
Analysis of Current and Future Web Standards for

Reducing the Gap between Native and Web Applications

Rocío Rodríguez1,2, Pablo Vera1,2, Federico Vallés2, María Roxana Martínez1,

Daniel Giulianelli2

1Interamerican Open University (UAI)

Higher education center in information technology

City of Buenos Aires, Buenos Aires, Argentina

{RocioAndrea.Rodriguez; PabloMartin.Vera; Maria.Martinez} @uai.edu.ar

2National University of La Matanza

Department of Engeniering and Technological Research

San Justo, Buenos Aires, Argentina

{fvalles; dgiulian}@ing.unlam.edu.ar

Abstract. New web standards are emerging day after day. Some of them are

crucial in the improvement of web application for mobile devices. From

visualization issues to hardware access, all this new tools can help developers to

create native like applications on web environments. HTML5 and CSS3 with

css media queries are some examples that are already available to use. Some

other standards, such as W3C Devices’ APIs, are still in progress but nearly to

arrive. This paper shows existing and future standards for mobile web.

Keywords: MOBILE WEB, NATIVE, HTML 5, CSS3, JQUERY MOBILE

1 Introduction

When an application for a mobile device must be develop, the big question is: should

we create a native or a web application? Of course the answer is not simple. It is

relative to the requirements of that application. Anybody will say that Native

applications are more powerful than web applications and it´s true. But new standards

are emerging to reduce that gap. Table 1 shows the capabilities of each type of

application.

Table 1. Native App vs Web App

 Native App Web App

Connectivity Online and offline Mostly Online but can be offline

Hardware Access Full Limited (but growing)

Graphics Can use all hardware

capabilities to create graphical

stunning applications like

 Limited to the visualization supported

by the browser.

games.

Look and Feel Access to native controls

allows creating standard

applications.

 With the use JavaScript frameworks,

native controls can be simulated on the

browser giving the user the feel of

being using a native application.

Portability Only on the same operating

system and restricted by the

supported version.

 Can be used on any device with any

operation system supporting web

standards

Next section analyzes each of the features showed on table 1 for mobile web

applications. With the goal of analyzing new possibilities that allows reducing the gap

between web and native applications. Section 3 shows some related works and the

final section present conclusions and future work.

2 Mobile Web Applications

This section will show some strategies for creating more powerful mobile web

applications using some new standards.

2.1 Connectivity

Of course web applications were born to be connected but now they can also have

very powerful offline capabilities. HTML5 includes a new way of handling cache for

web application using a manifest file. This file can control the way each file is treated.

Manifest file includes three sections:

 Cache Manifest: Files to be cached

 Network: Files to be always downloaded from the server

 Fallback: Files to be shown if no connection if available

An example cache manifest can be:

CACHE MANIFEST

2012-02-21 v1.0.0

theme.css

logo.gif

main.js

NETWORK:

login.asp

FALLBACK:

/html5/offline.html

Line starting with a # is a comment. It´s a good practice to include the update date

of the file so each time the file change the server will download all pages and replace

it´s cache. So comments can be used to force the download of new version of the

pages.

AppCache can be used to create web applications that works completely offline,

but with the limitation that if the user clears the browser cache it will also lose access

to the application until being online again.

2.2 Storage

Web applications usually store data in the cloud using some server side scripting. But

some applications needs to store data locally. HTML5 includes new storage

capabilities with WebStorage feature.

WebStorage allows keeping large volumes of information without affecting the

website performance in contrast to cookies where the information travels from server

to client on each request. There are two bags to store data:

 SessionStorage: keep data while the http session is alive.

 LocalStorage: keep data permanently on the device or until the user

explicitly deletes browser data.

2.3 Hardware Access

Web applications cannot access all hardware of the mobile devices, but new tools are

emerging to be able to do so. A clear example is geolocation capability of HTML5. It

allows getting the user current position by means of wireless network and the GPS if

it’s available.

User location can be determined by using the function
navigator.geolocation.getCurrentPosition.

Keeping user position when moving can be also made with HTML5. It includes the

function navigator.geolocation.watchPosition which track user

location changes in an asynchronous way. This function has a parameter to enable

High Accuracy of geo location that will force to use the device GPS to get a more

accurate position.

A set of new standards are being developed to access device’s hardware, some of

them are:

 Motion Sensors: This specification provides DOM events for retrieving

information that describes the physical orientation and motion of the hosting

device. Access to attributes like alpha, beta and gamma coordinates can be

achieved by registering the deviceorientation event on the window

object.

