Reserved average!!

FIR digital filters: FIR Example

The output signal $y[n]$ of the filter in response to an impulse is limited only the last N values of $x[n]$, so after $N+1$ samples the response returns to zero. For example, the response of a fifth order filter consists of a finite sequence of six $(N+1)$ samples

THE UNIVERSITY of NEW MEXICO
 Digital filters: FIR filters

- An FIR filter performs the convolution between the filter's impulse response ($\mathrm{C}[.$.$] coefficients) and the samples of the input signal (x[..]), thus, the$ coefficients C[..] of an FIR are the sampled values of the filter's impulse response

$$
y(n)=\sum_{i=0}^{N} C[i] x(n-i)
$$

```
Time response
```

- The filter's transfer functions, in Z, is:

$$
H(z)=\frac{Y(z)}{X(z)}=\sum_{i=0}^{N} h[i] z^{-i}
$$

- This is a polynomial equation of order N , and the N roots of this polynomial are the N zeros of the filter

$$
y(k)=\sum_{i=0}^{N} b_{i} x(k-i)+\sum_{j=1}^{M} a_{j} y(k-j)
$$

- The IIR is a more complex type of filter, where the output feedback enables its response to extend infinitely in time
- They are usually more efficient (requiring less storage, lower complexity, lower cost) than the FIR, although with more problems, namely stabilty and numerical error propagation
- They can be desgined starting from analogies with existing analog filters
- The IIR (Infinite Impulse Response) filters are a more complex type of filter, with an output at time k, given by:

$$
O(k)=\sum_{i=0}^{N} b_{i} \cdot I(k-i)+\sum_{j=1}^{M} a_{j} \cdot O(k-j)
$$

- The output is a linear combination of the current input $l(k), N$ previous inputs, but now, also of the previous M outputs, and its corresponding transfer function is:

$$
H(z)=\frac{\sum_{i=0}^{N} b_{i} \cdot z^{-i}}{1-\sum_{j=1}^{M} a_{j} \cdot z^{-j}}=\frac{N(z)}{D(z)}
$$

- This equation, in addition to having N zeros (as the FIR, the roots of $N(z)$), it also has M poles (the roots of $D(z)$), which for a stable filter, are required to be inside the unit circle in the z plane.

FIR digital filters: IIR Example

The output signal $y[n]$ of the filter in response to an impulse The output signal of the filter can be non-zero infinitely, even when the input signal has a value of zero. In theory, when a recursive filter is excited by an impulse, the output will persist forever.

Preliminaries

(Absolute)

A typical absolute specification of a lowpass filter is shown below, in which the filter response has been normalized to 1 in the passband

A typical relative specification of a lowpass filter is shown below, in which

- Rp is the passband ripple in $d B$, and
- As is the stopband attenuation in $d B$.

The parameters given in these two specifications are obviously related. Since $|H(f)|$ in absolute specifications is equal to $\left(1+\delta_{P}\right)$, we have

$$
R_{P}=-20 \log _{10}\left(\frac{1-\delta_{P}}{1+\delta_{P}}\right) \quad A_{S}=-20 \log _{10}\left(\frac{\delta_{S}}{1+\delta_{P}}\right)
$$

Digital Signal Processing Using MATLAB ${ }^{\circledR}$, Third Edition, Vinay K. Ingle John G. Proakis

THE UNIVERSITY of
 Preliminaries NEW MEXICO (Absolute vs. Relative)

```
## Configure Classical Filter Design [Chebyshev Lowpass Filter]
```


LabVIEW is looking for relative specifications

THE UNIVERSITY of NEW MEXICO

Amplitude Modulation

What you need to know to do the Lab...

Printed on
9/1/2014

THE UNIVERSITY of NEW MEXICO

AM Overview

If $m(t)$ is a baseband "message" signal with a peak value m_{p}, and $A_{c} \cos \left(2 \pi f_{c} t\right)$ is a "carrier" signal at carrier frequency, f_{c}, then we can write the AM signal $g(t)$ as

$$
\begin{equation*}
g(t)=A_{c}\left[1+\mu \frac{m(t)}{m_{p}}\right] \cos \left(2 \pi f_{c} t\right) \tag{1}
\end{equation*}
$$

where the parameter μ is called the "modulation index" and takes values in the range $0<\mu \leq 1$ (0 to 100%) in normal operation.

Carrier Signal

Modulation:

 MathScript Node
Functions

8

Q Search © Customizev 7

- Programming
$\mathrm{L}_{\text {Structures }}$

For Loop

In Place Ele.

While Loop

Flat Sequence

-

MathScript Node

Executes LabVIEW MathScripts and your other text-based scripts using the MathScript RT Module engine. You can use the MathScript Node to evaluate scripts that you create in the LabVIEW MathScript Window.

If a MathScript Node contains a warning glyph, LabVIEW operates with slower run-time performance for the node. You can modify your script to remove the warning glyph from the MathScript Node and improve runtime performance.

Decorations Feedback No...

