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Getting Started With LabVIEW 

What you need to know to do the 
Lab… 
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LabVIEW Vocabulary 

• LabVIEW is a Graphical Programming Language.  The 
elements of the language are defined as 
– Each Application is referred to as a “Virtual Instrument” or VI. 

• Front Panel (user interface) and a block diagram. 
• Block Diagram is composed of signals (lines) and subVIs (blocks or 

reusable objects).  

– A subVI is a software object  with inputs and outputs that and is 
configured using constants and controls.   

• Constant can be either a number, an array or a data structure.  
• Controls are constants and are visible on the front panel. 
• Organized into palettes so they can be selected and placed.  

– Signals are like wires and allow for the movement of data from 
the output of one subVI to the input of another subVI.   

• Composed of a single value, an array of values, a cluster (data 
structure), a waveform , or a signal. 

• Must have a source and sink point. (LabVIEW is very good at 
reminding you of this.) 
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Creating A Virtual 
Instrument 

We are now going to create a Virtual Instrument so that you can experiment and 
visualize how the LabVIEW works. 

Select File and 
then New VI 
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New VI Screens 

A Block Diagram is created 
by selecting and joining 
objects from a standard 
palette of objects. 

The resulting Front Panel will be a collection 
of controls (sources ) and indicators or 
charts (sinks) 

Every VI  Front Panel must have one or 
more control (starting points) and 
Indicator/charts (ending points) objects. 

The resulting Block 
Diagram is a network 
of these objects. 
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Accessing Palettes 

• The subVIs have been organized into a system of palettes with 
icons. 

• A Diagram or Front Panel is build by dragging the icons from the 
palettes and dropping on the  

Block Diagram  
Front Panel  

(Controls and Indicators) 
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Accessing Help System 
(Using Search Field) 

• Using the help search field in the toolbar. 

1. Enter what you want 
to find in the field. 
(Chebyshev Filter) 

2. Select help on topic. 

3. Help Screen for topic. 
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Other Ways to Access Help 
1. Right click on Icon in diagram 2. Right click on Icon in Palette 

3. Placing cursor on icon and typing <Ctrl> H 
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Anatomy of A Help 
Screen 

Location on palettes 

System Requirements 

Descriptions 

Help Navigation Description 

Palette Navigation Description 

Connector Identifications 

Connector Descriptions 
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Picking Source Objects 
(Block Diagram) 

In this example we will place a constant in our diagram.  The first step is to Right Click 
in an open area of the block diagram to launch the palette browser. 

3. Select subVI you wish place 

4. Drag and drop onto  
Block Diagram. 2. Select the 

palette with the 
constant object 
in it.  This is 
done by 
navigating 
through the 
menu system as 
shown here. 
(Note constants 
are found on 
the numeric 
palette.) 
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Picking Source Objects 
(Front Panel) 

In this example we will place a constant in our Front Panel.  The first step is to Right 
Click in an open area of the block diagram to launch the palette browser. 

2. Select the palette with 
the constant object in it.  
This is done by navigating 
through the menu system 
as shown here. (Note 
constants are found on the 
numeric controls.) 

3. Select subVI you wish 
place 

4. Drag and 
drop onto  
Front Panel 

Note:  The selection of a 
control will also result in a             
block 
 
 
being added to the block 
diagram.  
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Setting Values for 
Constants and Controls 

Double clicking on the numeric 
control will take you to the control 
data entry field on the front panel 

Double clicking on the constant 
will allow you to enter the value. 

Floating point numbers 
Integer numbers 
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Picking Sink Nodes 
Right click on the connection point for the constant and the properties menu should appear. 

2. Select the Create option 
and then Indicator 

Note:  The selection of an 
Indicator will also result in a 
Indicator block being added 
to the Front Panel.  
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Adding an SubVI to the 
Diagram 

In this example we will place an addition SubVI in our diagram.  The first step is to 
Right Click in an open area of the block diagram to launch the palette browser. 

Note:  In our 
labs we will 
indicate how 
to navigate to 
a subVI in this 
format 

Finding connection 
points on subVIs. 
Placing the mouse 
cursor on the edge 
will cause the 
connection’s label will 
appear on the 
drawing as shown 
below 

x 

2 

1) Move mouse to Constant block until connection 
appears  

2) Click and hold left mouse button and drag over to Add 
subVI.  A dashed line will mark the proposed path of 
the wire. 

3) Release mouse button when conection point on edge of 
Add subVI appears. Dashed line will turn solid. 

Drag and drop Add subVI 
onto  Block Diagram. 
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Causing Diagram to 
Execute 

1. Use the Numeric 
control to enter 3 

3 5 

3. Click on the start 
button to execute 
the diagram 

2 

2. Double clicking on 
the constant will 
allow you to enter 2 

4. The Indicator will 
be updated with the 
result 2 + 3 = 5 
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Logic Structures (IF 
THEN ELSE) 

In the LabVIEW paradigm, signals are routed based on a logical test. For example, lets 
examine the following statement, IF Numeric  2 THEN Numeric 2 is -1 ELSE Numeric 2 is 1.5. 

Value chosen if test is TRUE 

Value chosen if test is FALSE 

Logical 
Test Input 

Using a case structure 
allows you to 
embedded additional 
block diagrams in the 
same way you would 
use an IF THEN ELSE in 
a program. 
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Enumerated Data 
(Block Diagram) 

1. Select an enumerated 
constant from the 
Mathematics palette and drag 
and drop onto the block 
diagram. 

2. Right click on the 
enumerated constant 
and selected “edit items 
…” menu items. 

3. Enter labels for each 
number value 
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Enumerated Data 
(Front Panel – Text Ring) 

1. Select an enumerated 
constant from the 
Mathematics palette and drag 
and drop onto the block 
diagram. 

2. Right click on the 
enumerated constant 
and selected “edit items 
…” menu items. 

3. Enter labels for each 
number value 
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Case Statements 

In the LabVIEW paradigm, signals are routed based on a logical test. 

The input “Case 1” 

The input “Case 2” 

The input “Case 3” 

The math function was 
selected from the 
Mathematics Library 

Implements the following 
 
switch (B) 
   case 1: 
      C = 0 + 1; 
   case 2: 
      C = 0 * 1; 
   case 3: 
      C = 0 – 1; 
end 

Variable B’s 
Value 
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Iteration 

• Generally software design uses iteration  for 
– Moving data from one structure to another.  
– Repeating a set of instructions until some condition is 

TRUE.  
– Creating counts or accumulating  data 

 

• Moving Data 
– LabVIEW supports all these behaviors but in a different 

way than you are used to. 
– LabVIEW assumes that the native data structure is an n-

dimensional array. 
– Diagram execution automatically transfers data from one 

subVI to another without the user having to do this 
explicitly. 
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Diagram Execution 
Details 

• LabVIEW the diagram is the set of instructions. LabVIEW executes 
at a default interval determined by the fastest rate needed for the 
subVIs to execute properly. (Without a looping structure the 
diagram executes only once. ) 

• You need to use a loop to get the diagram to execute repeatedly 
until the data collection task is complete. 

f1(x(n)) 

f2{f1(x(n))} f5(f2(f1(x(n))), 
f4[f3{f1(x[n])}]) 

f3{f1(x[n])} 

f4[f3{f1(x[n])}] 

Tie-breaker 
execution 
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Looping Structures 

In this example we will place a for loop  and a while loop in our diagram by 
dragging these from the Structures palette and dropping in the diagram.  

Diagram execution 
pauses until the loop 
has executed its 
contents N times 

Diagram execution 
pauses until the while 
loop’s exit criteria has 
been met. 

