A Preliminary Approach Towards a Logic for
Warrant

Sergio Alejandro Gémez and Guillermo Ricardo Simari

Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering
Universidad Nacional del Sur
Av. Alem 1253, (8000) Bahia Blanca, ARGENTINA
EMAIL: {sag, grs}@cs.uns.edu.ar

Abstract. We extend Defeasible Logic Programming for it to be able to
warrant complex logical formulas. We show how negation, conjunction,
disjunction and implication of ground literals can be tested for warrant.
We show a running scenario to test the suitability of the approach.

Keywords: Defeasible Logic Programming, Argumentation, Artificial
Intelligence.

1 Introduction

Defeasible Logic Programming (DeLP) is an approach to non-monotonic reason-
ing [1] based on argumentation [2-4] and logic programming [5], that provides
a good trade-off between efficiency, expressiveness and implementability. One
limitation of DeLP is that the output of the system is restricted to the warrant
of single literals (that is, positive or classically negated atoms). There are cases,
however, where the need for warranting more complex expressions arises. We are
concerned with extending DeLP’s reasoning capabilities for warranting complex
logical expressions.

We will propose a two-layer architecture (see Figure 1). The bottom layer
is made up by the DelLP engine and the top layer is composed of the logic for
warrant presented in this work. DeLLP will be used for computing the warrant of
single literals (either positive or classically-negated ground atoms) with respect
to a DelLP program. The warrants obtained will be combined in complex logical
expressions to produce a higher-level warrant. Although, a priori, any logic can be
considered for the top layer, in this work we will consider a complex expression as
a propositional logic formula. So, the main contribution of this paper is extending
DeLP for warranting literals combined arbitrarily with negation, conjunction,
disjunction, implication and double implication. We will therefore define the
semantics of these operations precisely in the context of the answers obtained
by a DeLLP interpreter.

The rest of this presentation is structured as follows. In Section 2, we present
a brief introduction to Defeasible Logic Programming. In Section 3, we present

A logic for warrant

DeLP

Fig. 1. Layered approach to reasoning

an extension to DeLP to be able to warrant (if one exists) of arbitrarily com-
plex propositional expressions. In Section 4, we discuss related work. Finally, in
Section 5, we conclude pointing out lines of future research.

2 Fundamentals of Defeasible Logic Programming

Defeasible Logic Programming (DeLP) [6] provides a language for knowledge rep-
resentation and reasoning that uses defeasible argumentation to decide between
contradictory conclusions through a dialectical analysis, and providing a good
trade-off between expressiveness and implementability for dealing with incom-
plete and potentially contradictory information. In a DeLP program P = (11, A),
a set IT of strict rules P < Q1,...,Q, (which encode certain knowledge), and
a set A of defeasible rules P —< Q1,...,Q, (which encode knowledge with
possible exceptions) can be distinguished. An argument (A, H) is a minimal
non-contradictory set of ground defeasible clauses A of A that allows to derive
a ground literal H possibly using ground rules of II. Since arguments may be
in conflict (concept captured in terms of a logical contradiction), an attack rela-
tionship between arguments can be defined. To decide between two conflicting
arguments, we will use generalized specificity—a syntactic criterion that prefers
arguments more informed and arguments based on shorter derivations. If the
attacking argument is strictly preferred over the attacked one, then it is called
a proper defeater. If no comparison is possible, or both arguments are equi- pre-
ferred, the attacking argument is called a blocking defeater. To determine whether
a given argument A is ultimately undefeated (or warranted), a dialectical process
is recursively carried out, where defeaters for A, defeaters for these defeaters,
and so on, are taken into account. Given a DeLLP program P and a query H, the
final answer to H w.r.t. P is based on such dialectical analysis. The answer to a
query can be: Yes (when there exists a warranted argument (A, H)), No (when
there exists a warranted argument (A, ~ H)), Undecided (when neither (A, H)
nor (A, ~H) are warranted), or Unknown (when H does not belong to P).

An important property in DeLP is that it is impossible to find a warrant
both for a literal and its negation simultaneously. Formally:

Property 1. Let P = (II, A) be a DeLLP program and L a literal in P. It cannot
be the case that the answer for L and ~ L is both Yes.