- Measurement I/O
- Instrument I/O
- Vision and Motion

"Text-based scripts"

$$
\begin{aligned}
a & =2 b-\max (d) \\
p & =a \log (a) \\
s & =a e^{2 \pi p j}
\end{aligned}
$$

"Equations"

9/1/2014

Setting up I/Ps \& O/Ps in a MathScript node

Array Max \& Min VI

Returns the maximum and minimum values found in array, along with the indexes for each value.

THE UNIVERSITY of NEW MEXICO

Get Waveform Components VI

Get Waveform Components

Returns the analog waveform you specify. You specify components by clicking on the center of the output terminal and selecting the component you want.

"Waveform attribute selection"

1. Select, hold and drop VI

2. Click on bottom line, hold and extend

3. Right-click on attributes, scroll to "Select Item" and pick the attribute.

THE UNIVERSITY of NEW MEXICO

niUSRP Write Tx

 Data VI"Buffer to transmit data to receiver"

niUSRP Write Tx Data (poly).vi

Writes data to the specified channel list.

niUSRP Fetch Rx Data VI

"Buffer to receive data from transmitter"

Fetches data from the specified channel list.

Demodulation: Filters

"Set filter parameters as constants"
"Chebyshev clears noise around carrier frequency"
"Butterworth implemented after full wave rectification to complete envelope detection"

Chebyshev Filter.vi

Generates a digital Chebyshev filter by calling the Chebyshev Coefficients VI. Wire data to the \mathbf{X} input to determine the polymorphic instance to use or manually select the instance.

Butterworth Filter.vi

Generates a digital Butterworth filter by calling the Butterworth Coefficients VI. Wire data to the X input to determine the polymorphic instance to use or manually select the instance.

Printed on
9/1/2014

THE UNIVERSITY of NEW MEXICO

Complex to Real/Imaginary

Functions

O Search	\circ	Customize*

- Programming
- Measurement I/O
- Instrument I/O
- Vision and Motion
- Mathematics
${ }^{L}$ Numeric
$\mathrm{L}_{\text {Complex }}$

Re/Im To Co... Complex To ... Re/Im To Pol...
rer
0
0
0
Polar To Re/I...

Absolute Value VI

"Full-wave Rectifier"

Absolute Value

Returns the absolute value of the input.

Build Waveform VI

Functions

Set Attribute

$\cdots \Omega$
4Ω

Get Attribute

Analog to Di... Digital to An...

Build Waveform

Builds an analog waveform or modifies an existing waveform. If you do not wire the waveform input, the function creates a new waveform based on the components you wire. If you wire the waveform input, the function modifies the waveform based on the components you wire.
"Waveform attribute selection"
Same as "Get Waveform Components"

THE UNIVERSITY of NEW MEXICO

Frequency Modulation

What you need to know to do the Lab...

THE UNIVERSITY of
FM Overview NEW MEXICO

PHASE MODULATOR

$k_{f}=1$

FM Overview (Demodulation)

FM demodulation can be divided into three broad categories: Frequency discrimination, Phase-shift discrimination, and Phase-locked loop (PLL). This lab focuses solely on frequency discrimination

DIFFERENTIATOR
IDEAL
DESCRIMATOR

$e(t)=-K_{D}\left[2 \pi f_{c}+\frac{d \theta}{d t}\right] \sin \left(2 \pi f_{c} t+\theta(t)\right)$
$y_{D}(t)=2 \pi f_{c}+K_{D} \Delta f_{\max } m_{n}(t)$

Multi-Tone Message Generator

Get Waveform

Components

Get Waveform Components (Analog Waveform) Function

		78 景	7∞ 管

Convolution Deconvolution AutoCorrelat．．．crossCorrelat．．．

$\begin{array}{\|l\|} \hline+\infty \\ \hline[\because] \\ \hline \end{array}$		（78｜	+8 +
AutoCorrelat．．．	$\begin{aligned} & \mathrm{Y}[\mathrm{i}]=\mathrm{X}[\mathrm{i}-\mathrm{n}] \\ & \begin{array}{\|c\|} \hline 7 \infty \\ \hline \mathrm{maxan} \\ \hline \boldsymbol{m} \\ \hline \end{array} \end{aligned}$	Zero Padder	Unwrap Phase
Digital Rever．．．	Decimate（sgl）		Upsample
Rational Res．．．	Resample（c－．．．	Resample（c－．．．	Unit Vector
Scale	Quick Scale	Normalize	$\mathrm{Y}[\mathrm{i}]=\mathrm{Clip}\{\mathrm{X}[\mathrm{i}]\}$
$\begin{array}{\|l\|} \hline 9 \infty \\ \hline ⿴ 囗 ⿱ 一 一 ⿻ 冂 土 \end{array}$		$\begin{array}{\|l\|} \hline 9 \infty \\ \hline 4 A \\ \hline \end{array}$	
Riffle	AC／DC Estim．．．	Peak Detector $\overrightarrow{z^{-n}}$	Threshold D．．．
Corvinsedor $9 / 1 / 2014$	Scale \＆Map	Z－Transform．．． C 2014，Anees	Abroland Eric

- Signal Processing
$L_{\text {Filters }}$
$\mathrm{L}_{\text {Advanced }} \mathbb{I}$ Filtering

THE UNIVERSITY of NEW MEXICO
 Convert from Polar to Complex form

Polar To Complex Function

"Buffer to transmit data to receiver"

niUSRP Write Tx Data (poly).vi

Writes data to the specified channel list.
"Buffer to receive data from transmitter"

niUSRP Fetch Rx Data (poly).vi

Fetches data from the specified channel list.