Only the 
indicators inside 
the loops will 
update 

Printed on 
9/1/2014 © 2014, Anees Abrol and Eric Hamke 22 



Details of Setting-up A 
Looping Structure 

Implements the following 
 
for i = 1 , 100 { 
      print(i); 
} 
 
 
stop = 0; 
i = 0; 
while (i < 99) & stop == 0 { 
       print(i); 
} 
 

Note: Stop control is defaulted to FALSE 
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Data Latching & Counters 
(Logic Overview) 

The Signal latches at t2 
seconds and remains so till 
the VI is stopped. 

t0 t1 t2 t3 

0 0 1 0 

t0 t1 t2 t3 

0 0 0 1 

t0 t1 t2 t3 

0 0 1 1 

? 

1 

T 

0 

F 

3 

t0 t1 t2 t3 

0 0 0 0 

t0 t1 t2 t3 

0 0 0 1 

Delays signal by one sample interval. 

Digital representation of 
 
if start == 1{ 
       sum[0] = 0; 
       if sum[n] >=3 { 
           sum[n] = 1;} 
       else{ 
           sum[n] =  sum[n-1] + 1;} 
    } 
} 
 
where, n is the current sample 

Counter start 
pulse is sent at t2. 

Digital representation of 
 
start = 0; 
if startPulse == 1{ 
      start = 1; 
} 
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t0 t1 t2 t3 

0 0 1 2 

Note: “False” case outputs a “0” 



Data Latching & Counters 

t0 t1 t2 t3 

0 0 1 0 

Counter start 
pulse is sent at t2. 

t0 t1 t2 t3 

0 0 1 2 

Counter outputs 
sequence 1,2,3 
repeatedly. 

t0 t1 t2 t3 

0 0 1 0 

Counter start 
pulse is sent at t2. 

t0 t1 t2 t3 

0 0 1 2 

Counter outputs 
sequence 1,2,3 
repeatedly. 
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Shift Register 



Data Routing 

• Signals or data flows along the lines connecting 
the subVIs. 

• It is strongly recommended that you think of the 
lines not as wires but as data flows.  The 
following legend will help identify the data 
flowing along the line. 

Floating point numbers 

Integer numbers (signed or unsigned) 
Array of Floating point numbers 

Array of Integer numbers  
   (signed or unsigned) 
Boolean or Logical values 
Array of Boolean or Logical values 

Waveform Cluster 

Signal Cluster 

USRP Status\Error 

USRP Configuration Data 
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Accessing Data in 
Waveforms 

Get Component 
subVIs allow you 
to access the 
elements that 
have been 
clustered  to form 
the waveform 

Build Waveform 
blocks allow you to 
cluster elements 
together to form the 
waveform 

At times it may be necessary to access the data in a data flow.  The data is always 
designated as Y.  
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Converting Between 
Data Types 

• Conversions between data types can be found on the Conversion palette and the 
Boolean Palette. 
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Frequency-domain Characterization 
of Signals: A Look at the Fourier 

Transform 

What you need to know to do the 
Lab… 
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2. Number of 
samples 

3. Pulse 
width (t) 
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Fourier Transforms 
Using FFT 

30 



Band Width (2t) 

Amplitude 
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Measuring Bandwidth 
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1. Select  Magnification 
Button 

2. Select Horizontal 
Magnification 
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Making Measurements 
Using Zoom Feature 
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3. Select Horizontal 
Range to be magnified 
using tool’s cursor 

4. Observe data and return to 
non-magnified mode for next 
observation. 
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Making Measurements 
Using Zoom Feature (Concluded) 
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The top display (Acquired Signal) shows the quadrature signals (in-phase is 
shown in red, and out-of-phase in white) sensed by the radio. The USRP is 
designed use quadrature modulation and you will be using the radio’s 
capability to adapt this modulation technique to support other modulation 
approaches. For now you will focus only on the magnitude spectrum. 

Making Measurements 
Using Zoom Feature (Concluded) 

34 



Observed Spectrum 
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Allocating Spectrum to 
Subchannels 

Conventional Multicarrier 
Modulation (FMDA) 

Frequency 

subchannel 1 

subchannel 2 

subchannel 3 
subchannel 4 

subchannel 5 

Allocated Spectrum 

Guard 
Band 

Guard 
Band 

Guard 
Band 

Guard 
Band 

Guard 
Band 

Guard 
Band 

Frequency 
Allocated Spectrum 

s1 s2 s3 s4 s5 

Orthogonal Frequency 
Division Multiplexing 
(OFDM) 

36 



Debugging Tools in NI LabVIEW 

What you need to know to do the 
Lab… 
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Introduction 

• You may encounter two general types of software bugs:  
– Those that prevent the program from running 
– Those that generate bad results or incorrect behavior. 

 
• If LabVIEW cannot run your VI 

– Provides an Error List window with the specific reasons why the VI is 
broken.   

 
• Bad results or incorrect behavior is based on your desired behaviors 

for LabVIEW VI and fixing these will require that you use the 
interactive LabVIEW debugging tools 
–  You can watch your code as it executes  
– Observe the data values in the dataflows  
– Control the execution 

http://www.ni.com/gettingstarted/labviewbasics/debug.htm 
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• Changes the run arrow to a broken icon (Click the broken Run button or select View»Error List to find out why 
a VI is broken) 

 

 

 

 

• Marks the data flow with the error 
 

• Provides a description of the error in one of 2 ways(Context Help  or right mouse click and select List Errors) 

 

Finding The Errors 

OR 

http://www.ni.com/gettingstarted/labviewbasics/debug.htm 

Printed on 
9/1/2014 © 2014, Anees Abrol and Eric Hamke 39 



Overview of List 
Errors Window 

The Items with errors section 
lists the names of all files 
that have errors. If two or 
more items have the same 
name, this section shows the 
specific application instance 
for each item.  

Click the Show Error button or double-click the 
error description to highlight the area on the 
block diagram or front panel that contains the 
error. 

Click the Help button to display a topic in 
the LabVIEW Help that describes the error 
in detail and includes step-by-step 
instructions for correcting the error. 

The Details section describes 
the errors and in some cases 
recommends how to correct 
the errors.  

The errors and warnings section 
lists the errors and warnings for 
the VI you select in the Items with 
errors section.  

http://www.ni.com/gettingstarted/labviewbasics/debug.htm 
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Common Causes of 
Errors 

• The following list contains common reasons why a VI is 
broken while you edit it: 
– The block diagram contains a broken wire because of a 

mismatch of data types or a loose, unconnected end. Refer 
to the Correcting Broken Wires topic of the LabVIEW Help 
for information about correcting broken wires. 

– A required block diagram terminal is unwired. Refer to the 
Using Wires to Link Block Diagram Objects topic of the 
LabVIEW Help for information about setting required 
inputs and outputs. 

– A subVI is broken or you edited its connector pane after 
you placed its icon on the block diagram of the VI.  

 http://www.ni.com/gettingstarted/labviewbasics/debug.htm 
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Fixing Incorrect 
Behavior 

• Next we will deal with using the debugging tools that allow you to trace the 
execution of a block diagram. 

– Using the trace tool to ensure there are no unintended connections. 

– Controlling the execution flow 

– Use of data probes 

• These tools are accessed through the toolbar as shown below. 

