
Universidad Nacional de La Plata

Facultad de Informática

Master of Science Thesis

Fortran Refactoring for Legacy

Systems

Author: Mariano Méndez

Supervisor: Dr. Fernando G. Tinetti

Co-Supervisor: Dra. Alejandra Garrido

“Tesis presentada para obtener el grado de Magister en Ingenieŕıa de Software”

“Facultad de Informática - Universidad Nacional de La Plata” Marzo 2011





To Melina, who changed my life





Contents

Contents i

1 Introduction 3

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Reverse Engineering and Reengineering . . . . . . . . . . . 6

1.1.3 Legacy Systems . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.4 Refactoring applied to Legacy Systems . . . . . . . . . . . 9

1.2 Initial Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Literature and Theoretical Focus 13

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Restructuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Refactoring Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Integrated Development Environment . . . . . . . . . . . . 18

2.3.2 Refactoring Tools . . . . . . . . . . . . . . . . . . . . . . . 19

3 The Fortran Language 35

3.1 A Complex Evolutionary Process . . . . . . . . . . . . . . . . . . . 35

3.1.1 FORTRAN I . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 FORTRAN II . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.3 FORTRAN III . . . . . . . . . . . . . . . . . . . . . . . . . 38

i



ii CONTENTS

3.1.4 FORTRAN IV . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.5 FORTRAN 66 . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.6 FORTRAN 77 . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.7 Fortran 90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.8 Fortran 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.9 Fortran 2003 . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.10 Fortran 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.11 Fortran Evolution . . . . . . . . . . . . . . . . . . . . . . . 50

4 Fortran Refactoring 51

4.1 Different Viewpoints . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 A Classification of Fortran Refactorings . . . . . . . . . . . . . . . 52

4.3 A Catalog of Fortran Refactoring . . . . . . . . . . . . . . . . . . . 53

4.4 Refactorings to Improve Maintainability . . . . . . . . . . . . . . . 53

4.4.1 Refactorings to Improve Presentation / Readability . . . . 54

4.4.2 Refactorings to Facilitate Design/Interface Change . . . . . 59

4.4.3 Refactorings to Avoid Poor Fortran Coding Practices . . . 67

4.4.4 Refactorings to Remove Outdated and Obsolete Constructs 81

4.5 Performance Refactorings . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.1 Refactorings For Performance . . . . . . . . . . . . . . . . . 95

4.6 Differences Between Fortran and Other Languages Refactorings . . 101

5 Photran:A Refactoring Tool for Fortran 103

5.1 The Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Photran Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 The Program Representation . . . . . . . . . . . . . . . . . . . . . 108

5.4 Refactoring Infrastructure . . . . . . . . . . . . . . . . . . . . . . . 109

6 Refactoring Examples 111

6.1 Initial Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Transform Character* to Character(Len =) . . . . . . . . . 113

6.2.1 Inception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



CONTENTS iii

6.2.2 The Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.3 The Implementation . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Standardize Input Output Formats . . . . . . . . . . . . . . . . . . 125

6.3.1 Inception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3.2 The Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3.3 The Implementation . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Replace Old Style Do Loops Refactoring . . . . . . . . . . . . . . . 141

6.4.1 Inception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4.2 The Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4.3 The Implementation . . . . . . . . . . . . . . . . . . . . . . 142

6.5 Remove Unreferenced Labels Refactoring . . . . . . . . . . . . . . 156

6.5.1 Inception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5.2 The Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5.3 The Implementation . . . . . . . . . . . . . . . . . . . . . . 156

7 Case Study 163

7.1 A Unit of Measurement . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 Source Code Examples . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2.2 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2.3 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2.4 Future Applications . . . . . . . . . . . . . . . . . . . . . . 173

8 Conclusions 175

8.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Bibliography 179

List of Figures 187





Acknowledgements

I would like to thank my advisors, Dr. Fernando G. Tinetti and Dra. Alejandra

Garrido at the Universidad Nacional de La Plata, for their support, patience and

guidance. I thank them for giving me this great opportunity and for the chance

to do once more what I love most.

I thank Jeffrey Overbey “El padre de la creatura” at University of Illinois for

his invaluable help with Photran and for his patience.

I would like to thank Dr. Ralph Johnson for investing some of his valuable

time in giving me his viewpoint about Fortran Refactorings.

I want to thank the people at the Facultad de Informática de la Universidad

de La Plata for not depriving me of the chance to embark on this project.

I thank Monica Lopez and Gustavo Cajaraville.

I thank Mariano Nastri for his support and patience.

I thank my grandfather Joseph for being an example to me. I would like

thank Melina for her patience and support.

Finally, I am thankful to life for having granted me the skills and opportunities

that made this possible.

1





Chapter 1

Introduction

Software Refactoring has become a mature discipline in the field of Software

Engineering throughout many years [57]. It is deeply ingrained at different phases

of software development process, such as modeling, programming, maintenance,

etc. Although refactoring has rooted in the software maintenance process, the

demand for automatic tools is by far larger than the supply. In fact the amount

of this kind of tools offered is very small in comparison to the broad spectrum of

programming languages .

Ten years ago a good refactoring tool needed a fast syntactical analyzer and

an efficient search & replace engine [34]. These two features will not suffice on

these days. Today a good refactoring tool needs also a well proven user interface,

integration capabilities with existent IDEs, large or huge scale project support,

user support channels, good documentation, content assist, refactoring assist,

collaborative or team features, etc. The requirements for a refactoring tool are

more complex than years ago.

Building a refactoring tool is not easy, because having good syntactical, lexical

or analytical programming language engine is not enough. Moreover, the usability

and learnability of the tool must be ensured.

Born as an object oriented programming concept, software refactoring has

enlarged its frontiers to structured programming [34, 36] through years. Viewing

3



4 CHAPTER 1. INTRODUCTION

a program language like a statical entity is advisable. As software, programming

languages are dynamical entities, they are constantly mutating and evolving, at

different time scales [68].

At least two forces rule the construction of a refactoring tool. As for the

special refactoring requirements that language programming entails, it could be

stated that they are closely dependent on the evolution of the programming lan-

guage through time. The other force involved in this process lies in the end-user

requirements. Both of these forces are deeply connected. Therefore, a refactoring

tool is the result of hard work among programmers on two sides, those who make

the tool and those who use it.

As well as refactoring, programming languages evolve. In their evolution

they walk through a wide range of evolutionary processes. Some of these proces-

ses impact on software. A great example to analyze is Fortran, a fifty-year-old

programming language with a large number of software applications developed

through years. Most of the Fortran software is legacy software. Legacy software

is hard to maintain and understand because those who have to maintain the sys-

tems are not the same who created them. In this work we propose refactoring

as a technique to understand, to comprehend, to upgrade, to modify and to add

changes on legacy software.

This chapter is organized as follows: First, it presents a background where

a description of refactoring foundation concepts and how it has evolved through

time is shown. Second, legacy systems are described . Third, an introduction on

why refactoring is a perfect tool to be applied in this kind of systems is displayed.

Finally, as a conclusion for this introduction, the chapter offers the motivation

and contributions of this research.

1.1 Background

Refactoring was born as a result of research into how to make reusable software.

Dr Ralph Johnson [45, 60, 61, 44] at University of Illinois is a pioneer of this

research field. He has been a major refactoring promoter. This concept has also



1.1. BACKGROUND 5

been broadly supported by Extreme Programming (XP) followers. Dr. John-

son research group has been studying refactoring “as a way of making reusable

software” [43] while XP followers have a different viewpoint of refactoring. They

recommend refactoring because it made code more understandable and allow a

rapid development process and simple code structure while maintaining clean,

scalable, and modular code. These two approaches, though different, seem to be

connected. Simpler software tends to be more understandable and reusable as a

consequence.

1.1.1 Refactoring

The refactoring concept has been introduced for the first time by W. Opdyke

and Ralph Johnson [60]. In his thesis, W. Opdyke [59] introduces refactoring

as behavior-preserving transformation, he describes refactoring as a process that

improves the design of ”already structured programs” making these programs

reuse-prone. This approach extends the refactoring concept beyond object orien-

ted programming. He has been the first to propose a wide catalog of many

different refactorings. This catalog is divided into Basic Refactorings and Com-

plex Refactorings (two or more basic refactorings). There are many definitions of

refactoring. The most accepted one is found in Martin Fowler’s Book [32], which

defines refactoring as a technique for restructuring existing source code applying

small transformations on the source code, modifying its internal structure and

preserving the external behaviour of the software. Thus, we can think about

refactoring as a process and as technique at the same time.

Trapped by its own essence (changeability, conformity, intangibility and com-

plexity) software [16] has to deal with:

• Evolution: Like other human products, software has to change according

to people’s needs [47]

• Redesign: Unlike other human products, software can be modified even

when its development process has been finished. If we take a closer look at



6 CHAPTER 1. INTRODUCTION

manufactured products, like a pen: once it has been produced, the pen can

not be changed and it will remain the same until the end of its days.

• Quality: As a consequence of its evolution and redesign, the software quality

will be undermined [28].

Born out of object oriented programming as a way to make OO programs

reusable, this concept has gone beyond its borders, reaching other fields of soft-

ware engineering like structured programming [34].

1.1.2 Reverse Engineering and Reengineering

As Chikosfky describes in “Reverse engineering and design recovery: A taxo-

nomy”, the field of the reverse engineering is centered on the process of analyzing

a system in order to identify the system’s components and how they are related

and to create a representation of the system in another form or on a high level

abstraction. On the other hand, Reengineering is the process that examines and

alters a system to reconstitute it in a new form [21]. Following this classification,

refactoring belongs to Reengineering. As a first step, in order to alter or apply

change in a system, it is mandatory to have an understanding of it. Then, in

the reengineering process, it is required to have some form of reverse engineering

together with forward engineering [21].

1.1.3 Legacy Systems

The word legacy has its origins in the Old French term: legacie from Latin Le-

gatus, it means “person delegated”. In the Oxford compact dictionary the word

legacy has been described as an adjective (of computer hardware or software)

that has been superseded but is difficult to replace because of its wide use [26]

(2010). There is not a formal definition of what a Legacy System is. However, we

can find different approximations about what Legacy Systems are. Brodie and

Stonebraker have defined a Legacy System as:



1.1. BACKGROUND 7

“Any information system that significantly resists modification and evolution

to meet new and constantly changing business requirements.” [15].

K. Benneth proposed:

“ large software systems that we don’t know how to cope with but that are vital

to our organization. ”[13]

Nicolas Gold, summarizes the Legacy System concept as follows:

“Legacy Software is critical software that cannot be modified efficiently.” [37]

These definitions have various things in common. One of them is the resis-

tance to change, another one is how this kind of software has become critical

to the Organization. An important concept that goes hand in hand with these

definitions is the inherent complexity of legacy software.

There is an aspect where legacy software becomes a challenge, it is the main-

tenance stage. In this stage, the software that has been running in production for

20 or 30 years is hard to manage because software gradually deteriorates. During

the maintenance a program may need different types of changes. Enhancements,

corrections, adaptations and preventions to a system may be needed. All of these

tasks require knowledge and comprehension about the system. It becomes anot-

her aspect where legacy becomes also a challenge. Furthermore, there are other

factors to be considered regarding legacy software, such as :

• The programming language in which it has been implemented.

• The state-of-the-art software engineering techniques used when it has been

created.

• The crucial task performed in the organization.

• The system size, generally medium or large.



8 CHAPTER 1. INTRODUCTION

• When, where, why, how ,and who implemented the software.

Thus, legacy systems are ruled by many different components and different

perspectives. R. Center proposed a set of Re-engineering perspectives that can be

used to deal with Legacy Software [19]. In his work, Center defines 5 perspectives:

1. Engineering perspective in which Legacy Systems are viewed as an enginee-

ring problem.

2. Software perspective related to two activities, program understanding and

software evolution which make it possible to gather more comprehensible

abstract representations.

3. Managerial perspective this viewpoint is responsible for planning, setting

goals and determining organizational readiness.

4. Evolutionary perspective proposes a new view on software life-cycle, where

a continuous evolution model is shown, breaking the old “develop then

maintain” model.

5. Maintenance perspective where an analysis is conducted from a distinct

viewpoint as regards the software developing process.

Two of these perspectives are closely related to refactoring tools: the main-

tenance perspective and the evolutionary perspective.

This thesis is based on a certain type of legacy software that came from

scientific research. Scientists have become one of the most important legacy code

producers for many reasons. One of these is long-lived field (about 50 years old)

they have been working in. Another reason is the amount of code produced

through years and the lack of a well-defined software development process. [75]

Currently, there are not automated tools to maintain,upgrade ,or modify le-

gacy software. Languages like Fortran and Cobol have not such kind of automated

tools. Chapter 2 reviews refactorings tools for other languages such C, C#, Java,

Smalltalk, Haskell ,and Others.



1.2. INITIAL MOTIVATION 9

1.1.4 Refactoring applied to Legacy Systems

Legacy system makes refactoring process and techniques one of the best options

to be applied in the context of maintenance tasks, changes ,and understanding

Legacy Software [66, 34, 67]. Automated refactoring tools provide programmers

with not only an easy way to make changes. But also, with a broad understanding

about the system, in order to reduce maintenance costs. Additionally, it serves

to keep systems updated within programming language evolution and to extend

system’s functionality [59]. Finally, it contributes to decrease some complex

aspects which are deep-rooted in software essence [16].

1.2 Initial Motivation

The motivation of this work comes from a Global Climate Model (GCM) Soft-

ware which was in great need of being updated. This software was implemented

by scientists in the ’80s as a result of meteorological research [74]. Written in

Fortran 77, this program has been used as an input to make climate predictions

for the Southern Hemisphere. The execution to get a complete numerical data

set takes several days. This software has been programmed using a sequential

processing paradigm. In these days, where multicore processors are so wides-

pread, the time that an execution takes to get a complete useful data set can be

drastically reduced using this technology. As a first objective to reach this goal

of reengineering we must be able to understand the source code. An essential

Fortran code characteristic is that old source code versions became unreadable,

not comprehensive and sometimes “ejects” the reader from the source code. In

that way, we can not modify, update or improve unreadable source code. Then,

as a first step to parallelize this code we must update it, turn it readable and

easy to understand.

The GCM has a very complex internal structure. The program is divided

into about 300 .f (Fortran 77) files [74]. These files generally implement only one

Fortran subroutine. Less than 10% of the files are used for common blocks and

constants. Approximately 25% of the lines in the source code are comments. The



10 CHAPTER 1. INTRODUCTION

total number of Fortran source code lines is 58000. A detailed work within the

source code brings to light that [74]:

1 About 230 routines are called/used at run time. Most of the runtime is spent

in routines located at deep levels 5 to 7 in the dynamic call graph from the

main routine.

2 The routine with most of the runtime (the top routine from now on) requires

more than 9% of the total program runtime and is called about 315000

times.

3 The top 10 routines (the 10 routines at the top of the flat profile) require

about 50% of total runtime. Two of them are related to intrinsic Fortran

functions.

Our first approach was using a scripting language and Find & Replace tools

trying to upgrade the source code, this kind of code manipulation do not gua-

rantee preservation of software behavior.

Then, our goal was to develop an automated tool to transform legacy software

in more understandable, comprehensible and readable applying refactoring as

main technique. At the same time a catalog of transformation to be applied in

Fortran code is needed as a guide to programmers through this process.

1.3 Contributions

The major general contributions, independent of the previous example, are:

1. A Classification of Fortran refactorings: The way in which the refac-

torings were proposed is the result of how we think programmers need to

use refactoring in their daily work. So we present the refactorings classified

from the programmer’s point of view.

2. A Detailed catalog of Fortran refactorings: Each refactoring proposed

in this catalog has emerged from the Fortran programmer’s needs. Our

description rests on each refactoring motivation.



1.3. CONTRIBUTIONS 11

3. A proposal of refactorings for parallelizing and performance im-

provements: For some of these refactorings it has been proved that a much

better performance existed [72]. A set of these transformations are closely

related to those conducted by compilers to improve performance, like loop

fusion or loop fission [27].

4. A specification of some refactorings: The implementation of a set

of refactorings was explained in detailed and documented with the aim of

providing a guide to be used in the initial steps in the refactoring built

process.

5. The use of refactorings on Fortran legacy systems: In this work

we have shown how to employ refactorings in the field of legacy systems.

Furthermore, we have used refactoring applied to one of the most long-lived

programming language such as Fortran.

6. A metric definition: We have presented a way to measure the source

code transformation impact on source code readability as a metric called

“FCRCS”.

7. A Contribution to Photran Project: The refactorings implemented in

this thesis will be all included in Photran 7.0 release.

8. A public web site containing the catalog in different languages:

Aligned with the aims of this research, a public access web site was created

to integrate and to promote Fortran refactorings and the eclipse-based-

refactoring tool (Photran). This site was published in July 2010 [3].

The next chapter presents an overview of previous works and related areas to

provide a starting point about refactoring in the field of Legacy Systems. Chapter

3 provides a detailed description of the evolutionary process of Fortran Language

throughout its lifetime. Chapter 4 proposes a classification of Fortran Refac-

torings and it specifies in detail the complete catalog of Fortran Refactorings.

Chapter 5 describes Photran refactoring tool and IDE core. Chapter 6 shows



12 CHAPTER 1. INTRODUCTION

thoroughly how some refactorings can be implemented in Photran. Chapter7 ap-

plies some refactorings into real life source code examples and introduces a metric

to measure source code improvements. Chapter 8 summarizes the contributions

of this research and describes its futures applications.



Chapter 2

Related Literature and

Theoretical Focus

The first section of this chapter makes a review about refactoring applied to

structured programming language. In section 2.1 related works are presented.

Section 2.2 describes transformation tools and techniques. Section 2.3 make a

thoroughly detail of refactoring tools up to date.

2.1 Related Work

The concept of code restructuring has existed for many years now, and some

transformation tools have been built to apply transformation rules on a complete

program in batch mode. An example of this kind of infrastructure is the D.M.S.

tool, which allows for re-engineering and migration of programs in many different

programming languages [12].

In the case of Fortran, the vast amount of existent lines of Fortran code and

the investment made on them has encouraged the development of some tools

to upgrade legacy Fortran code to new standards. Greenough and Worth have

reported a number of software tools currently available that may apply transfor-

mations on Fortran programs [38]. There are at least two important reasons of

why these tools have not been widely used. First, applying some transformation

13



14 CHAPTER 2. RELATED LITERATURE AND THEORETICAL FOCUS

rules in batch mode may help updating the code by replacing outdated constructs

(e.g., replacing obsolete operators), but that does not necessarily imply that a

developer will gain a better understanding of the structure of code, nor will it

be able to clean it, modularize it or remove duplication. That is, legacy code

will still be legacy even if it is written in Java but with poor development prac-

tices. Second, these transformation tools are not integrated with development

environments.

The concept of refactoring as an interactive process performed by an expert

programmer while carefully examining the code, in small and safe steps, was

defined in Opdyke’s thesis many years ago, in this work refactoring is presented

in the context of Object Oriented Programming [59].

Since that time, Ralph Johnson’s research group at the University of Illinois

has promoted refactoring and the development of automated refactoring tools

[60, 59, 61, 43, 35] , although it was not until the advent of agile methodologies

that refactoring received widespread attention.

Garrido is the first author who has introduced refactoring concept to struc-

tured programming [34]. Her work is based on refactoring C programs [35, 36].

In her PhD. thesis Garrido presented an algorithm to handle C preprocessor di-

rectives. Specifically for Fortran, Vaishali De’s master’s thesis [25] enumerates

a set of possible Fortran 90 refactorings. Later on, Overbey et al. [66] bring

to light the need of refactoring tools integrated with IDEs for Fortran programs

and in the High Performance world. In this work, Photran is introduced as an

integrated development environment that provides the necessary infrastructure

for implementing Fortran refactoring [5].

In a subsequent work [67], a study founded on the Fortran evolution enumera-

tes outdated language constructs that a refactoring tool could help remove from

Fortran code and proposes, more generally, a role that refactoring tools could

play in language evolution. As an example, Photran was used to eliminate global

variables.

Tinetti et al. [74] base their work improving Fortran legacy source for perfor-

mance optimization on a weather climate model implemented about two decades



2.2. RESTRUCTURING 15

ago.

2.2 Restructuring

Restructuring can be defined as a subfield of Software Engineering that devoted

its research to improving existent source code on the basis of applying source

code transformation. The origins of Restructuring rest on “ the modification of

software to make it easier to understand and to change, or less susceptible to

error when future changes are made” [6]. It is worth mentioning that Arnold’s

definition excludes restructuring for any other purpose, like the improvement of

the source code with the aim of a better performance, the transformation of the

code for parallelizing, and so foth.

In view of this, restructuring can be seen as a tool that can assist in solving

the significant problems that arise during the maintenance stage within the life

cycle of the software development process. Further reasons exist according to

Arnold as to why source code must be borne in mind by software engineers:

• Reinforcing understandability of software by injecting software with known

and easily decipherable structure, thus having other desirable side effects:

– simpler documentation,

– simpler testing tasks,

– simpler auditing tasks,

– substantial reduction of software’s complexity .

• Reducing the necessary time for programmers to get acquainted with the

system before implementing maintenance tasks.

• Making bugs easier to locate.

• Making it simple to introduce new functionalities

Software restructuring was born as a necessary tool to be implemented in

the maintenance processes because of the essential features of software so as to



16 CHAPTER 2. RELATED LITERATURE AND THEORETICAL FOCUS

reduce development costs. It also can serve as a tool to introduce new software

functionality.

Restructuring’s main objective mainly consists in preserving or increasing

software value. External software value can be increased by fully satisfying users’

needs. For users, a good maintenance service means having software which is

bugs free (or contains no visible bugs) together with a swift response in the case

of a request for change. Systems being subjected to constant maintenance may

grow increasingly difficult to change. If this hardening should affect the users’

perception of the software’s quality, the external software value will decrease.

The internal software value may be measured by the following criteria: 1)

the maintenance cost saving resulting from some other software form, 2) the cost

savings emerging from reusing parts of the software in other systems, and 3) the

cost savings as a consequence of an expanded software lifetime.

Source code Restructuring reduces cost of maintenance, aligned to this it

increases software re-usability and it extends system’s life cycle. In this way

internal software value is being increased too [6].

Another definition of software restructuring can be found in the literature like

introduced by Chikofsky and Cross [20]: “Restructuring is the transformation

from one representation to another at the same relative abstraction levels, while

preserving subject system’s external behavior (functionality and semantics)”. A

restructuring transformation is basically applied on the system’s appearance, its

aim is not to introduce new requirements.

Arnold introduces some software restructuring techniques [6] listed below:

1. Code Oriented Techniques:

a Programming Style: the intent of this technique is to apply code

transformation to make code more understandable:

• Pretty printing and code formatting : Code is improved applying

tabbing, spacing and one code per statement.

• Coding Style standardization: The source code is modified to make

it compliant to a specific code standard.



2.3. REFACTORING TOOLS 17

• Restructuring with Preprocessor [46] : Source code is replaced with

preprocessor directives easier to understand.

c Control Flow: One of most complex restructuring techniques. Control

flow transformations allow the implementation of a large number of

tools.

• Go-to removing : In the following list may be found a set of tech-

niques that aim to remove Goto statement.

– Early goto-less approach [14].

– Giant case statement approach [7].

– Boolean flag approach [76].

– Duplication of coding approach [76].

– Baker’s graph-theoretic approach [11].

– Refined case statement approach [50].

• In the list below are listed a set of restructuring tools :

– RETROFIT (tm)[52].

– SUPERSTRUCTURE (tm) [58].

– RECORDER (tm) [18].

– Cobol Structuring Facility (tm) [49].

– Delta STRUCTURIZER (tm).

2.3 Refactoring Tools

During the last 18 years the concept of refactoring has surpassed the borders

of Object Oriented Programming. Its application have multiplied to the extent

that one can find it being used in many areas of software engineering. Given its

importance as a tool in the maintenance stage, a big number of automated tools

for a wide range of programming languages has been developed. Furthermore,

quite a few artifacts produced throughout the software development process have

been benefited with refactoring tools.



18 CHAPTER 2. RELATED LITERATURE AND THEORETICAL FOCUS

2.3.1 Integrated Development Environment

Nowadays, most of the Integrated Development Environment, commonly called

IDE, possesses automated options for refactoring. These features are available to

programmers as menu options. These tools assist developers in the refactoring

process and facilitate the use of good programming practices giving them the

possibility to write high-quality source code on the spot.

Eclipse, Visual Studio .net , Net.Beans are a good example of this kind of

refactoring resource. All of them provide the user with a refactoring engine with

which refactorings techniques can be applied (Figure 2.1, Figure 2.2).

Figure 2.1: Microsoft Visual Studio



2.3. REFACTORING TOOLS 19

Figure 2.2: Eclipse

With the introduction of this technique in the software development process,

a great deal of automated tools to be applied as IDE plug-ins have appeared and

revolutionized the programming tasks.

2.3.2 Refactoring Tools

A detailed description of existing refactoring commercial tools for different pro-

gramming languages will be listed as follows.

Smalltalk

• Smalltalk Refactoring Browser

Smalltalk Refactoring Browser is probably the most famous refactoring tool.

Built by the University of Illinois in the late nineties, Smalltalk Refactoring

Browser has been a pioneer tool in this area [43]. It has been developed to

be used by VisualWorks, VisualWorks/ENVY, and IBM Smalltalk. Some

features of this tool are [71]:

– Buffers: Users can edit many portions of code at the same time without

opening other browsers.



20 CHAPTER 2. RELATED LITERATURE AND THEORETICAL FOCUS

– Drag & drop: The user can drag & drop methods on classes or proto-

cols.

– Hierarchy: Users can easily switch between a hierarchy view and the

normal category view without spawning a hierarchy view window, see

Figure 2.3, 2.4 .

– Lint: The tool automatically searches among over 60 types of common

Smalltalk bugs.

– Old methods: No more accidentally accepting changed methods. Every

change the user makes on source code in a window, will be shown in

red until the user updates his code or accepts the method.

– Refactorings: Perform some behavior preserving transformations such

as abstracting references to an instance variable. The refactorings

presented in Bill Opdyke’s thesis are implemented.

– Undo support: The Refactoring Browser can undo/redo refactorings,

method changes, and class changes.

Figure 2.3: Refactoring Browser’s hierarchy view.



2.3. REFACTORING TOOLS 21

Figure 2.4: Refactoring Browser’s normal view

Figure 2.5: The Refactoring Browser’s navigator

(http://st-www.cs.uiuc.edu/users/brant/Refactory/RefactoringBrowser.html).