 Battery Status: This API is used to determine the battery status of the hosting

device. By the creation of the BatteryManager object called battery, it is

possible to obtain different battery’s attributes by adding disparate events to the

battery object such as: charging status by adding the onchargingchange

event, chargingTime by appending the onchargingtimechange event,

dischargingTime by attaching the ondischargingtimechange event,

and the battery level by adhering the onlevelchange event.

 Proximity Sensors: This API enables the programmers to access the proximity

sensor of mobile devices, this way, it is possible to determine if the mobile device

is close to a certain physical object. To achieve this, the API provides an event

called userproximity, which has to be added to the window object. This is

implemented on the UserProximityEvent interface whose attribute near

(boolean value) is the one that contains the proximity information.

 Ambient Light Sensors: This API makes possible the ambient light measure by

accessing the light sensor of a mobile device. To accomplish this, the API

provides an event called devicelight, which has to be added to the window

object. This is implemented on the DeviceLightEvent interface whose

attribute value (double value) is the one that contains the ambient light value

measured in lux. It is important to be aware that “the precise lux value reported

by different devices in the same light can be different, due to differences in

detection method, sensor construction etc.”[1]

 Vibration: The Vibration API enables the access to the vibration mechanism of

the hosting mobile device. The Navigator interface possesses a method called

vibrate(), this method, when invoked makes the mobile device vibrate

depending on the value it receives. If the value passed to vibrate() is 0, it

cancels any existing vibrations.

 Atmospheric Pressure Sensors: This API provides information on atmospheric

pressure. The mobile device must be equipped with an atmospheric pressure

sensor. The AtmPressureEvent interface provides web developers

information about the atmospheric pressure levels measured at the hosting

device. [2]

This is achieved by interrogating a barometer or similar detectors of the hosting

device.

Some applications are: a) Altitude detection making use of the relationship

between changes in pressure relative to altitude. b) Climatological that use

barometric pressure to predict weather conditions like rain is coming. c)

Meteorological information.

 Ambient Temperature Sensors: This API provides information on room

temperature. Device Measures the temperature in degrees Celsius (°C). The

common use is to control the temperature.

 Humidity Sensors: This API provides information of the humidity sensor which

measures the relative humidity in percent (%).

 Camera and Microphone: The API, navigator.getUserMedia() allows

applications to access the microphone and camera user. With

navigator.getUserMedia(), we can connect to the microphone input

and the web camera without any supplement. Access to the camera can just make

a call without having to install anything. The data is processed and sent directly

to the browser.

 NFC: There is an API to access the hardware subsystem and achieve near-field

communications (NFC). Some use cases named in W3.org the API are [3]:

o Tap to Play: tap your device to another to play a peer-to-peer game,

using the NFCPeer interface to exchange NDEF messages.

o Tap to Share: tap to share some data, e.g. coupons, contacts, using the

NFCPeer interface to exchange NDEF messages.

o Tap to Control: tap to control another device, like a TV remote, using

the "handover" capability of the NFCPeer interface.

o Tap to Connect: tap to connect via WiFi or Bluetooth, using the

"handover" capability of the NFCPeer interface.

o Tap to Read: tap to read NFC tags, using the NFCTag interface.

o Tap to Write: tap to write NFC tags, using the NFCTag interface.

At the moment, Mozilla Firefox is the only browser that supports most of the

Devices’ APIs developed by the W3C. A detailed explanation and current status of

each of the features can be found at [4].

Other features are being developed that will allow accessing user information

available in the mobile device like Address book and Calendar Data [5].

2.4 Graphics

HTML 5 includes CAVAS object which creates a drawing area. Inside this are

different types of objects can be drawn (circles, rectangle, lines, curves, text, etc).

This objects can also be animated. There are some that makes easier the task of using

CANVAS, a example is JCanvaScript (http://jcscript.com).

2.4.1 WebGL (Web Graphics Library)

Is a JavaScript API that is used for rendering interactive 3D graphics and 2D graphics

within any compatible web browser without using plugin.

WebGL brings 3D graphics to the Web by introducing an API that conforms to

OpenGL (ES 2.0) that can be used in <canvas> HTML5 elements.

Fig. 1. WebGL Example – Demo http://helloracer.com/racer-s/

2.4.2. Scalable Vector Graphics (SVG)

It is a modular language for describing two-dimensional vector graphics and vector /

raster mixed in XML. [6]

It is a good option to add high fidelity visual. Visuals will be easily scalable for both

small and simple applications to complex applications in a website without the need

http://jcscript.com/

for a plug-in or standalone viewer. Examples of SVG are in the following link

W3schools. [7]

2.5 Look and Feel

2.5.1 Responsive Design

A key feature of HTML is the ability to adapt to screen of the device being used, from

relative units to complex CSS, it allows creating a unique site that will fit different

types of screens. CSS Media queries allows adapting the interface regarding the

screen resolution so for example if the site is being used in a tablet it could show more

controls if it´s being used in a cell phone. This is called Responsive Design [8], [9].