Control execution 
Retain data values from last subVI execution  
Trace diagram execution/data flow 
Stop and Pause Execution 

http://www.ni.com/gettingstarted/labviewbasics/debug.htm 
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Quick Review 
Diagram Execution Details 

• LabVIEW the diagram is the set of instructions. LabVIEW executes at a default 
interval determined by the fastest rate needed for the subVIs to execute properly. 
(Without a looping structure the diagram executes only once. ) 

• You need to use a loop to get the diagram to execute repeatedly until the data 
collection task is complete. 

f1(x(n)) 

f2{f1(x(n))} f5(f2(f1(x(n))), 
f4[f3{f1(x[n])}]) 

f3{f1(x[n])} 

f4[f3{f1(x[n])}] 

Tie-breaker 
execution 
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Tracing Execution 

 
• Click the Highlight Execution button       to display  to confirm execution sequence 
       an animation of the movement of data on the block diagram from one node to 

another using bubbles that move along the wires, when you run the VI.  
 
 
 
 
      
 

 
 

• Click the button        again to disable execution highlighting.  
 

• TIP:  Use execution highlighting with single-stepping to see how data values move 
from node to node in your VI.  
 

Red bubbles     move along 
wires. 
 
Note: Execution highlighting 
greatly reduces the speed at 
which the VI runs. 
 

http://www.ni.com/gettingstarted/labviewbasics/debug.htm 

Printed on 
9/1/2014 © 2014, Anees Abrol and Eric Hamke 44 



Retain Wire Values 
• Click the Retain Wire Values button        to save the wire values at each point in the flow of  

        execution so that when you place a probe on the wire you can immediately retain the most recent 
value of the data that passed through the wire.  

• Please keep in mind that each data flow has a set of variables associated with it. (Even though you 
do not get to see them.  These variables like any variable in a program get reused each time the 
diagram is called or executed.  

• You must successfully run the VI at least once before you can retain the wire values. 

• To see the values place the cursor on the data flow and click. 

 

 

 

 

 

 

 

 

 

 

 

• Click the button          again to disable retaining values for probe.  

 http://www.ni.com/gettingstarted/labviewbasics/debug.htm 

p 
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Probe Watch Window 

• Use the Probe Watch Window with execution highlighting, single-stepping, 
and breakpoints to determine if and where data is incorrect. 

•  If data is available, the probe immediately updates and displays the data 
in the Probe Watch Window during execution highlighting, single-
stepping, or when you pause at a breakpoint.  

• When execution pauses at a node because of single-stepping or a 
breakpoint, you also can probe the wire that just executed to see the 
value that flowed through that wire. 
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Control Execution 

• You can control the execution of the diagram using the  
–      Step Into button will follow the execution into a subVI and 

pause. When you click the Step Into button again, it executes 
the first action and pauses at the next action of the subVI or 
structure. Single-stepping through a VI steps through the VI 
node by node. Each node blinks to denote when it is ready to 
execute. You also can press the <Ctrl> and down arrow keys. 

–      Step Over button will execute a node and pause at the next 
node. By stepping over the node, you execute the node without 
single-stepping through the node. You also can press the <Ctrl> 
and right arrow keys.  

–      Step Out button will complete single-stepping through the 
node entered by stepping into it and navigate to the next node 
When the VI finishes executing, the Step Out button is dimmed. 
You also can press the <Ctrl> and up arrow keys. By stepping out 
of a node, you. 
 http://www.ni.com/gettingstarted/labviewbasics/debug.htm 
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Probe Windows 
(Constants & Signals) 

Note: The data flow is labeled with a 4 to 
match  the label given in the probe window 

Note: The format of the data 
being displayed changes to 
reflect the data source.  For 
example, the signal wire has a 
data cluster. 

If no data is available the display will be 
grayed out. 
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Probe Windows 
(Waveforms) 

Note: Execution probing a waveform can reduce the speed at which the VI runs. And 
can cause memory issues. This should be done sparingly. 
 
Better approach is to create a temporary waveform chart or graph indicator on the 
front panel.  
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Debugging  Example 
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Debugging Example 
(Background Information) 

A digital communication packet structure consists of 10 bits- 1 START bit, 8 DATA 
bits (one byte), and 1 STOP bit.  

 

 

 

 

 

 

 

Commonly referred to as 8N1 (8 data bits, no parity, 1 stop bit).  

0 1 1 0 0 1 1 0 0 1 

Start Bit Stop Bit 

Data Bits 

Most Significant Bit 
(MSB) 
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Debugging Example 
(Serial Communications) 

Serial communications follows this general pattern: 

•  In order to achieve synchronization with an incoming packet, the communication 
wire idles in the HIGH (1) state in between packets. Since the START bit is always a 
LOW, we know a packet has begun when this transition occurs.  

• After we synchronize to the start of a packet, we use the known baud rate to 
estimate the center of each data bit, and sample the voltage of the signal at this 
point. 

 

 

 

 

 

•  After the receiver decodes the entire data packet, the bit order is reversed (to get 
the original MSB->LSB) byte 

• The stop bit simply returns the communications wire to the original IDLE (HIGH) 
state, and the receiver begins waiting for the next START bit which signals the 
beginning of the next packet. 

Bit time Interval 
determined by 
baud rate 

Received Signal 

Sampling Timing 

Bit Centers 
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Debugging Example 
(Bit Stretching) 

• Suppose that the signal is transmitted through a serial communications link 
that causes every fourth bit to flip from 1 to 0 or vice versa.  

• If the signal wave form is sampled only once, there is not enough information 
to determine if the data received is the data sent.  

• That is why the parity bit is used in the standard. However, the parity bit only 
tells us the data is corrupted.  

• To make things more robust we may want to send more than one copy of the 
sampled value. The number depends on the error correction scheme being 
used. In this example each bit is oversampled by a factor of 4.  

Bit time Interval 
determined by 
baud rate 

Received Signal 

Sampling Timing 

Bit time Interval 
determined by 
baud rate Printed on 

9/1/2014 © 2014, Anees Abrol and Eric Hamke 53 



Debugging Example 
(Bit Stretching) 

To this end we have developed the following VI to stretch the bits by making the 
number of copies specified in for each bit in the signal array. 

m = 0; 
for k = 1 to length of the array 
       bit = signalArray(k); 
       i = 0; 
       while not(i  NumberOfCopies) 
            y(m) = bit; 
            i = i + 1; 
            m = m + 1; 
        end 
end 
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Right mouse click on the 
and select  list errors 

The error is stating that we have an 
array  
 
 
 
and it is expecting 

1 1 1

0 0 0

1 1 1

 
 
 
  

 1 1 1 0 0 0 1 1 1Printed on 
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Debugging Example 
(Recovering Error 

Information) 



Debugging Example 
(Fixing Error) 

The fix:  Reshape the matrix into a vector 
Step 1: We need to know the dimensions of the matrix.  We can find this using the  

Step 2: The resulting vector will have a length of the number of rows times with           
             number of columns. This found using an                                             on the 
             output of Step 1.  

