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Abstract. New web standards are emerging day after day. Some of them are 

crucial in the improvement of web application for mobile devices. From 

visualization issues to hardware access, all this new tools can help developers to 

create native like applications on web environments. HTML5 and CSS3 with 

css media queries are some examples that are already available to use. Some 

other standards, such as W3C Devices’ APIs, are still in progress but nearly to 

arrive. This paper shows existing and future standards for mobile web. 
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1   Introduction 

When an application for a mobile device must be develop, the big question is: should 

we create a native or a web application? Of course the answer is not simple. It is 

relative to the requirements of that application. Anybody will say that Native 

applications are more powerful than web applications and it´s true. But new standards 

are emerging to reduce that gap. Table 1 shows the capabilities of each type of 

application. 

Table 1. Native App vs Web App 

 Native App  Web App 

Connectivity Online and offline  Mostly Online but can be offline  

Hardware Access Full  Limited (but growing) 

Graphics Can use all hardware 

capabilities to create graphical 

stunning applications like 

 Limited to the visualization supported 

by the browser. 



games. 

Look and Feel Access to native controls 

allows creating standard 

applications. 

 With the use JavaScript frameworks, 

native controls can be simulated on the 

browser giving the user the feel of 

being using a native application. 

Portability Only on the same operating 

system and restricted by the 

supported version. 

 Can be used on any device with any 

operation system supporting web 

standards 

 

Next section analyzes each of the features showed on table 1 for mobile web 

applications. With the goal of analyzing new possibilities that allows reducing the gap 

between web and native applications. Section 3 shows some related works and the 

final section present conclusions and future work. 

2   Mobile Web Applications 

This section will show some strategies for creating more powerful mobile web 

applications using some new standards. 

2.1   Connectivity 

Of course web applications were born to be connected but now they can also have 

very powerful offline capabilities. HTML5 includes a new way of handling cache for 

web application using a manifest file. This file can control the way each file is treated. 

Manifest file includes three sections: 

 Cache Manifest: Files to be cached 

 Network: Files to be always downloaded from the server 

 Fallback: Files to be shown if no connection if available 

An example cache manifest can be: 

CACHE MANIFEST  

# 2012-02-21 v1.0.0  

theme.css  

logo.gif  

main.js  

NETWORK:  

login.asp  

FALLBACK:  

/html5/offline.html 

 

Line starting with a # is a comment. It´s a good practice to include the update date 

of the file so each time the file change the server will download all pages and replace 

it´s cache. So comments can be used to force the download of new version of the 

pages. 



AppCache can be used to create web applications that works completely offline, 

but with the limitation that if the user clears the browser cache it will also lose access 

to the application until being online again. 

2.2 Storage 

Web applications usually store data in the cloud using some server side scripting. But 

some applications needs to store data locally. HTML5 includes new storage 

capabilities with WebStorage feature. 

WebStorage allows keeping large volumes of information without affecting the 

website performance in contrast to cookies where the information travels from server 

to client on each request.  There are two bags to store data: 

 SessionStorage: keep data while the http session is alive.  

 LocalStorage: keep data permanently on the device or until the user 

explicitly deletes browser data. 

2.3 Hardware Access 

Web applications cannot access all hardware of the mobile devices, but new tools are 

emerging to be able to do so. A clear example is geolocation capability of HTML5. It 

allows getting the user current position by means of wireless network and the GPS if 

it’s available.   

User location can be determined by using the function 
navigator.geolocation.getCurrentPosition. 

Keeping user position when moving can be also made with HTML5. It includes the 

function navigator.geolocation.watchPosition which track user 

location changes in an asynchronous way. This function has a parameter to enable 

High Accuracy of geo location that will force to use the device GPS to get a more 

accurate position.  

 

A set of new standards are being developed to access device’s hardware, some of 

them are: 

 Motion Sensors: This specification provides DOM events for retrieving 

information that describes the physical orientation and motion of the hosting 

device. Access to attributes like alpha, beta and gamma coordinates can be 

achieved by registering the deviceorientation event on the window 

object. 

 Battery Status: This API is used to determine the battery status of the hosting 

device. By the creation of the BatteryManager object called battery, it is 

possible to obtain different battery’s attributes by adding disparate events to the 

battery object such as: charging status by adding the onchargingchange 

event, chargingTime by appending the onchargingtimechange event, 

dischargingTime by attaching the ondischargingtimechange event, 

and the battery level by adhering the onlevelchange event. 



 Proximity Sensors: This API enables the programmers to access the proximity 

sensor of mobile devices, this way, it is possible to determine if the mobile device 

is close to a certain physical object. To achieve this, the API provides an event 

called userproximity, which has to be added to the window object. This is 

implemented on the UserProximityEvent interface whose attribute near 

(boolean value) is the one that contains the proximity information. 