Java

• InteliJ Idea

This integrated development environment allows the user to apply some

refactoring techniques such as: renaming, extracting methods, introducing

local variables, and so forth. (http://www.jetbrains.com/idea/index.html)

• JFactor



22 CHAPTER 2. RELATED LITERATURE AND THEORETICAL FOCUS

It can be defined as a product family that provides tools to make use of

refactoring techniques. Jfactor can be integrated with the integrated deve-

lopment environment of VisualAge. This product allows the user to utilize

the following refactorings: extract method, rename method variables, intro-

duce variable, inline temp, replace magic number with symbolic constant,

inline method, rename method, safe delete method, pull up method, push

down method, introduce foreign method, rename field, pull up field, push

down field, encapsulate field, extract superclass, extract interface.

(http://old.instantiations.com/jfactor/default.htm)

• XRefactory

It is a software development tool especially designed for C and Java to

facilitate exploiting refactoring techniques on behalf of programmers. One

of its most salient characteristics is the fact that this product can serve as

a plug-in for Emacs. Moreover, it supports other programming languages

like C (Figure 2.6).

Figure 2.6: XRefactory screenshot



2.3. REFACTORING TOOLS 23

Another remarkable feature promoted by its creators is the one that has

been meant to be used in large scale projects, for instance those which have

millions of source code lines. This product allows users to apply: method

(function) extraction; renaming of namespaces, classes, parameters, varia-

bles, fields (structure records) and methods (functions); insertion, deletion

and moving of parameters; among others. Refactorings are safe with detec-

tion of possible conflicts. Other features are:

– Detection of unused variables, methods and functions.

– Functions for finding forgotten symbols.

– Multiple projects support with project auto-detection.

(http://www.xref.sk/xrefactory/main.html)

• RefactorIt

It is a tool especially designed for java developers, that possesses the ability

to apply 30 different refactoring techniques to source code. Additionally,

it offers a graphic dependencies analyzer and more than 10 metrics for

measuring software quality. It can be used as a stand-alone tool or can be

integrated as an Eclipse plug-in, netBuilder or Jbuilder.

(http://freshmeat.net/projects/refactorit/)

• JRefactory

This tool was developed by Chris Seguin during 1999-2002, it reached 2.6.40

version. Since then Mike Atkinson has taken over, version 2.8 released in

October 2003 has many major enhancements. This software is distributed

freely and “as is”. It is supported by a wide range of IDEs:

– jEdit (4.1final and 4.2pre11).

– Netbeans (3.6) - partially supported.

– JBuilder X - partially supported.

– Ant (1.5.4) - only pretty printing.



24 CHAPTER 2. RELATED LITERATURE AND THEORETICAL FOCUS

– It also works as a stand-alone tool.

For the next version support for other IDEs is expected such as: Eclipse,

InteliJ and Emacs JDE.

Features:

With JRefactory, users can apply a set of available refactorings such as :

Move class between packages (repackage), Rename class, Add abstract pa-

rent class, Add child class, Remove empty class, Extract interface, Push up

field, Push down field, Rename Field, Push up method, Push up abstract

method, Push down method, Move method, Extract method, Rename Pa-

rameter.

Other features are available like UML Diagrams, Pretty Printing, Coding

Standard Checking, Bug Finding, AST viewer and Metrics Gatherer. It

comes as command-line application with or without GUI and as plug-in for

Jedit, Jbuilder, NetBeans and Elixir.

(http://jrefactory.sourceforge.net/)

• Transmogrify

Transmogrify creators promote it as a refactoring tool. The user can apply

the following:

– Rename Symbol Extract Method

– Replace Temp With Query

– Inline Temp

– Pull up field

This product is a plug-in for Jbuilder and Forte4Java. Transmogrify parses

all project’s files and then it creates a window with the parsed source code,



2.3. REFACTORING TOOLS 25

then users can select the portion of code in which a refactoring will be

applied. The tool will analyze a selection and make sure the refactoring

chosen is valid. If it is not, an error message will be displayed. Otherwise, it

will perform the requested refactoring, making a backup copy of all affected

files.

(http://transmogrify.sourceforge.net/ )

• JavaRefactor

Made by Danny Dig in 2002, this tool is a Jedit plug-in. JavaRefactor allows

users to apply refactorings base in a small catalog of Java refactorings.

Users can rename class, field, method, and package; PushDown and PullUp

of methods and fields in an inheritance hierarchy. Other refactorings should

be added in a future version.

The current version of this plugin does not allow source code to be syn-

chronized once refactoring of a particular file has begun. In other words,

once you have started refactoring the code in a buffer, future refactorings

on that buffer will not take into account any independent changes made by

editing until jEdit is restarted.

(http://plugins.jedit.org/plugins/?JavaRefactor)

.NET

• C# Refactory

This is a “refactoring, metrics and productivity add-in for Microsoft Visual

Studio.NET”. It allows users to apply refactoring from a small catalog:

– Extract method

– Decompose conditional

– Extract variable

– Introduce explaining variable



26 CHAPTER 2. RELATED LITERATURE AND THEORETICAL FOCUS

– Extract superclass

– Extract interface

– Copy class

– Push up members

– Rename type

– Rename member

– Rename parameter

– Rename local variable

(http://www.xtreme-simplicity.net/CSharpRefactory.html)

• Refactor! - See Visual Basic refactoring tools.

• ModelMaker - See Delphi refactoring tools.

• Visual Assist X

This is a plug-in for Visual Studio. It allows users to apply a reduced set

of refactorings:

– Rename, see Figure 2.7

– Extract Method

– Encapsulate Field

– Change Signature

– Move Implementation to Source File

– Add Member

– Add Similar Member

– Document Method, see Figure 2.8

– Create Declaration

– Create Implementation



2.3. REFACTORING TOOLS 27

Figure 2.7: Visual Assist rename refactoring

Figure 2.8: Visual Assist document method refactoring

(http://www.wholetomato.com/)

• JustCode!

Plug-in that provides also some refactoring features available for C#, Visual

Basic.net and ASP.net. The user can apply these refactorings:

– Rename:It allows users to quickly change the name of namespaces,

types, methods, fields and practically every type of code written.

– Organize and Add Missing Usings: It helps users to easily sort, remove

unused and add missing using directives.

– Move Type to Another File: Move a type to a new file having the

same name as the type. That refactoring works with classes, enums,

interfaces and structures.



28 CHAPTER 2. RELATED LITERATURE AND THEORETICAL FOCUS

– Introduce Field: It allows users to quickly create a new field from a

selected constant expression and initialize it with the expression.

– Introduce Variable: It introduces a new variable from an existing one;

uses an existing constant to introduce a new variable; uses an existing

expression to introduce a new variable.

– Extract Method: It allows users to reorganize code for better reuse

and readability by creating a new method based on a selected code

fragment. Available for C#, VB.NET and JavaScript.

– Move/delete Parameter :Users can quickly change parameter’s position

or remove it from method’s signature.

– Inline variable: This refactoring replaces all occurrences of the selected

variable with its initializer.

– Rename File to Match Type Name: It allows users to quickly rename

the opened file to match the selected type name.

(http://www.omnicore.com/en/justcodefeatures.htm)

C/C++

• Ref++

It is a plug-in for Visual Studio .net that provides some refactoring features

for C++.

• XRefactory - See Java.

Visual Basic

• Refactor!

This tool is a plug-in for Visual Basic .Net that allows users to apply re-

factorings for this language. This product makes visual basic .net the only

source code refactoring. Its creator claims that more than 30 refactorings

can be applied. Distributed as a free tool, it has developed the following

refactorings (Figure 2.3) :



2.3. REFACTORING TOOLS 29

– Reorder Parameters

– Extract Method, see Figure 2.9

– Extract Property

– Create Overload

– Surrounds With

– Encapsulate field

– Reverse Conditional

– Simplify expression

– Introduce Local

– Introduce constant

– Inline Temp

– Replace Temp with Query

– Split Temporary Variable

– Move initialization to declaration

– Split initialization from declaration

– Move declaration near reference

Figure 2.9: Refactor! extract method screenshot

(http://msdn.microsoft.com/es-es/vbasic/ms789083.aspx)

Delphi

• ModelMaker



30 CHAPTER 2. RELATED LITERATURE AND THEORETICAL FOCUS

This tool allows users to apply refactorings in Pascal, Delphi and C# source

code. This tool is described as “ a two-way class tree oriented productivity,

refactoring and UML-style CASE tool”. It allows programmers to:

– Copy/Move members to another class.

– Convert local variable or procedure to a field or method.

– Add/Remove a class to/from a module.

– Rearrange classes within modules.

– Create a Delegate from a method.

– Create an Event property or Event handler method from a Delegate.

Erlang

Erlang was designed by Ericsson, is a concurrent oriented programming language.

Originally created to build distributed applications, fault tolerant and real time

software. It is considered a functional language programming.

• Wrangler

This is a refactoring tool built for Erlang, that allows users to apply refac-

toring to Erlang source code interactively. This tool is not for commercial

use and it is a prototype.



2.3. REFACTORING TOOLS 31

Figure 2.10: Wrangler, an Erlang refactoring tool

(http://www.cs.kent.ac.uk/projects/forse/wrangler/doc/overview-summary.html)

Haskell

• Hare [48]

This is a prototype tool that allows refactoring Haskell programs. Also

known as “ The HasKell Refactorer” this tool allows users to apply refac-

torings, like :

– Add or remove an argument

– Algebraic or existential type

– Concrete to Abstract Data Type

– Constructor or constructor function

– Delete/Add a definition

– Introduce or remove a duplicate definition

– Simple folding/unfolding

– Generalise or specialise a definition



32 CHAPTER 2. RELATED LITERATURE AND THEORETICAL FOCUS

– Inside or Outside the ADT

– Layered data types

– Memoisation

– Monadification (variant 1)

– Widen or narrow definition scope

– Widen or narrow definition scope, with compensation (generalise/spe-

cialise)

– Renaming

– Add Constructor

– Convert Data Type to Newtype

– Remove Dead Code

– Merge Definitions

– Splitting a definition

Summary

Since Refactoring was born this technique has become recognized as vital in the

programming process and an important number of tools has been developed.

Nowadays, most of integrated development environments offer users refactorings

options. Nevertheless, the refactorings found in these tools are, as a general rule,

only the simple ones. As an example, there is no commercial tool capable to

handle refactorings with C preprocesor directives.

IDE evolution makes refactoring tools evolve too. The requirements of this

kind of tools have evolved. Code preview, refactoring undo, among other are

some of the new requirements that a tool must have. Not only is the internal

program representation involved but also the user interface is important. New

tools may integrate new features like giving advice to programmers of which

refactoring should be applied in a specific portion of code, keeping track of code

modification, and so forth.



2.3. REFACTORING TOOLS 33

Although refactoring concept has been born in the heart of the object oriented

programing, it has crossed over these borders. Refactoring tools can be found in

object oriented programing, in structured programing and functional program-

ming.

Making Automated Refactoring Tools is still a big challenge still in these

days.





Chapter 3

The Fortran Language

Fortran is the most long lived programming language still at use today. This fact

makes it a wonderful case to be studied in detail. This chapter shows Fortran’s

evolution and the changes in its features with the passing of time.

3.1 A Complex Evolutionary Process

The first publication of the Fortran language came out in November 1954 as

a preliminary report “Specification for the IBM 704 Mathematical FORmula

TRANslating System”. Up to that time, most of the programming work was

done in machine language. On November 10th, 1954 automated programming

came into existence bringing out a new era in the evolution of programming

languages : ”The High Level Languages Era”.

In 1954, during those days there were a set of factors that made, Programming

Research Group (led by John Backus), embark on the development of Fortran.

In those days the cost of hiring programmers was at least as great as the cost of

computers. Besides most of the computers’ time was spent on debugging [8].

Throughout its life Fortran has undergone a lot of changes just like Computer

Science. Ever since 1954 we can trace back, at least, ten different versions/re-

visions of the language. One of most remarkable aspectz of this evolution is

that almost every new version (or revision) of the language (except FORTRAN

35



36 CHAPTER 3. THE FORTRAN LANGUAGE

I,II,II,IV) has maintained a backward compatibility with older versions. Even

though some Fortran versions deleted some obsolete features in theory, in prac-

tice, compatibility remained: “Unlike Fortran 90, Fortran 95 was not a superset;

it deleted a small number of so-called obsolescent features. This incompatibility

is more theoretical than real however, as all existing Fortran 95 compilers include

the deleted features as extensions” [23]. Thus, this language feature brings about

a big number of Fortran programs being still used to this day without upgrading

to more modern languages constructions.

3.1.1 FORTRAN I

Fortran language was finally described on October 15th, 1956 in the “IBM Pro-

grammer’s Reference Manual, the Fortran Automatic Coding System for the IBM

740”. This version is also known as FORTRAN I. In the initial release of the

language, a set of 32 statements was provided, most of them for Input/Output.

All the original statements are listed below [10, 9]:

• Control Statements:

– PAUSE, STOP, ASSIGN, and CONTINUE statements.

– GOTO, computed GOTO, assigned GOTO.

– Arithmetic IF statement.

– IF statements for checking exceptions such as: ACCUMULATOR

OVERFLOW, QUOTIENT OVERFLOW, and DIVIDE CHECK.

– IF for manipulating IBM 704’s sense switches and sense lights: .

– DO loops.

• Input-Output Statements:

– Formated I/O : READ, READ INPUT TAPE, WRITE, FORMAT,

WRITE OUTPUT TAPE, PRINT and PUNCH.

– Unformated I/O: WRITE TAPE, READ TAPE, READDRUM,WRITE

DRUM, END FILE, REWIND, and BACKSPACE.



3.1. A COMPLEX EVOLUTIONARY PROCESS 37

• Assignment statement.

• Specification statements:

– FREQUENCY statement.

– EQUIVALENCE statement.

– DIMENSION statement.

3.1.2 FORTRAN II

After FORTRAN I had been launched, a stage for testing and debugging was

needed. In that stage some faults and weaknesses in the system design came to

light. In the fall of 1957 FORTRAN I creators began to think that they needed

to correct these shortcomings. In September of 1957 this event was documented

in an article called “Proposed Specifications for FORTRAN II for the 704”. It

introduced new features to the language such as [24]:

• User defined functions and subroutines.

• Reference parameter-passing mode.

• CALL and RETURN.

• SUBROUTINE, FUNCTION, and END.

• COMMON.

• New data types: DOUBLE PRECISION and COMPLEX.



38 CHAPTER 3. THE FORTRAN LANGUAGE

Figure 3.1: IBM 7090 FORTRAN II code example extracted from [40].

In the spring of 1958 FORTRAN II was unveiled. This language was mostly

designed by Nelson, Ziller and Backus [8]. One FORTRAN II source code example

can be seen inFigure 3.1

3.1.3 FORTRAN III

While FORTRAN II was not still released (1958), people of IBM Programming

Research Group were working in a new version of the language. This version

included machine-dependent features that permitted users to include assembler

code lines within Fortran source code. This intricacy made FORTRAN III code

non portable, this may have been the reason that caused FORTRAN III not to

be released as a product [8].

3.1.4 FORTRAN IV

One of the most important features of FORTRAN IV programming language

was the suppression of machine-dependent characteristics like READ, PRINT,

PUNCH, READ INPUT TAPE, and WRITE OUTPUT TAPE since they were

replaced by READ and WRITE statements. Other FORTRAN IV characteristics

were [1]:



3.1. A COMPLEX EVOLUTIONARY PROCESS 39

• The introduction of the LOGICAL data type that could only have two

values, .TRUE. or .FALSE., introducing the logical expressions evaluated

in the if statement. Thus, instead of writing

IF (W-Z) 10,20,10

10 CONTINUE

it was now possible to write

IF (W .NE. Z) GO TO 20

• Subroutines and functions can be passed as arguments.

• The format’s character strings could be enclosed in single quotes, instead

of being with the count of characters in them for the former syntax of a

Hollerith format specification.

An example of FORTRAN IV source code can be seen as follows, it was

extract from [1]:

EXTERNAL FUN

X=ANUMIN(FUN, 0 . 0 , 1 . 0 )

PRINT(6 , 11 ) X

STOP

END

REAL FUNCTION FUN(X)

FUN=X+TAN(X)

RETURN

END

REAL FUNCTION ANUMINT(FN,ALOW,AHIGH)

EXTERNAL FN

AINC=(AHIGH−ALOW)∗0 .001

SUM=0.0005∗(FN(ALOW)+FN(AHIGH))

DO 7 I =1 ,999

7 SUM=SUM+FN(ALOW+FLOAT( I )∗AINC)

RETURN

END



40 CHAPTER 3. THE FORTRAN LANGUAGE

IBM FORTRAN IV compilers were developed for IBM/360 Mainframe,IBM

7090/7094 and others.

3.1.5 FORTRAN 66

An ANSI committee started developing, in may 1962, a new standard for the

FORTRAN language. This committee was composed of industry and academic

experts. This important achievement resulted in releasing two new standards.

The first one defined FORTRAN, based on FORTRAN IV, became a milestone

in the language history and it is also known as FORTRAN 66. A second standard

was released too, it was called Basic FORTRAN, based on FORTRAN II where

all machinery dependences were left out. The standard published in 1966 was

the first High Level Language Standard in the world. FORTRAN 66 included

[31, 2]:

• Control Statements:

– MAIN PROGRAM, SUBROUTINE, FUNCTION, and BLOCKDATA

program units.

– DO loops.

– Logical IF and arithmetic IF statements.

– FORMAT statement.

– CALL, RETURN, PAUSE, and STOP statements.

– GOTO Statement.

– Assigned GOTO

– Computed GOTO statements.

• Input-Output Statements:

– READ, WRITE, BACKSPACE, REWIND, and ENDFILE.

• Assignment statement.

• Specification statements:



3.1. A COMPLEX EVOLUTIONARY PROCESS 41

– COMMON statement.

– DIMENSION statement.

– EQUIVALENCE statement.

– DATA statement for specifying initial values.

• Data Types:

– INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGI-

CAL.

• Other features:

– Intrinsic and EXTERNAL functions.

– Assignments.

– Hollerith constants in DATA statements and FORMAT statements,

and acting as actual parameters to procedures.

– Up to six characters, in length, for naming identifiers.

– Comments.

3.1.6 FORTRAN 77

In 1969 ANSI saw the need to begin a revision of the FORTRAN 66 standard,

Input/Output operations had to be improved and those new features that had

been introduced by compilers vendors had to be included in the new standard.

The revision caused the language to become the most widely used.

In 1978 the American National Standards Institute published a new standard

(ANSI X3.9-1978) historically known as FORTRAN 77. In 1980 International

Standard Organization adopted it as an International Standard (IS 1539:1980)

which included new features that improved some shortcomings of FORTRAN 66

[29, 2]:

• Control Statements:



42 CHAPTER 3. THE FORTRAN LANGUAGE

– Block IF and END IF statements, with optional ELSE and ELSE IF

clauses, to provide improved language support for structured program-

ming.

– DO loop extensions, including parameter expressions, negative incre-

ments, and zero trip counts.

• Input-Output Statements:

– OPEN, CLOSE, and INQUIRE statements for improved I/O opera-

tion.

– Direct-access file INPUT/OUTPUT.

• Specification statements:

– IMPLICIT statement.

– PARAMETER statement for specifying constants.

– SAVE statement for persistent local variables.

• Data Types:

– The required CHARACTER data type was introduced, with a wide

range of facilities for character input, output and processing of character-

based data.

• Other features:

– Generic names for intrinsic functions.

– A set of intrinsics (LGE, LGT, LLE, LLT) for lexical comparison of

strings, based upon the ASCII collating sequence.

Since at that time deprecation concept was not allowed in ANSI standards,

a set of old features was stripped out from the language standard, see Appendix

A2 of the standard. The deleted features were:

• Hollerith constants and data:

LINE=16HTODAY’S DATE IS:



3.1. A COMPLEX EVOLUTIONARY PROCESS 43

• Reading into a H edit (Hollerith field) descriptor in a FORMAT specifica-

tion.

• Over indexing of array bounds by subscripts.

DIMENSION B(9,5)

J= B(10,1)

• Transfer of control into the range of a DO loop.

This version of the Fortran standard is one of the most broadly used pro-

gramming language for developing scientific applications. Historically, it became

the most relevant standard of the programming language family.

The US Department of Defense made an extension of the FORTRAN 77 in

1978; this release was called MIL-STD-1753. Some new features were added

to this extension such as: DO WHILE and END DO statements, INCLUDE

statement, IMPLICIT NONE variant of the IMPLICIT statement and bit mani-

pulation intrinsic functions. All of these features were subsequently included in

Fortran 90 standard.



44 CHAPTER 3. THE FORTRAN LANGUAGE

3.1.7 Fortran 90

At this point in the life of FORTRAN language, those decisions previously taken

will determine the way in which the language will evolve. First, the language’s

name changed as can be seen in the standard introduction “Note that the name

of this language, Fortran, differs from that in FORTRAN 77 in that only the first

letter is capitalized. Both FORTRAN 77 and FORTRAN 66 used only capital

letters in the official name of the language, but Fortran 90 does not continue

this tradition ...” this minor detail of language specification will point out the

impact to some rigid features carried from older versions of the language like

fixed-format. Second, a set of new features were introduced as mentioned in the

previous section, and due to the fact that Structured Programming was fully

developed and Object Oriented Programming Paradigm was gradually growing

in popularity, the language needed to be revised. New Fortran standard features

were [30]:

• Array operations

• Improved facilities for numerical computation

• Parameterized intrinsic data types

• User-defined data types

• Facilities for modular data and procedure definitions

• Pointers

Most significant changes introduced in Fortran 90 regarding the code forma-

ting were:

• Free-form source input.

• Allow lowercase Fortran keywords.

• Long-named identifiers, up to 31 characters in length.

• New comment symbol‘!” and the inline comments.



3.1. A COMPLEX EVOLUTIONARY PROCESS 45

A thorough description of new features presented in Fortran 90 are listed

below [30, 2]:

• Control Statements:

– RECURSIVE procedures.

– Structured loop constructs, with an END DO statement for loop ter-

mination, and EXIT and CYCLE statements for ”breaking out” of

normal DO loop iterations in an orderly way.

– SELECT CASE statement construct.

• Data Types:

– The capability to operate on arrays (or array sections) as a whole.

– Dynamic memory allocation by means of the ALLOCATABLE attri-

bute and the ALLOCATE and DEALLOCATE statements.

– POINTER attribute, pointer assignment, and NULLIFY statement to

facilitate the creation and manipulation of dynamic data structures.

– New data type declaration syntax, to specify the data type and other

attributes of variables.

• Other features:

– Modules, to join related procedures and data together, making them

available to other program units, including the capability to limit the

accessibility to only specific parts of the module by adding the ONLY

clause to the USE statement.

– A widely improved argument-passing mechanism, allowing interfaces

to be checked at compile time.

– User-written interfaces for generic procedures.

– Operator overloading.

– Derived/abstract data types.



46 CHAPTER 3. THE FORTRAN LANGUAGE

– Improved intrinsic procedures.

At this point of Fortran evolution the language possessed all of the structured

programming language features like C, Pascal, etc. Furthermore, at this point the

language was carrying old features since computer did not use bytes as concept

(byte first appeared in July 1956, first Fortran’s draft was published in 1954).

These old-fashioned features were marked as obsolete instead of being deleted.

The Appendix B.1 says : “The list of deleted features in this standard is empty.”,

so a program standard-compliant FORTRAN 77 was also standard-compliant to

Fortran 90. The list of obsolete features detailed in Appendix B.1 is [30]:

1. Alternate return.

2. PAUSE statement.

3. ASSIGN statement.

4. Assigned GO TO statements.

5. Arithmetic IF statement.

6. Real and double precision DO control variables and DO loop control ex-

pressions.

7. Shared DO termination and termination on a statement other than END

DO or CONTINUE use an END DO or a CONTINUE statement for each

DO statement.

8. Branching to an END IF statement from outside its IF block branch to

the statement following the END IF.

9. Assigned FORMAT specifiers.

10. cH edit descriptor.



3.1. A COMPLEX EVOLUTIONARY PROCESS 47

3.1.8 Fortran 95

Fortran 95 revision introduced some minor changes to Fortran 90 standard. The

most relevant feature that this standard introduced was the deletion of some

obsolete language characteristics such as [41]:

• Real and double precision DO variables. The ability present in FORTRAN

77, and for consistency also in Fortran 90, for a DO variable to be of type

real or double precision in addition to type integer, has been deleted.

• Branching to an END IF statement from outside its block. In FORTRAN

77, and for consistency also in Fortran 90, it was possible to branch to an

END IF statement from outside the IF construct; this has been deleted.

• PAUSE statement. The PAUSE statement, present in FORTRAN 66, FOR-

TRAN 77 and for consistency also in Fortran 90, has been deleted.

• ASSIGN and assigned GO TO statements and assigned format specifiers.

The ASSIGN statement and the related assigned GO TO statement, present

in FORTRAN 66, FORTRAN 77 and for consistency also in Fortran 90,

have been deleted. Further, the ability to use an assigned integer as a

format, present in FORTRAN 77 and Fortran 90, has been deleted.

• H edit descriptor. In FORTRAN 77, and for consistency also in Fortran

90, there was an alternative form of character string edit descriptor, which

had been the only such form in FORTRAN 66; this has been deleted

Even when obsolete features were deleted, compatibility remained: “Unlike

Fortran 90, Fortran 95 was not a superset; it deleted a small number of so-called

obsolescent features. This incompatibility is more theoretical than real however,

as all existing Fortran 95 compilers include the deleted features as extensions”

[23].

Nevertheless, Fortran 95 standard introduced a set of new language features,

most of them closely related to High Performance Fortran. Some of these new

features are listed below [41]:



48 CHAPTER 3. THE FORTRAN LANGUAGE

• FORALL statement.

• PURE and ELEMENTAL procedures

• Pointer initialization and structure default initialization

• initial association status for pointers

• implicit initialization of derived type objects

Minor features include

• new intrinsic function NULL

• new intrinsic function CPUTIME

• automatic deallocation of allocatable arrays

• SIGN can distinguish between +0 and -0

• comments in namelist input data

• references to pure functions in specification expressions

• changes to some intrinsic functions

3.1.9 Fortran 2003

In 2004 with object oriented programming deeply rooted in the software produc-

tion, Fortran language needed to be updated to this new programming paradigm.

Therefore, the Fortran 95 standard started to be revised, a major revision of it

was required. Some of these features are listed below, extract from [42, 69]:

• Derived type enhancements: parameterized derived types, improved control

of accessibility, improved structure constructors, and finalizers.

• Object oriented programming support: type extension and inheritance,

polymorphisms, dynamic type allocation, and type-bound procedures.