Step 3: We now have what we need to reshape the matrix using the  

1. 2. 3. 
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For the bit string                            with three copies we 
should get 

Debugging Example 
(Unexpected Behavior) 

 1 0 1 0 1

 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

However, the VI outputs 

Each bit is being copied 4 instead of 3 times. 
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Debugging Example 
(Observing The Behavior) 

We need to set a breakpoint so 
we can observe the counter in 
the while loop and why it is 
over counting by 1 or how an 
extra bit is added to the array. 
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Debugging Example 
(Placing 1st Probe) 

Right clicking on the wire we wish 
to observe and selecting probe 
from the menu will result the wire 
receiving a label and the probe 
watch window will appear. 
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Debugging Example 
(Placing Remaining 

Probe) 

We not only wish to see the number of copies input but would like to observe the 
counter (probe 2) and the results of the comparison (probe 3). The result of the 
comparison will determine if the loop executes another time (FALSE) or stops (TRUE). 
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Debugging Example 
(Observing the Matrix) 

In addition we do not know if the problem is the way the matrix is being build up.  So 
have placed a probe at labels 4 (current element) and 5 (final matrix from the last pass). 
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Debugging Example 
(First Pass Through 

Diagram) 

Diagram execution has halted on the Comparison block. Observing 
the Probe Watch Window we see that  
     Probe 1 is showing its value is 3 as expected. 
     Probe 2 shows the counter has been initialized to 0 as expected. 
     Probe 3 has not been executed yet.  This is because we are 
          halted just before the wire 
     Probe 4 is showing the current bit has the value 1 
     Probe 5 shows the output matrix from last pass is empty. 
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Debugging Example 
(Second Pass Through 

Diagram) 

After clicking on the continue button, diagram execution has again 
halted on the Comparison block. Observing the Probe Watch 
Window we see that  
     Probe 1 is showing its value is 3 as expected. 
     Probe 2 shows the counter has incremented by 1. 
     Probe 3 Shows the result of the comparison from the last pass 
     Probe 4 is showing the current bit has the value 1 
     Probe 5 shows the output matrix from last pass has elements  
                   [1]. 
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Debugging Example 
(Third Pass Through 

Diagram) 

After clicking on the continue button, diagram execution has again 
halted on the Comparison block. Observing the Probe Watch 
Window we see that  
     Probe 1 is showing its value is 3 as expected. 
     Probe 2 shows the counter has incremented by 1 to 2. 
     Probe 3 Shows the result of the comparison from the last pass 
     Probe 4 is showing the current bit has the value 1 
     Probe 5 shows the output matrix from last pass has elements  
                   [1 1]. 
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Debugging Example 
(Fourth Pass Through 

Diagram) 

After clicking on the continue button, diagram execution has again 
halted on the Comparison block. Observing the Probe Watch 
Window we see that  
     Probe 1 is showing its value is 3 as expected. 
     Probe 2 shows the counter has incremented by 1 to 3. 
     Probe 3 shows the result of the comparison from the last pass 
     Probe 4 is showing the current bit has the value 1 
     Probe 5 shows the output matrix from last pass has elements  
                   [1 1 1]. 

At this point we know that the comparison will result in a TRUE ending the loop 
and the matrix will receive an additional element because of this. 
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Debugging Example 
(The Correction) 

Stop of the diagram execution by clicking on the stop button. 
 
To correct the over counting we can subtract 1 from the number of 
elements.  This makes sense since the counter starts counting from 
0 and not 1. 
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Debugging Example 
(Confirming the Fix) 

For the bit string                            with three copies we 
should get 

 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

and as can be seen each bit is being copied just 3 times. 

 1 0 1 0 1
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Debugging Example 
(Leaving the Debugging 

Environment) 

Closing the probe window 
will remove all the probes 
and labels from the drawing. 

You also will need to remove 
or clear the breakpoint on 
the comparison block. 
 
You MUST do this otherwise 
it will be saved with the 
corrected file and will be 
come a nuisance in the 
future. 
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Introduction to USRP 
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The USRP 

Universal Software Radio Peripheral (USRP)  is a 
software-programmable radio transceiver and a 
secondary receiver .  
• Programmable with NI LabVIEW software, 
• Physical layer communication and spectrum 
monitoring 
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USRP Antennas 

TX1/RX1 RX2 

VERT400 Antenna 

Tri-Band Vertical Antenna 
 (144 MHz, 400 MHz, 1200 MHz) 

VERT2450 Antenna 

Dual-Band Vertical Antenna  
(2.4 GHz, 5 GHz) 

All of the labs will be using a 
carrier frequency in the MHz 
ranges.  So you should be 
using the VERT400. 
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USRP Transmitter 
(Transmitter Template) 

72 

The transmitter template consists of 
4 elements: 
• USRP Transmitter Configuration 
• While-loop to control execution  
   of lab. 
• Write to the transmitter buffer 
• USRP shutdown  & status  
   reporting 

Your 
application 
goes here 

Your 
application 
goes here 

Printed on 
9/1/2014 © 2014, Anees Abrol and Eric Hamke 



USRP Transmitter 
(USRP Transmitter Config.) 

73 

The front panel for each application will have an USRP configuration panel.  The panel 
supports entering the following radio parameters: 
•  Device names – this configures the LabView interface to talk with the radio. 
•  IQ Rate - Specifies the sample rate of the baseband I/Q data for Tx or Rx in samples  
                   per second (Samples/second).  
• Carrier frequency – The passband frequency to be used by the radios for modulation 
• Gain – Amplification of the transmitted signal. 
• Active antenna – Should always be set to TX1 (the USRP transreceiver) 
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USRP Transmitter 
(Open Tx Session) 

This sub-VI initiates the transmitter 
session and generates a session 
handle and an error cluster that are 
propagated through all VIs.  
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USRP Transmitter 
(Configure Signal) 
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USRP Transmitter 
(Write to USRP TX 

Buffer) 

76 

The signal to be transmitted will consist 
of an array of data,  sampling period, 
and an initial time for the time vector. 
 
In some of the labs, you will generate 
this array and repeatedly send the same 
signal.  In this case, your application will 
be inserted outside the loop. 
 
In others,  the signal will change 
dynamically with the controls on the 
front panel. In this situation, your 
application will be inside the loop. 
 
All templates will come with a stop 
button on the front panel. Use this to 
stop execution of your application – it 
will ensure the radio shuts down 
properly. 
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USRP Transmitter 
(Writing to Transmit Buffer) 
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USRP Transmitter 
(Transmitter Status) 

78 

Each transmitter template has a status 
window.   
 
If there are no errors in the transmission 
of the data, you should have a status 
display with a green check mark.   

If there is an error in the 
transmission of the data, you should 
have a status display with a red x 
mark with an error code and an 
error message. 
 
In this case, the message indicates 
you are not connected to the radio 
through the ethernet interface. 
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USRP Receiver 
(Receiver Template) 

79 

Your 
application 
goes here 

The Receiver template consists of 
4 elements: 
• USRP Receiver Configuration 
• While-loop to control execution  
   of lab. 
• Read from the receiver buffer 
• USRP shutdown  & status  
   reporting 
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The front panel for each application will have an USRP configuration panel.  The panel 
supports entering the following radio parameters: 
•  Device names – this configures the LabView interface to talk with the radio. 
•  IQ Rate - Specifies the sample rate of the baseband I/Q data for Tx or Rx in samples  
                   per second (Samples/second).  
• Carrier frequency – The passband frequency to be used by the radios for modulation 
• Gain – Amplification of the received signal. 
• Active antenna – Should be set to RX1 or RX2 (the USRP transceiver or secondary  
                                  receiver) 

USRP Receiver 
(Configuration) 

80 
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USRP Reciever 
(Open Rx Session ) 

81 

This sub-VI initiates the receiver session and generates a session handle and an 
error cluster that are propagated through all VIs.  
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USRP Receiver 
(Initiate Reception of Data) 

The niUSRP Initiate VI starts the waveform acquisition in a Rx session. You must initiate 
the Rx session before you use a Fetch Rx Data (poly) VI to retrieve waveform data. You do 
not need to call the niUSRP Initiate VI for Tx sessions; you initiate waveform generation 
when you provide data using the Write Tx Data (poly) VI. 
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USRP Receiver 
(Read From USRP Buffer) 

83 

The signal of received data will consist of an array of data,  sampling period, and an initial 
time for the time vector. 
 