THE UNIVERSITY of NEW MEXICO

Finding the Phase

Get Angle (Phase) component by converting from Complex to Polar form

THE UNIVERSITY of NEW MEXICO

Unwrap the Phase Angle

Implement Difference

 Equation

$$
\frac{d \theta}{d t}=\frac{\theta[n]-\theta[n-1]}{T}
$$

FIR Filter with I.C. VI

FIR Co-efficients

$\left(\frac{1}{T},-\frac{1}{T}\right)$.

FIR Coefficients Array

Concatenates multiple arrays or appends elements to an n -dimensional array.

Negate

Negates the input value.

Reciprocal

Divides 1 by the input value.

THE UNIVERSITY of NEW MEXICO

Signal Processing
$L_{\text {Filters }}$

Envelope Detector Implementation

 Butterworth Filter VI

Low-pass Butterworth Filter

Printed on
9/1/2014

Build Waveform VI

Functions

Set Attribute
$\because \Omega \Omega$ L ת ת
\square
Get Attribute
$N \Omega \Omega$
4∞

Analog to Di... Digital to An...

Build Waveform

Builds an analog waveform or modifies an existing waveform. If you do not wire the waveform input, the function creates a new waveform based on the components you wire. If you wire the waveform input, the function modifies the waveform based on the components you wire.

Printed on
9/1/2014

Pulse Position Modulation

What you need to know to do the Lab...

 NEW MEXICO Message
PPM Overview Analog Signals

PPM Overview

 Analog Demod

Digital Demod

THE UNIVERSITY of NEW MEXICO
 PPM Implementation

 NEW MEXICO

Simulate Signal VI

Simulate Signal

Simulates a sine wave, square wave, triangle wave, sawtooth wave, or noise signal.

(ander Ibero-American Science \&
Technology Education Consortium

THE UNIVERSITY of NEW MEXICO

Convert From Dynamic Data subVI

Convert from Dynamic Data

Dynamic Data Type

Converts the dynamic data type to numeric, Boolean, waveform, and array data types for use with other VIs and functions.

77 Configure Convert from Dynamic Data [Convert from Dynamic Data2]

Conversion

Resulting data type
1D array of scalars - most recent value 1D array of scalars - single channel
2D array of scalars - columns are channels
2 D array of scalars - rows are channels

Single scalar

Single waveform

Scalar Data Type

- Floating point numbers (double)
- Boolean (TRUE and FALSE)

Input Signal

Result Preview

Sine and Square Waveform subVIs

Sine Waveform.vi

Generates a waveform containing a sine wave.

Square Waveform.vi

Generates a waveform containing a square wave.

Merge Signals VI

Merge Signals

Merges two or more signals into a single output. Resize the function to add inputs. This function appears on the block diagram automatically when you wire a signal output to the wire branch of another signal.

THE UNIVERSITY of NEW MEXICO

Basic Level Trigger Detection VI

Basic Level Trigger Detection.vi

Finds the first level-crossing location in a waveform. You can retrieve the trigger location as an index or as a time. The trigger conditions are specified in terms of threshold level, slope, and hysteresis. Wire data to the signal in input to determine the polymorphic instance to use or manually select the instance. NEW MEXICO

Basic Level Trigger

Interface

TFF reset specifies whether the history, or internal state, of the VI has to be reset. The default is FALSE. The internal state contains the final state of the input signal. The VI uses this as the initial state the next time LabVIEW calls the VI.
signal in contains the signal in which to detect a trigger.
level specifies the threshold value signal in must cross before a trigger is detected. The default is 0 .hysteresis specifies the amount above or below level through which signal in must pass before a trigger level crossing is detected. The default is 0 .
Trigger hysteresis is used to prevent noise from causing a false trigger. For a rising edge trigger slope, the signal must pass below level - hysteresis before a trigger level crossing is detected. For a falling edge trigger slope, the signal must pass above level + hysteresis before a trigger level crossing is detected.

Iocation mode specifies whether you want to retrieve the trigger location as an index into the Y-array of the waveform or as a point in time in seconds.
Index (default)-Retrieves the trigger location in terms of an array index.
Time-Retrieves the trigger location in terms of time in seconds. Time is computed by the following equation: time $=$ to + (index*dt), where to and dt are contained in signal in. Use the To Time Stamp Function to convert this number to a time stamp data type with a time and date format.
error in describes error conditions that occur before this node runs. This input provides standard error in functionality.
016 trigger slope specifies whether a trigger is detected as signal in crosses level on a rising edge or a falling edge

0	Falling Edge-The VI detects a trigger on the falling edge, or negative slope.

| 1 | Rising Edge (default)-The VI detects a trigger on the rising edge, or positive slope. |
| :--- | :--- | :--- |

trigger location contains the index or time, depending on the location mode setting, of the detected trigger. If the location mode is in Time mode and you do not want the trigger location value to appear in seconds on the front panel, wire the trigger location to a time stamp.
trigger detected? indicates whether the VI detects a valid trigger. If trigger detected? is TRUE, the VI detects a valid trigger.
error out contains error information. This output provides standard error out functionality.