 Ambient Light Sensors: This API makes possible the ambient light measure by 

accessing the light sensor of a mobile device. To accomplish this, the API 

provides an event called devicelight, which has to be added to the window 

object. This is implemented on the DeviceLightEvent interface whose 

attribute value (double value) is the one that contains the ambient light value 

measured in lux. It is important to be aware that “the precise lux value reported 

by different devices in the same light can be different, due to differences in 

detection method, sensor construction etc.”[1] 

 Vibration: The Vibration API enables the access to the vibration mechanism of 

the hosting mobile device. The Navigator interface possesses a method called 

vibrate(), this method, when invoked makes the mobile device vibrate 

depending on the value it receives. If the value passed to vibrate() is 0, it 

cancels any existing vibrations. 

 Atmospheric Pressure Sensors: This API provides information on atmospheric 

pressure. The mobile device must be equipped with an atmospheric pressure 

sensor. The AtmPressureEvent interface provides web developers 

information about the atmospheric pressure levels measured at the hosting 

device. [2] 

This is achieved by interrogating a barometer or similar detectors of the hosting 

device.  

Some applications are: a) Altitude detection making use of the relationship 

between changes in pressure relative to altitude. b) Climatological that use 

barometric pressure to predict weather conditions like rain is coming. c) 

Meteorological information. 

 Ambient Temperature Sensors: This API provides information on room 

temperature. Device Measures the temperature in degrees Celsius (°C). The 

common use is to control the temperature.  

 Humidity Sensors: This API provides information of the humidity sensor which 

measures the relative humidity in percent (%). 

 Camera and Microphone: The API, navigator.getUserMedia() allows 

applications to access the microphone and camera user. With 

navigator.getUserMedia(), we can connect to the microphone input 

and the web camera without any supplement. Access to the camera can just make 

a call without having to install anything. The data is processed and sent directly 

to the browser.  

 NFC: There is an API to access the hardware subsystem and achieve near-field 

communications (NFC). Some use cases named in W3.org the API are [3]:  

o Tap to Play: tap your device to another to play a peer-to-peer game, 

using the NFCPeer interface to exchange NDEF messages. 



o Tap to Share: tap to share some data, e.g. coupons, contacts, using the 

NFCPeer interface to exchange NDEF messages.  

o Tap to Control: tap to control another device, like a TV remote, using 

the "handover" capability of the NFCPeer interface.  

o Tap to Connect: tap to connect via WiFi or Bluetooth, using the 

"handover" capability of the NFCPeer interface.  

o Tap to Read: tap to read NFC tags, using the NFCTag interface.  

o Tap to Write: tap to write NFC tags, using the NFCTag interface.  

At the moment, Mozilla Firefox is the only browser that supports most of the 

Devices’ APIs developed by the W3C. A detailed explanation and current status of 

each of the features can be found at [4].  

Other features are being developed that will allow accessing user information 

available in the mobile device like Address book and Calendar Data [5]. 

2.4  Graphics 

HTML 5 includes CAVAS object which creates a drawing area. Inside this are 

different types of objects can be drawn (circles, rectangle, lines, curves, text, etc). 

This objects can also be animated. There are some that makes easier the task of using 

CANVAS, a example is JCanvaScript (http://jcscript.com). 

 

2.4.1 WebGL (Web Graphics Library) 

Is a JavaScript API that is used for rendering interactive 3D graphics and 2D graphics 

within any compatible web browser without using plugin.  

WebGL brings 3D graphics to the Web by introducing an API that conforms to 

OpenGL (ES 2.0) that can be used in <canvas> HTML5 elements.  

 

 

Fig. 1. WebGL Example – Demo http://helloracer.com/racer-s/ 

 

2.4.2. Scalable Vector Graphics (SVG) 

It is a modular language for describing two-dimensional vector graphics and vector / 

raster mixed in XML. [6] 

It is a good option to add high fidelity visual.  Visuals will be easily scalable for both 

small and simple applications to complex applications in a website without the need 

http://jcscript.com/


for a plug-in or standalone viewer. Examples of SVG are in the following link 

W3schools. [7] 

2.5 Look and Feel 

2.5.1 Responsive Design 

 

A key feature of HTML is the ability to adapt to screen of the device being used, from 

relative units to complex CSS, it allows creating a unique site that will fit different 

types of screens. CSS Media queries allows adapting the interface regarding the 

screen resolution so for example if the site is being used in a tablet it could show more 

controls if it´s being used in a cell phone. This is called Responsive Design [8], [9]. 