Some frameworks like JQuery Mobile [10] includes responsive controls available to

be used. Figure 2 shows an example of a responsive menu. Section A shows how the

menu is expanded in high resolution screens. Section B shows that in a narrower

screen the menu will be collapsed and an icon will appear. Section C shows the

expanded options of the menu when clicking the icon.

Fig. 2. Example of responsive menu built with css media queries and it´s visualization

regarding the screen resolution

There are several ways of using CSS Media Queries [9]:

 Including a query in the link to a css file

<link rel= “stylesheet” tyte= “textc/css”

 media= “screen and (max-device-width: 480px)”

href= “customstyle.css” />

In this case the css will be applied to the page only if the screen width is lower

than 480 pixels.

 Including queries inside the css file.

@media screen and (max-device-width: 480px)

{

 .column

{ float: none;}

}

 Using an import directive including the query

@import url (“customstyle.css”) screen and (max-

device-width: 480px);

2.5.2 Device Specific user interfaces

Web applications can look like native applications thanks to numerous JavaScript

frameworks already available. For example IUI [11] imitates Iphone user interface

(figure 3).

Fig. 3. Examples of a web application developed with IUI

Another usefull framework is JQuery Mobile [10] wich includes a custom

framework for mobile applications, with serveral controls, including responsive

design. Figure 4 shows some web pages made with jquery mobile.

Fig. 4. Examples of a web application developed with JQuery Mobile

Several other javascript frameworks are available some are more powerfull than

others, but all of them use javascript and css to generate a rich user interface.

2.6 Portability

The big advantege of web applications is portability. Web applications runs over web

browsers so using standards allows developing a unique web application that will run

on any existing operating system. But we also need procesing power. New

smartphones are powerfull enough to run complex javascript functions, process

complex css layouts and access hardware throw new device apis fast enouth to be

usefull in or applications. In contrast a native aplication is programed for a particular

operating system and also with compatibilities issues over the operating system

version, so it`s more difficult to reach different kinds of devices. A third alternative

are hybrid applications that generally uses some propietary programming language for

building the web application and then allows packing or migrating that application for

different platforms [12].

3. Related Work

Several authors are considering that web applications are getting closer to native

applications, for example INTEL [13] analyses the development capabilities of the

different mobile operation system and concludes that HTML5 is the best choice

because it´s common for all of them. So they recommend using it in conjunction with

some JavaScript framework to develop a simple application targeting server devices.

CHARLAND Andre, LEROUX Brian [14] compares web and native applications,

remarking pros and cons of each technique. Remarking the increasing power of web

applications also believing that web gaming will be also possible in mobile

environments thanks to the growing implementation of WebGL [15] (a 3D rendering

environment for browsers).

CHRIST Adam [16] remarks the advantages of developing web applications over

native applications. It also remarks the power of javascript frameworks to create the

user interface of new web applications.

FLING Brian dedicates a chapter of his book “Mobile Design and Development:

Practical Techniques for Creating Mobile Site and Web Apps” [17] to compare web

and native applications. He remarks that if it´s possible for the porpoise of the

solution web applications should be preferred over native applications: “I`m a big fan

of native application and I feel that there are a lot of great innovative and market

opportunities here, but mobile web apps are the only long-term viable platform for

mobile content, services, and applications.”

4. Conclusions and Future Work

The gap between capabilities of native applications over web applications is

narrowing, especially boosted by hardware access web standards. Besides developing

a web application ensure it to be multi-platform in contrast to native applications that

requires multiplying efforts for developing on each different platform for each mobile

operating system. Thus also keeping updated web applications is simpler than

maintaining native applications.

Regarding look and fell, there are several JavaScript frameworks that can help web

applications to look like native applications, showing native like controls in a web

page. Nowadays it begins to be complex distinguishing between a native a web

application. Style sheets can now be conditionally applied with CSS Media Query, so

the design can match the device screen creating a more usable interface, taking

advance of bigger screens and giving a good user experience on small screens without

having to develop several web sites.

We are convince that the future is on having applications in the cloud, where user

can access then from different devices without losing previously loaded information.

HTML5 allows keeping information on the device when it´s disconnected and sync it

when internet connection is available.

All this features together, with hardware access capabilities, opens a wide range of

opportunities of developing more powerful web applications.

Initially applications were almost entirely native, then began considering hybrid

applications (those applications built in a common framework and then compiled in

different pre-defined operating system, more powerful than web application but not as

powerful as native applications). Nowadays different authors share our view that the

future is in web applications.