Printed on
9/1/2014
(C) 2014, Anees Abrol and Eric Hamke

Time Delay VI

Time Delay

1. Select, hold and drop VI

Inserts a time delay into the calling VI.

This Express VI is configured as follows:
Delay Time: 0.02 s

2. Double click to set time delay in second

Random Process, Crosscorrelation and Power Spectral Density

What you need to know to do the

 Lab ...
Crosscorrelation

Cross-correlation is a measure of similarity of two waveforms (pulse and return signal) as a function of time-lags. Given two real-valued sequences $p[n]$ and $r[n]$ of finite energy, the cross-correlation of $p[n]$ and $r[n]$ is a sequence $r_{p r}(l)$ defined as

$$
\begin{equation*}
r_{p r}(l)=\sum_{n=-\infty}^{\infty} p^{*}[n] r[n+l] \tag{1}
\end{equation*}
$$

The propagation delay of the echo (τ) is $\tau=2 \mathrm{r} / \mathrm{c}$ where, c is the speed

The Power Spectral Density can also be used to estimate the distance. In this approach the return signal and the pulse signal are multiplied together. The product contains the sum and difference frequencies. The sum of frequencies is approximately $2 f_{c}$. This frequency is beyond the frequencies the electronics can respond to. Only the terms related to the difference frequencies are retained (1).

$$
\begin{align*}
m(t) & =a_{3} \cos [\phi(t)-\phi(t-\tau)] \\
& =a_{3} \cos \left(2 \pi f_{\text {beat }} t+2 \pi f_{c} \tau-\frac{\pi B}{T_{m}} \tau^{2}\right) \tag{1}
\end{align*}
$$

$$
\tau=\frac{15}{31}\left(f_{\text {beat }}-0.0416\right)
$$

© 2014, Anees Abrol and Eric Hamke
GINET
Global Innovation Network for
Entrepreneurship and Technology

LAB Tasks

- Build Beat Frequency analysis subVI.
- Build Cross Correlation analysis subVI.
- Wire your VIs into the J2 V2 RADAR VI.
- Basic procedure
- You have been supplied with a set of templates and supporting VIs
- Build both VIs and wire them in.
- Debugging strategy
- Use simulation page in J2 V2 RADAR VI.
- Test case for $20,000 \mathrm{~km}$

Table I-20,000km Test Case Reference

Simulated Distance to Target. (km)	Return Signal Ramp Reset Time (Sec)	Return Time (Sec)	Beat Frequency (Hz)
20000	0.86728 (see Fig. 19)	0.13272 (see Fig. 20)	0.337 (see Fig. 21)

- Please refer to debugging presentation for tools and techniques

Beat Frequency SubVI

These are blocks you have used in previous labs

Input Controls

Output Indicators

Printed on
9/1/2014
© 2014, Anees Abrol and Eric Hamke

The FFT Block

FFT VI (Fast Fourier Transform)

Computes the fast Fourier transform (FFT) of the input sequence \mathbf{X}.
$\|$ Programming
$L_{\text {Array }}$

Decimate 1D... Transpose 2... Array Consta... Array To Clu... Cluster To Ar... Array to Matrix

Array Size Function

Returns the number of elements in each dimension of array.

Array Max \& Min Function

Returns the maximum and minimum values found in array, along with the indexes for each value.

Cross Correlation and Return Time Analyzer

These are new blocks to be used in the lab

Performs Cross Correlation

Input Controls
These are blocks you be used in previous labs

TX Waveform

RX Waveform

Output Indicators

Technology Education Consortium

Cross Correlation

CrossCorrelation VI

Computes the cross correlation of the input sequences \mathbf{X} and \mathbf{Y}. Wire data to the \mathbf{X} and \mathbf{Y} inputs to determine the polymorphic instance to use or manually select the instance.

THE UNIVERSITY of NEW MEXICO

Sub VIs Provided

Demodulate SubVI

- RF Communications
$\mathrm{L}_{\text {Modulation }}$
$\mathrm{L}_{\text {Analog }}$
$\mathrm{L}_{\text {Demodulation }}$

MT Demodulate FM VI

Downconvert
 Detector

Should look familiar since you designed one on the AM Lab

Next Power of 2

Logarithm Base 2 Function

$$
\log _{2}(x)=\frac{\ln (x)}{\ln (2)}
$$

Round Toward + Infinity Function

Rounds the input to the next highest integer.

For example, if the input is 3.1 , the result is 4 . If the input is -3.1 , the result is -3 . The connector pane displays the default data types for this polymorphic function.

Amplitude Modulation with Additive Gaussian White Noise

What you need to know to do the Lab...