All templates will come with a stop button on the front panel. Use this to stop execution of 
your application – it will ensure the radio shuts down properly. 
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USRP Receiver 
(Reading From Receive Buffer) 
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USRP Receiver 
(Receiver Shutdown & 

Status) 

85 

Stops an acquisition previously started. 
For finite acquisitions, calling this VI is optional 
unless you want to stop the acquisition before it is 
complete. If the acquisition aborts successfully, the 
driver transitions to the Done state. 
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USRP Receiver 
(Receiver Status) 

86 

Each Receiver template has a status 
window.   
 
If there are no errors in the reception of 
the data, you should have a status display 
with a green check mark.   

If there is an error in the reception of 
the data, you should have a status 
display with a red x mark with an error 
code and an error message. 
 
In this case, the message indicates you 
are not connected to the radio through 
the ethernet interface. 
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FIR digital filters: 
Finite Impulse Response 

• FIR filters: stands for Finite Impulse Response, is the simplest type of digital 

filter, it is inherently estable, and always realizable. 

• The C(k) coefficients of an FIR are actually the sampled values of the filter’s 

impulse response. 

• Given an FIR with “n” taps, the effect of an input vanishes in the output after 

“n” delays. Thus its finite response. 

• Can be designed to have a linear phase response 

• Usually non recursive 

+ 

X X X X 

Z   -1 Z   -1 Z   -1 

C0 C1 C2 

x(n) 

C3 

y(n) 

Recursive FIR example? Think of an 
average!! 
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 The output signal y[n] of the filter in response to an impulse is limited only the 

last N values of x[n], so after N+1 samples the response returns to zero. For 

example, the response of a fifth order filter consists of a finite sequence of six 

(N+1 ) samples 
.  

FIR digital filters: 
FIR Example 
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• An FIR filter performs the convolution between the filter’s impulse response 

(C[..] coefficients) and the samples of the input signal (x[..]), thus, the 

coefficients C[..] of an FIR are the sampled values of the filter’s impulse 

response 

 

 

• The filter’s transfer functions, in Z,  is: 

 

 

• This is a polynomial equation of order N, and the N roots of this polynomial 

are the N zeros of the filter 

Digital filters: FIR filters 
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H(z): filter’s transfer function 
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IIR  digital Filters : 
Infinite Impulse Response 

• The IIR is a more complex type of filter, where the output feedback enables 

its response to extend infinitely in time 

• They are usually more efficient (requiring less storage, lower complexity, 

lower cost) than the FIR, although with more problems, namely stabilty and 

numerical error propagation 

• They can be desgined starting from analogies with existing analog filters 
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Digital filters:  
IIR Filters 

• The IIR (Infinite Impulse Response) filters are a more complex type of filter, 

with an output at time k, given by: 

 

 

• The output is a linear combination of the current input I(k), N previous inputs, 

but now, also of the previous M outputs, and its corresponding transfer 

function is: 

 

 

• This equation, in addition to having N zeros (as the FIR, the roots of N(z)), it 

also has M poles (the roots of D(z)), which for a stable filter, are required to be 

inside the unit circle in the z plane. 
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The output signal y[n] of the filter in response to an impulse The output signal 

of the filter can be non-zero infinitely, even when the input signal has a value of 

zero. In theory, when a recursive filter is excited by an impulse, the output will 

persist forever. 
.  

FIR digital filters: 
IIR Example 
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Preliminaries 
(Absolute) 

Digital Signal Processing Using MATLAB® ,Third Edition, Vinay K. Ingle John G. Proakis 

A typical absolute specification of a lowpass filter is shown below, 

in which the filter response has been normalized to 1 in the passband 
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Preliminaries  
(dB Relative Specifications) 

Digital Signal Processing Using MATLAB® ,Third Edition, Vinay K. Ingle John G. Proakis 

A typical relative specification of a lowpass filter is shown below, in which 

•  Rp is the passband ripple in dB, and 

•  As is the stopband attenuation in dB. 

The parameters given in these two specifications are obviously related. 

Since |H(f)| in absolute specifications is equal to (1 + P), we have 
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Preliminaries 
(Absolute vs. Relative) 

LabVIEW is 

looking for relative 

specifications 
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Amplitude Modulation 

What you need to know to do the Lab… 
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AM Overview 
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If 𝑚 𝑡  is a baseband “message” signal with a peak value 𝑚𝑝 , and 𝐴𝑐 cos 2𝜋𝑓𝑐𝑡  is a “carrier” signal at carrier 

frequency, 𝑓𝑐 , then we can write the AM signal 𝑔 𝑡  as 

 
𝑔 𝑡 = 𝐴𝑐  1 + 𝜇

𝑚 𝑡 

𝑚𝑝
 cos 2𝜋𝑓𝑐𝑡  (1) 

 

where the parameter 𝜇 is called the “modulation index” and takes values in the range 0 < 𝜇 ≤ 1 (0 to 

100%) in normal operation.   



Modulation: 
MathScript Node 

   
        a = 2*b – max (d); 
        p = log(a)*a; 
        s = a*exp(2*pi*p*j); 

“Equations”  “Text-based scripts”  
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4. Select “Add Output” 

[For variables not declared in 
the text-based script, use 
“undetected variable”] 

1. Right-click 

2. Select “Add Input” 

3. Name the Input 

Modulation  Index 

Message Signal 
Max Amplitude 

Message Signal 

5. Wire inputs and outputs to respective terminals  

Baseband Signal 

Complex form of 
Baseband Signal 

Setting up I/Ps & O/Ps 
in a MathScript node 

4. Add & name the 
outputs 

“Click on undetected 
variable and type 
variable name for 
undeclared outputs”  
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Array Max & Min VI 
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Get Waveform 
Components VI 

“Waveform attribute selection” 

1. Select, hold and drop VI 

2. Click on bottom line, hold 
and extend 

3. Right-click on attributes, scroll to 
“Select Item” and pick the 
attribute. 
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niUSRP Write Tx 
Data VI 

“Buffer to transmit data to receiver” 
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niUSRP Fetch Rx Data VI 

“Buffer to receive data from transmitter” 
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“Set filter parameters as constants” 

Demodulation: Filters 

“Chebyshev clears noise around carrier frequency” 
“Butterworth implemented after full wave rectification to complete envelope detection” 
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Complex to 
Real/Imaginary 

“Extract real part from  
complex data values” 
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Absolute Value VI 

“Full-wave Rectifier” 
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Build Waveform VI 

“Waveform attribute selection” 
Same as “Get Waveform Components” 
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Frequency Modulation 

What you need to know to do the Lab… 
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FM Overview 
(Modulation) 
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FM Overview 
(Demodulation) 
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FM demodulation can be divided into three broad categories: Frequency discrimination, 
Phase-shift discrimination, and Phase-locked loop (PLL). This lab focuses solely on 
frequency discrimination  



Multi-Tone 
Message Generator 
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Get Waveform 
Components  
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Normalize Message 
Sequence 
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Implement IIR Filter  
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Convert from Polar 
to Complex form 
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niUSRP Write Tx Data 
VI 

“Buffer to transmit data to receiver” 
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niUSRP Fetch Rx 
Data VI 

“Buffer to receive data from transmitter” 
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Finding the Phase 

Get Angle (Phase) component by converting from Complex to Polar form 
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Unwrap the Phase 
Angle 