References

1. W3C. “Ambient Light Events” (2014).

 http://www.w3.org/TR/ambient-light/#device-light

2. W3C. “Events atmospheric pressure” (2014).

http://dvcs.w3.org/hg/dap/raw-file/tip/pressure/Overview.html

http://dvcs.w3.org/hg/dap/raw-file/tip/pressure/Overview.html

3. W3C. “WebNFC API.” (2014).

http://www.w3.org/TR/nfc/

4. W3C. “Standards for Web Applications on Mobile: current state and roadmap -

Sensors and Hardware Integration” (2013)

http://www.w3.org/Mobile/mobile-web-app-state/#Sensors_and_hardware_integration

5. W3C. “Standards for Web Applications on Mobile: current state and roadmap –

Personal Information Managemente” (2013)
http://www.w3.org/Mobile/mobile-web-app-state/#Personal_Information_Management

6. W3C. “API SVG Simple”.

http://www.w3.org/TR/SVG/

7. W3SCHOOLS. “SVG Examples”.
http://www.w3schools.com/svg/svg_examples.asp

8. GARDNER Brett S. “Responsive Web Design: Enriching the User Experience”. Sigma

noblis, Volume 11, Number 1, pp.13-19 (2011).

http://www.noblis.org/media/2dd575c1-2de9-4d92-9bdb-

f72ad9fb9a19/docs/SigmaDigEco2011_pdf

9. MARCOTTE Ethan. “Responsive Web Design. A List Apart Magazine:

Articles”. (2010).
http://www.princeton.edu/~mlovett/reference/A%20List%20Apart-Articles-

Responsive%20Web%20Design.pdf

10. JQUERY “JQuery Mobile: jQuery Mobile: Touch-Optimized Web Framework for

Smartphones & Tablets” (2013).

http://jquerymobile.com/

11. IUI “iUI: User Interface Framework for Mobile Web Devices” (2013).

https://code.google.com/p/iui/

12. Seven, D. “What is a hybrid mobile App. Icenium”. (2012). Blog publication at http://bit.

ly/OMVQVN accessed, 23(9)

13. INTEL. “Bridging the Gap: from a Web App to a Mobile Device App”. HTML 5 DevCon

(2013).

http://html5devconf.com/archives/april2013/slides/2013HTML5DevCon_Bridging-the-

Gap.pdf

14. CHARLAND Andre, LEROUX Brian. “Web apps are cheaper to develop and deploy than

native apps, but can they match the native user experience? - Mobile application

Development: Web vs. native”. Vol. 54, No. 5. ACM (2011)

http://www.cemfarma.com/images/uploads/urun/pdf/bd1b62bc456d0240f58a8720fa66df1fd

a24046aS249V3.pdf

15. KHRONOS Group. “WebGL Specification” Version 1.0.2 (2013)

https://www.khronos.org/registry/webgl/specs/1.0/

16. CHRIST Adam M. “Bridging the Mobile App Gap”. Sigma noblis, Volume 11, Number 1,

pp.27-32 (2011).

http://www.noblis.org/media/2dd575c1-2de9-4d92-9bdb-

f72ad9fb9a19/docs/SigmaDigEco2011_pdf

17. FLING Brian. “Mobile Design and Development: Practical concepts and techniques for

Creating Mobile Sites and Web Apps”. O`Reilly. ISBN 978-0-596-15544-5. Chapter 9:

“Mobile Web Apps Versus Native Applications”. pp. 143-150 (2011).

http://www.w3.org/Mobile/mobile-web-app-state/#Personal_Information_Management
http://jquerymobile.com/
https://code.google.com/p/iui/
http://bit/
http://html5devconf.com/archives/april2013/slides/2013HTML5DevCon_Bridging-the-Gap.pdf
http://html5devconf.com/archives/april2013/slides/2013HTML5DevCon_Bridging-the-Gap.pdf
http://www.cemfarma.com/images/uploads/urun/pdf/bd1b62bc456d0240f58a8720fa66df1fda24046aS249V3.pdf
http://www.cemfarma.com/images/uploads/urun/pdf/bd1b62bc456d0240f58a8720fa66df1fda24046aS249V3.pdf
https://www.khronos.org/registry/webgl/specs/1.0/
http://www.noblis.org/media/2dd575c1-2de9-4d92-9bdb-f72ad9fb9a19/docs/SigmaDigEco2011_pdf
http://www.noblis.org/media/2dd575c1-2de9-4d92-9bdb-f72ad9fb9a19/docs/SigmaDigEco2011_pdf