3.1. A COMPLEX EVOLUTIONARY PROCESS 49

• Data manipulation enhancements: allocatable components, deferred type

parameters, VOLATILE attribute, explicit type specification in array cons-

tructors and allocate statements, pointer enhancements, extended initiali-

zation expressions, and enhanced intrinsic procedures.

• Input/output enhancements: asynchronous transfer, stream access, user

specified transfer operations for derived types, user specified control of roun-

ding during format conversions, named constants for preconnected units,

the flush statement, regularization of keywords, and access to error messa-

ges.

• Procedure pointers.

• Support for the exceptions of the IEEE Floating Point Standard (IEEE

1989).

• Interoperability with the C programming language.

• Support for international usage: access to ISO 10646 4-byte characters and

choice of decimal or comma in numeric formatted input/output.

• Enhanced integration with the host operating system: access to command

line arguments, environment variables, and processor error messages.

At this point of Fortran evolution an important aspect of the standard im-

plementation is the fact that in these days there is no Fortran compiler fully

compliant with the 2003 Standard [22].

3.1.10 Fortran 2008

Fortran 2008 revision is another minor revision of the standard of Fortran lan-

guage adding clarifications and corrections to Fortran 2003. In August 2010 the

final revision was not published yet. Some of the most important features added

in Fortran 2008 are [70]:

• CoArrays for parallel computing.



50 CHAPTER 3. THE FORTRAN LANGUAGE

• Submodules provide additional structuring facilities for modules.

• DO CONCURRENT which allows loop iterations to be executed in any

order or potentially concurrently.

• Contiguous attribute, for array occupies a contiguous memory block.

Some features initially introduced in the standard were subsequently left out

such as BIT data type.

3.1.11 Fortran Evolution

As a successful programming language Fortran is characterized by a long lifetime

and by having a huge production of legacy code due to its particular evolutionary

process. Such process in which backward version compatibility is maintained and

features deletion rarely occurs makes Fortran a very illustrative case to be studied.



Chapter 4

Fortran Refactoring

Even though refactoring concept was born within the pale of object oriented

programming we think that this concept is a paramount tool to be applied on

Fortran source code. Since it has been successfully used in C language [34], our

objective is to build a reference catalog which will serve as a guide to Fortran

programmers. In this chapter we will discuss and propose a detailed catalog of

Fortran source transformation.

4.1 Different Viewpoints

There exist many different viewpoints when it comes to references about refac-

torings. One of the most widely used is the paradigm viewpoint. The paradigm

viewpoint dichotomizes refactorings such as Object Oriented refactoring, Struc-

tured Programming refactoring or Functional Programming Refactoring. Such

classification is not good enough if the programming language possesses some

features in more than one paradigm. For example the latest version of C# has in-

corporated lambda notation (an ever-functional-feature); Fortran 2003 has made

use of structured and object oriented features.

Another viewpoint to adapt in order to create a good classification may be

found in the way that users or programmers need refactorings. This view is

based on refactoring intent, that is to say, it depends on refactoring to Improve

51



52 CHAPTER 4. FORTRAN REFACTORING

Presentation / Readability. In this case, both, Object Oriented and Structured

refactorings emerge. This classification is orthogonal with the aforementioned

description, only one of them may be used at a time.

4.2 A Classification of Fortran Refactorings

Fortran is one of the most ancient programming language still being used. Fortran

programs have a combination of

• Old-style Fortran language constructs, such as those designed in the early

stages of the language, up to the ’70s.

• Old-style software design methodology or no software development metho-

dology at all. This lack of methodology has been partially mitigated by the

strong relationship among scientific programs and mathematical methods

implemented.

Fortran evolution has resulted in a wide range of equivalent syntactical cons-

tructions. From those equivalent constructions, the older ones (coming from old

language version/s) have many disadvantages/drawbacks. Programmers do not

need to be aware of all these variations and/or Fortran’s dialects in an academic

course about Fortran programming, but the scenario radically changes if a pro-

grammer is working on a twenty-year-old application that has been written by

others in FORTRAN 77 [67, 74].

However, not all Fortran code is legacy code. Fortran has gained a leading

role in the High Performance Computing world throughout the years. High Per-

formance Fortran is an extension of Fortran 90 that supports parallel/vector

computing [51]. Co-Array Fortran is an extension of Fortran 95 supported by

Cray compilers [4]. Currently, old Fortran programs need to be made more effi-

cient in multiprocessing systems with multi-core architectures [75]. Furthermore,

multi-core processors are making single-threaded (or, directly, sequential) soft-

ware obsolete, such as most of the legacy Fortran programs.



4.3. A CATALOG OF FORTRAN REFACTORING 53

Other characteristics of old Fortran programs, such as using COMMON blocks

for saving memory, give rise to numerous problems for identifying data as global

or local to each subroutine. Automated and graphics tools for Fortran have not

been used extensively, and refactoring is a good scenario to introduce and use

tools such as Photran in daily software programming/maintenance work.

This section presents a catalog of refactorings for Fortran code. This list of

refactorings does not intend to be exhaustive but we aim at providing a complete

classification of refactorings according to their specific purpose. Classifying For-

tran refactorings by purpose is not easy since a refactoring may belong to more

than one category, and we need to decide where it provides the most benefit. Ho-

wever, we think it is worth the effort so developers can make a better decision at

selecting the most advantageous refactoring for their needs. We have found two

categories of Fortran refactorings: Refactorings to Improve Maintainability and

Refactorings to Improve Performance. Each one of these classes may be divided

into subclasses. This categorization is not the only possible one. Many classical

refactorings have been intentionally omitted from this list since they are widely

described in the literature [59, 32], although they fit into this categorization as

well.

4.3 A Catalog of Fortran Refactoring

In the next sections a description of Fortran refactoring is presented as a catalog.

We intend to provide an exhaustive definition of Fortran refactorings. Each

refactoring is described by its name, intent, motivation, a list of pre or post

condition and finally one example applied on source code.

4.4 Refactorings to Improve Maintainability

The refactorings in this category are intended to improve internal quality attribu-

tes of the code such as: readability, understandability, flexibility and extensibility

(attributes that refactoring has been recognized to improve) and also refactorings



54 CHAPTER 4. FORTRAN REFACTORING

that allow upgrading the code to newer versions of Fortran, removing obsolete

features.

4.4.1 Refactorings to Improve Presentation / Readability

Rename

Intent

Change the name of a variable, subprogram, etc.

Motivation

The name of the variable does not communicate its intentions.

Pre-Conditions

The new variable name must not be in conflict with other variable names

in the scope.

Source Example

Code Before
—————————————–

print ∗ , GetSqr (n)
end Program

! Returns
the square o f n
integer function GetSqr (x )

integer : : x
GetSqr= x∗x

end function GetSqr

Code After
—————————————–

print ∗ , GetSquare (n)
end Program

! Returns
the square o f n
integer function GetSquare (x )

integer : : x
GetSquare=x∗x

end function GetSquare



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 55

Extract Local Variable

Intent

Remove a subexpression from a larger expression and assign it to a local

variable.

Motivation

An expression has grown in its size becoming too difficult to handle or too

complex to understand.

Pre-Conditions

The new variable name must not be in conflict with the new name.

Source Example

Code Before

—————————————–

program main

i f ( ind . eq . 2 ) then

nlh=nl /2+1

global umax=0.

do 50 k=nlh , n l

do 50 l gn s=1, l a t 2

do 50 mg=1, lon

global umax=max( global umax ,

sq r t ( u r ea l (mg, lgns , k)∗∗2+

vr ea l (mg, lgns , k )∗∗2) )

50 continue

end i f

end program

Code After

—————————————–

program main

real : : v e l o c i t y

i f ( ind . eq . 2 ) then

nlh=nl /2+1

global umax=0.

do 50 k=nlh , n l

do 50 l gn s=1, l a t 2

do 50 mg=1, lon

v e l o c i t y = vr ea l (mg, lgns , k )

global umax=max( global umax ,

sq r t ( u r ea l (mg, lgns , k)∗∗2−

+ve l o c i t y ∗∗2) )

50 continue

end i f

end program



56 CHAPTER 4. FORTRAN REFACTORING

Extract Local Procedure

Intent

Remove a sequence of statements from a procedure, place them into a new

subroutine, and replace the original statements with a call to that subrou-

tine.

Motivation

A portion of source code has become complicated, it has grown too long or

simply warrants separation.

Pre-Conditions

New function name must not be in conflict with other function’s names in

the scope.

Source Example

Code Before

—————————————–

program main

implicit none

integer : : i , j , k

integer : : w, z

print ∗ , ’ ∗∗∗∗∗∗∗∗∗∗∗∗ ’

print ∗ , ’ ∗ header ∗ ’

print ∗ , ’ ∗∗∗∗∗∗∗∗∗∗∗∗ ’

z=(2∗k+3∗ i−5∗ j )

print ∗ , z

end program

Code After

—————————————–

program main

implicit none

integer : : i , j , k

integer : : w, z

ca l l Print Header ( )

z=(2∗k+3∗ i−5∗ j )

print ∗ , z

contains

subroutine Print Header ( )

implicit none

print ∗ , ’ ∗∗∗∗∗∗∗∗∗∗∗∗ ’

print ∗ , ’ ∗ header ∗ ’

print ∗ , ’ ∗∗∗∗∗∗∗∗∗∗∗∗ ’

end subroutine

end program



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 57

Canonicalize Keyword Capitalization

Intent

Make all applicable keywords the same case throughout the selected Fortran

program files.

Motivation

Most of Fortran code has been written through different versions of Fortran

standards. In that way we can find Fortran code having been written in

different capitalization with source code written heterogeneously.

Source Example

Code Before

—————————————–

program main

integer : : i

real : : j

do i = 1 ,10

j= i / 2

print ∗ , j

end do

end program main

Code After

—————————————–

PROGRAM main

INTEGER : : i

REAL : : j

DO i = 1 ,10

j= i / 2

PRINT ∗ , j

ENDDO

ENDPROGRAM main



58 CHAPTER 4. FORTRAN REFACTORING

Standarize Statements

Intent

Rewrite all variables declarations, so that there is only one variable decla-

ration per line, and every variable declaration contains a double colon (::).

This is intended to make the code more readable.

Motivation

Throughout time variable declarations have undergone different changes as

Fortran standards came out, in that way we can find different manners to

declare a variable in Fortran, for example “integer i” , “integer::i” or simply

“i”.

Source Example

Code Before

—————————————–

program main

implicit none

integer : : i , j , k

integer : : w, z

ca l l Print Header ( )

z=(2∗k+3∗ i−5∗ j )

print ∗ , z

contains

subroutine Print Header ( )

implicit none

print ∗ , ’ ∗∗∗∗∗∗∗∗∗∗∗∗ ’

print ∗ , ’ ∗ header ∗ ’

print ∗ , ’ ∗∗∗∗∗∗∗∗∗∗∗∗ ’

end subroutine

end program

Code After

—————————————–

program main

implicit none

integer : : i

integer : : j

integer : : k

integer : : w

integer : : z

ca l l Print Header ( )

z=(2∗k+3∗ i−5∗ j )

print ∗ , z

contains

subroutine Print Header ( )

implicit none

print ∗ , ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗ ’

print ∗ , ’ ∗ header ∗ ’

print ∗ , ’ ∗∗∗∗∗∗∗∗∗∗∗∗∗ ’

end subroutine

end program



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 59

4.4.2 Refactorings to Facilitate Design/Interface Change

Encapsulate Variable

Intent

Create getter and setter methods for the selected variable.

Motivation

One of the object oriented principles was not applied, encapsulation must

be introduced.

Pre-Conditions

Setter and getter functions must not exist in the scope.

Source Example

Code Before

—————————————–

module module1

integer , public : : temp

integer : : i

real : : j

end module module1

Code After

—————————————–

module module1

integer : : temp

private : : temp

integer : : i

real : : j

contains

subroutine setTemp ( value )

implicit none

integer , intent ( in ) : : va lue

temp = value

end subroutine

integer function getTemp ( )

implicit none

getTemp = temp

end function

end module module1



60 CHAPTER 4. FORTRAN REFACTORING

Make Private Entity Public

Intent

Switch a module variable or subprogram from Private to Public visibility.

Motivation

Sometimes the need of redistributing source code from one module to anot-

her makes necessary to turn into public some private variables for a certain

time.

Source Example

Code Before

—————————————–

module module2

implicit none

! i n t e g e r1 and in t e g e r3

! cannot be made pub l i c w/o

!ONLY c lause

! i n t e g e r2 and in t e g e r4

! can be made pub l i c

integer , private : : i n t e g e r 1

integer , private : : i n t e g e r 2

integer : : i n t ege r3 , i n t e g e r 4

private : : i n t ege r4 , i n t e g e r 3

end module

Code After

—————————————–

module module2

implicit none

! i n t e g e r1 and in t e g e r3

! cannot be made pub l i c w/o

! ONLY c lause

! i n t e g e r2 and in t e g e r4

! can be made pu b l i c

integer , private : : i n t e g e r 2

integer , public : : i n t e g e r 1

integer : : i n t ege r3 , i n t e g e r 4

private : : i n t ege r4 , i n t e g e r 3

end module



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 61

Change Subprogram Signature

Intent

Allow the user to add, remove, reorder, rename, or change the types of

parameters of a function or subroutine, updating call sites accordingly.

Motivation

Sometimes parameters arrangements are not clear or may change for a given

reason for example in order to be compliant with a certain standard. In

these cases to reorder parameters becomes a need.

Source Example

Code Before

—————————————–

program b a s i c t e s t

ca l l s imple (4 , 3 , 2 )

ca l l s imple (4 ,Gamma=2,Beta=3)

end program b a s i c t e s t

subroutine s imple (Alpha , Beta , Gamma)

integer , intent ( in ) : : Alpha

integer , intent (out ) : : Beta

integer , intent ( inout ) : : Gamma

end subroutine

Code After

—————————————–

program b a s i c t e s t

ca l l s imple (2 , 3 , 4 )

ca l l s imple (Gamma=2,Beta=3,Alpha=4)

end program b a s i c t e s t

subroutine s imple ( Gamma, Beta , Alpha )

integer , intent ( in ) : : Alpha

integer , intent (out ) : : Beta

integer , intent ( inout ) : : Gamma

end subroutine



62 CHAPTER 4. FORTRAN REFACTORING

Add Use of Named Entities To Module

Intent

It will allow a programmer to select entities in a module and add a USE

ONLY statement in a target module (or alter the existing one).

Motivation

Modules can be used to pass data among program entities. This is done

by declaring the commonly used data in the specification section of the

module.

Source Example

Code Before

—————————————–

module mod1

end module

module mod2

integer : : x , y

integer : : z ,w

end module

module mod3

use mod1

use mod2 , only : x , y

end module

program myprogyo

use mod3

print ∗ , x

end program

Code After

—————————————–

module mod1

end module

module mod2

integer : : x , y

integer : : z ,w

end module

module mod3

use mod1

use mod2 , only : x , y ,w, z

end module

program myprogyo

use mod3

print ∗ , x

end program



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 63

Add Only Clause To Use Statements

Intent

Create a list of the symbols that are being used from a module, and adds

it to the Use statement.

Motivation

To increase readability, comprehensibility and maintainability to source

code. To reduce coupling among modules.

Source Example

Code Before

—————————————–

module module4

implicit none

integer f

contains

subroutine help common4

common /mem/ a , b , c

integer : : a , b , c

end subroutine help common4

end module module4

program t e s t 8

use module4

implicit none

ca l l help common4

end program t e s t 8

subroutine asubrout ine

implicit none

real blah

end subroutine

Code After

—————————————–

module module4

implicit none

integer f

contains

subroutine help common4

common /mem/ a , b , c

integer : : a , b , c

end subroutine help common4

end module module4

program t e s t 8

use module4 , only : help common4

implicit none

ca l l help common4

end program t e s t 8

subroutine asubrout ine

implicit none

real blah

end subroutine



64 CHAPTER 4. FORTRAN REFACTORING

Move Entity Between Modules

Intent

Move a module variable or procedure from one module to another and

adjust Use statements accordingly.

Motivation

A variable or a subroutine is declared in a module not accord with its

intentions or its functionality.

Pre-Conditions

The variable or the subroutine must not be in conflict with those declared

in the new module.

Source Example

Code Before

—————————————–

module module1

integer : : a , b

integer ,parameter : : TWO=2

end module

module module2

integer : : q=z , b=a

integer : : z

integer : : a

contains

.

Code After

—————————————–

module module1

use module2 , only : z

integer : : q=z

integer : : a , b

integer ,parameter : : TWO=2

end module

module module2

integer : : b=a

integer : : z

integer : : a

contains



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 65

Safe-Delete Internal Subprograms

Intent

Removes from source code those subprograms no longer used.

Motivation

To reduce the source code complexity by removing all those subprograms

never used.

Pre-Conditions

the subprogram must not have references to it.

Source Example

Code Before

—————————————–

program t e s t

y = 3

j = 4

stop

contains

subroutine dummy

integer : : j

end subroutine

end program

Code After

—————————————–

program t e s t

y = 3

j = 4

stop

end program



66 CHAPTER 4. FORTRAN REFACTORING

Change Subroutine to Function

Intent

To convert a subroutine into a function

Motivation

A subprogram conceived as a subroutine has been incorrectly designed, in

its place a function is needed.

Source Example

Code Before

—————————————–

program t e s t 1

implicit none

integer : : i , j , sum , d i f f e r e n c e

i = 4

j=2

ca l l sum d i f f ( i , j , sum , d i f f )

print ∗ , ”sum : ” ,sum

print ∗ , ” d i f f : ” , d i f f

end program t e s t 1

subroutine sum d i f f ( i , j , sum , d i f f )

integer , intent ( in )

: : i , j

integer , intent (out ) : : sum , d i f f

sum = i+j

d i f f= i−j

end subroutine sum d i f f

Code After

—————————————–

program t e s t 1

implicit none

integer : : i , j , sum , d i f f e r e n c e

i = 4

j=2

sum = sum di f f ( i , j , d i f f )

print ∗ , ”sum : ” ,sum

print ∗ , ” d i f f : ” , d i f f

end program t e s t 1

function sum d i f f ( i , j , d i f f ) result (sum)

integer , intent ( in ) : : i , j

integer , intent (out ) : : d i f f

integer : : sum

sum = i+j

d i f f= i−j

end function sum d i f f



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 67

4.4.3 Refactorings to Avoid Poor Fortran Coding Practices

Remove Unreferenced Labels

Intent

Delete a label if it is never referenced.

Motivation

Old Fortran code uses labels very often. Labels make source code difficult

to read ,as a consequence, to make a more readable code, unreferenced

labels must be left out from the code.

Source Example

Code Before

—————————————–

program main

integer : : i

i=1

100 i f ( i . l t . 1 0 ) then

i=1

101 continue

110 else

end i f

end program

900 subroutine OneSubroutine

return

end subroutine

integer function OneFunc ( )

994 OneFunc=1

996 return

end

Code After

—————————————–

program main

integer : : i

i=1

i f ( i . l t . 1 0 ) then

i=1

else

end i f

end program

subroutine OneSubroutine

return

end subroutine

integer function OneFunc ( )

OneFunc=1

return

end



68 CHAPTER 4. FORTRAN REFACTORING

Remove Real Type Iteration Index

Intent

Change non-integer Do parameters or control variables.

Motivation

This old Fortran feature can cause some unwanted side effects like different

numbers of iteration each time the loop is executed, this kind of iteration

index must be removed from source code.

Pre-Conditions

The new iteration index must not be in conflict with other variables in the

scope.

Source Example

Code Before

—————————————–

do x = 1 . 0 , 2 . 0 , 1 . 0

print ∗ , INT(x )

end do

print ∗ , x

Code After

—————————————–

integer : : x

do x = 1 ,2 ,1

print ∗ , INT(x )

end do

print ∗ , x



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 69

Remove Reserved Words As Variables

Intent

Rename variables named equal to Fortran reserved keywords.

Motivation

Fortran standards allow users to use a keyword name as a variable name.

It can cause some unwanted side effects and difficulty in understanding the

code.

Pre-Conditions

New variable names must no be in conflict with those that are defined in

this scope.

Source Example

Code Before

—————————————–

ip2=ip1

twopi=−twopic

i f=1

i f ( i s . eq . 2 ) twopi=twopic

200 i f ( ip2 . ge . ip4 )go to 480

i f=i f+1

i f c u r=i f a c t ( i f )

i f ( i f c u r . ne . 2 ) go to 120

i f (4∗ ip2 . gt . ip4 )go to 120

i f ( i f a c t ( i f +1). ne . 2 ) go to 120

i f=i f+1

i f c u r=4

120 ip3=ip2 ∗ i f c u r

theta=twopi / f l o a t ( i f c u r )

Code After

—————————————–

ip2=ip1

twopi=−twopic

new name=1

i f ( i s . eq . 2 ) twopi=twopic

200 i f ( ip2 . ge . ip4 )go to 480

new name=new name+1

i f c u r=i f a c t ( new name )

i f ( i f c u r . ne . 2 ) go to 120

i f (4∗ ip2 . gt . ip4 )go to 120

i f ( i f a c t ( new name+1). ne . 2 ) go to 120

new name=new name+1

i f c u r=4

120 ip3=ip2 ∗ i f c u r

theta=twopi / f l o a t ( i f c u r )



70 CHAPTER 4. FORTRAN REFACTORING

Introduce Implicit None

Intent

Add Implicit None statements to a file and add explicit declarations for all

variables that were previously declared implicitly.

Motivation

Fortran standards allow implicit variable declaration, this practice is not

recommendable because it can cause undesired errors or side effects.

Source Example

See next page



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 71

Code Before

—————————————–

program main

a=1

b=2

i=3

j=4

contains

subroutine s

implicit integer ( a−c )

,complex(h) , real (w)

c=1

h=(4 ,5)

w=3.0

end subroutine

end program

Code After

—————————————–

program main

implicit none

real : : a

real : : b

integer : : i

integer : : j

a=1

b=2

i=3

j=4

contains

subroutine s

implicit none

integer : : c

complex : : h

real : : w

c=1

h=(4 ,5)

w=3.0

end subroutine

end program



72 CHAPTER 4. FORTRAN REFACTORING

Introduce Intent In/Out

Intent

Introduce intent In or Out in each variable declaration within functions and

subroutines.

Motivation

To get a clear understanding about a subroutine and/or a function is im-

portant to know which is the intent of parameters, if they are used as input

parameter or as output parameter.

Source Example

Code Before

—————————————–

function Area Ci r c l e ( r )

implicit none

real : : Area C i r c l e

real : : r

! Declare l o c a l cons tant Pi

real : : Pi

parameter : : Pi = 3 .14

Area C i r c l e = Pi ∗ r ∗ r

end function Area Ci r c l e

Code After

—————————————–

function Area Ci r c l e ( r )

implicit none

real : : Area C i r c l e

real , intent ( in ) : : r

! Declare l o c a l cons tant Pi

real : : Pi

parameter : : Pi = 3 .14

Area Ci r c l e = Pi ∗ r ∗ r

end function Area Ci r c l e



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 73

Remove Unused Local Variables

Intent

Remove declarations of local variables that are never used.

Motivation

Declared but unused variables may increase the code unreadability. In this

case, it is advisable to remove them from source code.

Source Example

Code Before

—————————————–

program main

implicit none

integer : : i

integer : : j

integer : : k

integer : : w

integer : : y

integer : : z

k=(2∗k+3∗ i−5∗ j )

print ∗ , z

end program

Code After

—————————————–

program main

implicit none

integer : : i

integer : : j

integer : : k

integer : : z

k=(2∗k+3∗ i−5∗ j )

print ∗ , z

end program



74 CHAPTER 4. FORTRAN REFACTORING

Minimize Only List

Intent

Delete symbols that are not being used from the Only list in a Use state-

ment.

Motivation

To reduce complexity, increase understandability and reduce intra-modular

coupling.

Source Example

Code Before

—————————————–

module1

integer : : i

contains

subroutine he lpe r ( )

implicit none

print (∗ , ’ blah ’ )

end subroutine

end module1

program t e s t

use module1 , only : i , h e lpe r

implicit none

ca l l he lpe r

end program t e s t

.

Code After

—————————————–

module1

integer : : i

contains

subroutine he lpe r ( )

implicit none

print (∗ , ’ blah ’ )

end subroutine

end module1

program t e s t

use module1 , only : h e lpe r

implicit none

ca l l he lpe r

end program t e s t



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 75

Make Common Variable Names Consistent

Intent

Give variables the same names in all definitions of the Common block.

Motivation

Common blocks allow users to employ different variable names within com-

mon blocks. This phenomenon makes source code difficult to understand,

read and maintain.

Pre-Conditions

New variables name must not be in conflict with other names in the scope.

Source Example

Code Before

—————————————–

program main

implicit none

common /block/ a , b , c ,

/mem/ r , f , t

integer : : a

real : : b

double precision : : c

integer : : r , f , t

a = 5

b = 4.6

c = 2.345

ca l l he lpe r

end program common1

subroutine he lpe r

implicit none

common /block/ e , f , g

integer : : e

real : : f

double precision : : g

end subroutine he lpe r

end program

Code After

—————————————–

program main

implicit none

common /block/ a common , b common , c common ,

/mem/ r , f , t

integer : : a common

real : : b common

double precision : : c common

integer : : r , f , t

a common = 5

b common = 4.6

c common = 2.345

ca l l he lpe r

end program common1

subroutine he lpe r

implicit none

common /block/ a common , b common , c common

integer : : a common

real : : b common

double precision : : c common

end subroutine he lpe r

end program



76 CHAPTER 4. FORTRAN REFACTORING

Add Identifier to END statement

Intent

add the identifier that belongs to the End statements ( End Function , End

Subroutine ).

Motivation

Nested statements may cause code to grow in complexity. To avoid this

situation, each statement allowing end statement must be identified. In

order to do this, Fortran permits to add the belonging identifier such “END

FUNCTION identifier-name” at the end of some statements.

Source Example

Code Before

—————————————–

module testmodule

integer : : xfromtestmodule

10 end

function t e s t f u n c t i o n (A)

integer , intent ( in ) : : A

t e s t f u n c t i o n = 4 ;

20 end ! A comment a f t e r

program f o r t r a n t e s t

print ∗ , ”Main program ! ”

contains

integer function t e s t f u n c t i o n (A)

integer , intent ( in ) : : A

t e s t f u n c t i o n = 4 ;

30 end function

subroutine do s t u f f

print ∗ , ”Hi ! ”

40 end subroutine

end

subroutine do s t u f f

print ∗ , ”Hi ! ”

50 end

Code After

—————————————–

module testmodule

integer : : xfromtestmodule

10 end module testmodule

function t e s t f u n c t i o n (A)

integer , intent ( in ) : : A

t e s t f u n c t i o n = 4 ;

20 end function t e s t f u n c t i o n ! A comment a f t e r

program f o r t r a n t e s t

print ∗ , ”Main program ! ”

contains

integer function t e s t f u n c t i o n (A)

integer , intent ( in ) : : A

t e s t f u n c t i o n = 4 ;

30 end function t e s t f u n c t i o n

subroutine do s t u f f

print ∗ , ”Hi ! ”

40 end subroutine do s t u f f

end program f o r t r a n t e s t

subroutine do s t u f f

print ∗ , ”Hi ! ”

50 end subroutine do s t u f f



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 77

Delete Unused Common Block Variable

Intent

Remove unused variables declared in a Common Block.