Printed on 
9/1/2014 119 © 2014, Anees Abrol and Eric Hamke 



Implement Difference 
Equation 

FIR Co-efficients 
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FIR Coefficients Array 
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Envelope 
Detector 

Implementation 

Low-pass Butterworth Filter 
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Build Waveform VI 
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Pulse Position Modulation 

What you need to know to do the Lab… 
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PPM Overview 
Analog Signals 
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y1 
y2 y3 y4 y5 

y6 y7 y8 
y9 

y10 

y11 

t1 t2 t3 t4 t5 
t6 t7 t8 t9 t10 t11 

time 

time 

time 

Message 

Clock 

PPM 



y1 
y2 y3 y4 y5 

y6 y7 y8 
y9 

y10 

y11 

time 

Message 

time 

TX Clock 

t1 t2 t3 t4 t5 
t6 t7 t8 t9 t10 t11 

time 

PPM time 

RX Clock 

PPM Overview 
Analog Demod 
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time 

TX Clock 

th te tl tl to tspace tw to tr tl td 

time 

PPM time 

RX Clock 

Message h e l l o w ‘ ‘ o r l d 

PPM Overview 
Digital Demod 
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PPM Implementation 
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Simulate Signal VI 
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Convert From 
Dynamic Data subVI 

“Single Scalar”  
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Sine and Square 
Waveform subVIs 
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Merge Signals VI 
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Basic Level Trigger 
Detection VI 
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Basic Level Trigger 
Interface 
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1. Select, hold and drop VI 

2. Double click to set time delay in seconds. 

Time Delay VI 
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Random Process, Crosscorrelation 
and Power Spectral Density 

What you need to know to do the 
Lab … 
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Crosscorrelation 
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Cross-correlation  is a measure of similarity of two waveforms (pulse and return signal) as a function 
of time-lags. Given two real-valued sequences 𝑝 𝑛  and 𝑟 𝑛  of finite energy, the cross-correlation 
of 𝑝 𝑛  and 𝑟 𝑛  is a sequence 𝑟𝑝𝑟  𝑙  defined as 

 
 

𝑟𝑝𝑟  𝑙 =  𝑝∗ 𝑛 𝑟[𝑛 + 𝑙]
∞

𝑛=−∞
 (1) 

 
Observed value is 0.13273 sec 

The propagation delay of the echo (𝜏) is 𝜏 = 2 r c   where, c is the speed 
of light (2.98 𝑥 108𝑚/𝑠𝑒𝑐) 



Power Spectral Density 
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Observed value is 0.307 

The Power Spectral Density  can also be used to estimate the distance. In this approach the 
return signal and the pulse signal are multiplied together. The product contains the sum and 
difference frequencies. The sum of frequencies is approximately 2𝑓𝑐 . This frequency is beyond 
the frequencies the electronics can respond to. Only the terms related to the difference 
frequencies are retained (1). 
 

 𝑚 𝑡 = 𝑎3 cos 𝜙 𝑡 − 𝜙 𝑡 − 𝜏   

= 𝑎3 cos  2𝜋𝑓𝑏𝑒𝑎𝑡 𝑡 + 2𝜋𝑓𝑐𝜏 −
𝜋𝐵

𝑇𝑚
𝜏2  

(1) 

 



LAB Tasks 

• Build Beat Frequency analysis subVI. 
• Build Cross Correlation analysis subVI. 
• Wire your VIs into the J2 V2 RADAR VI. 
• Basic procedure 

– You  have been supplied with a set of templates and supporting VIs 
– Build both VIs and wire them in. 
– Debugging strategy 

• Use simulation page in J2 V2 RADAR VI. 
• Test case for 20,000 km 

 
 
 
 
 

• Please refer to debugging presentation for tools and techniques 

Table I – 20,000km Test Case Reference 
Simulated 

Distance to 
Target. (km) 

Return Signal Ramp 
Reset Time (Sec) 

Return Time (Sec) Beat Frequency (Hz) 

20000 0.86728 (see Fig. 19) 0.13272 (see Fig. 20) 0.337 (see Fig. 21) 
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Beat Frequency SubVI 
These are provided 

in the template 
These are new blocks 
to be used in the lab 

These are blocks you have 
used in previous labs 

Input Controls 

Output Indicators 

Block Diagram with blocks 
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The FFT Block 

(Fast Fourier Transform) 

Computes the fast Fourier transform (FFT) of the input sequence X.  
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Array Data Processing 

Returns the number of elements 
in each dimension of array. 
 

Returns the maximum and 
minimum values found in 
array, along with the indexes 
for each value. 
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Cross Correlation and 
Return Time Analyzer 

These are new blocks 
to be used in the lab 

Input Controls 

Output Indicators 

These are blocks you be 
used in previous labs 
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Cross Correlation 

Computes the cross correlation of the input 
sequences X and Y. Wire data to the X and Y 
inputs to determine the polymorphic instance 
to use or manually select the instance. 
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Sub VIs Provided 
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Demodulate SubVI 
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AM Envelope 
Detector 

Should look familiar since you designed one on the AM Lab 
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Next Power of 2 

 
 

 2

ln
log

ln 2

x
x 

Rounds the input to the next highest 
integer. 
 
For example, if the input is 3.1, the 
result is 4. If the input is –3.1, the 
result is –3. The connector pane 
displays the default data types for this 
polymorphic function. 
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Amplitude Modulation with 
Additive Gaussian White Noise 

What you need to know to do the Lab… 
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Noise Floor 
The Noise Floor reflects the effect of random processes that are the result of many 
natural sources, such as:  

– Thermal noise is the result of vibrations of atoms in conductors resulting thermal 
energy; 

– Shot noise is the result of random fluctuations in the movement of current in discrete 
electric charge quanta or electrons. 

– Electromagnetic radiation emitted by the sun, earth and other large masses in thermal 
equilibrium. 

– In the case of this lab, the distance between the transmitter and receiver, and 
background radiation from other nearby transmitters. 
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Noise Floor 
at 0.005 dBm 



Changing the Noise 
Floor Using AGWN 

• Additive white Gaussian noise (AWGN) is used to simulate 
the effect of many random processes too complicated to 
model explicitly.  
– The model is assumed to be linear so that the noise can be 

super imposed or added to the message or modulated signal.  
– A white noise process is assumed to uniformly affect all 

frequencies in the signal’s spectrum.  
– A mean of zero is used since the process is not expected add a 

DC bias.  

• The AGWN is simulated using a pseudorandom number 
generator whose statistical profile is a normal distribution 
with zero-mean and a standard variance (s2).  The variance 
represents the power in the noise signal.  
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        a = 2*b – max (d); 
        p = log(a)*a; 
        s = a*exp(2*pi*p*j); 

“Equations”  “Text-based scripts”  

Amplitude Modulation: 
MathScript Node 
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White Gaussian Noise 
Generation 
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To Case Statement
1) Select  Switch  and Round LED 
from Front Panel Controls Menu

2) Arrange the LED and switch on the 
front panel

3) Arrange the LED and switch in the 
block diagram

Boolean Switch 
and LED 
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Signal to Noise & 
Distortion Ratio 

Analysis  
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Find Point by Point 
Mean 
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Plot Power 
Spectrum 
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Rx Filter Selection 
Logic 

Switch and LED Settings 

Switches Indicator LEDs 

LPF  Filter Selector LPF Chebyshev Butterworth 

Off Chebyshev Off On Off 

Off Butterworth Off Off On 

On Chebyshev On On Off 

On Butterworth On Off On 
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Rx Filter Selection 
Logic (contd.) 

