
Automatic Creation of Mobile Web Applications from

Design Models

Pablo Martín Vera1, Claudia Pons2, Carina González González3, Rocío Andrea

Rodríguez1, Daniel Alberto Giulianelli1

1 National University of La Matanza

GIDFIS - Research, Development and Training Group on Software Innovation

Department of Engeniering and Technological Research

San Justo, Buenos Aires, Argentina

{pvera, rrodriguez, dgiulian}@ing.unlam.edu.ar

2 National University of La Plata

LIFIA – Research and Education Laboratory on Advance Computing

La Plata, Buenos Aires, Argentina

cpons@lifia.info.unlp.edu.ar

3 La Laguna University

Department of Systems Engineering and Automation,

Architecture and Computer Technology

La Laguna, España
cjgonza@ull.es

Abstract. This paper shows a methodology and a support tool for automatically

creating the source code of a mobile web application from design models. A

designer only needs performing two models: Data model and User Interface

with Navigation Model. All models are based on UML extended with

stereotypes and tagged values allowing behavior configuration. Models

extensions contain all necessary information for creating the complete source

code of an application. A support tool was build easiness the process of

modeling and configuring with the proposed methodology. This support tool

has an example implementation allowing the generation of an ASP.NET MVC

4 mobile web application.

Keywords: MDD, Models, Mobile Web Applications, UML, Components

1 Introduction

Developing Software by Making Models and deriving source code is a tendency

started several years ago. These techniques can be found with several names MDD

(Model Driven Development), MDA (Model Driven Architecture), MDSE (Model

Driven Software Engineering). All these techniques has something in common, they

use models and transformations to generate source code. A transformation is a process

that takes as input a model and generates a target model or source code. For example

OMG MDA Approach [1] uses different kinds of models with different types of

abstraction levels, starting from Platform Independent Models (PIM) to Platform

Specific Models (PSM). From PIM to PSM there are automatic or semi-automatic

transformations. And the final goal of these techniques is to automate the generation

of the application source code, making designers focusing on the models rather in the

coding process. But most of existing techniques are difficult to use, requires to do a

really complex process detailing models and configuring transformations in order to

obtain useful code, and most of them only can generate part of that code.

In the other hand the use of components in the software development process is a

very well establish technique started several years ago [2]. Components are pre-

defined pieces of software with a very well establish purpose. Components are

excellent for re-use and they are reliable because once they were tested they are re-use

without modification. Most of modern programming frameworks include pre-defined

components for easiness the development process. For example login component or

some UI components like grids, carrousels, etc.

Our proposal is the use of components as modeling pieces, adding to pre-

established components some configuration capabilities in order to be adapted to the

system being modeled.

2 Targeting mobile applications

This methodology is proposed for modeling mobile web applications for the

following reasons:

 Reduced User Interface: Screens sizes of mobile devices are small, beyond their

resolution. Therefore the user interface shown to the user must be simple,

comfortable and suitable for the way of using it. As this methodology is based on

UI components, each one will represent a screen that will be shown to the user.

Being the user interface necessarily simple, makes the component configuration

direct without having to specify complex control layouts. Configuration is focused

on the information to be shown and the web pages will be generated with a

standard layout optimized for mobile devices visualization.

 Simple and Intuitive Navigation System: Because of having a reduced screen,

navigation system should also be minimized. Navigation options were added to

each component. Later when creating the application source code, navigation bar

will be shown on the top of the page following W3C (World Wide Web

Consortium) guidelines about mobile web sites [3].

 Taking advance of special characteristics: some elements were added to take

advance of capabilities on mobile devices, like SMS and Call links, also allowing

the use geo-location taking advance of the GPS present on most devices.

Nevertheless this methodology can also be applied to some desktop web applications

where complex screen layouts are not required like standard intranet systems or a

configuration backend.

3 Component Based Hypermedia Design Method (CBHDM)

CBHDM is a design methodology for designing mobile web application and

generating it´s source code using extended UML Models.

CBHDM requires only two models: the data model and the user interface model

(which includes navigation modeling). The data model is based on the UML Class

Diagram and the interface model uses UML component diagrams. Both diagrams are

extended with stereotypes and tagged values generating a conservative extension of

UML. This allows creating a CBHDM model with any existing modeling tool, but in

order to easiness the process a custom tool was specifically design to support the

methodology. This tool also performs all necessary transformations to create the final

source code.