Motivation

The use of common blocks increases the program complexity, it is convenient

to delete those common block variables not used by any statement in the

program. Variables declared in common blocks are easily forgotten.

Source Example

See next page.



78 CHAPTER 4. FORTRAN REFACTORING

Code Before

—————————————–

program main

implicit none

common /block/ a , b , c ,

/mem/ r , f , t

integer : : a

real : : b

double precision : : c

integer : : r , f , t

a = 5

c = 2.345

ca l l he lpe r

end program common1

subroutine he lpe r

implicit none

common /block/ e , f , g

integer : : e

real : : f

double precision : : g

e=6

g=1.25

end subroutine he lpe r

end program

Code After

—————————————–

program main

implicit none

common /block/ a , c ,

/mem/ r , f , t

integer : : a

double precision : : c

integer : : r , f , t

a = 5

c = 2.345

ca l l he lpe r

end program common1

subroutine he lpe r

implicit none

common /block/ e , g

integer : : e

double precision : : g

e=6

g=1.25

end subroutine he lpe r

end program



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 79

Add Dimension Statement

Intent

Add the Dimension statement to declare an array.

Motivation

Old Fortran arrays declaration may be done without dimension clause. To

upgrade code with a more updated standard feature, a dimension clause

should be introduced in the source code.

Source Example

Code Before

—————————————–

real A(10 ,20 ) , x (50)

.

Code After

—————————————–

real A, x

dimension x (50)

dimension A(10 ,20)



80 CHAPTER 4. FORTRAN REFACTORING

Remove Format Statement Labels

Intent

Replace the format code in the read/write statement directly, instead of

specifying the format code in a separate format statement.

Motivation

Format statement has been used along different versions of Fortran to allow

formatted Input/Output. There is a more structured construction to reach

the same objective.

Pre-Conditions

New format parameters must not be in conflict with others in the same

scope. No duplicate labels should be in the code.

Source Example

Code Before

—————————————–

program t e s t 1

implicit none

integer : : X

integer : : Y

read (1 ,100 ,REC=13,ERR=30) X, Y

100 format ( I10 , F10 . 3 )

end program t e s t 1

Code After

—————————————–

program t e s t 1

implicit none

character (LEN=9) , parameter : : FMT100=”I10 , F10 . 3 ”

integer : : X

integer : : Y

read (1 ,FMT100,REC=13,ERR=30) X, Y

end program t e s t 1



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 81

4.4.4 Refactorings to Remove Outdated and Obsolete Constructs

Replace Obsolete Operators

Intent

Replace all uses of old-style comparison operators (such as .LT. and .EQ.)

with their newer equivalents (symbols such as ¡ and ==).

Motivation

Old style operators are in the appendix B since Fortran 90 standard. A

practice of good Fortran programming is to remove such old-fashion opera-

tors.

Source Example

Code Before

—————————————–

program main

implicit none

integer : : i , j , k

i = 1

j = 2

k = 3

i f ( i . l t . j . and . k . ne . 1 . or . k . gt . k ) then

print ∗ , ” :−)”

end i f

end program main

Code After

—————————————–

program main

implicit none

integer : : i , j , k

i = 1

j = 2

k = 3

i f ( i<j . and . k/=1 . or . k>k ) then

print ∗ , ” :−)”

end i f

end program main



82 CHAPTER 4. FORTRAN REFACTORING

Change Fixed Form To Free Form

Intent

Change Fortran fixed format files to Fortran free format files.

Motivation

Since Fortran 90 Standard the programming language allows free-form. The

fixed-form sometimes turns the source code unreadable, incomprehensible

and hard to maintain.

Source Example

Code Before

—————————————–

|−−−5−7−−1−−−−−−−−−2−−−−−−−

program main

C s i p l e Do Loop

do 110 i = 1 ,10

110 j=i

C s i p l e Do Loop2

do 120 i = 1 ,10

USAV( I ,K)=UCLIN( I ,K)+

&VSAV( I ,K)−VCLIN( I ,K)

UCLIN( I ,K)=UP( I ,K)

VCLIN( I ,K)=VP( I ,K)

120 continue

i=1

i f ( i . l t . 1 0 ) then

i=1

else

i=1+1

end i f

end program main

Code After

—————————————–

program main

! s i p l e Do Loop

do 110 i = 1 ,10

110 j=i

! s i p l e Do Loop2

do 120 i = 1 ,10

USAV( I ,K)=UCLIN( I ,K)+VSAV( I ,K)−VCLIN( I ,K)

UCLIN( I ,K)=UP( I ,K)

VCLIN( I ,K)=VP( I ,K)

120 continue

i=1

i f ( i . l t . 1 0 ) then

i=1

else

i=1+1

end i f

end program main



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 83

Transform Character* to Character(Len =) Declaration

Intent

Replace Character*Len with the equivalent Character(Len =) for string

declaration.

Motivation

This kind of string declaration is in the appendix B since Fortran 90 Stan-

dard, it was replaced by Character(len=) declaration.

Source Example

Code Before

—————————————–

program main

implicit none

character∗12 c i n t (12 ,12)

character∗1 cnmlp ( lon , la t , 2 ) , ra inp ( lon , la t , 2 )

character∗10 UnOld , l o l o ∗ 5 = ’ h e l i o s ’

character∗3 CONST,GREEK

character CATLOG∗10 ,NAME∗20

character ∗10 uno , dos

character hname∗20

Character s t r ∗10

character hname∗20 , name∗50 , lname ∗50 ,

expdesc ∗50 , h i s t ∗65

! no change

character ( len=10) s , s t r 2 ∗36

character ( len=10) s1 , s t r 1=’ l o l a ’

character ( len=10) : : UnNewString10

integer i

end program main

Code After

—————————————–

program main

implicit none

character ( len=12) : : c i n t (12 ,12)

character ( len=1) : : cnmlp ( lon , la t , 2 )

character ( len=1) : : ra inp ( lon , la t , 2 )

character ( len=10) : :UnOld

character ( len=5) : : l o l o=’ h e l i o s ’

character ( len=3) : :CONST

character ( len=3) : :GREEK

character ( len=10) : :CATLOG

character ( len=20) : :NAME

character ( len=10) : : uno

character ( len=10) : : dos

character ( len=20) : : hname

character ( len=10) : : s t r

character ( len=20) : : hname

character ( len=50) : :name

character ( len=50) : : lname

character ( len=50) : : expdesc

character ( len=65) : : h i s t

! no change

character ( len=10) s , s t r 2 ∗36

character ( len=10) s1 , s t r 1=’ l o l a ’

character ( len=10) : : UnNewString10

integer i

end program main



84 CHAPTER 4. FORTRAN REFACTORING

Remove Computed Go To Statement

Intent

Replace a computed Go To statement with an equivalent Select-Case cons-

truct containing Go To or if possible remove the Go Tos statement entirely.

Motivation

This is one of the most ancient Fortran feature released in 1956, this cons-

truction must be removed from Fortran source code, this is a not structured

construction. It allows spaghetti code production.

Source Example

Code Before

—————————————–

go to (12 , 24 , 36 ) , index

Code After

—————————————–

select case ( index )

case ( 1 )

go to 12

case ( 2)

go to 24

case ( 3 )

got o 36

end select



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 85

Remove Arithmetic If Statement

Intent

Replace an old arithmetic If statement, being analogous to removing com-

puted Go To.

Motivation

This is one of the most ancient Fortran feature released in 1956, this cons-

truction must be removed from Fortran source code, this is a not structured

construction. It allows spaghetti code production.

Source Example

Code Before

—————————————–

program i f t e s t

integer : : x = −2

i f ( x ) 10 ,20 ,30

10 print ∗ , ”x i s negat ive ! ”

goto 40

20 print ∗ , ”x i s zero ! ”

goto 40

30 print ∗ , ”x i s p o s i t i v e ! ”

40 print ∗ , ”end t ransmi s s i on . ”

end program i f t e s t

Code After

—————————————–

program i f t e s t

integer : : x = −2

i f (x< 0) then

goto 10

else i f ( x == 0) then

goto 20

else

goto 30

end i f

10 print ∗ , ”x i s negat ive ! ”

goto 40

20 print ∗ , ”x i s ze ro ! ”

goto 40

30 print ∗ , ”x i s p o s i t i v e ! ”

40 print ∗ , ”end t ransmi s s i on . ”

end program i f t e s t



86 CHAPTER 4. FORTRAN REFACTORING

Remove Assigned Go Tos

Intent

Remove assigned Go To statements.

Motivation

This is another ancient Fortran feature released in 1956, this construction

must be removed from Fortran source code, this is a not structured cons-

truction. It allows spaghetti code production.

Source Example

Code Before

—————————————–

100 . . .

assign 100 TO H

. . .

GO TO H . . .

Code After

—————————————–

100 . . .

. . .

. . .

GO TO 100 . . .



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 87

Replace Old Styles DO loops

Intent

Replace old styles Do Loop Continue with the equivalent Do Loop with

End Do statement.

Motivation

A DO loop can currently be terminated on a CONTINUE statement, this

causes all sorts of confusion, loops must be written in an actualized way.

Source Example

Code Before

—————————————–

program main

! s i p l e Do Loop

do 110 i = 1 ,10

110 j=i

! s i p l e Do Loop2

do 120 i = 1 ,10

USAV( I ,K)=UCLIN( I ,K)

VSAV( I ,K)=VCLIN( I ,K)

UCLIN( I ,K)=UP( I ,K)

VCLIN( I ,K)=VP( I ,K)

120 continue

end program main

Code After

—————————————–

program main

! s i p l e Do Loop

do i = 1 ,10

110 j=i

END DO

! s i p l e Do Loop2

do i = 1 ,10

USAV( I ,K)=UCLIN( I ,K)

VSAV( I ,K)=VCLIN( I ,K)

UCLIN( I ,K)=UP( I ,K)

VCLIN( I ,K)=VP( I ,K)

120 continue

END DO

end program main



88 CHAPTER 4. FORTRAN REFACTORING

Replace Shared Do Loop Termination

Intent

Replace all shared Do Loop termination construct with the equivalent Do

Loop with End Do statement.

Motivation

A number of DO loops can currently be terminated on the same (possibly

executable) statement, this causes all sorts of confusion, loops must be

written in an actualized manner.

Source Example

Code Before

—————————————–

program main

! Shared Do Loop Termination

do 100 j =1 ,10

do 100 w=1,10

100 i=j+1

end program main

Code After

—————————————–

program main

! Shared Do Loop Termination

do j =1 ,10

do w=1,10

100 i=j+1

end do

end do

end program main



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 89

Transform To While Sentence

Intent

Remove simulated While made by If and Go To statement.

Motivation

There is a WHILE statement simulated with a non structured construction,

to avoid the use of not structured construction it must be replaced with a

WHILE statement.

Source Example

Code Before

—————————————–

. . .

integer : : n

n = 1

10 i f (n . l t . 100) then

n = 2∗n

write (∗ ,∗ ) n

goto 10

end i f

. . .

Code After

—————————————–

. . .

. . .

. . .

. . .

n = 1

do while (n . l t . 100 )

n=2 ∗ n

write (∗ ,∗ ) n

end do



90 CHAPTER 4. FORTRAN REFACTORING

Move Common Block to Module

Intent

Remove all declarations of a particular Common block, moving its variable

declarations into a module and introducing Use statements as necessary.

Motivation

The use of common blocks make the source code hard to understand and

read since common blocks can have different names among modules.

Source Example

See next page.



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 91

Code Before

—————————————–

module module1

implicit none

common /block/ a , b

integer : : a , b

contains

integer function add ( )

implicit none

common /block/ e , f

integer : : e , f

add=e+f

end function add

integer function mult ( )

implicit none

common /block/ e , f

integer : : e , f

mult=e∗ f

end function mult

end module module1

Code After

—————————————–

module module1

type mytype

integer : : a

integer : : b

end type

contains

integer function add ( a )

type (mytype ) : : a

add=a%e+a%f

end function add

integer function mult ( a )

type (mytype ) : : a

mult=a%e+a%f

end function mult

end module module1



92 CHAPTER 4. FORTRAN REFACTORING

Move Saved Variables To Common Block

Intent

Create a Common block for all saved variables of a subprogram. Declara-

tions of these variables in the subprogram are transformed such that they

are no longer ”saved”. The generated common block is declared both in

the main PROGRAM and in the affected subprogram[63].

Motivation

To eliminate the static behavior from certain variables.

Source Example

See new page.



4.4. REFACTORINGS TO IMPROVE MAINTAINABILITY 93

Code Before

—————————————–

PROGRAM MyMain

USE MySeparateFileMod

COMMON /MyTestFun common1/ aVar

REAL : : a xxx1

REAL : : comVar

REAL : : aVar

COMMON /CB1/ comVar

print ∗ , t e s t

print ∗ , internalModVar

comVar = 5 .5

CONTAINS

REAL FUNCTION MyTestFun ( )

REAL : : com

COMMON /MyTestFun common2/ com

REAL : : q = 3 . 3 , w, e = 5 .5

REAL, DIMENSION(5 ) : : r , t

REAL, SAVE : : u = 1 .1

REAL, SAVE : : o

REAL, POINTER : : p

POINTER o

REAL : : b , c , d

REAL, POINTER : : a

POINTER c , d

SAVE a , r , p , b , c

DIMENSION b (10)

c = 1 .2

MyTestFun = 3.3

END FUNCTION MyTestFun

REAL FUNCTION MyTestFun2( aVar )

REAL, DIMENSION ( 10 : 1 0 ) : : aVar

CHARACTER (LEN=30) : : char

REAL : : bVar (100 : 100 )

DOUBLE PRECISION : : cVar (10)

REAL, PARAMETER : : b = 1 .1

REAL c

POINTER c

SAVE

MyTestFun2 = 0 .0

END FUNCTION MyTestFun2

ENDPROGRAM MyMain

SUBROUTINE MySub

REAL : : t e s t

COMMON /CB1/ comVar

t e s t = 1 .1

comVar = comVar + comVar

END SUBROUTINE MySub

Code After

—————————————–

PROGRAM MyMain

USE MySeparateFileMod

REAL, POINTER : : a xxx2

REAL, DIMENSION(10) : : b xxx1

REAL, POINTER : : c xxx1

REAL : : e xxx1 = 5 .5

REAL, POINTER : : o xxx1 , p xxx1

REAL : : q xxx1 = 3 .3

REAL, DIMENSION(5 ) : : r xxx1

REAL : : u xxx1 = 1 .1

COMMON /MyTestFun common3/ a xxx2 , b xxx1 , c xxx1

, e xxx1 , o xxx1 , p xxx1 , q xxx1 , r xxx1 , u xxx1

COMMON /MyTestFun common1/ aVar

REAL : : a xxx1

REAL : : comVar

REAL : : aVar

COMMON /CB1/ comVar

print ∗ , t e s t

print ∗ , internalModVar

comVar = 5 .5

CONTAINS

REAL FUNCTION MyTestFun ( )

COMMON /MyTestFun common3/ a xxx2 , b xxx1 , c xxx1

, e xxx1 , o xxx1 , p xxx1 , q xxx1 , r xxx1 , u xxx1

REAL : : com

COMMON /MyTestFun common2/ com

REAL : : q xxx1 , w, e xxx1

REAL, DIMENSION(5 ) : : r xxx1 , t

REAL : : u xxx1 , o xxx1

REAL, POINTER : : p xxx1

POINTER o xxx1

REAL : : b xxx1 , c xxx1 , d

REAL, POINTER : : a xxx2

POINTER c xxx1 , d

DIMENSION b xxx1 (10)

c xxx1 = 1 .2

MyTestFun = 3.3

END FUNCTION MyTestFun

REAL FUNCTION MyTestFun2 ( aVar )

REAL, DIMENSION ( 10 : 1 0 ) : : aVar

CHARACTER (LEN=30) : : char

REAL : : bVar (100 : 100 ) , c

DOUBLE PRECISION : : cVar (10)

REAL, PARAMETER : : b = 1 .1

POINTER c

SAVE

MyTestFun2 = 0 .0

END FUNCTION MyTestFun2

ENDPROGRAM MyMain

SUBROUTINE MySub

REAL : : t e s t

COMMON /CB1/ comVar

t e s t = 1 .1

comVar = comVar + comVar

END SUBROUTINE MySub



94 CHAPTER 4. FORTRAN REFACTORING

Data To Parameter

Intent

Change a Data declaration to Parameter declaration making more clear

which variables are constant and which ones are not.

Motivation

Since the use of DATA statement is chained to variables assignments, so-

metimes there are variables used as constants. In a way to improve the

memory allocation and memory access these identifiers should be declared

as constants.

Source Example

Code Before

—————————————–

program dataToParameter

implicit none

real : : x , y , z

integer : : a , b , c !A comment

! Those va l u e s are as s i gned

data x , y , z / 1 . , 2 . , 3 . /

! About to a s s i gn more va l u e s

data a /10/ ,b/15/ , c /20/

x = 5 .4

b = 6

end program dataToParameter

Code After

—————————————–

program dataToParameter

implicit none

real : : x , y , z

integer : : a , b , c !A comment

data x /1 ./ ! Those va l u e s are as s i gned

parameter ( z = 3 . ) ! Those va l u e s are as s i gned

parameter ( y = 2 . ) ! Those va l u e s are as s i gned

data b/15/

parameter ( c = 20 )

parameter ( a = 10 )

! About to change some ass i gned va l u e s

x = 5 .4

b = 6

end program dataToParameter



4.5. PERFORMANCE REFACTORINGS 95

4.5 Performance Refactorings

This category currently has some examples of how refactoring can be used to

improve performance while preserving not only the behavior of the program but

also the readability and maintainability of the code. This is one of the factors

that sets refactoring apart from optimization.

4.5.1 Refactorings For Performance

Change To Vector Form

Intent

rewrite a Do Loop into an equivalent Fortran vectorial notation, which

allows the compiler to make better optimizations [75].

Motivation

To eliminate do loop from source code and to utilize vector notation allowed

in Fortran. Sometimes it can cause a performance improvement because of

compiler optimization.

Source Example

Code Before

—————————————–

do 10 i = 1 ,100

x (1 ) = x (1) + y (1)

10 continue

Code After

—————————————–

. . .

x (1:100)= x (1 :100)+( l : 1 00 )

. . .



96 CHAPTER 4. FORTRAN REFACTORING

Interchange Loops

Intent

swap inner and outer loops of the selected nested do-loop, in the case that

doing so allows to optimize memory access pattern and allows to take ad-

vantage of data prefetching techniques.

Motivation

When the loop variables index into an array, such a transformation can

improve locality of reference, depending on the array’s layout.

Source Example

Code Before

—————————————–

program main

integer : : max

parameter (max = 10)

integer : : c l ouds (max ,max)

integer : : ocean (max ,max)

integer : : i , j

do i = 1 ,10

do j= 1 ,10

c louds ( i , j ) = ocean ( i +2, j −1)

end do

end do

end program main

Code After

—————————————–

program main

integer : : max

parameter (max = 10)

integer : : c l ouds (max ,max)

integer : : ocean (max ,max)

integer : : i , j

do j= 1 ,10

do i = 1 ,10

c louds ( i , j ) = ocean ( i +2, j −1)

end do

end do

end program main



4.5. PERFORMANCE REFACTORINGS 97

Loop Reversal

Intent

Take an incrementing or decrementing loop, swap the lower and upper

bounds, and negate the step.

Motivation

This optimization may help to eliminate dependencies enabling other kinds

of optimizations. Together with the fact that certain architectures use loo-

ping constructs at Assembly language level that count in a single direction

only (e.g. decrement-jump-if-not-zero (DJNZ)).

Source Example

Code Before

—————————————–

program t e s t

implicit none

integer : : i

do i = 1 ,10 ,2

print ∗ , i

end do

end program t e s t

Code After

—————————————–

program t e s t

implicit none

integer : : i

do i = 10 ,1 ,−2

print ∗ , i

end do

end program t e s t



98 CHAPTER 4. FORTRAN REFACTORING

Loop Unrolling

Intent

Take the selected do-loop and either completely or partially unroll it. This

will also optionally include a conditional statement to make sure the loop

stays in bounds.

Motivation

Duplicate the body of the loop multiple times, in order to decrease the

number of times the loop condition is tested and the number of jumps,

which may degrade performance by impairing the instruction pipeline.

Source Example

Code Before

—————————————–

program t e s t

implicit none

integer : : i

do i = 1 ,10 ,2

print ∗ , i

end do

end program t e s t

Code After

—————————————–

program t e s t

implicit none

integer : : i

do i = 1 ,10 ,8

print ∗ , i

print ∗ , i+2

i f ( i +4>10) then exit

print ∗ , i+4

print ∗ , i+6

end do

end program t e s t



4.5. PERFORMANCE REFACTORINGS 99

Loop Tiling

Intent

This refactoring takes a double nested do-loop, and creates a nested do-loop

with four levels of depth. Instead of iterating through a two dimensional

array (for example) by going through each row, it will loop over smaller tile

blocks. [63]

Motivation

Loop tiling reorganizes a loop to iterate over blocks of data size, it can

produce a gaining on performance.

Source Example

Code Before

—————————————–

implicit none

integer : : i

integer : : j

integer : : n=1, m=20, p=10

do i=n ,10

do j=n ,m

print ∗ , i

end do

end do

end program t e s t

Code After

—————————————–

program t e s t

implicit none

integer : : i1 , j 1

integer : : i

integer : : j

integer : : n=1, m=20, p=10

do i 1=f l o o r ( real (n−20)/3)∗3+20 ,8 ,3

do j 1=f l o o r ( real (n−20)/3)∗3+20 , f l o o r ( real (m−20)/3)∗3+20 ,3

do i=max(n , i 1 ) ,min (10 , i 1+2)

do j=max(n , j 1 ) ,min (m, j1+2)

print ∗ , i

end do

end do

end do

end do

end program t e s t



100 CHAPTER 4. FORTRAN REFACTORING

Loop Fusion

Intent

Take two do-loops, normalize their bounds, and finally put the loop bodies

in a single do-loop.

Motivation

Two or more adjacent loops would iterate the same number of times (whet-

her or not that number is known at compile time), their bodies can be

joined as long as they make no reference to each other’s data.

Source Example

Code Before

—————————————–

program t e s t

implicit none

integer : : i , j

do i = 1 ,10 ,2

print ∗ , i

end do

do j = 21 ,25 ,1

print ∗ , j

end do

end program t e s t

Code After

—————————————–

program t e s t

implicit none

integer : : i , j

do i = 0 ,4 ,1

print ∗ , ( i ∗2+1)

print ∗ , ( i ∗1+21)

end do

end program t e s t



4.6. DIFFERENCES BETWEEN FORTRAN AND OTHER LANGUAGES

REFACTORINGS 101

4.6 Differences Between Fortran and Other Languages

Refactorings

As a long lived language Fortran has compiled a vast amount of intricate lan-

guage constructions. These constructions have been compiled in a language that

evolved throughout 50 years of existence. We consider Fortran the best example

of a successful language who resists the push of time. Therefore, the language

evolution through years has brought about Fortran specific code transformation

to be performed with the intention to make Fortran programs compliant with the

standard evolution. Fortran is the first case studies of a set of other programming

languages with a long trajectory like COBOL or Lisp.

Refactoring tools are of paramount importance to help programming lan-

guages to evolve and to help programmers to keep their programs up-to-date.

And in the specific case of Fortran refactoring tools will play a role of evolution

facilitator.

As a conclusion, the study of these kinds of transformation open the door to

examine the modern programming languages evolution course such as Java, c#,

Ruby, etc.





Chapter 5

Photran:A Refactoring Tool for

Fortran

Photran is an advanced, multiplatform integrated development environment (IDE)

for Fortran based on Eclipse. Photran has a number of powerful features. As an

IDE, it integrates editing, source navigation, compilation, and debugging into a

single tool. It uses make for compilation, which allows it to work with virtually

any existing Fortran compiler; so-called error parsers are provided which inter-

pret the error messages from popular compilers, associating error markers with

the appropriate lines of code. Language-based searching allows a Fortran pro-

grammer to quickly find a subprogram or module with a particular name, or to

find all of the references to a particular variable or subprogram. From the begin-

ning, Photran was designed to support refactoring, and much of its development

effort has focused on providing a robust refactoring infrastructure. Version 6.0

(released June, 2010) contains 16 refactorings, and many more are under develop-

ment. The development version of Photran provides name binding, control flow,

and basic data flow information to support precondition checking, see Figure 5.1.

103



104 CHAPTER 5. PHOTRAN:A REFACTORING TOOL FOR FORTRAN

Figure 5.1: Photran, Fortran View

5.1 The Architecture

Photran is based on Eclipse C Development Tool. CDT integrates a set of tools

to compile programs. One of these tools is make, which controls the generation of

executables, another one is called gdb and it integrates interactive debugging. In

2006 Overbey and Rasmusen provided a patch to CDT when an extension point

was added. This extension point allowed make-based programming languages,

other than C, to be used at the CDT core. Once a new language has been

plugged at this new extension point, the new language is allowed to use CDT

capabilities [62].

Photran was born as a research project at the University of Illinois, basically

within the Research Group of Dr. Ralph Johnson.

5.2 Photran Core

In the list below we can find a detailed description of the Photran core , see

Figure 5.2.

The main packages making up Photran include (description mainly extracted



5.2. PHOTRAN CORE 105

Figure 5.2: Photran Architecture [64]

from[64, 65]):

• org.eclipse.photran.cdtinterface

– The FortranLanguage class, which adds Fortran to the list of languages

recognized by CDT

– Fortran model elements and icons for the Outline and Fortran Projects

views

– An extension point for contributing Fortran model builders

– The Fortran perspective, Fortran Projects view, and other CDT-based

parts of the user interface

– New Project wizards and Fortran project templates



106 CHAPTER 5. PHOTRAN:A REFACTORING TOOL FOR FORTRAN

• org.eclipse.photran.core

As described in Photran Developer Guide, this package contains

– Workspace preferences for Fortran projects

– Error parsers for Fortran compilers

– Utility classes

• org.eclipse.photran.core.vpg

This is probably the most complex package of Photran because the whole

refactoring infrastructure lies within. Inside of it the Parser, the VPG

(Virtual Program Graph), the AST (Abstract Syntax Tree) nodes and the

refactorings can be found.