For motivating our work, we are going to use a running scenario, but notice
that despite this, our approach can be considered general. We will consider an
intelligent agent to which we want to endow the capability of reasoning with
possibly inconsistent and incomplete knowledge bases. The agent will sense the
world, collecting facts F. The agent’s model of the world will be composed of
two kinds of knowledge: a set R of strict rules (containing information that
can be regarded as certain and, thus consistent although perhaps incomplete)
and a set D of defeasible rules (containing information that can be viewed as
tentative, thus representing situations where both exceptions can exist and in-
consistency and incompleteness may coexist). Upon presented to the world, the
conclusions of the agent are going to be complex expressions formed by ground
literals connected by classical propositional logic operators. For simplicity, we
will assume that sensor feed can be incomplete but it is always consistent (if a
pair of contradictory literals are received, they will be discarded).

As a possible instance of the agent described above, let us imagine a robot
exploring the surface of an extraterrestrial body, it receives sensor feed about its
environment and, after analyzing the information provided by those sensors, has
to decide which actions it must perform based on its internal model. A possible
criteria could be that the robot will move to explore a certain area whenever
there is reasonable evidence that the area is both promising and not dangerous.
The reasons for determining if a place is promising can be incomplete and maybe
contradictory, and the same could happen with the reasons for determining if a
place is dangerous.

We will see how DeLP can be used to represent the internal model of the
robot as well as sensor feed information and how top level conclusions of the
system, such as “we believe that the area to be explored by the robot is both
promising and not dangerous” can be modeled by what we call a logic for
warrant, that is a logic for representing complex logical expressions that can
be mounted of top of DeLP for performing complex reasoning beyond classi-
cal DeLP mechanisms. The novelty of our approach will be that the answer of
the system will be a combination of the warrants of each individual conclusion
that will be defined according to a very precise semantics. In short, the agent’s
model will be modeled as a DeLP program (S U F, R). High-level conclusions
such as “the place a is both promising and not dangerous” will be represented
as A(promising(a) AND NOT dangerous(a)), meaning that there are warrants
both for a is promising and «a is not dangerous. In the next example, we present
a DeLP program for modeling this situation and showing how DeLP is used for
computing the warrant of simple literals. In Section 3, we will then show how
this scenario can be used to show how DeLLP can be extended to warrant complex
logical expressions.

Ezample 1. Consider the following DeLP program P; = (I1,A) representing
sensor feed plus internal model of the interplanetary probe:

area(mare_crisium).

area(mare_serenitatis).
area(mare_tranquillitatis).
area(utopia_planitia).

expert(john).

expert(paul).

IT = < says_it_is_promising(john, mare_serenitatis).
says—it_is_not_promising(john, mare_crisium).
says_it_is_promising (john, utopia_planitia).
says_it_is_not_promising(paul, utopia_planitia).
satellite _view(mare_tranquillitatis, v1).
consistent_with_unobtainium_presence(vl).

~ dangerous(mare_serenitatis).

promising(A)— area(A), expert(E), says_it_is_promising(E, A).

promising (X)—

A= satellite_view (X, V),
consistent_with_unobtainium_presence(V).

~promising(A)— area(A), expert(E), says_it_is_not_promising(E, A).

Given this DeLLP program, if we happen to have exactly one opinion on a given
subject, we are going to get either one answer. For example, in this case we can
see that Mare Crisium is not promising but Mare Serenitatis is because John, who
happen to be a an expert, says so. Formally, we have two undefeated arguments
(Ay, ~promising(mare_crisium)) and (Asg, promising(mare_serenitatis)), where:

~ promasing(mare_crisium)—
A = area(mare_crisium), expert(john),
says_it_is_not_promising(john, mare_crisium)

promising (mare_serenitatis) —

Az = area(mare_serenitatis), expert(john),
says_it_is_promising(john, mare_serenitatis)

In this case, the answers to the queries promising(mare_crisium) and promising(
mare_serenitatis) are No and Yes respectively.

On the other hand, if we have two experts whose opinions about a certain
are in clash, as is the case of John and Paul respect to Utopia Planitia, then
we will have two equi-preferable arguments and DeLLP’s answer with respect to
promising (utopia_planitia) is going to be Undecided.