The methodology starts from the UML Class diagram where the system entities are

defined using some stereotypes that will be used on the final transformation to

facilitate the process of generating the database script, and for identifying and

describing entities on the system. Later a transformation tool uses the class diagram to

automatically generate a Component Diagram that the designer will modify and

complete with the desire behavior of the interface. The last step consists in using the

transformation tool for a second time with all models as input. The result will be a

database script and a fully functional application source code. Figure 1 shows the

different stages of the methodology and also remarks the steps that requires user

participation.

Fig. 1. CBHDM Methodology steps

4 Data Model

Data model is based on the UML class diagram where each class will represent a

database table. This diagram is extended with:

(A) Stereotypes for special properties: like the numeric unique identifier of the

table and the textual descriptor which gives a human readable identifier of the

database register.

Automatically

Created UI Model

(UML Component

diagram)

Data Model (UML

Class diagram)

Transformation

Tool

1 2

Final UI Model

(UML Component

diagram)

4
3

5
Database

Script

Application

Source Code

(B) Enumeration Classes: In some applications it will be necessary to identify those

classes representing limited values, like for example the different states of an

invoice, a list of allowed actions, etc. Those classes must be distinguished from

other classes because they will have a special treatment when generating the

source code. In order to identify those classes the UML stereotype

<enumeration> will be used.

(C) Special Data Types: In order to improve user experience when using the

application, especially from a mobile device, two special data types will be used:

 phoneNumber which is a string representing a telephone number allowing to

render a link to automatically make a phone call or send a SMS to that

number;

 address: this data type will allow using the GPS device available on advance

mobile phones and take the exact location where the user is located. If the GPS

is not available or is temporally out of service, it will be possible to enter the

address like a string. Also this data type will allow using the GPS to navigate

to that location.

Support tool allows adding classes and enumerations (Figure 2, left) easiness the

process of configuring the special properties (Figure 2, right).

Fig. 2: Screenshots of the tool support for Data Model

After configuring enumeration and classes, the system automatically generates a

preliminary version of the UI Model, using “Generate Components” option, but also

with the data model, a database script can be generate (see Figure 3).

Fig. 3. Generating Database Script from UI Model

5 User Interface Model

The user interface will be described by using a set of pre-defined components types.

The components types are defined by stereotypes and each type will have some

tagged values in order to configure them.

Pre-defined components are: Login, List, Search, Menu, CRUD, and

UpdateView.

From data model, a preliminary version of the component diagram is automatically

created. For each class (not for enumerations) a list and a crud component are created.

 A main menu is also created pointing to list components. Figure 4 shows

automatically created components from data model of Figure 2.

Fig. 4. Automatically created UI components from Data Model

Each component is configured using tagged values. These tagged values gives the

personalization options for adapting components to the application being modeling.

Al automatic created components are preconfigured. For example, a List component

shows a column with the descriptor of the class being displayed and has an action link

to edit each item. In the Navigation bar a link is created to add new objects and

another link allows going back to the home page. (See Figure 6 left).

The complete component configuration with all allowed tagged values can be found

in [4].

Available components are:

 Login: a component to authenticate the user on the system. It configuration

allows defining to the properties of the class to perform the authentication (See

Figure 5 left). The component can also be configured in order to allow the user to

be selected instead of having to be typed (Figure 5 right). This feature is useful

for mobile devices with few users, minimizing text input, which is a complex tax

especially on small devices with reduced keyboards.

Fig.5. Pages automatically created from Login Components

 List: a component that shows a list of information to the user. For example

Figure 6 on left shows a List component showing the categories list. This list is

configured to show only the category description. But the list can also be

configured to show more than one property, for example the list of figure 6 on the

right shows a task list displaying, the task title, the category of that task and an

additional information line with the description. All this features can be

configured in the components using tagged values.

Fig. 6. Pages automatically created from List Components

 Search: like List is a component to show information to the user but it

also allows filtering the information. It uses the same tagged values of List

adding an extra tag called SearchFilters. This tag allows configuring which

properties could be filter and the type of the filter that will be applied (free text,

single selection, multiple selection, data range, and yes/no selector). Figure 7

shows several filters to search a task.

Fig. 7. Page automatically created from a search component

 Menu: this component shows a menu to the user. In order to configure the menu

options a set of links are configured pointing to others components.

Fig. 8. Page automatically created from Main Menu component

 CRUD: is a component to create, show, update or delete a record of the data base.