– Fortran parser and the AST

– Fortran preprocessor (to handle INCLUDE lines)

– Parser-based model builder

– Photran’s VPG

– Utility classes (e.g., SemanticError, LineCol)

– Project property pages

– Name binding analysis (equivalent to symbol tables)

– Refactoring/program transformation engine

– Refactorings

• org.eclipse.photran.ui

In this package UI components not provided by CDT infrastructure were

built.

– Fortran Editors

∗ Fixed Format Editor

∗ Free Format Editor

– Preference pages



5.3. THE PROGRAM REPRESENTATION 107

• org.eclipse.photran.ui.vpg In this package UI components closely re-

lated to the refactoring infrastructure are deployed, such as: specific refac-

toring UI, input - output dialogs, etc.

• org.eclipse.photran.core.vpg.preprocessor.c In this package the re-

quired classes for refactoring Fortran with C preprocessed directives are

found.

5.3 The Program Representation

Photran contains two very important structures. The first one is the AST, which

maintains the entire representation of a Fortran program. The AST structure

is filled with AST nodes, a set of classes that represent each possible element of

the programming language, Figure 5.3 is an example of it. The second important

structure is the VPG which facilitates the handling of the AST and the embedded

analysis information, acting as a facade between the AST and the programmer

[65]. Thus, VPG allows refactoring programmers to acquire or release ASTs; it

also sets off scope and binding analysis; while allowing the user to obtain variable

definitions, and so forth.



108 CHAPTER 5. PHOTRAN:A REFACTORING TOOL FOR FORTRAN

Figure 5.3: An example of Photran AST

5.4 Refactoring Infrastructure

Photran divides refactorings into two categories: editor-based refactorings, which

require the user to select part of a Fortran program in a text editor in order to

initiate the refactoring, and resource refactorings which apply to entire files.

To create a new refactoring, the developer must decide whether it will be

an editor-based refactoring or a resource refactoring. Photran provides different

superclasses for each. The developer then creates a concrete subclass and adds a

line of XML to a configuration file to make Photran aware of the new refactoring.

The concrete subclass must define methods which first provide the name of the

refactoring. This becomes its label in the Refactor menu. It is also used to

describe the refactoring in the Edit > Undo menu item and in other user interface

elements.

Second, check initial preconditions. These are usually simple checks which

verify that the user selected the correct construct in the editor, that the file is



5.4. REFACTORING INFRASTRUCTURE 109

not read-only, and so foth.

Third, it is necessary to acquire user input. For example, a refactoring to add

a parameter to a subprogram must ask the user to supply the new parameter’s

name and type. Then check final preconditions. These validate user input and

perform any additional checks necessary to ensure that the transformation can

be performed, the resulting code will compile, and it will retain the behavior of

the original program.

And finally, perform the transformation. Once all preconditions have been

checked, this method determines what files will be changed, and how. Thanks

to the XML configuration file and Java’s reflective facilities, much of the user

interface for a refactoring comes “for free”.

Then Photran automatically adds the refactoring to the appropriate parts

of the Eclipse user interface, and it provides a wizard-style dialog box which

allows the user to interact with the refactoring. This dialog includes a diff -like

preview, which allows the user to see what changes the refactoring will make

before committing it.





Chapter 6

Refactoring Examples

In this chapter a thorough specification about how to build Fortran refactorings in

Photran will be presented. Four Fortran specific refactorings have been selected

from the proposed catalog with the intention of describing and implementing

them in this thesis.

6.1 Initial Steps

To introduce a new refactoring in the Photran menu, it is necessary to edit

the plugin.xml file. As we said in the previous chapter, there are two types of

refactorings in Photran. The first type is called editor refactoring, this kind

of refactoring allows the users to work with a code selection or with the editor

selected file (Fortran constructions like loops or a certain set of statements). The

second one is called resource refactoring, this refactoring type allows the users

to work with an entire set of files, named resources in Photran (programs or

modules).

Photran refactoring engine provides two classes corresponding to the two re-

factoring types (editor or resource). To make a new refactoring, a class must be

created so as to extend the FortranEditorRefactoring or FortranResourceRefac-

toring (see Figure 6.1).

111



112 CHAPTER 6. REFACTORING EXAMPLES

Figure 6.1: Photran refactoring class diagram

Once we have decided which subclass to implement in order to make the

refactoring, we need to make Photran aware of the new refactoring by editing the

plugin.xml [65].

There are some methods that must be implemented and overridden in order

to obtain a refactoring. Each one of these methods have a precise intent within

the refactoring structure. Those methods are :

• public String getName()

• protected void doCheckInitialConditions(RefactoringStatus status, IPro-

gressMonitor pm) throws PreconditionFailure

• protected void doCreateChange(IProgressMonitor pm) throws CoreExcep-

tion, OperationCanceledException

• protected void doCheckFinalConditions(RefactoringStatus status, IProgress-

Monitor pm) throws PreconditionFailure



6.2. TRANSFORM CHARACTER* TO CHARACTER(LEN =) 113

6.2 Transform Character* to Character(Len =)

6.2.1 Inception

In order to introduce a more updated way to declare string variables, we propose

a new refactoring. This refactoring changes the multiple ways to write a string

declaration by replacing all declaration types by character(len=). By doing this,

all declarations will result in a more updated, readable and understandable code.

The following code shows different ways to declare character strings:

character∗10 NewString

character NewString ∗10

character NewString (10)

character ( len=10) NewString

character ( len=10) : : NewString

The following string declarations are a real life example:

character∗1 cnmlp ( lon , la t , 2 ) , ra inp ( lon , la t , 2 )

character∗10 UnOld , S t r ing ∗ 5 = ’ h e l i o s ’

character∗3 const , greek

character ca ta l og ∗10 ,name∗20

character ∗10 name, phone

character hname∗20

character s t r ∗10

character hname∗20 , name∗50 , lname ∗50 , expdesc ∗50 , h i s t ∗65

character ( len=10) s , s t r 2 ∗36

character ( len=10) s1 , s t r 1=’ l o l a ’

character ( len=10) : : aNewString10

6.2.2 The Design

At this point, we need to define how the refactoring will work. Basically, this

refactoring rewrites all character declarations into CHARACTER(LEN=) form.

To perform this change, the refactoring must collect all character declarations

within a certain scope in a file. Then it must transform them into a CHARAC-

TER(LEN=) declaration.



114 CHAPTER 6. REFACTORING EXAMPLES

Figure 6.2: Photran replace character star refactoring class diagram

6.2.3 The Implementation

A new subclass of FortranResourceRefactoring was added in the org.eclipse

.photran.internal.core.refactoring. Moreover, the responsibility to main-

tain node references is delegated to a visitor pattern [33] which is implemented

within the refactoring class as static final class (see Figure 6.2 ):

The Implementation steps:

1. Edit the plugin.xml:

<group>< !−− Refactorings tha t reformat code −−>

<r e s ou r s eRe f a c t o r i ng

c l a s s=”org . e c l i p s e . photran . i n t e r n a l . core . r e f a c t o r i n g . Rep laceCharacterStarRe factor ing ”

/>

<r e s ou r c eRe f a c t o r i ng



6.2. TRANSFORM CHARACTER* TO CHARACTER(LEN =) 115

c l a s s=”org . e c l i p s e . photran . i n t e r n a l . core . r e f a c t o r i n g . RepObsOpersRefactoring”

/>

</group>

2. The class must expose its name to the eclipse environment, to do this

the getname() method is defined. To expose this name, this overriding is

needed:

@Override

public St r ing getName ( ) {

return Messages . ReplaceCharacterToCraracterLenRefactoring Name ;

}

3. In order to check the initial preconditions required to apply the refactoring

transformation, the doCheckInitialConditions method is overridden. Inside

this method, the work of checking the initial conditions required by the re-

factoring will be performed. In this case, only one precondition is required,

character * declarations must be present in the source code. The transfor-

mation will be made only on those character declarations not complying

with the required format.

The doCheckInitialConditions() method checks the refactoring engine avai-

lability by the ensureProjectHasRefactoringEnabled() method. As a second

step, the removal of the fixed format files and the C-preprocessed files is

performed by the removeFixedFormFilesFrom() and removeCpreprocessed-

FilesFrom() methods in order to extract from the selected files those which

are not available for refactoring yet, such as fixed format files and pre-

processed files. A visitor is used in this stage to collect all characters *

declaration and to check if there is a string declaration to be transformed.

In the case that no declaration is found, a message will be shown.

@Override

protected void doCheck In i t i a lCond i t i ons ( Re fac to r ingSta tus status ,

IProgressMonitor pm) throws Precond i t i onFa i l u r e {

ensureProjectHasRefactor ingEnabled ( s t a tu s ) ;

removeFixedFormFilesFrom ( this . s e l e c t e dF i l e s , s t a tu s ) ;

removeCpreprocessedFilesFrom ( this . s e l e c t e dF i l e s , s t a tu s ) ;



116 CHAPTER 6. REFACTORING EXAMPLES

// iterateThroughAllTypeDeclarationStmtNodes

CharacterNodesVis i tor c h a r a c t e rV i s i t o r = new CharacterNodesVis i tor ( ) ;

I F i l e f i l e = this . f i l e I nEd i t o r ;

IFortranAST ast = vpg . acquirePermanentAST ( f i l e ) ;

a s t . accept ( c h a r a c t e rV i s i t o r ) ;

// i f there i s not any character ∗ a message i s shown

i f ( c h a r a c t e rV i s i t o r . g e tL i s t ( ) . s i z e ()<1)

f a i l ( Messages . ReplCharToCharLenRef CharacterStarDeclNotSelected ) ;

}

Note: Messages.ReplCharToCharLenRef stands for Messages.ReplaceCharacterToCharacterLenRefactoring

The CharacterNodesVisitor is responsible for counting the old string decla-

rations. We traverse the AST structure counting the character * declaration

forms. This class is listed below:

private stat ic f ina l c lass CharacterNodesVis i tor extends ASTVisitor {

private List<ASTTypeDeclarationStmtNode> oldCcharDeclaStmtList=

new LinkedList<ASTTypeDeclarationStmtNode >() ;

@Override

public void visitASTTypeDeclarationStmtNode (ASTTypeDeclarationStmtNode node ){

ASTTypeSpecNode specTypeNode=node . getTypeSpec ( ) ;

i f ( i sCharac t e rDec l a ra t i on (ASTTypeSpecNode specTypeNode )){

ASTCharSelectorNode charSe lectorNode = specTypeNode . ge tCharSe l ec to r ( ) ;

i f ( charSe lectorNode !=null ) {

i f ( isAnOldCharacterDecl ( charSe lectorNode ) ){

// put the node in the l i s t i s a Character ∗

oldCharDeclaStmtList . add ( node ) ;

}

}

else oldCharDeclaStmtList . add ( node ) ;

}

}

public List<ASTTypeDeclarationStmtNode> g e tL i s t ( ) {

return this . o ldcharDec laStmtList ;

}

private boolean i sAnOldCharacterDecl ( ASTCharSelectorNode node ) {

return ! node . isAssumedLength ( )

&& ! node . i sColon ( )

&& ! ( node . getConstIntLength()==null )

&& ( node . getLengthExpr()== null )

&& ( node . getKindExpr()==null )

&& ( node . getKindExpr2()==null ) ;

}



6.2. TRANSFORM CHARACTER* TO CHARACTER(LEN =) 117

private boolean i sCharac t e rDec l a ra t i on (ASTTypeSpecNode specTypeNode ) {

return ( specTypeNode!= null ) && specTypeNode . i sCharac t e r ( ) ;

}

}

4. Since no user input is needed this is the last step to perform the transfor-

mation. To refactor the source code we need to iterate the different scopes

in the file, by using the method doCreateChange().

@SuppressWarnings ( ”unchecked” )

@Override

protected void doCreateChange ( IProgressMonitor pm) throws CoreException ,

OperationCanceledException {

I F i l e f i l e = this . f i l e I nEd i t o r ;

IFortranAST ast = vpg . acquirePermanentAST ( f i l e ) ;

L i s t<ScopingNode> scopes = ast . getRoot ( ) . getAl lConta inedScopes ( ) ;

for ( ScopingNode scope : scopes )

i f ( ! ( scope instanceof ASTExecutableProgramNode ) &&

! ( scope instanceof ASTDerivedTypeDefNode ) )

removeOldCharacterDecl ( ( IASTListNode<IASTNode>)scope . getBody ( ) , a s t ) ;

this . addChangeFromModifiedAST ( this . f i l e I nEd i t o r , pm) ;

vpg . releaseAST ( this . f i l e I nEd i t o r ) ;

}

For each scope in the AST, the visitor must gather all the AST nodes

representing a character * declaration in order to check whether the node

should be rewritten.

private void removeOldCharacterDecl ( IASTListNode<IASTNode> body , IFortranAST ast ) {

// Removes a l l character dec lara t ion from a scope

// creat ing f i r s t a l i s t o f new Character Declarat ions

List<ASTTypeDeclarationStmtNode> typeCharDeclStmts =

createCharTypeDeclStmtList ( body , as t ) ;

insertNewStmts ( typeCharDeclStmts , body , as t ) ;

removeOldStmts ( typeCharDeclStmts , body ) ;

}

private List<ASTTypeDeclarationStmtNode> createCharTypeDeclStmtList ( IASTListNode<IASTNode> body , IFortranAST ast )

{

List<ASTTypeDeclarationStmtNode> statements = new

LinkedList<ASTTypeDeclarationStmtNode >() ;



118 CHAPTER 6. REFACTORING EXAMPLES

CharacterNodesVis i tor cha rV i s i t o r= new CharacterNodesVis i tor ( ) ;

a s t . accept ( cha rV i s i t o r ) ;

for ( IASTNode node : body ){

i f ( matches ( node , cha rV i s i t o r . g e tL i s t ( ) ) )

changeOldCharStyleDecl ( ( ASTTypeDeclarationStmtNode ) node , statements ) ;

}

return statements ;

}

private boolean matches ( IASTNode node , List<ASTTypeDeclarationStmtNode> l i s t ){

return ( node instanceof ASTTypeDeclarationStmtNode )

&& ( l i s t . conta in s ( node ) )

}

5. Helper Methods:

To perform the Transform Character * to Character (Len) refactoring some
helper methods were implemented. This transformation can be divided into
two parts: the node collection and the node rewriting. To perform the rew-
riting stage, some methods whose responsibility consists of rewriting new
nodes, have been defined. The method createNewVariableDeclaration() is
in charge of rewriting the strings declaration. The code is listed below:

@SuppressWarnings ( ”unchecked” )

private ASTTypeDeclarationStmtNode createNewVar iab leDec larat ion

(ASTTypeDeclarationStmtNode typeDeclStmt , int s i z e ) {

IASTListNode<ASTEntityDeclNode> va r i a b l e s =

typeDeclStmt . g e tEnt i tyDec lL i s t ( ) ;

ASTTypeDeclarationStmtNode newStmt =

(ASTTypeDeclarationStmtNode ) typeDeclStmt . c l one ( ) ;

i f ( s i z e >0) newStmt . setTypeSpec ( createTypeSpecNodeFrom ( typeDeclStmt ) ) ;

IASTListNode<ASTEntityDeclNode> newVariable =

( IASTListNode<ASTEntityDeclNode>) v a r i a b l e s . c l one ( ) ;

L i s t<ASTEntityDeclNode> l i stOfVariablesToRemove =

new LinkedList<ASTEntityDeclNode >() ;

for ( int j =0; j<va r i a b l e s . s i z e ( ) ; j++)

i f ( j != i ) l i stOfVariablesToRemove . add ( newVariable . get ( j ) ) ;

newVariable . removeAll ( l i stOfVariablesToRemove ) ;

newStmt . s e tEnt i t yDec lL i s t ( newVariable ) ;

// Inser t ” : : ” i f the o r i g i na l statement does not contain tha t a lready

St r ing source = addTwoColons (newStmt ) ;

newStmt = (ASTTypeDeclarationStmtNode ) par s eL i t e ra lS ta t ement ( source ) ;



6.2. TRANSFORM CHARACTER* TO CHARACTER(LEN =) 119

// rep lace o ld S ty l e Character

newStmt=characterToCharacterLen (newStmt ) ;

return newStmt ;

}

Another complex helper method to perform this refactoring is the charac-

terToCharacterLen() method, which serves the functions of rewriting the

string node declarations.

private ASTTypeDeclarationStmtNode characterToCharacterLen (

ASTTypeDeclarationStmtNode Stmt ) {

St r ing l ength=”” ; //$NON−NLS−1$

St r ing l i t e r a l I n i D e c=”” ; //$NON−NLS−1$

ASTTypeSpecNode type=Stmt . getTypeSpec ( ) ;

ASTEntityDeclNode declNode=Stmt . ge tEnt i tyDec lL i s t ( ) . get ( 0 ) ;

i f ( i sCha ra c t e rS ta rS t r i ng ( Stmt )){

i f ( hasCharacterLength ( declNode ) )

l ength=type . ge tCharSe l ec to r ( ) . getConstIntLength ( ) . getText ( ) ;

else {

// dec lara t ions i s something l i k e : character ∗10 First , Second∗5 and we

//are working on −−−> Second∗5

l ength=declNode . getCharLength ( ) . getConstIntLength ( ) . getText ( ) ;

// remove leng th

declNode . getCharLength ( ) . removeFromTree ( ) ;

// remove character s e l e c t o r

type . ge tCharSe l ec to r ( ) . removeFromTree ( ) ;

}

}

else {

i f ( i sCha ra c t e rS t r i ngS ta r ( declNode ) ) {

l ength=declNode . getCharLength ( ) . getConstIntLength ( ) . getText ( ) ;

declNode . getCharLength ( ) . removeFromTree ( ) ;

}

else {

St r ing strType=type . getCharacterToken ( ) . getText ( ) ;

// i s : character ∗

i f ( i sCha ra c t e rS t r r ( strType ) )

l ength=strType . sub s t r i ng ( strType . indexOf ( ”∗” )+1);

else

l ength=”1” ;

}

}

St r ing source1= ” charac t e r ( l en=” + length + ” ) ” +” : : ” ;

S t r ing source2 = g e t I d e n t i f i e r ( Stmt . ge tEnt i tyDec lL i s t ( ) . get ( 0 ) ) ;

S t r ing commentsBefore=Stmt . f indFi r s tToken ( ) . getWhiteBefore ( ) ;

S t r ing commentsAfter=Stmt . f indLastToken ( ) . getWhiteBefore ( ) ;



120 CHAPTER 6. REFACTORING EXAMPLES

l i t e r a l I n i D e c =

ge tL i t e r a lDe c l a r a t i o n ( Stmt . g e tEnt i tyDec lL i s t ( ) . get ( 0 ) . g e t I n i t i a l i z a t i o n ( ) ) ;

S t r ing l i t e r a l S tm t=

commentsBefore + source1 + source2 + l i t e r a l I n i D e c +commentsAfter ;

Stmt=(ASTTypeDeclarationStmtNode ) par s eL i t e ra lS ta t ement ( l i t e r a l S tm t ) ;

return Stmt ;

}

private boolean i sCha ra c t e rS ta rS t r i ng ( ASTTypeDeclarationStmtNode Stmt ){

return ( Stmt . getTypeSpec ( ) . ge tCharSe l ec to r () != null )

}

private boolean hasCharacterLength ( ASTEntityDeclNode node ){

return ( node . getCharLength ( ) ==null )

}

private boolean i sCha ra c t e rS t r i ngS ta r (ASTEntityDeclNode node ){

return ( node . getCharLength ( ) !=null ) ;

}

private boolean i sCharac t e rS ta r ( S t r ing ){

return ( strType . conta in s ( ”∗” ) ) ;

}

Some images of the refactoring process can be appreciated at Figures 6.3, 6.4

and 6.5.

Figure 6.3: Code before applying Transform Character* to Character(Len

=) refactoring.



6.2. TRANSFORM CHARACTER* TO CHARACTER(LEN =) 121

Figure 6.4: Transform Character* to Character(Len =) Diff-view.

Figure 6.5: Transform Character* to Character(Len =) after the refacto-

ring was applied.



122 CHAPTER 6. REFACTORING EXAMPLES

6.3 Standardize Input Output Formats

6.3.1 Inception

The FORMAT statement have gone hand in hand with Fortran ever since lan-

guage first version was published in 1956 (FORTRAN I). This instruction is used

to get format inputs and outputs. As a very old instruction, the syntax of Format

statement uses labels. As a consequence of this situation, the Fortran source code

that uses input/output operations is plagued with FORMAT statements and its

labels. As an example, a real life source code is listed below:

IF (M.EQ. 2 ) PRINT 8002 ,J , ITT

IF (M.EQ. 1 ) PRINT 8001 ,J , ITT

IF (M.EQ. 2 ) PRINT 8002 ,J , ITT

IF (M.EQ. 3 ) PRINT 8003 ,J , ITT

IF (M.EQ. 4 ) PRINT 8004 ,J , ITT

8001 FORMAT(20H TEMPERATURE FOR J =,I4 ,12H AT TIMESTEP, I7 )

8002 FORMAT(20H SALINITY FOR J =,I4 ,12H AT TIMESTEP, I7 )

8003 FORMAT(20H TRAER 1 FOR J =,I4 ,12H AT TIMESTEP, I7 )

8004 FORMAT(20H TRAER 2 FOR J =,I4 ,12H AT TIMESTEP, I7 )

PRINT 8011 ,J , ITT

8011 FORMAT(20H W VELOITY FOR J =,I4 ,12H AT TIMESTEP, I7 )

PRINT 8021 , J , ITT

8021 FORMAT(20H U VELOITY FOR J =,I4 ,12H AT TIMESTEP, I7 )

SL = 1.0

!ALL MATRIX(U,IMT,ISTRT,ISTOP,0 ,KM,S !L)

PRINT 8022 , J , ITT

8022 FORMAT(20H V VELOITY FOR J =,I4 ,12H AT TIMESTEP, I7 )

PRINT 912 ,ITT ,DATE,MON,EKTOT,MS!AN,

912 FORMAT( ’ ITT=’ , I12 , ’ DDMM=’ ,1p , 1 e10 . 3 , I3 , I3 , ’ QN=’ ,0pF6 . 1 )

IF (MOD(ITT , 1 4 6 0 ) .EQ. 0 )PRINT 913 ,EKTOT,DTABS(1 ) ,DTABS(2)

913 FORMAT(15X, ’EN=’ ,1PE15 . 8 , ’ DT=’ ,1PE14 . 7 , ’ DS=’ ,1PE14 . 7 )

print 917 , ( k , ( zdzz (k )/100) , a l e v e l ( k ) , ( t l e v e l (k ,m) ,m=1 ,4) , k=1,km)

917 format (/ , ’ k depth area ’ ,8x , ’ temp ’ ,11x , ’ s a l ’ ,9x , ’ rms v ’ ,7x , ’ rms w ’ ,/ )

do 1918 k = 1 ,km

print 918 , tmin (k ) , i tmin (k ) , jtmin (k ) , k

918 format ( ’ min temperature =’ , f 7 . 2 , ’ at po int ( ’ ,3 i3 , ’ ) ’ )

1918 continue

PRINT 9100

PRINT 9101 ,ENGINT(1 ) ,ENGEXT(1 ) ,TTDTOT(1 , 1 ) ,TTDTOT(1 ,2 )

PRINT 9102 ,ENGINT(2 ) ,ENGEXT(2 ) ,TTDTOT(2 , 1 ) ,TTDTOT(2 ,2 )

PRINT 9103 ,ENGINT(3 ) ,ENGEXT(3 ) ,TTDTOT(3 , 1 ) ,TTDTOT(3 ,2 )

PRINT 9104 ,ENGINT(4 ) ,ENGEXT(4 ) ,TTDTOT(4 , 1 ) ,TTDTOT(4 ,2 )

PRINT 9105 ,ENGINT(5 ) ,ENGEXT(5 ) ,TTDTOT(5 , 1 ) ,TTDTOT(5 ,2 )

PRINT 9106 ,ENGINT(6 ) ,ENGEXT(6 ) ,TTDTOT(6 , 1 ) ,TTDTOT(6 ,2 )

PRINT 9109 ,PLI ! IN ,PLI !EX,TVAR(1) ,TVAR(2)

PRINT 9107 ,ENGINT(7 ) ,ENGEXT(7)

PRINT 9108 ,ENGINT(8 ) ,ENGEXT(8)



6.3. STANDARDIZE INPUT OUTPUT FORMATS 123

9100 FORMAT( 1X,50HWORK BY: INTERNAL MODE EXTERNAL MODE,10X,50H TEMPERATURE SALINITY)

9101 FORMAT( 1X,20HTIME RATE OF HANGE,2 ( 1PE15 . 6 ) , 1 0X,20HTIME RATE OF HANGE ,2(1PE15 . 6 ) )

9102 FORMAT( 1X,20HHORIZONTAL ADVETION,2 ( 1PE15 . 6 )10X,20HHORIZONTAL ADVETION,2 ( 1PE15 . 6 ) )

9103 FORMAT( 1X,20HVERTIAL ADVETION,2 ( 1PE15 . 6 ) , 1 0X,20HVERTIAL ADVETION ,2(1PE15 . 6 ) )

9104 FORMAT( 1X,20HHORIZONTAL FRITION ,2(1PE15 . 6 ) , 1 0X,20HHORIZONTAL DIFFUSION,2 ( 1PE15 . 6 ) )

9105 FORMAT( 1X,20HVERTITION,2 ( 1PE15 . 6 ) , 1 0X,20HSURFAE FLUX,2 ( 1PE15 . 6 ) )

This instruction makes code difficult to follow, read and understand. Of

course there is another way to introduce the strings into the code to format the

input and output operations. The programmer is only expected to declare a

string parameter with the value of the desired format.

6.3.2 The Design

In this refactoring a visitor must traverse the entire AST structure searching for

FORMAT, PRINT, WRITE and READ statements. Once all statements were

collected for each FORMAT instruction, a string parameter must be declared and

assigned with the corresponding format string. Subsequently, each input output

statement referring to this FORMAT instruction must be modified to point to

the new string parameter.