Some frameworks like JQuery Mobile [10] includes responsive controls available to 

be used. Figure 2 shows an example of a responsive menu. Section A shows how the 

menu is expanded in high resolution screens. Section B shows that in a narrower 

screen the menu will be collapsed and an icon will appear. Section C shows the 

expanded options of the menu when clicking the icon. 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Example of responsive menu built with css media queries and it´s visualization 

regarding the screen resolution 

There are several ways of using CSS Media Queries [9]: 

 Including a query in the link to a css file 

<link rel= “stylesheet” tyte= “textc/css” 

 media= “screen and (max-device-width: 480px)” 

href= “customstyle.css” />  



 

In this case the css will be applied to the page only if the screen width is lower 

than 480 pixels. 
 

  Including queries inside the css file. 

@media screen and (max-device-width: 480px)  

{  

 .column  

{ float: none;}  

}  

 Using an import directive including the query 

@import url (“customstyle.css”) screen and (max- 

device-width: 480px);  

 

 

2.5.2 Device Specific user interfaces 

 

Web applications can look like native applications thanks to numerous JavaScript 

frameworks already available. For example IUI [11] imitates Iphone user interface 

(figure 3). 

  

Fig. 3. Examples of a web application developed with IUI 

Another usefull framework is JQuery Mobile [10] wich includes a custom 

framework for mobile applications, with serveral controls, including responsive 

design. Figure 4 shows some web pages made with jquery mobile. 

 



   

Fig. 4. Examples of a web application developed with JQuery Mobile 

Several other javascript frameworks are available some are more powerfull than 

others, but all of them use javascript and css to generate a rich user interface. 

2.6   Portability 

The big advantege of web applications is portability. Web applications runs over web 

browsers so using standards allows developing a unique web application that will run 

on any existing operating system. But we also need procesing power. New 

smartphones are powerfull enough to run complex javascript functions, process 

complex css layouts and access hardware throw new device apis fast enouth to be 

usefull in or applications. In contrast a native aplication is programed for a particular 

operating system and also with compatibilities issues over the operating system 

version, so it`s more difficult to reach different kinds of devices. A third alternative 

are hybrid applications that generally uses some propietary programming language for 

building the web application and then allows packing or migrating that application for 

different platforms [12]. 

3. Related Work 

Several authors are considering that web applications are getting closer to native 

applications, for example INTEL [13] analyses the development capabilities of the 

different mobile operation system and concludes that HTML5 is the best choice 

because it´s common for all of them. So they recommend using it in conjunction with 

some JavaScript framework to develop a simple application targeting server devices. 

CHARLAND Andre, LEROUX Brian [14] compares web and native applications, 

remarking pros and cons of each technique. Remarking the increasing power of web 

applications also believing that web gaming will be also possible in mobile 

environments thanks to the growing implementation of WebGL [15] (a 3D rendering 

environment for browsers). 



CHRIST Adam [16] remarks the advantages of developing web applications over 

native applications. It also remarks the power of javascript frameworks to create the 

user interface of new web applications. 

FLING Brian dedicates a chapter of his book “Mobile Design and Development: 

Practical Techniques for Creating Mobile Site and Web Apps” [17] to compare web 

and native applications. He remarks that if it´s possible for the porpoise of the 

solution web applications should be preferred over native applications: “I`m a big fan 

of native application and I feel that there are a lot of great innovative and market 

opportunities here, but mobile web apps are the only long-term viable platform for 

mobile content, services, and applications.” 

4. Conclusions and Future Work   

The gap between capabilities of native applications over web applications is 

narrowing, especially boosted by hardware access web standards. Besides developing 

a web application ensure it to be multi-platform in contrast to native applications that 

requires multiplying efforts for developing on each different platform for each mobile 

operating system. Thus also keeping updated web applications is simpler than 

maintaining native applications.  

Regarding look and fell, there are several JavaScript frameworks that can help web 

applications to look like native applications, showing native like controls in a web 

page. Nowadays it begins to be complex distinguishing between a native a web 

application. Style sheets can now be conditionally applied with CSS Media Query, so 

the design can match the device screen creating a more usable interface, taking 

advance of bigger screens and giving a good user experience on small screens without 

having to develop several web sites. 

We are convince that the future is on having applications in the cloud, where user 

can access then from different devices without losing previously loaded information. 

HTML5 allows keeping information on the device when it´s disconnected and sync it 

when internet connection is available. 

All this features together, with hardware access capabilities, opens a wide range of 

opportunities of developing more powerful web applications. 

Initially applications were almost entirely native, then began considering hybrid 

applications (those applications built in a common framework and then compiled in 

different pre-defined operating system, more powerful than web application but not as 

powerful as native applications). Nowadays different authors share our view that the 

future is in web applications. 
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