The Noise Floor reflects the effect of random processes that are the result of many natural sources, such as:

- Thermal noise is the result of vibrations of atoms in conductors resulting thermal energy;
- Shot noise is the result of random fluctuations in the movement of current in discrete electric charge quanta or electrons.
- Electromagnetic radiation emitted by the sun, earth and other large masses in thermal equilibrium.
- In the case of this lab, the distance between the transmitter and receiver, and background radiation from other nearby transmitters.

Changing the Noise Floor Using AGWN

- Additive white Gaussian noise (AWGN) is used to simulate the effect of many random processes too complicated to model explicitly.
- The model is assumed to be linear so that the noise can be super imposed or added to the message or modulated signal.
- A white noise process is assumed to uniformly affect all frequencies in the signal's spectrum.
- A mean of zero is used since the process is not expected add a DC bias.
- The AGWN is simulated using a pseudorandom number generator whose statistical profile is a normal distribution with zero-mean and a standard variance $\left(\sigma^{2}\right)$. The variance represents the power in the noise signal.

MathScript Node

Executes LabVIEW MathScripts and your other text-based scripts using the MathScript RT Module engine. You can use the MathScript Node to evaluate scripts that you create in the LabVIEW MathScript Window.

If a MathScript Node contains a warning glyph, LabVIEW operates with slower run-time performance for the node. You can modify your script to remove the warning glyph from the MathScript Node and improve runtime performance.

"Equations"

Printed on

$$
\left.\begin{array}{l}
a=2 b-\max (d) \\
p=a \log (a) \\
s=a e^{2 \pi p j}
\end{array}\right\}\left\{\begin{array}{l}
\mathrm{a}=2^{*} \mathrm{~b}-\max (\mathrm{d}) ; \\
\mathrm{p}=\log (\mathrm{a})^{*} \mathrm{a} ; \\
\mathrm{s}=\mathrm{a}^{*} \exp \left(2^{*} \mathrm{pi}^{*} \mathrm{p}^{*} \mathrm{j}\right)
\end{array}\right.
$$

9/1/2014

"Text-based scripts"

THE UNIVERSITY of NEW MEXICO

White Gaussian Noise

Generation

Gaussian White Noise Waveform.vi

Generates a Gaussian distributed pseudorandom pattern whose statistical profile is $(0, s)$, where s is the absolute value of the specified standard deviation.

Printed on
9/1/2014

THE UNIVERSITY of NEW MEXICO

Boolean Switch and LED

1) Select Switch and Round LED from Front Panel Controls Menu
$L_{\text {Waveform }}$
$L_{\text {Analog Waveform }}$
$L_{\text {Waveform Measurements }}$

 \section*{Signal to Noise \&
 \section*{Signal to Noise \& Distortion Ratio Distortion Ratio Analysis} Analysis}

SINAD Analyzer.vi

Takes a signal in and performs a full Signal in Noise and Distortion (SINAD) analysis, including measuring the fundamental frequency tone and returning the fundamental frequency and SINAD level in dB . Wire data to the signal in input to determine the polymorphic instance to use or manually select the instance.

THE UNIVERSITY of NEW MEXICO

Find Point by Point Mean

- Signal Processing
$L_{\text {Point By Point }}$
${ }^{L}$ Probability \& Statistics PtByPt

Mean PtByPt.vi

Computes the mean, or average, of the values in the set of input data points specified by sample length.

Spectrum

FFT Power Spectrum and PSD.vi

Computes the averaged auto power spectrum of time signal. Wire data to the time signal input to determine the polymorphic instance to use or manually select the instance.

Printed on
9/1/2014

Rx Filter Selection

 Logic| Switch and LED Settings | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Switches | | | Indicator LEDs | |
| LPF | Filter Selector | LPF | Chebyshev | Butterworth |
| Off | Chebyshev | Off | On | Off |
| Off | Butterworth | Off | Off | On |
| On | Chebyshev | On | On | Off |
| On | Butterworth | On | Off | On |

THE UNIVERSITY of NEW MEXICO

Rx Filter Selection Logic (contd.)

Rx Filter Selection Logic (contd.)

Outer Case Structure is FALSE

Filtered Signal

To inside case
Outer Case Structure is TRUE statement

Filtered Signal

Inner Case Structure is FALSE (Chebyshev Filter)

To inside case Outer Case Structure is TRUE statement

Inner Case Structure is TRUE (Butterworth Filter)

Filtered Signal

GINET
Global Innovation Network for

Demodulation: Filters

"Set filter parameters as constants"
"Chebyshev clears noise around carrier frequency"
"Butterworth implemented after full wave rectification to complete envelope detection"

Chebyshev Filter.vi

Generates a digital Chebyshev filter by calling the Chebyshev Coefficients VI. Wire data to the \mathbf{X} input to determine the polymorphic instance to use or manually select the instance.

Butterworth Filter.vi

Generates a digital Butterworth filter by calling the Butterworth Coefficients VI. Wire data to the X input to determine the polymorphic instance to use or manually select the instance.

Printed on
9/1/2014 NEW MEXICO

Setting Filter

 Parameters/ Specifications

Frequency Modulation with Additive Gaussian White Noise

What you need to know to do the Lab...