Figure 6.6: Photran Standardize I/O Refactoring Class Diagram



124 CHAPTER 6. REFACTORING EXAMPLES

Figure 6.7: InputOutputStatement Visitor Class Diagram

6.3.3 The Implementation

A new subclass of FortranResourseRefactoring was added in the org.eclipse

.photran.internal.core.refactoring. In this case, the responsibility for main-

taining the references lists is delegated to a visitor, because this transformation

may be applied to more than one file, so the class can not hold all the references

(see Figure 6.6 and Figure 6.7 )

1. Edit the plugin.xml :

<group>< !−− Refactorings tha t change l o c a l va r i a b l e dec lara t ions −−>

<r e s ou r c eRe f a c t o r i ng

c l a s s=”org . e c l i p s e . photran . i n t e r n a l . core . r e f a c t o r i n g . In t ro Imp l i c i tNoneRe fac to r ing ” />

<r e s ou r c eRe f a c t o r i ng

c l a s s=”org . e c l i p s e . photran . i n t e r n a l . core . r e f a c t o r i n g . DataToParameterRefactoring ” />

<r e s ou r c eRe f a c t o r i ng

c l a s s=”org . e c l i p s e . photran . i n t e r n a l . core . r e f a c t o r i n g . RemoveUnusedVariablesRefactoring ”/>

<r e s ou r c eRe f a c t o r i ng

c l a s s=”org . e c l i p s e . photran . i n t e r n a l . core . r e f a c t o r i n g . Standard izeStatementsRe factor ing ” />

</group>

This step was performed to integrate the new refactoring into photran User

Interface.

2. Expose the name :

@Override

public St r ing getName ( ) {

return Messages . StandardizeInputOutputFormatsRefactoring Name ;



6.3. STANDARDIZE INPUT OUTPUT FORMATS 125

}

3. Check the initial preconditions:

In this case two preconditions are checked. First of all, no errors must be

found in the source code, in order to achieve this precondition the Error-

ConstructNodeVisitor class traverses each AST in the selected files. A furt-

her precondition is checked, no labels with duplicate values are allowed to

run this refactoring, the DuplicateLabelsFinderNodeVisitor looks for labels

defined more that once. It is important to note that the refactoring engine

works with source code without being compiled ,moreover , no source code

correctness is guaranteed before applying the refactoring.

@Override

protected void doCheck In i t i a lCond i t i ons ( Re fac to r ingSta tus status , IProgressMonitor pm)

throws Precond i t i onFa i l u r e {

ensurePro jectHasRefactor ingEnabled ( s t a tu s ) ;

// Exclude from the l i s t to re fac to r the fixedForm f i l e s

removeFixedFormFilesFrom ( this . s e l e c t e dF i l e s , s t a tu s ) ;

// Exclude from the re fac to r ing l i s t those f i l e s with C preprocessed

removeCpreprocessedFilesFrom ( this . s e l e c t e dF i l e s , s t a tu s ) ;

// Check for errorStmtNodes

try

{

for ( I F i l e f i l e : s e l e c t e dF i l e s ){

ErrorConstructNodeVis i tor e r ro rF inde r =

new ErrorConstructNodeVis i tor ( ) ;

Dupl i cateLabe l sF inderNodeVis i tor dup l i ca teLabe lF inder=

new Dupl i cateLabe l sF inderNodeVis i tor ( ) ;

IFortranAST ast = vpg . acquirePermanentAST ( f i l e ) ;

i f ( a s t == null )

s t a tu s . addError ( ”One o f the s e l e c t e d f i l e s ( ” + f i l e . getName ( )

+ ” ) cannot be parsed . ” ) ;

a s t . accept ( e r ro rF inde r ) ;

i f ( e r ro rF inde r . thereAreErrors ( ) )

f a i l ( Messages . StandInOuttFmtRefactoring ErrorStmtNodesFound ) ;

a s t . accept ( dup l i ca teLabe lF inder ) ;



126 CHAPTER 6. REFACTORING EXAMPLES

i f ( dup l i ca teLabe lF inder . thereAreErrors ( ) )

f a i l ( Messages . StandInOuttFmtRefactoring ErrorFmtStmrLabeledWithSameValue ) ;

vpg . releaseAST ( f i l e ) ;

}

}

f ina l ly {

vpg . re leaseAl lASTs ( ) ;

}

}

NOTE : Messages.StandInOuttFmtRefactoring stands for Messages.StandardizeInputOutputFormatsRefactoring

The error finder visitor checks for the existence of ErrorConstructionNodes,

its code follows:

private stat ic f ina l c lass ErrorConstructNodeVis i tor extends ASTVisitor{

boolean e r r o r= fa l se ;

@Override public void visitASTErrorConstructNode ( ASTErrorConstructNode node ){

e r r o r=true ;

t r ave r s eCh i l d r en ( node ) ;

}

public boolean thereAreErrors ( ) {

return e r r o r ;

}

}

The DuplicateLablesFinderVisitor checks for distinct labels with the same

name to prevent having source code with grammatical mistakes like two

distinct labels with the same name. All this intricate work is required

because Photran is allowed to apply a refactoring on source code not yet

compiled:

private stat ic f ina l c lass Dupl i cateLabe l sF inderNodeVis i tor extends ASTVisitor{

boolean e r r o r= fa l se ;

// i t contains a l l format Stmt

private Map<Str ing , ASTFormatStmtNode> fmtNodesMap=

new HashMap<Str ing , ASTFormatStmtNode>() ;

@Override

public void visitASTFormatStmtNode (ASTFormatStmtNode node ){

// Vi s i t Al l FormatStmtNodes and put then in a l i s t

i f ( i sLabe l ed ( node ) ) {

St r ing Key =getKeyFormatStmt ( node ) ;



6.3. STANDARDIZE INPUT OUTPUT FORMATS 127

i f ( ! this . fmtNodesMap . containsKey (Key ) ) fmtNodesMap . put (Key , node ) ;

else e r r o r=true ;

}

}

public boolean thereAreErrors ( ) {

return e r r o r ;

}

private boolean i sLabe l ed (ASTFormatStmtNode node ){

return ( node . getLabe l () != null ) ;

}

}

4. To perform the transformation on the source code we need to traverse the

entire AST of each file, because it is a resource refactoring, we use the

doCheckFinalConditions() Method.

@Override

protected void doCheckFinalCondit ions ( Re fac to r ingSta tus status , IProgressMonitor pm)

throws Precond i t i onFa i l u r e {

try

{

for ( I F i l e f i l e : s e l e c t e dF i l e s ){

IFortranAST ast = vpg . acquirePermanentAST ( f i l e ) ;

i f ( a s t == null )

s t a tu s . addError ( ”One o f the s e l e c t e d f i l e s ( ” + f i l e . getName ( )

+ ” ) cannot be parsed . ” ) ;

makeChangesTo ( f i l e , ast , s tatus , pm) ;

vpg . releaseAST ( f i l e ) ;

}

}

f ina l ly {

vpg . re leaseAl lASTs ( ) ;

}

}

For each AST, all its scopes are analyzed.

private void makeChangesTo ( I F i l e f i l e , IFortranAST ast , Re fac to r ingSta tus status ,

IProgressMonitor pm) throws Error {

try

{

i f ( a s t == null ) return ;

L i s t<ScopingNode> scopes = ast . getRoot ( ) . getAl lConta inedScopes ( ) ;

for ( ScopingNode scope : scopes )

i f ( ! ( scope instanceof ASTExecutableProgramNode )

&& ! ( scope instanceof ASTDerivedTypeDefNode ) )



128 CHAPTER 6. REFACTORING EXAMPLES

standardizeInputOutputInScope ( ( IASTListNode<IASTNode>)scope . getBody ( ) , a s t ) ;

addChangeFromModifiedAST ( f i l e , pm) ;

}

catch ( Exception e ) {

throw new Error ( e ) ;

}

}

For each scope, a visitor must gather four types of statements: FORMAT,

PRINT, WRITE, READ. For this purpose, we need to use the InputOut-

putStatementsVisitor class that extends an ASTVisitor.

@SuppressWarnings ( ” r e s t r i c t i o n ” )

private void standardizeInputOutputInScope ( IASTListNode<IASTNode> body , IFortranAST ast ) {

InputOutputStatementsVis i tor v i s i t o r = new InputOutputStatementsVis i tor ( ) ;

body . accept ( v i s i t o r ) ;

// get the l i s t o f new dec lara t ions

IASTListNode<IBodyConstruct> newDeclarat ions =

constructNewDec larat ions ( v i s i t o r . fmtNodesMap ) ;

// change format re ferences with the s t r i n g

i f ( haveDec larat ions ( newDeclarat ions ) ){

changeLabelsToStr ings ( v i s i t o r . inputOutputStmtsList , v i s i t o r . fmtNodesMap , as t ) ;

// add s t r ing dec lara t ions

body . addAll ( f indIndexOf Impl i c i tStmtIn ( body ) , newDeclarat ions ) ;

// remove a l l formats statements

Reindenter . r e indent ( newDeclarat ions , a s t ) ;

for ( ASTFormatStmtNode item : v i s i t o r . fmtNodesMap . va lues ( ) ){

body . remove ( item ) ;

}

}

}

private boolean haveDec larat ions ( IASTListNode<IBodyConstruct> d e c l a r a t i o n s ){

return ( d e c l a r a t i o n s !=null ) ;

}

A complex helper class needed to perform this refactoring is the InputOut-

putStatementsVisitor class which is in charge of collecting the AST nodes

required for this refactoring. Basically, it maintains a Map which has strings

representing labels as keys and values which are ASTFormatStmtNode ob-



6.3. STANDARDIZE INPUT OUTPUT FORMATS 129

jects. It is this set of nodes which will be refactored. For each entry like

8011 FORMAT(20H W VELOITY FOR J =,I4,12H AT TIMESTEP,I7) an en-

try inside the map can be found.

It also possesses a linked list containing the Input or Output statements as

IASTNodes (see Figure 6.13).

private stat ic f ina l c lass InputOutputStatementsVis i tor extends ASTVisitor {

// i t contains a l l format Stmt

private Map<Str ing , ASTFormatStmtNode> fmtNodesMap=

new HashMap<Str ing , ASTFormatStmtNode>() ;

// i t contains a l l InputOutput

private List<IASTNode> inputOutputStmtsList= new LinkedList<IASTNode>() ;

public Map<Str ing , ASTFormatStmtNode> getFmtNodesMap (){

return fmtNodesMap ;

}

public List<IASTNode> getInputOutputStmtsList ( ){

return inputOutputStmtsList ;

}

@Override

public void visitASTFormatStmtNode (ASTFormatStmtNode node ) {

// Vis i t Al l FormatStmtNodes and put then in a l i s t

i f ( i sLabe l ed ( node ) ){

St r ing Key =getKeyFormatStmt ( node ) ;

i f ( ! this . fmtNodesMap . containsKey (Key ) ) fmtNodesMap . put (Key , node ) ;

}

}

@Override

public void visitASTWriteStmtNode ( ASTWriteStmtNode node ){

// v i s i t Al l WriteStmtnodes add them to InputOutputStmtsList

List<ASTIoControlSpecListNode> i oContro lSpec = node . ge t IoCont ro lSpecL i s t ( ) ;

for ( ASTIoControlSpecListNode specNode : ioContro lSpec ){

ASTFormatIdentif ierNode fmt Ident i f i e rNode=

specNode . g e tFo rmat Iden t i f i e r ( ) ;

i f ( IsValidNode ( fmt Ident i f i e rNode ) ){

ASTLblRefNode fmtLabel= fmt Ident i f i e rNode . getFormatLbl ( ) ;

i f ( isVal idNode ( fmtLabel ) ){

St r ing Key = fmtLabel . getLabe l ( ) . t oS t r i ng ( ) ;

i f ( ! Key . equa l s ( null ) ) inputOutputStmtsList . add ( node ) ;

}

}

}



130 CHAPTER 6. REFACTORING EXAMPLES

}

@Override

public void visitASTReadStmtNode ( ASTReadStmtNode node )

{

// v i s i t Al l ReadStmtnodes add them to InputOutputStmtsList

ASTRdCtlSpecNode rdCtlSpec = node . getRdCtlSpec ( ) ;

IASTListNode<ASTRdIoCtlSpecListNode> rd IoCt lSpecL i s t=

rdCtlSpec . getRdIoCtlSpecList ( ) ;

for ( ASTRdIoCtlSpecListNode specNode : rd IoCt lSpecL i s t ){

ASTFormatIdentif ierNode fmt Ident i f i e rNode=specNode . g e tFo rmat Iden t i f i e r ( ) ;

i f ( isVal idNode ( fmt Ident i f i e rNode ) ){

ASTLblRefNode fmtLabel= fmt Ident i f i e rNode . getFormatLbl ( ) ;

i f ( isVal idNode ( fmtLabel ) ){

St r ing Key = fmtLabel . getLabe l ( ) . t oS t r i ng ( ) ;

i f ( ! Key . equa l s ( null ) ) inputOutputStmtsList . add ( node ) ;

}

}

}

}

@Override

public void visitASTPrintStmtNode ( ASTPrintStmtNode node ){

// v i s i t Al l WriteStmtnodes add them to InputOutputStmtsList

ASTFormatIdentif ierNode fmt Ident i f i e rNode= node . g e tFo rmat Iden t i f i e r ( ) ;

ASTLblRefNode fmtLabel= fmt Ident i f i e rNode . getFormatLbl ( ) ;

i f ( isVal idNode ( fmtLabel ) ){

St r ing Key = fmtLabel . getLabe l ( ) . t oS t r i ng ( ) ;

i f ( ! Key . equa l s ( null ) ) inputOutputStmtsList . add ( node ) ;

}

}

private boolean IsValidNode ( IASTNode node ) {

return ( node != null ) ;

}

private boolean i sLabe l ed (ASTFormatStmtNode node ){

return ( node . getLabe l () != null ) ;

}

}

5. Helper Methods :



6.3. STANDARDIZE INPUT OUTPUT FORMATS 131

To perform the Standardize Input Output refactoring some helper met-

hods were implemented. As this is a complex refactoring, the transfor-

mation can be split into two parts. The first stage is the node collection.

The second part is node rewriting. To perform this stage, four methods

whose responsibilities lie on the rewriting of new nodes have been defined.

As a consequence, constructNewDeclarations() is used to create the new

string parameter declaration in order to hold the format strings. The met-

hods rewritePrintStmt(), rewriteWriteStmt() and rewriteReadStmt() are in

charge of rearranging the input or output statements. The code that follows

shows these methods:

private IASTListNode<IBodyConstruct>

constructNewDec larat ions (Map<Str ing , ASTFormatStmtNode> fmtNodesMap ) {

int i =1;

S t r i ngBu i ld e r newStmts = new St r i ngBu i ld e r ( ) ;

// changes a l l the format statements with a s t r i n g dec lara t ion

for (ASTFormatStmtNode item : fmtNodesMap . va lues ( ) ){

newStmts . append ( ge tDec l a ra t i on ( item ) + EOL) ;

}

return parseL i te ra lStatementSequence ( newStmts . t oS t r i ng ( ) ) ;

}

private void rewr i tePr intStmt (Map<Str ing , ASTFormatStmtNode> fmtNodesMap , IASTNode node )

{

ASTFormatIdentif ierNode fmtId=((ASTPrintStmtNode ) node ) . g e tFo rmat Iden t i f i e r ( ) ;

i f ( i sVa l i dFo rma t Id en t i f i e r ( fmtId ) ){

St r ing label = fmtId . getFormatLbl ( ) . t oS t r i ng ( ) . tr im ( ) ;

i f ( fmtNodesMap . containsKey ( label ) ){

St r ing var iab l eOutputL i s t=”” ;

S t r ing co lon=” , ” ;

// bu i l d new pr in t statement

ASTOutputItemListNode outputItemList=

( ( ASTPrintStmtNode ) node ) . getOutputItemList ( ) ;

i f ( i sVal idOutputItemList ( outputItemList ) ){

var iab l eOutputL i s t=outputItemList . t oS t r i ng ( ) ;

}

else co lon=”” ; //$NON−NLS−1$

St r ing VariableName=getVariableName ( fmtNodesMap . get ( label ) ) ;

S t r ing newPrintSttm =

”Print ” + VariableName + colon + var iab l eOutputL i s t+ EOL;



132 CHAPTER 6. REFACTORING EXAMPLES

node . replaceWith ( newPrintSttm ) ;

}

}

}

private boolean I sVa l idFormatIdent i e r ( ASTFormatIdentif ierNode fmtId ){

return ( fmtId !=null ) ;

}

private boolean I sVal idOutputItemList (ASTOutputItemListNode node ){

return ( node !=null ) ;

}

private void rewriteWriteStmt (Map<Str ing , ASTFormatStmtNode> fmtNodesMap , IASTNode node ){

IASTListNode<ASTIoControlSpecListNode> IoContro lSpecL i s t =

( ( ASTWriteStmtNode ) node ) . g e t IoCont ro lSpecL i s t ( ) ;

i f ( i sVa l i d I oCont ro lSpe cL i s t ( IoContro lSpecL i s t ) ) {

for ( ASTIoControlSpecListNode IoControlSpecListNode : IoContro lSpecL i s t ) {

ASTFormatIdentif ierNode fmt Ident i f i e rNode=

IoControlSpecListNode . g e tFo rmat Iden t i f i e r ( ) ;

ASTUnitIdenti f ierNode u n i t I d e n t i f i e r=

IoControlSpecListNode . g e tUn i t I d e n t i f i e r ( ) ;

i f ( i sVa l i dFo rma t Id en t i f i e r ( fmt Ident i f i e rNode ) ){

ASTLblRefNode l b lRe f=fmt Ident i f i e rNode . getFormatLbl ( ) ;

S t r ing label = lb lRe f . t oS t r i ng ( ) . tr im ( ) ;

i f ( fmtNodesMap . containsKey ( label ) ){

// bu i l d new wri te statement

St r ing var iab l eOutputL i s t=

( ( ASTWriteStmtNode ) node ) . getOutputItemList ( ) . t oS t r i ng ( ) ;

S t r ing un i t Iden tS t r=null ;

i f ( u n i t I d e n t i f i e r !=null ) un i t Iden tS t r=u n i t I d e n t i f i e r . t oS t r i ng ( ) ;

S t r ing newWriteStmt =

”wr i t e ( ” + un i t Iden tS t r + ” , ”

+ getVariableName ( fmtNodesMap . get ( label ) )

+ ” ) ” + var iab l eOutputL i s t+ EOL;

node . replaceWith ( newWriteStmt ) ;

}

}

}

}

}

private boolean i sVa l i d I oCont ro lSpe cL i s t ( IASTListNode<IASTNode> I oCont ro lL i s t ){

return ( IoControLi s t !=null ) ;

}



6.3. STANDARDIZE INPUT OUTPUT FORMATS 133

private boolean i sVa l i dFo rma t Id en t i f i e r ( IASTNode node ){

return ( node !=null )

}

private void rewriteReadStmt (Map<Str ing , ASTFormatStmtNode> fmtNodesMap , IASTNode node ) {

ASTRdCtlSpecNode rdCtlSpec = ( (ASTReadStmtNode) node ) . getRdCtlSpec ( ) ;

IASTListNode<ASTRdIoCtlSpecListNode> rd IoCt lSpecL i s t=

rdCtlSpec . getRdIoCtlSpecList ( ) ;

S t r ing unitAndFmt=”” ;

S t r ing otherSpec=”” ;

S t r ing input I temLis t= ( (ASTReadStmtNode) node ) . ge t Input I temLis t ( ) . t oS t r i ng ( ) ;

i f ( hasIoContro lCpecList ( rd IoCt lSpecL i s t ) ) {

for ( ASTRdIoCtlSpecListNode specNode : rd IoCt lSpecL i s t ) {

ASTFormatIdentif ierNode fmt Ident i f i e rNode=specNode . g e tFo rmat Iden t i f i e r ( ) ;

i f ( ha sFormat Ident i f i e r ( ( fmt Ident i f i e rNode ) ){

ASTUnitIdenti f ierNode u n i t I d e n t i f i e r=specNode . g e tUn i t I d e n t i f i e r ( ) ;

i f ( u n i t I d e n t i f i e r !=null ) unitAndFmt =un i t I d e n t i f i e r . t oS t r i ng ( ) ;

ASTLblRefNode l b lRe f=fmt Ident i f i e rNode . getFormatLbl ( ) ;

S t r ing label = lb lRe f . t oS t r i ng ( ) . tr im ( ) ;

i f ( label !=null ){

i f ( fmtNodesMap . containsKey ( label ) )

unitAndFmt=

unitAndFmt . concat ( ” , ” ) . concat ( getVariableName ( fmtNodesMap . get ( label ) ) ) ;

}

}

else otherSpec=otherSpec . concat ( specNode . t oS t r i ng ( ) ) ;

}

}

St r ing newWriteStmt = ” read ( ” + unitAndFmt+ otherSpec + ” ) ” + input I temLis t+ EOL;

node . replaceWith ( newWriteStmt ) ;

}

Some images can be appreciated at Figures 6.8 , 6.9 and 6.10



134 CHAPTER 6. REFACTORING EXAMPLES

Figure 6.8: Fortran source code before applying the refactoring

Figure 6.9: The Diff-view of Standardize IO Refactoring



6.3. STANDARDIZE INPUT OUTPUT FORMATS 135

Figure 6.10: Fortran source code after applying the refactoring



136 CHAPTER 6. REFACTORING EXAMPLES

6.4 Replace Old Style Do Loops Refactoring

6.4.1 Inception

A further refactoring we implemented is called Replace Old-Style Do-Loops [67,

75]. There are many different ways to write a do-loop in Fortran depending on

what version of Fortran is being used. “Old-style” do-loops contain a numeric

statement label in the loop header; the statement with that label constitutes the

end of the loop (see Figure 6.11). On the other hand, “new-style” do-loops con-

sist of matched do/end do pairs, which are generally preferred (see Figure 6.12).

.... ....

DO 100 I=1,30 DO 100 I=1,30

V(I)=0 100 V(I)=0

100 CONTINUE ....

.... ....

Figure 6.11: Old-Style Fortran Do Loops

.... ....

DO I=1,30 DO I=1,30

V(I)=0 100 V(I)=0

100 CONTINUE END DO

END DO ....

Figure 6.12: New-Style Fortran Do Loops

6.4.2 The Design

Replace Old-Style Do-Loops was implemented as an editor refactoring in Photran

as follows:

Preconditions:

• The source code must have at least one do-statement.



6.4. REPLACE OLD STYLE DO LOOPS REFACTORING 137

• The terminating statement label for each old-style do-loop must be unique.

• The terminating statement must be at the same level of the nesting as the

do-statement. For example, the terminating statement cannot be inside

an if-construct in the loop. Regarding the complexity of this refactoring

it was designed as an Editor refactoring allowing the user to refactor the

entire selected file although it works as a resource refactoring, multiple files

transformation can be hard to handle, a future version of it could handle

multiple files can be refactored.

Transformation:

This refactoring transforms all old-style do-loops in the selected file into new-style

do-loops. An end do statement is inserted immediately following the terminating

statement for each old-style do-loop. The statement label is removed from the

loop header, and the loop body is re-indented.

One of the most complex aspects to handle is the one in connection with the

modifying of the LoopReplacer class in order to make it capable of recognizing

old style do loop in a more sophisticated AST node structure. LoopReplacer

class is in charge of rewriting it as a “proper” structure. “ Due to a deficiency in

the parser, DO-constructs are not recognized as a single construct; DO and END

DO statements are recognized as ordinary statements alongside the statements

comprising their body. ” [64].

6.4.3 The Implementation

A new subclass of FortranEditorRefactoring was added in the org.eclipse.photran
tran.internal.core.refactoring. This class maintains two lists. The first one
will retain a reference to each AST DO node statement in order to keep a refe-
rence to each Do Loop statement in the source code. The second list will keep a
reference to each label in the Fortran source code:

public c lass ReplaceOldStyleDoLoopRefactoring extends Fort ranEdi to rRe fac tor ing {

private List<ASTProperLoopConstructNode> l o opL i s t=

new LinkedList<ASTProperLoopConstructNode >() ;

private List<IActionStmt> l b l L i s t= new LinkedList<IActionStmt >() ;

}



138 CHAPTER 6. REFACTORING EXAMPLES

Figure 6.13: Photran Replace Old Style Do Loops Refactoring Class Diagram

1. As a first step the plugin.xml was edited:

<group>< !−− Refactorings tha t e l iminate o ld language cons truc ts −−>

<ed i t o rRe f a c t o r i n g

c l a s s=”org . e c l i p s e . photran . i n t e r n a l . core . r e f a c t o r i n g . ReplaceOldStyleDoLoopRefactoring ”

/>

This step was performed to integrate the new refactoring into Photran User

Interface.

2. Expose the name :

@Override

public St r ing getName (){

return Messages . ReplaceOldStyleDoLoopRefactoring Name ;

}

3. To check the initial preconditions a set of steps are performed by this met-

hod, the pseudo-code description is:

Change AST to represent DO-loops as ASTProperLoopConstructNodes

Collect All Loops and all labels

Must have at least one OldStyle Do-Loop



6.4. REPLACE OLD STYLE DO LOOPS REFACTORING 139

for each oldStyle DoLoop

• there must be exactly one statement with the given ”Label”

• it must be at the same level of the nesting as ASTDoStmt

• then the grandfather of the labeledStmt

• (must be the loopBody) == father of LoopHeader

@Override

protected void doCheck In i t i a lCond i t i ons ( Re fac to r ingSta tus status , IProgressMonitor pm)

throws Precond i t i onFa i l u r e {

ensureProjectHasRefactor ingEnabled ( s t a tu s ) ;

// Change AST to represent DO−loops as ASTProperLoopConstructNodes

LoopReplacer . r ep laceAl lLoops In ( this . a s tO fF i l e InEd i t o r . getRoot ( ) ) ;

co l l ec tAl lLoopsAndLabe l s In ( this . a s tO fF i l e InEd i t o r . getRoot ( ) ) ;

//must have at l a s t one OldSty le Do−Loop

i f ( getOldStyleDoLoopCount ()==0)

f a i l ( Messages . RepOldDoLoopRef ThereMustBeAtLeastOneOldStyleDoLoop ) ;

// for each o l dS t y l e DoLoop

for ( ASTProperLoopConstructNode node : l o opL i s t ){

i f ( isOldStyleDoLoop ( node ) ){

ve r i f yLabe l ( node ) ;

i f ( ! isSharedDoLoop ( node ) ) {

checkNodeLevel ( node )

}

}

}

}

private void checkNodeLevel ( ASTProperLoopConstructNode node ){

// i t must be at the same l e v e l of the nes t ing as ASTDoStmt

// then the grandpa of the labe ledStmt

// (must be the loopBody ) == fa ther of LoopHeader

IActionStmt labe ledStmt=

getLabeledStatement ( loopHeader . getLblRef ( ) . getLabe l ( ) ) ;

IASTNode loopBody=labeledStmt . getParent ( ) ;

i f ( loopBody . getParent () != loopHeader . getParent ( ) )

f a i l ( Messages . bind (

Messages . RepOldDoLoopRef EndOfLoopError , labelName )

) ;

}



140 CHAPTER 6. REFACTORING EXAMPLES

private void ve r i f yLabe l ( ASTProperLoopConstructNode node ){

// there must be exac t l y one statement with the given ”Label”

ASTLabelDoStmtNode loopHeader=node . getLoopHeader ( ) ;

int labelCount=getCountForLabel ( loopHeader . getLblRef ( ) . getLabe l ( ) ) ;

S t r ing labelName=loopHeader . getLblRef ( ) . getLabe l ( ) . getText ( ) ;

i f ( labelCount >1)

f a i l ( Messages . bind (Messages . RepOldDoLoopRef AmbiguousLabel , labelName ) ) ;

else i f ( labelCount <1)

f a i l ( Messages . bind (

Messages . RepOldDoLoopRef MissingLabel , labelName )

) ;

}

Note: Messages.RepOldDoLoopRef stands for Messages.ReplaceOldStyleDoLoopRefactoring

By this moment, all the do loop constructions and labels nodes should have

been gathered and transformed to an ASTPropeLoopConstructionNode.