If we wanted to implement a voting protocol for making decisions, such as
for considering what happens when two experts have concurring opinions about
a certain issue in contrast to only one expert affirming the opposite, we could
manage to use a rule such as the following:

promising(A)—

area(A), expert(E1), expert(E2), E1 # E2,
says_it_is_promising(E1, A), says_it_is_promising(E2, A).

An argument based on this rule would be more informed than the one based
on the the rule that uses the opinion of only one expert, thus making it more
specific and therefore a defeater.

Finally, if instead of relying on expert opinions, we wanted to rely on sen-
sor information such as satellite information, we could find a compelling argu-
ment for supporting the conclusion that the area called Mare Tranquillitatis is
promising because the satellite view shows that its composition is compatible
with the presence of a strange mineral called unobtainium. Notice also that we
will asume we kwow that the area known as Mare Serenitatis a non-dangerous
one (in an actual scenario, this could have been modeled by a set of rules); for
simplicity we assume just a fact ~ dangerous(mare_serenitatis), so the argument
(B, ~ dangerous(mare_serenitatis)) is trivially justified and the answer to the
query ~ dangerous(mare_serenitatis) is Yes.

3 Warranting Complex Logical Expressions

As shown in the previous section, DeLP is able to find warrants for literals
provided that they exist. Nevertheless, there are situations when warrants for
more complex conclusions need to be found. For instance, suppose that the probe
introduced in Example 1 needs to determine if an area is both promising and
not dangerous in order to proceed with its exploration. Certainly, it would be
fairly easy to model situations when the composition of negation and conjunction
would be needed. For instance, this could be achieved by adding a rule of the form
“proceed (A)— promising(A), ~ dangerous(A)”. However, it would be impossible
to add other constructs due to the intrinsic limitations imposed by the logic
programming approach to knowledge representation underlying DeLP.

In the light of the above reasons, we propose extending DeLP’s reasoning
capabilities for warranting complex logical expressions. Then, we first define
some notation for reifying the notion of warrant, and define what we consider
to be complex expressions. After that, we describe how to compute warrants of
complex expressions, presenting some of the properties that we have found.

Definition 1 (Warrant). Let P be a DeLP program. Let L be a literal in P.
We note that L is warranted with respect to P as ApL (if the program P is clear
from context, we just write AL).

The basic DeLLP formalism is just able to find a warrant for a literal, that is
a positive atom or its negation. So the answer for L is Yes if there is a warrant
for L, and the answer for L is No if there is a warrant for ~ L.

Definition 2 (Complex expression). Complex expressions in DeLP are de-
fined recursively as:

— If L is a literal then L is a complex expression;

— (Negation) if L is a literal then NOTL is a complex expression;

— (Congunction) if Ly and Lo are literals, then Ly AND Lo is a complex ex-
pression;

(Disjunction) if L1 and Lo are literals, then Ly OR Lo is a complex expres-
sion;

— (Implication) if L1 and Lo are literals, then L1 = Lo is a complex expres-
sion;

(Double implication) if L1 and Lo are literals, then Ly <= Lo is a complex
expression, and,

— (Closure) there is no other complex expression.

We are now going to extend the notion of warrant for complex expressions.
In the case of negation, the definition is consistent with the one already existing
in DeLLP. The definitions for the other operators are the main contribution of
this work. We define them formally motivating the form of our definitions and
exemplify its behavior to show that they are appropriate.

Definition 3 (Warrant for Negation). Let P be a DeLP program and L a
literal. The complex expression NOTL is warranted, noted as A(NOTL), if and
only if ~ L is warranted. The answer for the query NOTL is:

— Yes: whenever A(~L);
— No: if AL, and,
— Undecided: when none of the above holds.

Ezample 2. The answer for NOT promising(mare_crisium) is Yes because, from
Example 1, the answer for ~ promising(mare_crisium) is Yes. Likewise the an-
swer for NOTpromising(mare_serenitatis) is No. In the same line of thought,
the answer for NOT dangerous(mare_serenitatis) is Yes but the answer for the
complex expression NOT dangerous(mare_crisium) is Undecided.