THE UNIVERSITY of NEW MEXICO

White Gaussian Noise

Generation

Gaussian White Noise Waveform.vi

Generates a Gaussian distributed pseudorandom pattern whose statistical profile is $(0, s)$, where s is the absolute value of the specified standard deviation.

Printed on
9/1/2014

Switch and LED

1) Select Switch and Round LED from Front Panel Controls Menu

Technology Education Consortium

Signal to Noise \& Distortion Ratio Analysis

SINAD Analyzer.vi

Takes a signal in and performs a full Signal in Noise and Distortion (SINAD) analysis, including measuring the fundamental frequency tone and returning the fundamental frequency and SINAD level in dB . Wire data to the signal in input to determine the polymorphic instance to use or manually select the instance.

Cross Mag P...

Distortion

Cross Real I...

Spectral

Timing-Trans
Avg DC-RMS Wfm Monito...

Transition M...

Extract Tones

FFT Power S...

FFT Mag Pha... FT Real Imag

THE UNIVERSITY of NEW MEXICO

Find Point by Point Mean

Mean PtByPt.vi

Computes the mean, or average, of the values in the set of input data points specified by sample length.

Plot Power Spectrum

FFT Power Spectrum and PSD.vi

Computes the averaged auto power spectrum of time signal. Wire data to the time signal input to determine the polymorphic instance to use or manually select the instance.

Printed on

niUSRP Write Tx Data VI

"Buffer to transmit data to receiver"

niUSRP Write Tx Data (poly).vi

Writes data to the specified channel list.

THE UNIVERSITY of niUSRP Fetch Rx Data VI

"Buffer to receive data from transmitter"

niUSRP Fetch Rx Data (poly).vi

Fetches data from the specified channel list. from Complex to Polar form

THE UNIVERSITY of NEW MEXICO

Unwrap the Phase Angle

Implement Difference

 Equation

$$
\frac{d \theta}{d t}=\frac{\theta[n]-\theta[n-1]}{T}
$$

FIR Filter with I.C. VI

FIR Co-efficients

$\left(\frac{1}{T},-\frac{1}{T}\right)$.

FIR Coefficients Array

Concatenates multiple arrays or appends elements to an n -dimensional array.

Negates the input value.

Reciprocal

Divides 1 by the input value.

Rx Filter Selection Logic

Switch and LED Settings				
Switches		Indicator LEDs		
LPF	Filter Selector	LPF	Chebyshev	Butterworth
Off	Chebyshev	Off	On	Off
Off	Butterworth	Off	Off	On
On	Chebyshev	On	On	Off
On	Butterworth	On	Off	On

Rx Filter Selection Logic (contd.)

Rx Filter Selection

 Logic (contd.)

Outer Case Structure is FALSE

Filtered Signal
Signal

"Chebyshev clears noise around carrier frequency"

Generates a digital Chebyshev filter by calling the Chebyshev Coefficients VI. Wire data to the \mathbf{X} input to determine the polymorphic instance to use or manually select the instance.

Demodulation: Filters

"Set filter parameters as constants"
"Butterworth implemented after full wave rectification to complete envelope detection"

Generates a digital Butterworth filter by calling the Butterworth Coefficients VI. Wire data to the X input to determine the polymorphic instance to use or manually select the instance.

THE UNIVERSITY of NEW MEXICO

Setting Filter Parameters/
Specifications

Build Waveform VI

Functions

Build Waveform

Builds an analog waveform or modifies an existing waveform. If you do not wire the waveform input, the function creates a new waveform based on the components you wire. If you wire the waveform input, the function modifies the waveform based on the components you wire.

Printed on
9/1/2014

Frequency Domain Multiplexing

What you need to know to do the Lab

THE UNIVERSITY of NEW MEXICO

Allocating Spectrum to Subchannels

Conventional Multicarrier Modulation (FMDA)

Orthogonal Frequency
Division Multiplexing
(OFDM)

FDM Concepts

In this experiment you will be using two frequencies or sub carriers.

You will build a transmitter and receiver VI and will examine the affects of inter-carrier or subchannel interference.

PRE-LAB Tasks

- A template for the transmitter has been provided in the file FDM_Tx_Template.vi. To complete the transmitter you will be asked to perform two tasks:
- Create a sub-vi that modulates a message using Amplitude Modulation.
- Update the transmitter template to combine the modulated messages to form the OFDM signal.
- A template for the receiver is also provided, FDM_Rx_Template.vi. To complete the lab, you will need to
- Design a band pass filter to isolate each message signal.
- Create an envelope detector similar to the one designed in Amplitude Modulation Lab.

Printed on

THE UNIVERSITY of NEW MEXICO

AM_on_Sub-carrier subVI

(AM modulation Review)

Modulation: MathScript Node

Executes LabVIEW MathScripts and your other text-based scripts using the MathScript RT Module engine. You can use the MathScript Node to evaluate scripts that you create in the LabVIEW MathScript Window.

If a MathScript Node contains a warning glyph, LabVIEW operates with slower run-time performance for the node. You can modify your script to remove the warning glyph from the MathScript Node and improve runtime performance.