Once all nodes have been put together, the initial conditions required for

the transformation are checked. If one of them fails, the entire process

stops.

4. Perform the transformation:

To refactor the source code in this case we need to iterate the entire do loop

construction list so as to find each do loop node that is an old style do loop.

In the case we have found an old style do loop, an END DO statement is

added at the end of the construction. To finish it, the label referenced in

the loop header is removed. The steps are described as follows:

For Each Old Style DoLoop in the list

• If the node is an Old Style Do loop

– Add an END DO Statement

– Remove from the Loop Header the label Reference

– Re-indent the node

The transformation can be seen at figure 6.14



6.4. REPLACE OLD STYLE DO LOOPS REFACTORING 141

.... ....

DO 100 I=1,30 DO I=1,30

V(I)=0 V(I)=0

100 CONTINUE 100 CONTINUE

.... END DO

.... ....

Figure 6.14: AST Node Rewriting

@Override

protected void doCreateChange ( IProgressMonitor pm)

throws CoreException , OperationCanceledException {

// For Each Old S ty l e DoLoop in the l i s t

for ( ASTProperLoopConstructNode node : l o opL i s t ){

i f ( isOldStyleDoLoop ( node ) ){

ASTEndDoStmtNode newNode =

(ASTEndDoStmtNode) par s eL i t e ra lS ta tement ( ”END DO” + EOL) ;

// Add and END DO Statement

node . setEndDoStmt (newNode ) ;

// Remove from the Loop Header the l a b e l Reference

node . getLoopHeader ( ) . se tLblRef ( null ) ;

// Re−indent the node

Reindenter . r e indent ( node ,

this . a s tOfF i l e InEd i to r ,

Strategy .REINDENT EACH LINE) ;

}

}

this . addChangeFromModifiedAST ( this . f i l e I nEd i t o r , pm) ;

vpg . releaseAST ( this . f i l e I nEd i t o r ) ;

}

5. Helper Methods :

As expected, to perform the Replace Old Style Do Loops refactoring some

helper methods have been implemented. For this refactoring the most com-

plex work is carried out in the recognition of the old style constructions. In

order to get this work done, this class, the LoopReplacer, becomes respon-



142 CHAPTER 6. REFACTORING EXAMPLES

sible for getting all do loop nodes (see Figure 6.15) and translate them into

an improved node structure (see Figure 6.16).

Figure 6.15: ASTDoConstructNode Class Diagram

Figure 6.16: ASTProperLoopConstructNode Class Diagram



6.4. REPLACE OLD STYLE DO LOOPS REFACTORING 143

This new AST loop node has been divided into tree components: the loop

header, loop body and the loop end. In order to recognize all types of do

loop construction, the LoopReplacer class has been entirely modified.

public c lass ASTProperLoopConstructNode extends ASTNode implements IExecutableConstruct {

private ASTLabelDoStmtNode loopHeader ;

private IASTListNode<IExecut ionPartConstruct> body ;

private ASTEndDoStmtNode endDoStmt ;

}

The LoopReplacer Class:

All the vital work for this refactoring is based on the work of this class.

Initially, it recognized only one kind of do loop constructions: the ones that

we can call modern do loops finishing with the END DO statement. The

new class must be able to recognize old style do loops and shared do loops.

To perform this work the LoopReplacer class must traverse the entire AST

structure searching for ASTDoConstructNodes inserted in it by the Parser.

This job is done by the collectLoopsIn() method. After all loops nodes are

collected the replacement is performed by visiting each node and translating

the old node structure into the new one. This class was originally written

by Jeff Overbey.

public c lass LoopReplacer

{

public stat ic void r ep laceAl lLoops In ( ScopingNode scope ) {

new LoopReplacer ( ) . replaceLoopsFromLastToFirstIn ( scope ) ;

}

/∗∗ A l i s t of a l l the loops in scope , from l a s t to f i r s t ∗/

private List<ASTDoConstructNode> queue = new LinkedList<ASTDoConstructNode>() ;

private void replaceLoopsFromLastToFirstIn ( ScopingNode scope ) {

co l l e c tLoop s In ( scope ) ;

while ( ! queue . isEmpty ( ) )

replaceLoop ( queue . remove ( 0 ) ) ;

}

private void co l l e c tLoop s In ( ScopingNode scope ){

scope . accept (new ASTVisitor ( ){

@Override public void visitASTDoConstructNode (ASTDoConstructNode node ){

// Co l l e c t a l l DoLoopsStmt



144 CHAPTER 6. REFACTORING EXAMPLES

queue . add (0 , node ) ;

}

} ) ;

}

private void replaceLoop (ASTDoConstructNode loopToReplace ) {

// Save ancestor nodes , s ince parent po in ters w i l l

// be changed when we manipulate the AST in

// #buildASTProperLoopConstructNode below .

IASTNode oldParent = loopToReplace . getParent ( ) ;

ScopingNode scope =

loopToReplace . f indNeares tAnces tor ( ScopingNode . class ) ;

// Now manipulate the AST

ASTProperLoopConstructNode newLoop =

buildASTProperLoopConstructNode ( loopToReplace , scope ) ;

loopToReplace . replaceWith (newLoop ) ;

newLoop . setParent ( oldParent ) ;

}

private ASTProperLoopConstructNode buildASTProperLoopConstructNode

(ASTDoConstructNode loopToReplace , ScopingNode scope ){

ASTLabelDoStmtNode lastLoopHeader = loopToReplace . getLabelDoStmt ( ) ;

// First , remove s i b l i n g s of lastLoopHeader

// that should ac tua l l y be in the loop body

ASTProperLoopConstructBuilder nodeBui lder =

new ASTProperLoopConstructBuilder ( lastLoopHeader ) ;

scope . accept ( nodeBui lder ) ;

// We needed to keep the loop header in the AST

// so tha t tha t ASTProperLoopConstructBuilder could f ind

// Now that i t ’ s f in i shed , we can move the loop header

// into the ASTProperLoopConstructNode

lastLoopHeader . removeFromTree ( ) ;

nodeBui lder . r e s u l t . setLoopHeader ( lastLoopHeader ) ;

return nodeBui lder . r e s u l t ;

}

private class ASTProperLoopConstructBuilder extends ASTVisitorWithLoops {

private f ina l ASTProperLoopConstructNode r e s u l t =

new ASTProperLoopConstructNode ( ) ;

private f ina l ASTLabelDoStmtNode loopHeader ;



6.4. REPLACE OLD STYLE DO LOOPS REFACTORING 145

private f ina l IASTNode doConstructNode ;

private f ina l IASTNode l i s tEnc los ingDoConstructNode ;

private boolean loopHeaderFound = fa l se ;

private IASTNode oldStyleEndLoopRef=null ;

// First , save ancestor nodes , s ince parent po in ters w i l l be changed when we

// manipulate the AST in the #v i s i t methods below

public ASTProperLoopConstructBuilder (ASTLabelDoStmtNode loopHeader ){

this . loopHeader = loopHeader ;

this . doConstructNode = loopHeader . getParent ( ) ;

this . l i s tEnc los ingDoConstructNode = doConstructNode . getParent ( ) ;

this . oldStyleEndLoopRef=null ;

}

// Star t accumulating body statements when we f ind the loop header

@Override public void visitASTLabelDoStmtNode (ASTLabelDoStmtNode node ){

i f ( node == loopHeader ) loopHeaderFound = true ;

t r ave r s eCh i ld r en ( node ) ;

}

// Accumulate a l l statements between the loop header and the END DO stmt

@Override public void v i s i t IExecut i onPar tCons t ruc t ( IExecut ionPartConstruct node ){

i f ( shouldBeInLoopBody ( node ) ){

node . removeFromTree ( ) ;

this . r e s u l t . getBody ( ) . add ( node ) ;

}

}

@Override public void v i s i t IExecu tab l eCons t ruc t ( IExecutableConstruct node ){

v i s i t IExecut i onPar tCons t ruc t ( node ) ;

}

@Override public void v i s i t IAct i onStmt ( IActionStmt node ) {

// Obtain a re ference to the end of the o ld S ty l e Loop Node

v i s i t IExecut i onPar tCons t ruc t ( node ) ;

i f ( isOldStyleDoLoopEnd ( node ) ){

this . r e s u l t . setEndDoStmt ( null ) ;

this . oldStyleEndLoopRef=node ;

}

// traverseChi ldren (node ) ;

}

@Override public void v i s i t IObso l e t eAct i onStmt ( IObsoleteActionStmt node ) {

v i s i t IExecut i onPar tCons t ruc t ( node ) ;

}

private boolean shouldBeInLoopBody ( IExecut ionPartConstruct node ) {

return loopHeaderFound

&& ! endDoStmtFound ( )

&& ! oldStyleEndLoopFound ( )

&& ! isLoopHeader ( node )



146 CHAPTER 6. REFACTORING EXAMPLES

&& isCurrent lyS ib l ingOfLoopHeader ( node ) ;

}

private boolean isOldStyleDoLoopEnd ( IActionStmt node ){

i f ( ( node . getLabe l () != null ) && ( this . loopHeader . getLblRef () != null ) ) {

return loopHeaderFound

&& ! endDoStmtFound ( )

&& ! ( node . getParent ( ) == this . l i s tEnc los ingDoConstructNode )

&& ( this . loopHeader . getLblRef ( ) . getLabe l ( ) . getText ( ) ==

node . getLabe l ( ) . getText ( ) ) ;

}

return fa l se ;

}

private boolean i sCurrent lyS ib l ingOfLoopHeader ( IExecut ionPartConstruct node ) {

return node . getParent ( ) == l is tEnc los ingDoConstructNode ;

}

// Don ’ t accumulate e i t h e r the ASTLabelDoStmtNode or

// the ASTDoConstructNode in the body ; these are the header

private boolean isLoopHeader ( IExecut ionPartConstruct node ) {

return node == loopHeader | | node == doConstructNode ;

}

// Stop accumulating body statements as soon as we f ind an END DO stmt

@Override public void visitASTEndDoStmtNode (ASTEndDoStmtNode node ) {

i f ( loopHeaderFound && ! endDoStmtFound ( )

&& ( node . getParent ( ) == l i s tEnc los ingDoConstructNode )

&& ! oldStyleEndLoopFound ( ) ) {

node . removeFromTree ( ) ;

this . r e s u l t . setEndDoStmt ( node ) ;

}

t r ave r s eCh i ld r en ( node ) ;

}

private boolean endDoStmtFound ( ) {

return this . r e s u l t . getEndDoStmt ( ) != null ;

}

private boolean oldStyleEndLoopFound ( ) {

return this . oldStyleEndLoopRef != null ;

}

@Override public void visitASTProperLoopConstructNode (ASTProperLoopConstructNode node ){

// Do not t raverse ch i l d statements of nested loops

// Except i f you are working with a Shared Do Loop Termination

// you need to know where the ending Loop i s



6.4. REPLACE OLD STYLE DO LOOPS REFACTORING 147

i f ( node . getLoopHeader ( ) . getLblRef ()==null ) return ;

i f ( this . loopHeader . getLblRef ()==null ) return ;

S t r ing nodeLabel=node . getLoopHeader ( ) . getLblRef ( ) . getLabe l ( ) . getText ( ) ;

S t r ing headerLabel= this . loopHeader . getLblRef ( ) . getLabe l ( ) . getText ( ) ;

i f ( ! endDoStmtFound ( ) && ! oldStyleEndLoopFound ( )

&& nodeLabel . equa l s ( headerLabel ) ) {

v i s i t IExecut i onPar tCons t ruc t ( node ) ;

this . oldStyleEndLoopRef=node . getLoopHeader ( ) . getLblRef ( ) ;

}

}

}

}

Figures 6.17, 6.18 and 6.19 show the refactoring process.

Figure 6.17: Old style do loop source code



148 CHAPTER 6. REFACTORING EXAMPLES

Figure 6.18: Replace Old Style Do Loop Diff-view

Figure 6.19: The source code refactored



6.5. REMOVE UNREFERENCED LABELS REFACTORING 149

6.5 Remove Unreferenced Labels Refactoring

6.5.1 Inception

The motivation of this refactoring is to remove from source code those labels no

longer referenced by any statement. This is possible because the label has never

been referenced or because a previous refactoring was applied and the label is no

longer referenced.

6.5.2 The Design

To remove unreferenced labels, we must first recognize all the labels in the source

code. To do this the refactoring class must have a list of labels gathered when

visiting the AST. Additionally, we need to find out how many references there

are in the code for each label. Finally, we will remove from the source code each

label with the reference count equal to 0 (See Figure 6.20).

6.5.3 The Implementation

A new subclass of FortranEditorRefactoring was added to the project with a

Map in which a reference count will be maintained for each labeled statement.

The map is needed because the AST does not provide such information. This

refactoring was created as an editor refactoring in order to refactor only the editor

selected file. An improvement can be made by transforming it into a resource

refactoring.

public class RemoveUnreferencedLabelsRefactor ing extends Fort ranEd i to rRe fac to r ing {

private Map< Str ing , Integer> labelMap ;

}

The implementation steps:

1. The plugin.xml was edited, this step has been performed to integrate the
new refactoring into photran User Interface.:

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<? e c l i p s e version=” 3 .2 ”?>

<plug in>

< !−−==============−−>

< !−− Refactorings −−>



150 CHAPTER 6. REFACTORING EXAMPLES

< !−−==============−−>

< !−− NOTE: When adding re fac tor ings , p lease update

h t t p : //wik i . e c l i p s e . org/PTP/photran/ re f ac to r ing s −−>

<extens i on

po int=”org . e c l i p s e . r ephra s e r eng ine . u i . r e f a c t o r i n g . r e f a c t o r i n g s ”>

<r e s o u r c eF i l t e r

c l a s s=”org . e c l i p s e . photran . i n t e r n a l . u i . vpg . PhotranResourceFi l te r ” />

< !−− Define the Refactor menu −−>

<group>< !−− Refactorings tha t reformat code −−>

<ed i t o rRe f a c t o r i n g

c l a s s=”org . e c l i p s e . photran . i n t e r n a l . core . r e f a c t o r i n g . RemoveUnreferencedLabelsRefactor ing ”

/>

</group>

</ extens i on>

Figure 6.20: Photran Remove Unreferenced Labels Refactoring Class Diagram

2. Expose the name :

@Override

public St r ing getName (){

return Messages . RemoveUnreferencedLabelsRefactoring Name ;

}

3. Check the initial preconditions:

This refactoring requires the existence of labels in the source code as a

precondition. If none is found, the refactoring will not be performed. At

the same time, the structure of the map is filled with the labels and their

references by applying the visitor pattern. In order to obtain such references

the collectAllLabels() and collectAllReferences() methods are used.



6.5. REMOVE UNREFERENCED LABELS REFACTORING 151

@Override

protected void doCheck In i t i a lCond i t i ons ( Re fac to r ingSta tus status ,

IProgressMonitor pm) throws Precond i t i onFa i l u r e {

labelMap= new HashMap<Str ing , Integer >() ;

ensureProjectHasRefactor ingEnabled ( s t a tu s ) ;

c o l l e c tA l l L a b e l s ( this . a s tO fF i l e InEd i t o r . getRoot ( ) ) ;

c o l l e c tA l lR e f e r e n c e s ( this . a s tO fF i l e InEd i t o r . getRoot ( ) ) ;

i f ( labelMap . s i z e ()==0)

f a i l ( Messages . RemoveUnreferencedLabelsRefactoring ThereMust ) ;

}

4. Perform the transformation:

To refactor the source code, we need to traverse the entire AST structure

and visit all AST nodes; for each node, if it has a label with zero reference

the label will be removed. In the event of being confronted with the zero

referenced label and a CONTINUE statement, these two will be completely

removed.

@Override

protected void doCreateChange ( IProgressMonitor pm)

throws CoreException , OperationCanceledException

{

ScopingNode scope = this . a s tO fF i l e InEd i t o r . getRoot ( ) ;

scope . accept (new ASTVisitor ( )

{

// Vis i t IActionStmt Nodes

@Override public void v i s i t IAct i onStmt ( IActionStmt node )

{

// get the statements l a b e l e d

i f ( hasLabel ( node ) ) {

St r ing key =node . getLabe l ( ) . getText ( ) ;

i f ( ( labelMap . containsKey ( key))&&( labelMap . get ( key)==0){

// remove the l a b e l

node . s e tLabe l ( null ) ;

i f ( node instanceof ASTContinueStmtNode ){

node . removeFromTree ( ) ;

}

Reindenter . r e indent ( node , a s tOfF i l e InEd i to r ,

Strategy .REINDENT EACH LINE) ;

}

}

}

}

private boolean hasLabel ( IASTNode node ){

return ( node . getLabe l () != null )



152 CHAPTER 6. REFACTORING EXAMPLES

}

} ) ;

this . addChangeFromModifiedAST ( this . f i l e I nEd i t o r , pm) ;

vpg . releaseAST ( this . f i l e I nEd i t o r ) ;

}

5. Helper Methods : In order to perform the Replace Unreferenced labels re-

factoring some helper methods have been implemented. On this occasion

the reference and the labels gathering must be performed separately to

guarantee obtaining the complete set of labels before references are gathe-

red, see figure 6.21. In order to do that, two visitors were implemented

separately (collectAllLabels and collectAllReferences).

PROGRAM MAIN

GOTO 100

100 STOP

END PROGRAMMAIN

Figure 6.21: Fortran Program example

private void c o l l e c tA l l L a b e l s ( ScopingNode scope )

{

// Vis i t the AST

scope . accept (new ASTVisitor ( ){

// Vis i t IActionStmt Nodes

@Override public void v i s i t IAct i onStmt ( IActionStmt node ){

i f ( hasLabel ( node ) ){

St r ing key =node . getLabe l ( ) . getText ( ) ;

i f ( ! labelMap . containsKey ( key ) )

labelMap . put ( key , new I n t eg e r ( 0 ) ) ;

}

t r ave r s eCh i l d r en ( node ) ;

}

private boolean hasLabel ( IASTNode node ){

return ( node . getLabe l () != null )

}

} ) ;

}

private void c o l l e c tA l lR e f e r e n c e s ( ScopingNode scope ){



6.5. REMOVE UNREFERENCED LABELS REFACTORING 153

// Vis i t the AST

scope . accept (new ASTVisitor ( ){

//ASTLblRefNode

@Override public void visitASTLblRefNode (ASTLblRefNode node ) {

// get Label re ferences count

i f ( ha s l ab e l ( node ) ){

St r ing key = node . getLabe l ( ) . getText ( ) ;

i f ( labelMap . containsKey ( key ) )

labelMap . put ( key , ( labelMap . get ( key )+1)) ;

}

t r ave r s eCh i l d r en ( node ) ;

}

private boolean hasLabel ( IASTNode node ){

return ( node . getLabe l () != null )

}

} ) ;

}

Some screenshots can be appreciated at Figures 6.22 and 6.23



154 CHAPTER 6. REFACTORING EXAMPLES

Figure 6.22: Fortran source code with unreferenced labels

Figure 6.23: Diff-view of Remove Unreferenced Labels Refactoring



Chapter 7

Case Study

In this chapter, a real life source code will be transformed using the refactorings

proposed in our catalog.

7.1 A Unit of Measurement

In the interest of understanding software improvement processes, it is natural

for us to try to characterize the aspects of software that are affected in those

processes. While the definition of a new readability or comprehensibility metric

goes beyond the scope of this thesis, some kind of measurements are needed to be

able to quantify the improvements achieved. One of the most important aspects

that we aim to stress is that it is impossible to improve the design of unreadable

source code. This unreadiness emerges from all those old and obsolete features of

the language still valid, even in Fortran 2008. That is why refactoring is needed

first to make the code readable.

There are different ways to measure source code readability [77, 73, 17]. These

metrics are based on different source code characteristics, such as : McCabe

Complexity [53], Halstead definition on complexity, LOC (Lines of Code), etc.

On the other hand, it is also true that there are studies with a critical viewpoint

on these metrics [39]. Since we believe that readability and comprehensibility

are subjective to programmers we have defined a metric based on the premise

155



156 CHAPTER 7. CASE STUDY

that the following language features make source code difficult to read and to

understand:

1. GO TO statements by performing a one-way jump to another line of code.

2. Arithmetic IF, computed GO TO statements by jumping to one of several

labels based on the value of an expression.

3. Labels and FORMAT statements by producing a tangled source code.

4. Obsolete operators, they are not compliant with modern operators.

5. COMMON BLOCKS by adding global behavior to variables.

6. Fixed Format by making rigid the way that source code is written.

7. Shared or Old Style DO LOOP, they use the old labeled notation.

8. Saved variables by adding complexity in the source code.

We define our magnitude as ”Fortran Code Readability/Comprehensibility

Scale” (FCRCS). This scale can be applied to a program, a module or a su-

broutine. The source code starts with a FCRCS=0 for each item from the list

above found in the source code the FCRCS is increased by 1. It is convenient to

note that the index is increased just only by one at the first occurrence of each

language feature.

We make our hypothesis as:

“Source code with a high FCRCS is more difficult to read and understand,

while source code with the FCRCS near to 0 is easier to read or understand.”

7.2 Source Code Examples

The following source code has been taken from Fortran Programs for Scientists

and Engineers, Second Ed., Copyright 1988, (SYBEX) ISBN 0-89588-571-9. As

it can be seen in this book published in 1988 there are examples written in

FORTRAN 77. In order to show the difficulty of reading some Fortran code, we

have worked with a book example.



7.2. SOURCE CODE EXAMPLES 157

program simq5

c

c -- fortran program to solve simultaneous equations

c -- by gauss-jordan elimination

c -- there may be more equations than unknowns

c -- subroutines square, gaussj and swap are also needed

c -- figure 4.12

c

logical error

integer maxr, maxc, out, n, m, index(8,3), nvec

real a(8,8), y(8), coef(8), b(8,8)

common /inout/ out, maxr, maxc, error

data nvec/1/

c

out = 6

maxr = 8

maxc = 8

write(out, 101)

10 call input(a, y, n, m)

if (m .lt. 2) goto 100

call square(a, y, b, coef, n, m, maxr, maxc)

call gaussj(b, coef, index, m, maxr, nvec, error, out)

if (.not. error) call output(a, y, coef, n, m)

goto 10

100 stop

101 format(’1 best fit to simultaneous equations’,

* ’ by gauss-jordan elimination’)

end

subroutine input(a, y, n, m)

c

c -- get values for n and arrays a and y

c

integer n, m, out, i, j, maxr

real a(8,8), y(8)

common /inout/ out, maxr, maxc, error

c

5 write(out, 107)

read(*, 106) m

if (m .gt. maxc) goto 5

if (m .lt. 2) return

7 write(out, 105)

read(*, 106) n

if (n .lt. m) goto 7

do 20 i = 1, n

write(out, 101) i

do 10 j = 1, m

write(out, 102) j

read(*, 103) a(i,j)

10 continue

write(out, 104)

read(*, 103) y(i)

20 continue

return

101 format(’ equation ’, i3/)

102 format(’+’,i4, ’: ’ )

103 format(f10.0)

104 format(’+ c: ’ )

105 format(’ how many equations? ’ )

106 format(i2)

107 format(’ how many unknows? ’ )

end

subroutine output(a, y, coef, n, m)

c

c -- print the answers

c



158 CHAPTER 7. CASE STUDY

logical error

integer n, m, out, i, j, maxr, maxc

real a(8,8), y(8), coef(8)

common /inout/ out, maxr, maxc, error

c

do 10 i = 1, n

write(out, 101) (a(i,j), j = 1, m), y(i)

10 continue

write(out,*) ’ solution’

if (error) return

write(out, 101) (coef(i), i = 1, m)

return

101 format(1p6e12.4)

end

7.2.1 Method

So as to study the improvements that have been achieved on the source code we
propose to follow the next three steps:

1. Calculate the FCRCS index in the original source code in order to obtain
the initial index value.

2. Apply the Fortran refactorings.

3. Re-calculate the FCRCS index and compare results.

7.2.2 Example 1

Our first application is to apply FCRCS to the subroutine called input. As an
initial step we must determine the FCRCS value. In order to obtain this value a
source code analysis is required to compute the existence of the following features:

Shared or Old Style Do Loop 1

GO TO Statement 1

Arithmetic IF statement 0

Computed GOTO 0

Labeled statements 1

FORMAT statement 1

Obsolete operators 1

COMMON BLOCK 1

Fixed Format 1

Saved variables 0

Table 7.1: Language features found in the input routine source code.

As a result we obtain a FCRCS = 7 before applying the refactorings to the
source code, see table 7.1.



7.2. SOURCE CODE EXAMPLES 159

subroutine input(a, y, n, m)

c

c -- get values for n and arrays a and y

c

integer n, m, out, i, j, maxr

real a(8,8), y(8)

common /inout/ out, maxr, maxc, error

c

5 write(out, 107)

read(*, 106) m

if (m .gt. maxc) goto 5

if (m .lt. 2) return

7 write(out, 105)

read(*, 106) n

if (n .lt. m) goto 7

do 20 i = 1, n

write(out, 101) i

do 10 j = 1, m

write(out, 102) j

read(*, 103) a(i,j)

10 continue

write(out, 104)

read(*, 103) y(i)

20 continue

return

101 format(’ equation ’, i3/)

102 format(’+’,i4, ’: ’ )

103 format(f10.0)

104 format(’+ c: ’ )

105 format(’ how many equations? ’ )

106 format(i2)

107 format(’ how many unknows? ’ )

end

Table 7.2: The input routine before being refactored.

As a second step we will apply the following refactorings to the subroutine:

• Remove old style DO Loops: to remove shared do loops or old style do

loops.

• Standardize Input Output: to remove format statements away from the

Input - Output statements.