By default it asks the user to fill all properties, but it has a powerful configuration

allowing:

o Defining default values when creating or updating a record

o Avoid writing some field of the record when creating or updating data.

o Creating an additional record of another table when creating or updating

data.

o Defining optional Properties

Figure 9 shows a CRUD component for creating a new Task. Some values are set

by default so, they are not asked to the user, for example newly created task are

always in pending status.

Fig. 9. Page automatically created from CRUD component

 UpdateView: this component is an update operation with special

characteristics. It´s possible that a record needs to be updated partially where

some properties must be editable and others doesn´t. It´s especially suitable for

records that are partially filled when moving from different states on the system.

For example Figure 10 shows an update view component for finishing a Task.

When finishing a task, status will be changed to “Finished” and only some

comments can be added by the user. This component is also configure to show in

read only mode the due date, title and the category.

Fig. 10. Page automatically created from Update View component

CBHDM also includes some characteristics like the use of complex functions for

data retrieval and creating views for different roles, these characteristics can be found

in [5].

6 Related Work

Several methodologies based on MDA are oriented to the development of web

applications including UI modelling like for example:

 UWE (UML based Web Engineering) is based on several UML diagrams, with

stereotypes and automatic transformations in order to generate a web application.

It requires doing a big number of diagrams and to apply automatic

transformations for example from content to navigation. Is possible to

automatically generate nodes (navigation units) which will be connected by links

but the user must do a big work to check if each automatically generated node is

really needed for the correct navigation on the system, and must delete all

unwanted nodes (which in some cases force to restructure the start diagram) [6]

 OOHDM: is a modeling methodology consisting in four activities: conceptual

modeling, navigation modeling, abstract interface design and implementation [7]

It models interface using ADV (Abstract Data Views) [8] where different objects

are grouped to created a screen mockup.

 IFML (Interaction Flow Modelling Language): It was born on 2013 as an OMG

(Object Management Group) standard. It replaces WEBML (Web Modeling

Language). It supports modeling of desktop and mobile web applications [9]. Is

limited in several aspects and difficult for the designer when defining some

particularities like class relations with foreign keys and enumeration classes.

This three methodologies models user interface by creating diagrams with containers,

controls and data references. Is like creating a mockup for each screen which is

complex and usually requires more work than really building the interface in the

target development environment. Nevertheless some of them allow generating

interfaces source code from the models, but not the whole application source code.

7 Conclusions and Future Work

CBHDM is a modelling methodology that allows modeling systems with all necessary

information for automatic code generation. With the help of the tool, designer doesn´t

need to remember how to configure components because tool guides the whole

process.

The tool includes transformations from data model to components and from

components to code.

By just doing data diagram and configuring auto created components designers can

have the complete application source code and database script created in few minutes,

without writing a single line of code.

As future work when generating the source code, user will be able to choose

between different templates allowing to generated code on different languages or with

different front ends, for example in XHTML for low performance mobile phones.

References

1. OMG: MDA Guide Version 1.0.1. (2003), http://www.omg.org/cgi-bin/doc?omg/03-06-

01.pdf

2. Heineman G.T., Councill W.T.: Component-Based Software Engineering: Putting the Pieces

Together. Addison-Wesley Professional, Reading. (2001)

3. W3C: Mobile Web Best Practices 1.0. (2008), http://www.w3.org/TR/mobile-bp/

4. Vera P., Pons C. Gonzales C, Giulianelli D., Rodriguez R.: MDA based Hypermedia

Modeling Methodology using reusable components, XVIII Congreso Argentino de Ciencias

de la Computación (2012)

5. Vera P., Pons C. Gonzales C, Giulianelli D., Rodriguez R.: Modeling Complex Mobile Web

Applications from UI Components – Adding Different Roles and complex Database Design,

XIX Congreso Argentino de Ciencias de la Computación (2013)

6. LMU – Ludwig-Maximilians-Universität München.: UWE – UML-based Web Engineering.

Institute for Informatics. Research Unit of Programming and Software Engineering (2012)

http://uwe.pst.ifi.lmu.de/index.html

7. Schwabe D. y Rossi G.: An object oriented approach to Web-based applications design.

Theor. Pract. Object Syst. Volume 4, Issue 4, pp 207-225. (1998)

8. Cowan D. and Lucena C.: Abstract Data Views: An Interface Specification Concept to

Enhance Design for Reuse. IEEE Trans. Softw. Eng. 21, 3, pp. 229-243. (1995).

9. OMG: Interaction Flow Modeling Language (IFML) (2014)
http://www.omg.org/spec/IFML/