Definition 4 (Warrant for conjunction). The complex expression P AND Q
is warranted, that is A(P AND Q), if and only if both AP and AQ. The answer
for a query P AND @Q will be:

— Yes: when both AP and AQ;
— No: whenever A(NOTP) or A(NOTQ), and
— Undecided: when none of the above holds.

We first present a very simple example to show how the definition works:

Ezample 3. Consider the program P = {(a— b), b, (c— d), d}. In this program
there is a warranted argument for the literal a and a waranted argument for the
literal ¢, namely: ({a— b}, a) and ({¢c—= d}, c¢). Therefore the complex formula
a AND c is warranted, that is A(a AND c¢).

Ezample 4. Recalling Example 1, the answer for the query “promising(mare_serenitatis)”
is Yes and the answer for “~ dangerous(mare_serenitatis)” is also Yes. Therefore
the answer for

promising(mare_serenitatis) AND NOT dangerous(mare_serenitatis)

is Yes. When we consider the status of warrant of
promasing(mare_crisium) AND NOT dangerous(mare_crisium)

we can determine that it is No because A(NOT promising(mare_crisium)). In
the case of

promising (utopia_planitia) AND NOT dangerous(utopia_planitia)
the answer is Undecided.

Definition 5 (Warrant for disjunction). The complex expression P OR Q
is warranted, that is A(P OR Q), if and only if AP or AQ. The answer for a
query P OR Q will be:

— Yes: whenever AP or AQ;
— No: whenever both A(NOTP) and A(NOTQ), and
— Undecided: when none of the above holds.

Definition 6 (Warrant for implication). The complex expression P = Q
is warranted, that is A(P = @), if and only if the expression ((NOTP) OR Q)
s warranted.

Property 2. The answer for a query P = @ will be:

1. Yes: whenever A(NOTP) or AQ;
2. No: whenever both AP and A(NOTQ), and
3. Undecided: when none of the above holds.

Proof. The proof is based in the truth table for (NOTP) OR @Q and is based on
cases:

P Q NOTP NOTQ@ |(NOTP) OR Q@

Yes Yes No No Yes

Yes No No Yes No

Yes Undecided No Undecided| Undecided

No Yes Yes No Yes

No No Yes Yes Yes

No Undecided Yes Undecided Yes
Undecided Yes Undecided No Yes
Undecided No Undecided Yes Undecided
Undecided|Undecided|Undecided|Undecided| Undecided

Notice that the answer is Yes in each row in which the value for NOTP or for @
is Yes; the answer is No in the only row where the value of both P and NOTQ
is Yes, and Undecided in the rest of the rows.

Notice also that this truth table coincides with the one in Kleene’s three-valued
logic.

Definition 7 (Warrant for double implication). The complex expression
P < Q is warranted, that is A(P <= @), if and only if it is the case that
both A((P = Q) AND (Q = P)).

Property 3. The answer for a query P <= () is one of:

— Yes: when either AP and AQ, or A(NOTP) and A(NOTQ);
— No: when either AP and A(NOTQ), or A(NOTP) and AQ.
— Undecided: when none of the above holds.

Proof. The proof, again, is based in the truth table for (P = @) AND (Q =
P) and is based on cases:

P Q P=Q|Q = P|(P= Q) AND = P)

Yes Yes Yes Yes Yes

Yes No No Yes No

Yes Undecided|Undecided Yes Undecided

No Yes Yes No No

No No Yes Yes Yes

No Undecided Yes Undecided Undecided
Undecided Yes Yes Undecided Undecided
Undecided No Undecided Yes Undecided
Undecided|Undecided|Undecided|Undecided Undecided

It is easy to check that the value is Yes whenever both P and @ are Yes or No,
resp.; the value is No if P is Yes and () is No and viceversa, and the value is
Undecided in the rest of the cases.

Two properties than can also be checked using the truth-table method are
the following:

Property 4. If we have A(P OR Q) and A(NOTP) then we have AQ.

Property 5. If we have that A(P = Q) and A(Q = R) then we have that
A(P = R).

Here we present a last property:
Property 6. Tt is never the case that A(P AND NOTP).