To outside case 
statement

To inside case 
statement
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From Bandpass

To outside case 
statement

From Sample Info

Filtered 
Signal

Filtered 
Signal

Filtered 
Signal

Outer Case Structure is FALSE

Outer Case Structure is TRUE

Inner Case Structure is FALSE
(Chebyshev Filter)

Inner Case Structure is TRUE
(Butterworth Filter)

From Bandpass

To outside case 
statement

From Sample Info

To inside case 
statement

From Bandpass

To outside case 
statement

From Sample Info

To inside case 
statement

Outer Case Structure is TRUE

Rx Filter Selection 
Logic (contd.) 
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“Set filter parameters as constants” 

Demodulation: Filters 

“Chebyshev clears noise around carrier frequency” 
“Butterworth implemented after full wave rectification to complete envelope detection” 
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Low Cutoff Frequency fl

1) Place cursor on 
terminal (terminal 
label will appear) 

2) Right Click and menu 
will appear

3) Control  on the front panel

Setting Filter 
Parameters/ 

Specifications 
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Frequency Modulation with 
Additive Gaussian White Noise 

What you need to know to do the Lab… 
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White Gaussian Noise 
Generation 
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To Case Statement
1) Select  Switch  and Round LED 
from Front Panel Controls Menu

2) Arrange the LED and switch on the 
front panel

3) Arrange the LED and switch in the 
block diagram

Switch and LED 
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Signal to Noise & 
Distortion Ratio 

Analysis  
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Find Point by Point 
Mean 
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Plot Power Spectrum 
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niUSRP Write Tx Data VI 

“Buffer to transmit data to receiver” 
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niUSRP Fetch Rx 
Data VI 

“Buffer to receive data from transmitter” 
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Get Angle (Phase) component by converting 
from Complex to Polar form 
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Unwrap the Phase 
Angle 
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Implement Difference 
Equation 

FIR Co-efficients 
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FIR Coefficients Array 
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Rx Filter Selection Logic 

Switch and LED Settings 

Switches Indicator LEDs 

LPF  Filter Selector LPF Chebyshev Butterworth 

Off Chebyshev Off On Off 

Off Butterworth Off Off On 

On Chebyshev On On Off 

On Butterworth On Off On 
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Rx Filter Selection 
Logic (contd.) 

To outside case 
statement

To inside case 
statement
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From Bandpass

To outside case 
statement

From Sample Info

Filtered 
Signal

Filtered 
Signal

Filtered 
Signal

Outer Case Structure is FALSE

Outer Case Structure is TRUE

Inner Case Structure is FALSE
(Chebyshev Filter)

Inner Case Structure is TRUE
(Butterworth Filter)

From Bandpass

To outside case 
statement

From Sample Info

To inside case 
statement

From Bandpass

To outside case 
statement

From Sample Info

To inside case 
statement

Outer Case Structure is TRUE

Rx Filter Selection 
Logic (contd.) 
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“Set filter parameters as constants” 

Demodulation: Filters 

“Butterworth implemented after full 
wave rectification to complete 
envelope detection” 

178 

“Chebyshev clears noise around 
carrier frequency” 
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Low Cutoff Frequency fl

1) Place cursor on 
terminal (terminal 
label will appear) 

2) Right Click and menu 
will appear

3) Control  on the front panel

Setting Filter 
Parameters/ 

Specifications 
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Build Waveform VI 
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Frequency Domain Multiplexing 

What you need to know to do the 
Lab 
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Allocating Spectrum to 
Subchannels 

Conventional Multicarrier 
Modulation (FMDA) 

Frequency 

subchannel 1 

subchannel 2 

subchannel 3 
subchannel 4 

subchannel 5 

Allocated Spectrum 

Guard 
Band 

Guard 
Band 

Guard 
Band 

Guard 
Band 

Guard 
Band 

Guard 
Band 

Frequency 
Allocated Spectrum 

s1 s2 s3 s4 s5 

Orthogonal Frequency 
Division Multiplexing 
(OFDM) 

182 



FDM Concepts 

0 1 2 3 4 5 6 7 8
0.8

1

1.2

1.4

1.6

1.8

2

Consecutive OFDM Subcarriers in Time domain

Subcarrier index

A
m

pl
itu

de

 

 

sub-carrier 1

sub-carrier 2

sub-carrier 3

In this experiment you will be 
using two frequencies or sub 
carriers. 
 
You will build a transmitter and 
receiver VI and will examine the 
affects of inter-carrier or 
subchannel interference. 
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PRE-LAB Tasks 

• A template for the transmitter has been provided in 
the file FDM_Tx_Template.vi.  To complete the 
transmitter you will be asked to perform two tasks: 
– Create a sub-vi that modulates a message using Amplitude 

Modulation.  
– Update the transmitter template to combine the 

modulated messages to form the OFDM signal. 

• A template for the receiver is also provided, 
FDM_Rx_Template.vi.  To complete the lab, you will 
need to  
– Design a band pass filter to isolate each message signal. 
– Create an envelope detector similar to the one designed in 

Amplitude Modulation Lab. 
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AM_on_Sub-carrier subVI 

(AM modulation Review) 
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        a = 2*b – max (d); 
        p = log(a)*a; 
        s = a*exp(2*pi*p*j); 

“Equations”  “Text-based scripts”  

Modulation: 
MathScript Node 
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Inputs 

Outputs 

Generate sub-carrier  

   sin 90 cos   

 
11

p

m t
A

m


 
 

  

 
( )

( )
max m(t)

p

m t
m t 

SubVI Overview 
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Array Max & Min VI 

188 
Printed on 
9/1/2014 © 2014, Anees Abrol and Eric Hamke 



Get Waveform 
Components VI 

“Waveform attribute selection” 

1. Select, hold and drop VI 

2. Click on bottom line, hold 
and extend 

3. Right-click on attributes, scroll to 
“Select Item” and pick the 
attribute. 
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Combine the Modulated 
Messages 
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Superposition 

cos(2f1t) 

cos(2f2t) 

m1(t) 

m2(t) 

AM_on_Sub-carrier subVI 

Determine the 
 size of ( )g t

( )g t

Scale the Magnitude  
of ( )g t

Initialize a  
vector of zeros 

( )g t

Form complex  
sequence 

Scale signal 
for 

Modulation 

( )g t
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“Set filter parameters as constants” 

Demodulation: Filters 

“Chebyshev clears noise around carrier frequency” 
“Butterworth implemented after full wave rectification to complete envelope detection” 
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Complex to 
Real/Imaginary 

“Extract real part from  
complex data values” 
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Absolute Value VI 

“Full-wave Rectifier” 
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Build Waveform VI 

“Waveform attribute selection” 
Same as “Get Waveform Components” 
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Entropy and Coding Efficiency 

What you need to know to do the 
Lab… 
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Source 
Encoder 

Channel 
Encoder 

C
h

an
n

el
 

Source 
Decoder 

Channel 
Decoder 

Digital Communication 
Block Diagram 

• The source encoder 
converts the source to a 
binary sequence  

• The channel encoder (often 
called includes the 
modulator and redundancy 
coding) . It processes the 
binary sequence for 
transmission over the 
channel.  