• Replace Obsolete Operators: to update old Fortran logical operators with

the new ones.

• Remove Unreferenced Labels: to remove labels no longer referenced.

• Change to free format: to allow a better way of code formating.



160 CHAPTER 7. CASE STUDY

After applying those refactorings, we have obtained the subroutine refactored

code as follows:

subroutine input(a, y, n, m)

character(len=22), parameter ::FMT107="’ how many unknows? ’ "

character(len=2), parameter ::FMT106="i2"

character(len=24), parameter ::FMT105="’ how many equations? ’ "

character(len=8), parameter ::FMT104="’+ c: ’ "

character(len=5), parameter ::FMT103="f10.0"

character(len=13), parameter ::FMT102="’+’,i4, ’: ’ "

character(len=17), parameter ::FMT101="’ equation ’, i3/"

!

! -- get values for n and arrays a and y

!

integer n, m, out, i, j, maxr

real a(8,8), y(8)

common /inout/ out, maxr, maxc, error

!

5 write (out,FMT107)

read (*,FMT106) m

if (m > maxc) goto 5

if (m < 2) return

7 write (out,FMT105)

read (*,FMT106) n

if (n < m) goto 7

do i = 1, n

write (out,FMT101) i

do j = 1, m

write (out,FMT102) j

read (*,FMT103) a(i,j)

end do

write (out,FMT104)

read (*,FMT103) y(i)

end do

return

end

Table 7.3: The input routine after being refactored.

At this point we can have recalculated the FCRCS index, obtaining a new

FCRCS value of 3.

This example brings about some remarkable aspects. First, the source code

has 12 labels all around the code, after applying some refactorings the total labels

amount decreases to 2. Labels make source code more difficult to understand and

read.

Second, in the original source code seven FORMAT statements made it un-

clear and tangled. As a consequence of removing format statements from the

source code body and using strings with the format options instead, the code

became more readable.



7.2. SOURCE CODE EXAMPLES 161

Third, old style do loops were replaced with the proper END-DO statement

producing more structured source code and by removing this obsolete construc-

tion from the code (see figure 7.1).

Fourth, the obsolete operators like .lt. .gt. etc. were replaced with the

corresponding modern operators (see figure 7.2).

Finally, the free format allows programmers to determine properly the DO

loops nested levels. At this point, it can be seen that by applying some refacto-

rings on the old Fortran source code the program has been enhanced. Further-

more, the source code has become more similar to modern standards and it looks

familiar to programmers working these days.

Shared or Old Style Do Loop 0

GO TO Statement 1

Arithmetic IF statement 0

Computed GOTO 0

Labeled statements 1

FORMAT statement 0

Obsolete operators 0

COMMON BLOCK 1

Fixed Format 0

Saved variables 0

Other features 0

Table 7.4: Language features found in the input routine source code after refac-
torings have being applied.



162 CHAPTER 7. CASE STUDY

Figure 7.1: Fortran source code after Replace Old Style Do Loop refactoring.

Figure 7.2: Fortran source code after Replace Obsolete Operators refactoring



7.2. SOURCE CODE EXAMPLES 163

7.2.3 Example 2

The subroutine called output() was analyzed as a second case of study, so it has

been measured by applying the FCRCS obtaining a value of 5. Therefore, we can

proceed to apply four refactorings:

• Change Fixed to Free Form

• Replace Old Style Do Loops

• Standardize Input Output

• Remove Unreferenced Labels

The initial source code is listed below:

subroutine output(a, y, coef, n, m)

c

c -- print the answers

c

logical error

integer n, m, out, i, j, maxr, maxc

real a(8,8), y(8), coef(8)

common /inout/ out, maxr, maxc, error

c

do 10 i = 1, n

write(out, 101) (a(i,j), j = 1, m), y(i)

10 continue

write(out,*) ’ solution’

if (error) return

write(out, 101) (coef(i), i = 1, m)

return

101 format(1p6e12.4)

Table 7.5: The output() routine before being refactored.

After the refactorings were applied, the source code was downgraded to FCRCS=1:

This code is almost equal to a current programming language code, except

for the common block. The upgrading process can be seen in the Figures 7.3,

7.4. A more comprehensive measurement can be done but it is beyond the scope

of this thesis.



164 CHAPTER 7. CASE STUDY

subroutine output(a, y, coef, n, m)

character(len=8), parameter ::FMT101="1p6e12.4"

!

! -- print the answers

!

logical error

integer n, m, out, i, j, maxr, maxc

real a(8,8), y(8), coef(8)

common /inout/ out, maxr, maxc, error

!

do i = 1, n

write (out,FMT101) (a(i,j), j = 1, m), y(i)

end do

write(out,*) ’ solution’

if (error) return

write (out,FMT101) (coef(i), i = 1, m)

return

end

Table 7.6: The output() routine after being refactored.

Figure 7.3: Fortran source code after Standardize Input Output



7.2. SOURCE CODE EXAMPLES 165

Figure 7.4: Fortran source code after Replace Old Style Do Loop refactoring.

7.2.4 Future Applications

In this chapter we have shown the fact that Fortran refactorings help source code

to become updated, more comprehensible, more readable, etc. As a future appli-

cation, large scale legacy systems can be refactored. A more comprehensive index

can be specified, and as a consequence it can be applied to other programming

languages.





Chapter 8

Conclusions

In this chapter we provide some concluding remarks as it revisits the contributions

of this thesis and outlines the future work.

8.1 Results

This work has explored the way to update Fortran legacy system by using soft-

ware refactoring as a main tool, using this technique as the first approach to get

more readable and understandable legacy source code. Furthermore, long-lived

programming languages need tools for allowing them to evolve. This kind of tools

are not easily built, they require a refined engine to allow programmers to build

refactorings.

Fortran has had a particular evolutionary process through different versions

across time, about ten language versions have been published in the last 50 years

(six of them were standards). These versions have transformed Fortran into a

language with a rich set of syntactical constructions. As a consequence, pro-

grams written years ago are hard to read because of the lack of modern software

engineering concepts such as software quality, development processes, etc.

Four new Fortran refactorings, built in this thesis, have been integrated into

Photran’s refactoring menu. These four refactorings are now part of the next

public version of the tool called Photran 7.0. As an open source product, the

167



168 CHAPTER 8. CONCLUSIONS

programmers contribution around the world makes it the most complete refacto-

ring tool for Fortran ever built, with 70 % of the refactorings, proposed in this

thesis, being implemented.

As a consequence of this research three articles have been published:

• “ A Catalog and Classification of Fortran Refactoring” was presented in the

11th Argentine Symposium on Software Engineering (ASSE 2010). This

short research article presents a catalog of source code refactorings that

are intended to improve different quality attributes of Fortran programs.

We have to classify the refactorings according to their purpose, that is,

the internal or external quality attribute(s) that each refactoring targets

to improve. We have proposed the implementation of one refactoring in

Photran [55].

• “ A Catalog and Two Possible Classifications of Fortran Refactorings” a

more comprehensive description of each refactoring proposed in ASSE ar-

ticle has been presented as a technical report [56].

• “Refactorización en Código Fortran Heredado” (In Spanish) was presented

in the XVI Congreso Argentino de Ciencias de la Computación(CACIC

2010). In this article a detailed review of Fortran evolution was presented

together with a description of some implemented refactoring [54].

The following contributions have been made:

1. A Classification of Fortran refactorings: The way in which the refac-

torings were proposed is the result of how we think programmers need to

use refactoring in their daily work. So we present the refactorings classified

from the programmer’s point of view.

2. A Detailed catalog of Fortran refactorings: Each refactoring proposed

in this catalog has emerged from the Fortran programmer’s needs. Our

description rests on each refactoring motivation.



8.2. FUTURE WORK 169

3. A proposal of refactorings for parallelizing and performance im-

provements: For some of these refactorings it has been proved that a much

better performance existed [72]. A set of these transformations are closely

related to those conducted by compilers to improve performance, like loop

fusion or loop fission [27].

4. A specification of some refactorings: The implementation of a set

of refactorings was explained in detailed and documented with the aim of

providing a guide to be used in the initial steps in the refactoring built

process.

5. The use of refactorings on Fortran legacy systems: In this work

we have shown how to employ refactorings in the field of legacy systems.

Furthermore, we have used refactoring applied to one of the most long-lived

programming language such as Fortran.

6. A metric definition: We have presented a way to measure the source

code transformation impact on source code readability as a metric called

“FCRCS”.

7. A Contribution to Photran Project: The refactorings implemented in

this thesis will be all included in Photran 7.0 release.

8. A public web site containing the catalog in different languages:

Aligned with the aims of this research, a public access web site was created

to integrate and to promote Fortran refactorings and the eclipse-based-

refactoring tool (Photran). This site was published in July 2010 [3].

8.2 Future Work

Although the refactoring has become an assessed technique for improving object

oriented software without changing its external behavior, it manifests its utility

in the process of understanding and maintaining software which was developed

a long time ago, even when software development processes still had not seen



170 CHAPTER 8. CONCLUSIONS

the light of the day. This work has brought about the need of a legacy software

Process Model to help people understand, update and maintain this kind of

software as we can still find requests from people who need to update or port

FORTRAN IV program written years ago. The construction of a process model

which helps programmers to deal with legacy system remains a challenge to this

day.

As time goes by, legacy software has gained more and more lines of code, each

one of them has increased the software complexity. For this reason components

like refactoring tools are paramount on the day to day work, helping programmers

to deal with legacy software.

Future work includes implementing more refactorings on Photran and appl-

ying them on some case studies to measure the overall improvement. Another

important factor is to encourage the scientific world to use Photran. This will

require not only successful stories about the use of Photran in large applications

but also a formal foundation that ensures behavior preservation.

Another important aspect to be included as future work is closely related to

the capacity of a tool to identify automatically, the places where a refactoring

can be applied. These “refactoring points” will be automatically notified to the

users so as to help them in the process of improving the internal structure of the

software.



Bibliography

[1] http://www.quadibloc.com/comp/fort03.htm. [cited at p. 38, 39]

[2] http://en.wikipedia.org/wiki/Fortran. [cited at p. 40, 41, 45]

[3] http://www.fortranrefactoring.com.ar/. [cited at p. 11, 177]

[4] Cray Inc. http://www.cray.com/. [cited at p. 52]

[5] Photran, an Integrated Development Environment and Refactoring Tool for Fortran.

http://www.eclipse.org/photran/. [cited at p. 14]

[6] RS Arnold. Software restructuring. Proceedings of the IEEE, 77(4):607–617, 1989.

[cited at p. 15, 16]

[7] E. Ashcroft and Z. Manna. The translation of’goto’programs to’while’programs.

Information Processing, 71:250–255, 1972. [cited at p. 17]

[8] J. Backus. The History of Fortran I, II, and III. ACM SIGPLAN Notices, 13(8):165–

180, 1978. [cited at p. 35, 38]

[9] J. Backus. The history of Fortran I, II, and III. ACM SIGPLAN Notices, 13(8):165–

180, 1978. [cited at p. 36]

[10] JW Backus, RJ Beeber, S. Best, R. Goldberg, LM Haibt, HL Herrick, RA Nelson,

D. Sayre, PB Sheridan, H. Stern, et al. The FORTRAN Automatic Coding System.

In Papers presented at the February 26-28, 1957, western joint computer conference:

Techniques for reliability, pages 188–198. ACM, 1957. [cited at p. 36]

[11] Brenda S. Baker. An algorithm for structuring flowgraphs. J. ACM, 24(1):98–120,

1977. [cited at p. 17]

171



172 BIBLIOGRAPHY

[12] I. Baxter, P. Pidgeon, and M. Mehlich. DMS: Program Transformations for Practical

Scalable Software Evolution. In Proceedings of the International Conference on

Software Engineering, IEEE Press, 2004. [cited at p. 13]

[13] K. Bennett. Legacy systems: Coping with success. IEEE Software, 12(1):19–23,

1995. [cited at p. 7]

[14] Corrado Böhm and Giuseppe Jacopini. Flow diagrams, turing machines and langua-

ges with only two formation rules. Commun. ACM, 9(5):366–371, 1966. [cited at p. 17]

[15] M.L. Brodie and M. Stonebraker. Migrating legacy systems. Morgan Kaufmann

Publishers, 1995. [cited at p. 7]

[16] F.P. Brooks. No silver bullet: Essence and accidents of software engineering. IEEE

computer, 20(4):10–19, 1987. [cited at p. 5, 9]

[17] R.P.L. Buse and W.R. Weimer. A metric for software readability. In Proceedings of

the 2008 international symposium on Software testing and analysis, pages 121–130.

ACM, 2008. [cited at p. 163]

[18] E Bush. The automatic restructuring of cobol. In The Institute of Electrical and

Electronics Engineers, Inc on Conference on software maintenance–1985, pages 35–

41, Piscataway, NJ, USA, 1985. IEEE Press. [cited at p. 17]

[19] R. Center. Perspectives on Legacy System Reengineering. 1995. [cited at p. 8]

[20] E.J. Chikofsky and J.H. Cross. Reverse engineering and design recovery: A taxo-

nomy. IEEE software, 7(1):13–17, 1990. [cited at p. 16]

[21] Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design recovery:

A taxonomy. IEEE Softw., 7(1):13–17, 1990. [cited at p. 6]

[22] I.D. Chivers and J. Sleightholme. Compiler support for the Fortran 2003 and 2008

standards. In ACM SIGPLAN Fortran Forum, volume 28, pages 15–20. ACM, 2009.

[cited at p. 49]

[23] M. Cohen. Fortran: A few historical details.

http://www.nag.co.uk/nagware/np/doc/fhistory.asp, Oct. 2004. [cited at p. 36,

47]

[24] International Business Machines Corporation. Reference manual [S]: FORTRAN II

for the IBM 704 data processing system. 1958. [cited at p. 37]



BIBLIOGRAPHY 173

[25] Vaishali De. A Foundation for Refactoring Fortran 90 in Eclipse. Master’s thesis,

University of Illinois, 2004. [cited at p. 14]

[26] O.E. Dictionary. Oxford English Dictionary. [cited at p. 6]

[27] D. Dig. A Refactoring Approach to Parallelism. [cited at p. 11, 177]

[28] B. Foote and J. Yoder. Big ball of mud. Pattern languages of program design,

4(654-692):99, 2000. [cited at p. 6]

[29] A. FORTRAN. X3. 9-1978. American National Standards Institute, New York,

1978. [cited at p. 41]

[30] A. FORTRAN. X3.198-1992. American National Standards Institute, New York,

1992. [cited at p. 44, 45, 46]

[31] A.S. FORTRAN. X3. 9-1966. American National Standards Institute Incorporated,

New York, 1966. [cited at p. 40]

[32] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving

the Design of Existing Code. Addison-Wesley Professional, 1999. [cited at p. 5, 53]

[33] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley

Reading, MA, 1995. [cited at p. 115]

[34] A. Garrido. Software Refactoring Applied to C Programming Language. Master’s

thesis, University of Illinois, 2000. [cited at p. 3, 6, 9, 14, 51]

[35] A. Garrido and R. Johnson. Refactoring C with Conditional Compilation. In 18th

IEEE Int. Conf. on Automated Software Engineering, 2003. [cited at p. 14]

[36] A. Garrido and R. Johnson. Program Refactoring in the Presence of Preproces-

sor Directives. University of Illinois at Urbana-Champaign, Champaign, IL, 2005.

[cited at p. 3, 14]

[37] N.E. Gold. The meaning of” legacy systems”. Univ. of Durham, Dept. of Computer

Science, 1998. [cited at p. 7]

[38] C. Greenough and D. Worth. The Transformation of Legacy Software: Some

Tools and a Process. Technical report, RAL Technical Report TR-2003 012, 2004.

[cited at p. 13]



174 BIBLIOGRAPHY

[39] P.G. Hamer and G.D. Frewin. MH Halstead’s Software Science-a critical examina-

tion. In Proceedings of the 6th international conference on Software engineering,

pages 197–206. IEEE Computer Society Press, 1982. [cited at p. 163]

[40] JG HUST and CO. CRYOGENIC ENGINEERING LAB National Bureau of Stan-

dards, Boulder. Ibm 7090 fortran ii program for thermodynamic property compu-

tations. enthalpy-pressure or pressure-density as independent coordinates(Two For-

tran II subroutine for calculation of thermodynamic properties of oxygen using den-

sity and pressure or enthalpy and pressure as independent coordinates). Technical

report, National Bureau of Standards, Boulder, CO. CRYOGENIC ENGINEERING

LAB, 1965. [cited at p. 38, 187]

[41] ISO. ANSI/ISO/IEC 1539-1:1997: Information technology — programming langua-

ges — Fortran — part 1: Base language. [cited at p. 47]

[42] ISO. ANSI/ISO/IEC 1539-1:2004(E): Information technology — Programming lan-

guages — Fortran Part 1: Base Language. pages xiv + 569, May 2004. [cited at p. 48]

[43] R. Johnson. Developing the refactoring browser. Proceedings of XP2000, 2000.

[cited at p. 5, 14, 19]

[44] R. Johnson and W. Opdyke. Refactoring and aggregation. Object Technologies for

Advanced Software, pages 264–278, 1993. [cited at p. 4]

[45] R.E. Johnson and B. Foote. Designing reusable classes. Journal of object-oriented

programming, 1(2):22–35, 1988. [cited at p. 4]

[46] Brian W. Kernighan and P. J. Plauger. The Elements of Programming Style. Com-

puting Mcgraw-Hill, January 1978. [cited at p. 17]

[47] M.M. Lehman et al. Programs, life cycles, and laws of software evolution. Procee-

dings of the IEEE, 68(9):1060–1076, 1980. [cited at p. 5]

[48] H. Li, C. Reinke, and S. Thompson. Tool support for refactoring functional pro-

grams. In Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, pages

27–38. ACM New York, NY, USA, 2003. [cited at p. 32]

[49] RC LINGER. MILLS˜ HD A case study m Cleanroom software engineering: The

IBM˜ Cobol restructuring facility. Proceedtngs of COMPSAC, 88. [cited at p. 17]



BIBLIOGRAPHY 175

[50] R.C. Linger, B.I. Witt, and HD Mills. Structured Programming; Theory and Practice

the Systems Programming Series. Addison-Wesley Longman Publishing Co., Inc.

Boston, MA, USA, 1979. [cited at p. 17]

[51] DB Loveman. High Performance Fortran. IEEE [see also IEEE Concurrency]

Parallel & Distributed Technology: Systems & Applications, 1(1):25–42, 1993.

[cited at p. 52]

[52] Michael J. Lyons. Salvaging your software asset: (tools based maintenance). In

AFIPS ’81: Proceedings of the May 4-7, 1981, national computer conference, pages

337–341, New York, NY, USA, 1981. ACM. [cited at p. 17]

[53] T.J. McCabe. A complexity measure. IEEE Transactions on software Engineering,

pages 308–320, 1976. [cited at p. 163]

[54] M. Méndez, A. Garrido, J. Overbey, F.G. Tinetti, and R. Johnson. Refactorización

en Código Fortran Heredado. [cited at p. 176]

[55] M. Mendez, J. Overbey, A. Garrido, F. Tinetti, and R. Johnson. A catalog and

classification of fortran refactorings. In 11th Argentine Symposium on Software

Engineering (ASSE 2010, pages 1–10, 2010. [cited at p. 176]

[56] M. Méndez, J. Overbey, A. Garrido, F. Tinetti, and R. Johnson. A Catalog

and Two Possible Classifications of Fortran Refactorings. Technical Report, 2010.

[cited at p. 176]

[57] T. Mens and T. Tourwé. A survey of software refactoring. IEEE Transactions on

software engineering, 30(2):126–139, 2004. [cited at p. 3]

[58] HW Morgan. Evolution of a software maintenance tool. In Proceedings of the 2nd

Natwnal Conference EDP Software Maintenance, pages 268–278, 1984. [cited at p. 17]

[59] W.F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Citeseer, 1992.

[cited at p. 5, 9, 14, 53]

[60] W.F. Opdyke and R.E. Johnson. Refactoring: An aid in designing application

frameworks and evolving object-oriented systems. In Proceedings of Symposium

on Object-Oriented Programming Emphasizing Practical Applications (SOOPPA),

1990. [cited at p. 4, 5, 14]



176 BIBLIOGRAPHY

[61] W.F. Opdyke and R.E. Johnson. Creating abstract superclasses by refactoring. In

Proceedings of the 1993 ACM conference on Computer science, pages 66–73. ACM,

1993. [cited at p. 4, 14]

[62] J. Overbey and C. Rasmussen. Instant IDEs: supporting new languages in the CDT.

In Proceedings of the 2005 OOPSLA workshop on Eclipse technology eXchange,

page 79. ACM, 2005. [cited at p. 105]

[63] J. L. Overbey and N. Chen. Photran 6.0 Developer’s Guide, december 2009.

[cited at p. 92, 99]

[64] J. L. Overbey and N. Chen. Photran 6.0 Developer’s Guide, december 2009.

[cited at p. 105, 106, 142, 187]

[65] J. L. Overbey and N. Chen. Photran 6.0 Developer’s Guide, december 2009.

[cited at p. 105, 108, 113]

[66] J. L. Overbey, S. Xanthos, R. Johnson, and B. Foote. Refactorings for Fortran

and High-Performance Computing. In SE-HPCS ’05: Proceedings of the second

international workshop on Software engineering for high performance computing

system applications, pages 37–39, New York, NY, USA, 2005. ACM. [cited at p. 9, 14]

[67] J.L. Overbey, S. Negara, and R.E. Johnson. Refactoring and the Evolution of

Fortran. In 2nd International Workshop on Software Engineering for Computational

Science and Engineering (SECSE’09), 2009. [cited at p. 9, 14, 52, 141]

[68] D. Pigott. An interactive historical roster of computer languages. hopl. murdoch.

edu. au, last visited: March, 2005. [cited at p. 4]

[69] J. Reid. The new features of Fortran 2003. In ACM SIGPLAN Fortran Forum,

volume 26, page 33. ACM, 2007. [cited at p. 48]

[70] J. Reid. The new features of Fortran 2008. In ACM SIGPLAN Fortran Forum,

volume 27, pages 8–21. ACM, 2008. [cited at p. 49]

[71] Don Roberts and John Brant. Refactoring browser.

http://st-www.cs.illinois.edu/users/brant/Refactory/, 1999. [cited at p. 20]

[72] Diego Luis Rodrigues. Optimizacin de Software Mediante BLAS Aplicado a un

Modelo Climtico. 2008. [cited at p. 11, 177]



BIBLIOGRAPHY 177

[73] T. SCHORSCH. Increasing the readability and comprehensibility of programs(M.

S. Thesis). 1990. [cited at p. 163]

[74] Fernando G. Tinetti, Pedro G. Cajaraville, Juan C. Labraga, Mónica A. López,

and G.Olgúın Maŕıa. Reverse Engineering Applied to Numerical Software: Climate

Models (in Spanish). X Workshop de Investigadores en Ciencias de la Computación,

pages 434–438, 2008. http://hpclinalg.webs.com/hpclinalg en.html. [cited at p. 9, 10,

14, 52]

[75] Fernando G. Tinetti, Mónica A. López, and Pedro G. Cajaraville. Fortran Legacy

Code Performance Optimization: Sequential and Parallel Processing with OpenMP.

World Congress on Computer Science and Information Engineering, pages 471–475,

2009. [cited at p. 8, 52, 95, 141]

[76] Edward Yourdon. Techniques of Program Structure and Design. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 1986. [cited at p. 17]

[77] C. Yung. Simplified Readability Metrics. [cited at p. 163]





List of Figures

2.1 Microsoft Visual Studio . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Refactoring Browser’s hierarchy view. . . . . . . . . . . . . . . . . . . 21

2.4 Refactoring Browser’s normal view . . . . . . . . . . . . . . . . . . . . 21

2.5 The Refactoring Browser’s navigator . . . . . . . . . . . . . . . . . . 22

2.6 XRefactory screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Visual Assist rename refactoring . . . . . . . . . . . . . . . . . . . . . 28

2.8 Visual Assist document method refactoring . . . . . . . . . . . . . . . 28

2.9 Refactor! extract method screenshot . . . . . . . . . . . . . . . . . . . 30

2.10 Wrangler, an Erlang refactoring tool . . . . . . . . . . . . . . . . . . . 31

3.1 IBM 7090 FORTRAN II code example extracted from [40]. . . . . . . 38

5.1 Photran, Fortran View . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Photran Architecture [64] . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 An example of Photran AST . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 Photran refactoring class diagram . . . . . . . . . . . . . . . . . . . . 112

6.2 Photran replace character star refactoring class diagram . . . . . . . . 115

6.3 Code before applying Transform Character* to Character(Len =) refactoring.122

6.4 Transform Character* to Character(Len =) Diff-view. . . . . . 123

6.5 Transform Character* to Character(Len =) after the refactoring was applied.124

6.6 Photran Standardize I/O Refactoring Class Diagram . . . . . . . . . . 127

179



180 LIST OF FIGURES

6.7 InputOutputStatement Visitor Class Diagram . . . . . . . . . . . . . . 128

6.8 Fortran source code before applying the refactoring . . . . . . . . . . . 138

6.9 The Diff-view of Standardize IO Refactoring . . . . . . . . . . . . . . 139

6.10 Fortran source code after applying the refactoring . . . . . . . . . . . 140

6.11 Old-Style Fortran Do Loops . . . . . . . . . . . . . . . . . . . . . . . . 141

6.12 New-Style Fortran Do Loops . . . . . . . . . . . . . . . . . . . . . . . 141

6.13 Photran Replace Old Style Do Loops Refactoring Class Diagram . . . 143

6.14 AST Node Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.15 ASTDoConstructNode Class Diagram . . . . . . . . . . . . . . . . . . 147

6.16 ASTProperLoopConstructNode Class Diagram . . . . . . . . . . . . . 148

6.17 Old style do loop source code . . . . . . . . . . . . . . . . . . . . . . . 153

6.18 Replace Old Style Do Loop Diff-view . . . . . . . . . . . . . . . . . . 154

6.19 The source code refactored . . . . . . . . . . . . . . . . . . . . . . . . 155

6.20 Photran Remove Unreferenced Labels Refactoring Class Diagram . . . 157

6.21 Fortran Program example . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.22 Fortran source code with unreferenced labels . . . . . . . . . . . . . . 161

6.23 Diff-view of Remove Unreferenced Labels Refactoring . . . . . . . . . 162

7.1 Fortran source code after Replace Old Style Do Loop refactoring. . . 170

7.2 Fortran source code after Replace Obsolete Operators refactoring . . 170

7.3 Fortran source code after Standardize Input Output . . . . . . . . . . 172

7.4 Fortran source code after Replace Old Style Do Loop refactoring. . . 173