Proof. According to Property 1, in DeLLP it cannot be the case that P and ~ P
are warranted at the same time. If the answer to P is Yes, then the answer to
NOTP is No; therefore the answer to P AND NOTP is No. If the answer to P is
No, then the answer to NOTP is Yes; therefore the answer to P AND NOTP is
No. If the answer to P is Undecided, the same happens to the answer to NOTP
and the answer to P AND NOTP is Undecided.

4 Related Work

The operators presented here are related to three-valued approaches to logic
such as Kleene’s and Lukasiewicz’s, that uses the truth values false, unknown
and true, and extend conventional Boolean connectives to a trivalent context. In
those logics our value Yes is modeled as True, our No as False, and our Undecided
as Unknown. Our definition of material implication coincides with the definition
given by Kleene. Lukasiewicz’s definition of material implication differs with the
one given by Kleene, its truth-table is:

P Q P = Q
Yes Yes Yes
Yes No No
Yes Undecided|Undecided
No Yes Yes
No No Yes
No Undecided Yes
Undecided Yes Yes
Undecided No Undecided
Undecided |Undecided Yes

On the side of extensions to DeLLP, we can trace several over the years: M.
Gomez Lucero et al. developed accrual of arguments [7]; M.V. Martinez et al.
extended the notion of reasoning in Del.P with presumptions (that is fact-like
information that is not known with certainty to be true) [8]; Budan et al., an
approach for temporal argumentation in DeL.P [9] (an approach that considers
at which time arguments are active in DeLP considering attacks and defenses).
In contrast to our approach, these works redefine fundamental notions of DeLLP
(such as disagreement, attack and defeat); in our case, we just use DeLP as a
black box for obtaining the warrant of single literals which are later combined
into higher-level answers.

Besnard and Hunter [10] focus on deductive arguments in the setting of
classical logic. Their position is that a deductive argument consists of a claim
entailed by a collection of statements such that the claim and the statements
are denoted by formulas of classical logic and entailment is deduction in classical
logic. In our case, we restrict our formulas to Horn-clauses, the conclusions of
the system are positive or negative literals which are then combined through
classical logic connectives to form more complex conclusions.

5 Conclusions and Future Work

We have presented an approach for extending Defeasible Logic Programming in
order to being capable of warranting complex expressions formed by ground lit-
erals connected by propositional operations. We have presented a case scenario
where this could be condidered useful. Much remains to be done, such us char-
acterizing its properties, doing a thorough comparison with related work and
determining how the warrant of complex formulas can be defined. These issues
are currently part of our current research.

Acknowledgments: This research is funded by Secretaria General de Ciencia
y Técnica, Universidad Nacional del Sur, Argentina.

References

10.

Brewka, G., Dix, J., Konolige, K.: Non monotonic reasoning. An overview. CSLI
Publications, Stanford, USA (1997)

Chesifievar, C.I., Maguitman, A., Loui, R.: Logical Models of Argument. ACM
Computing Surveys 32(4) (December 2000) 337-383

Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif.
Intell. 171(10-15) (2007) 619-641

Rahwan, 1., Simari, G.R.: Argumentation in Artificial Intelligence. Springer (2009)
Lloyd, J.: Foundations of Logic Programming. Springer-Verlag (1987)

Garcfa, A., Simari, G.: Defeasible Logic Programming an Argumentative Ap-
proach. Theory and Practice of Logic Programming 4(1) (2004) 95-138

Lucero, M.J.G., Chesnevar, C.I., Simari, G.R.: On the accrual of arguments in
defeasible logic programming. In Boutilier, C., ed.: IJCAI (2009) 804-809
Martinez, M.V., Garcia, A.J., Simari, G.R.: On the use of presumptions in struc-
tured defeasible reasoning. In Verheij, B., Szeider, S., Woltran, S., eds.: COMMA.
Volume 245 of Frontiers in Artificial Intelligence and Applications., IOS Press
(2012) 185-196

Budan, M., Lucero, M.G., Simari, G.: An approach for temporal argumentation
using labeled defeasible logic programming. Journal of Computer Science and
Technology 12(2) (August 2012) 56-63

Besnard, P., Hunter, A.: Argumentation based on classical logic. In Rahwan,
I., Simari, G.R., eds.: Argumentation in Artificial Intelligence. Springer (2009)
133-152