• The channel decoder 
(demodulator) recreates the 
incoming binary sequence 

•  The source decoder 
recreates the source output. 
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English Language 
Statistics 
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Relative Frequency of Letters in the English Language 

Letter 
Relative 

Frequency 
Letter 

Relative 
Frequency 

Letter 
Relative 

Frequency 

a 3256 j 60 s 2524 

b 596 k 308 t 3612 

c 1108 l 1604 u 1100 

d 1696 m 960 v 392 

e 5184 n 2692 w 940 

f 888 o 2992 x 60 

g 804 p 768 y 788 

h 2432 q 36 z 28 

i 2780 r 2388 -- -- 

 

Huffman Code Letters in the English Language 

Letter 
Huffman 

Code 
Letter 

Huffman 
Code 

Letter 
Huffman 

Code 

e 100 d 11111 p 110001 

t 000 l 11110 b 110000 

a 1110 c 01001 v 001000 

o 1101 u 01000 k 0010011 

i 1011 m 00111 j 001001011 

n 1010 w 00110 x 001001010 

s 0111 f 00101 q 001001001 

h 0110 g 110011 z 001001000 

r 0101 y 110010 -- -- 

 

A typical example of the number of 
times (relative frequency) we would 
expect to see the letters (symbols) 
appear in a random piece of English 
text consisting of 40,000 letters.. 
 

A typical Huffman code generated for this 
sample of text.  The average number of bits 
used to transmit the symbols in the text is 
approximately 4.25 bits/symbol 



Pulling the Data 
Together 
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Table XLII -Relative Frequency of Letters in the English Language 

Letter Length 
Relative 

Frequency 
Letter Length 

Relative 

Frequency 
Letter Length 

Relative 

Frequency 

a 4 0.0814 j 9 0.0401 s 4 0.0275 

b 6 0.0149 k 7 0.0240 t 3 0.0098 

c 5 0.0277 l 5 0.0673 u 5 0.0235 

d 5 0.0424 m 5 0.0748 v 6 0.0015 

e 3 0.1296 n 4 0.0192 w 5 0.0197 

f 5 0.0222 o 4 0.0009 x 9 0.0007 

g 6 0.0201 p 6 0.0597 y 6 0.02750 

h 4 0.0608 q 9 0.0401 z 9 0.0098 

i 4 0.0695 r 4 0.0240 -- -- -- 



Efficiency 
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In the following sections of the lab, you will be asked to determine the average word length Error! Reference source not 

found. and efficiency of the code Error! Reference source not found. given by  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 𝐿 = 𝐸{ℓ} =  p 𝑥𝑖  ℓ𝑖

𝑛

𝑖=1

  

and,  

𝐸𝑓𝑓𝑖𝑐𝑒𝑛𝑐𝑦 = 𝐻(𝑥) 𝐿    

 
 

 

where p 𝑥𝑖  is the probability set of the random variable,  ℓ𝑖  is the length of ith word, and 𝐻 𝑥  is the entropy of the 
source.  
 
Using the frequency table and the Huffman code along with the equations, the average word length is 4.2015 average 
bits and the entropy is 4.1722 average bits.  So the code’s efficiency is 0.9930. 
 
 

The Entropy is essentially the measure of uncertainity of a random variable with an associated probability 
set, p 𝑥𝑖 .   

𝐻 𝑋 = −  p 𝑥𝑖  log⁡p(𝑥𝑖) 

𝑛

𝑖=1

  

 



3 3 3 3 3 3 

3 3 3 3 3 3 

3 3 1 1 1 1 

3 3 1 2 2 2 

3 3 1 2 2 2 

3 3 1 2 2 0 

Image Compression 
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Image Frequency Counts 

Color 

(Node Number) 

Relative Frequency 

(Count) 

0 

1 

2 

3 

Complete the table by counting the number of squares with the color code.  This is the 
data you will need to perform the experimental procedure.  Note there are 4 color codes 
so N equals 4. 



Entering The Data 
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Step. 3 

Step. 4 



Interpreting the 
Output 
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Node 6: 
C=34 

Node 5: 
C=16 

Node 4: 
C=8 

New Node 

Input Node 

Node: 0 
C=1 

Node: 1 
C=7 

 0 Child  1 Child 

Node: 2 
C=8 

 0 Child  1 Child 

Node: 3 
C=18 

 0 Child  1 Child 



Asynchronous Serial 
Communication 

What you need to know to do the 
Lab 
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What You Are Doing 

• You will be responsible for building the receiver portion of 
the UART for this lab.  
– This lab addresses the link between source coding/decoding and 

channel encoding/decoding. 
– Starts with a text string already encoded using the American 

Standard Code for Information Interchange (ASCII).  
– Additional 3 copies of each bit are used as the channel 

encoding. 
– The link is a serial interface that uses an UART to convert the 

encoded text into a sequence or stream.  
– To simplify the lab, the transmitted bit stream is passed directly 

to a UART receiver that reconverts the stream into the ASCII 
codes.  
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The Serial Data 
Packet 
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0 0 0 1 1 0 0 1 1 1 

Start Bit Stop Bit 

Data Bits in Reverse Order 

Least Significant Bit 
(LSB) 

t0 t10 t10  >  t0 

Bit time Interval 
determined by baud 
rate 

0 0 Received Signal 

Sampling Timing 

5v 

0 v 

Start Bit 1 1 0 0 1 1 Stop Bit 



Redundancy Bits 
Added 
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Bit time Interval 
determined by 
baud rate 

0 0 Received Signal 

Sampling Timing 

5v 

0 v 

Start Bit 1 1 0 0 1 1 Stop Bit 

Bit time Interval 
determined by baud 
rate 

0 0 
Received Signal 

Sampling Timing 

5v 

0v 

Start Bit 1 1 0 0 1 1 Stop Bit 

Bit time Interval 
determined by baud 
rate 



Receiver State 
Machine 

Printed on 
9/1/2014 © 2014, Anees Abrol and Eric Hamke 208 

IDLE READ 

Received 4 Start Bit Samples 

Received 8 Data Bits (32 Bit Samples) 
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Case Statement (cases match 
enumerated type) 

For loop 

Enumerated Type 
(Defines State Labels) 

Shift Register with State Selection 
Mechanism 
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Case Statement (cases match 
enumerated type) 

Shift Register with State 
Selection Mechanism 



Data Latching & Counters 

t0 t1 t2 t3 t4 t5 

0 0 1 0 0 0 

Counter start 
pulse is sent at t2. 

t0 t1 t2 t3 t4 t5 

0 0 1 2 3 1 

Counter outputs 
sequence 1,2,3 
repeatedly. 
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Shift Register 

t0 t1 t2 t3 t4 t5 

0 0 1 1 1 1 

Latch Sets at t2. 
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Binary Phase Shift Keying 
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In PSK (Phase Shift Keying), the phase of a carrier is changed between two 
values according to the binary signal level[3]. The information about the bit 
stream is contained in the phase changes of the transmitted signal. 
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Transmissi
on Frame 

0 0 1 1 0 0 0 1 

‘1’ 
Character: 

Binary Code: 0 1 

BPSK Signal: 

(t)

ASCII Code: 
3 1 

0x31 

Start 
Bit 

Stop 
Bit 

Binary Signal 
s(t) 

0Vdc 

5Vdc 

Tc 

Nc 

Tc 

Nc 

Tc 

Nc 

Tc 

Nc 

Tc 

Nc 

Tc 

Nc 

Tc 

Nc 

Tc 

Nc 

Tc 

Nc 

Tc 

Nc 

Source 
Encoder 

Channel 
Encoder 

has Nc samples, 1c cT f



Implementation 
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To BPSK 
Demodulator 

From  
UART TX 

PSK Symbol 
Mapper 

Resampler 

Carrier Sine 
Wave 

BPSK Modulated 
UART Waveform 

BPSK Modulator 

1, 1
( )

1, 0

m(t)
p t

m(t)


 

 
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