"Equations"

Printed on

$$
\left.\begin{array}{l}
a=2 b-\max (d) \\
p=a \log (a) \\
s=a e^{2 \pi p j}
\end{array}\right\}\left\{\begin{array}{l}
\mathrm{a}=2^{*} \mathrm{~b}-\max (\mathrm{d}) ; \\
\mathrm{p}=\log (\mathrm{a})^{*} \mathrm{a} ; \\
\mathrm{s}=\mathrm{a}^{*} \exp \left(2 * \mathrm{pi}^{*} \mathrm{p}^{*} \mathrm{j}\right) ;
\end{array}\right.
$$

9/1/2014

"Text-based scripts"

SubVI Overview

Array Max \& Min VI

 NEW MEXICO

Returns the maximum and minimum values found in array, along with the indexes for each value.

THE UNIVERSITY of NEW MEXICO

Get Waveform Components VI

Get Waveform Components

Returns the analog waveform you specify. You specify components by clicking on the center of the output terminal and selecting the component you want.

"Waveform attribute selection"

1. Select, hold and drop VI

2. Click on bottom line, hold and extend

3. Right-click on attributes, scroll to "Select Item" and pick the attribute.

Combine the Modulated Messages

Superposition

Demodulation: Filters

"Set filter parameters as constants"
"Chebyshev clears noise around carrier frequency"
"Butterworth implemented after full wave rectification to complete envelope detection"

Chebyshev Filter.vi

Generates a digital Chebyshev filter by calling the Chebyshev Coefficients VI. Wire data to the \mathbf{X} input to determine the polymorphic instance to use or manually select the instance.

Butterworth Filter.vi

Generates a digital Butterworth filter by calling the Butterworth Coefficients VI. Wire data to the X input to determine the polymorphic instance to use or manually select the instance.

THE UNIVERSITY of NEW MEXICO

Complex to Real/Imaginary

Functions

O Search	\circ	Customize*

- Programming
- Measurement I/O
- Instrument I/O
- Vision and Motion
- Mathematics
${ }^{L}$ Numeric
$\mathrm{L}_{\text {Complex }}$

Re/Im To Co... Complex To ... Re/Im To Pol...
rer
0
0
0
Polar To Re/I...

Absolute Value VI

"Full-wave Rectifier"

Absolute Value

Returns the absolute value of the input.

Build Waveform VI

Functions

Set Attribute

$\cdots \Omega$
4Ω

Get Attribute

Analog to Di... Digital to An...

Build Waveform

Builds an analog waveform or modifies an existing waveform. If you do not wire the waveform input, the function creates a new waveform based on the components you wire. If you wire the waveform input, the function modifies the waveform based on the components you wire.
"Waveform attribute selection" Same as "Get Waveform Components"

THE UNIVERSITY of NEW MEXICO

Entropy and Coding Efficiency

What you need to know to do the Lab...

THE UNIVERSITY of NEW MEXICO
 Digital Communication
 Block Diagram

- The source encoder converts the source to a binary sequence
- The channel encoder (often called includes the modulator and redundancy coding). It processes the binary sequence for transmission over the channel.
- The channel decoder (demodulator) recreates the incoming binary sequence
- The source decoder
 recreates the source output.

THE UNIVERSITY of NEW MEXICO

A typical example of the number of times (relative frequency) we would expect to see the letters (symbols) appear in a random piece of English text consisting of 40,000 letters..

Relative Frequency of Letters in the English Language

Letter	Relative Frequency	Letter	Relative Frequency	Letter	Relative Frequency
a	3256	\mathbf{j}	60	\mathbf{s}	2524
\mathbf{b}	596	\mathbf{k}	308	\mathbf{t}	3612
\mathbf{c}	1108	\mathbf{l}	1604	\mathbf{u}	1100
d	1696	\mathbf{m}	960	\mathbf{v}	392
\mathbf{e}	5184	\mathbf{n}	2692	\mathbf{w}	940
\mathbf{f}	888	\mathbf{o}	2992	\mathbf{x}	60
\mathbf{g}	804	\mathbf{p}	768	\mathbf{y}	788
\mathbf{h}	2432	\mathbf{q}	36	\mathbf{z}	28
\mathbf{i}	2780	\mathbf{r}	2388	--	--

English Language

 StatisticsA typical Huffman code generated for this sample of text. The average number of bits used to transmit the symbols in the text is approximately 4.25 bits/symbol

Huffman Code Letters in the English Language

Letter	Huffman Code	Letter	Huffman Code	Letter	Huffman Code
\mathbf{e}	100	d	11111	p	110001
\mathbf{t}	000	\mathbf{l}	11110	\mathbf{b}	110000
a	1110	\mathbf{c}	01001	\mathbf{v}	001000
\mathbf{o}	1101	\mathbf{u}	01000	\mathbf{k}	0010011
\mathbf{i}	1011	\mathbf{m}	00111	\mathbf{j}	001001011
\mathbf{n}	1010	\mathbf{w}	00110	\mathbf{x}	001001010
\mathbf{s}	0111	\mathbf{f}	00101	\mathbf{q}	001001001
\mathbf{h}	0110	\mathbf{g}	110011	\mathbf{z}	001001000
\mathbf{r}	0101	\mathbf{y}	110010	--	--

Printed on
9/1/2014

Pulling the Data Together

Table XLII -Relative Frequency of Letters in the English Language

Letter	Length	Relative Frequency	Letter	Length	Relative Frequency	Letter	Length	Relative Frequency
a	4	0.0814	j	9	0.0401	S	4	0.0275
b	6	0.0149	k	7	0.0240	t	3	0.0098
C	5	0.0277	I	5	0.0673	u	5	0.0235
d	5	0.0424	m	5	0.0748	v	6	0.0015
e	3	0.1296	n	4	0.0192	w	5	0.0197
f	5	0.0222	0	4	0.0009	X	9	0.0007
g	6	0.0201	p	6	0.0597	y	6	0.02750
h	4	0.0608	q	9	0.0401	z	9	0.0098
i	4	0.0695	r	4	0.0240	--	--	--

Efficiency

The Entropy is essentially the measure of uncertainity of a random variable with an associated probability set, $\mathrm{p}\left(x_{i}\right)$.

$$
H(X)=-\sum_{i=1}^{n}\left(\mathrm{p}\left(x_{i}\right) \log \mathrm{p}\left(x_{i}\right)\right)
$$

In the following sections of the lab, you will be asked to determine the average word length Error! Reference source not found. and efficiency of the code Error! Reference source not found. given by

$$
\text { Average length }=\bar{L}=E\{\ell\}=\sum_{i=1}^{n} \mathrm{p}\left(x_{i}\right) \ell_{i}
$$

and,

$$
\text { Efficency }=H(x) / \bar{L}
$$

where $\mathrm{p}\left(x_{i}\right)$ is the probability set of the random variable, ℓ_{i} is the length of i^{th} word, and $H(x)$ is the entropy of the source.

Using the frequency table and the Huffman code along with the equations, the average word length is 4.2015 average bits and the entropy is 4.1722 average bits. So the code's efficiency is 0.9930 .

THE UNIVERSITY of NEW MEXICO
 Image Compression

Complete the table by counting the number of squares with the color code. This is the data you will need to perform the experimental procedure. Note there are 4 color codes so N equals 4.

Image Frequency Counts

Color (Node Number)	Relative Frequency (Count)
0	
1	
2	
3	

3	3	3	3	3	3
3	3	3	3	3	3
3	3	1	1	1	1
3	3	1	2	2	2
3	3	1	2	2	2
3	3	1	2	2	0

THE UNIVERSITY of NEW MEXICO Entering The Data

9/1/2014

THE UNIVERSITY of NEW MEXICO

Interpreting the

 Output

Asynchronous Serial Communication

What you need to know to do the Lab

What You Are Doing

- You will be responsible for building the receiver portion of the UART for this lab.
- This lab addresses the link between source coding/decoding and channel encoding/decoding.
- Starts with a text string already encoded using the American Standard Code for Information Interchange (ASCII).
- Additional 3 copies of each bit are used as the channel encoding.
- The link is a serial interface that uses an UART to convert the encoded text into a sequence or stream.
- To simplify the lab, the transmitted bit stream is passed directly to a UART receiver that reconverts the stream into the ASCII codes.

The Serial Data

 Packet

Redundancy Bits
Added
 determined by baud rate

Received 4 Start Bit Samples

THE UNIVERSITY of NEW MEXICO

Data Latching \& Counters

Latch Sets at t_{2}.

Counter start pulse is sent at t_{2}.

t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}
0	0	1	0	0	0

Counter outputs sequence 1,2,3
repeatedly.

t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}
0	0	1	2	3	1

Printed on
9/1/2014

Printed on
9/1/2014

THE UNIVERSITY of NEMT MAXXIC

THE UNIVERSITY of NEW MEXICO

Binary Phase Shift Keying

THE UNIVERSITY of NEW MEXICO

In PSK (Phase Shift Keying), the phase of a carrier is changed between two values according to the binary signal level ${ }^{[3]}$. The information about the bit stream is contained in the phase changes of the transmitted signal.

$$
\begin{aligned}
& \text { Transmissi has } \mathrm{N}_{\mathrm{c}} \text { samples, } T_{c}=1 / f_{c} \\
& \text { on Frame }
\end{aligned}
$$

Implementation

BPSK Modulator

 $\cos (2 \pi \mathrm{ft})$

Printed on
9／1／2014

THE UNIVERSITY of NEW MEXICO

THE UNIVERSITY of NEW MEXICO

Printed on
9/1/2014

Printed on
9/1/2014

THE UNIVERSITY of NEW MEXICO

Finds the first level-crossing location in a waveform. You can retrieve the trigger location as an index or as a time. The trigger conditions are specified in terms of threshold level, slope, and hysteresis. Wire data to the signal in input to determine the polymorphic instance to use or manually select the instance.

Printed on
9/1/2014

[^0]: |bero-American Science \&

