La Audición de la Música como Forma Sónica en Movimiento

Conflictos cinéticos y energéticos entre superficie y estructura

Isabel Cecilia Martínez, Mónica Valles y Matías Tanco

Introducción

La lingüística musical caracteriza la forma a partir de la segmentación del texto musical y la comparación de similitudes y contrastes entre unidades lingüístico-musicales, como motivos melódico-rítmicos, acordes, etc. Para la audioperceptiva clásica la memoria de la forma sería el resultado del modo en que la información de la sucesión de unidades segmentadas se almacena y procesa.
La cognición musical corporeizada, en cambio, define a la experiencia de una pieza musical utilizando analogías de movimiento. Así, considera que la corriente de eventos sonoros se experimenta como una forma sónica en movimiento (Leman 2008). Concordantemente algunos analistas definen a la experiencia de la forma de una obra como la memoria del movimiento (LaRue 1989). Ambas definiciones atienden al despliegue de la música en el tiempo e invitan a pensar la dimensión de la memoria desde una perspectiva diferente a la propuesta por la cognición clásica.

Así, la memoria de una pieza musical podría hipotetizarse como el resultado del modo en que experimentamos las propiedades cinéticas y energéticas emergentes de la sucesión de eventos sonoros (Rothfarb 2002). La cinética y la energética son propiedades comunicadas por el movimiento musical que resultan análogas a los conceptos físicos de movimiento, fuerza y energía. Los orígenes de la metáfora de fuerza se hallan en fuentes musicológicas de comienzos del siglo XX; estos conceptos han servido para atribuir a la música la propiedad de comunicar un sentido de recorrido o tránsito y para atribuir a los tonos propiedades emergentes. Algunos de los modelos de análisis de la cognición clásica también adjudican una cualidad dinámica a la experiencia con la música. Lerdhal (2001) acuerda con Larson (2004) en la existencia de fuerzas musicales derivadas de la capacidad de los tonos para comunicar expectaciones de continuidad en el oyente y resolver así las tensiones melódicas y armónicas de una obra musical.

Sin embargo, no queda claro aún el modo en que los eventos rítmicométricos de la música interactúan con los eventos tonales para configurar el perfil dinámico temporal de la experiencia de una obra. En un estudio donde se testó la sensibilidad de los oyentes para atender a los límites de las unidades constituyentes de obras musicales se encontró que modificaciones
rítmicas operadas en la superficie melódica no afectaban dicha sensibilidad (Martínez 2008).

No obstante ello, en un examen de audioperceptiva donde los estudiantes debían memorizar y transcribir la primera frase del Divertimento $\mathrm{N}^{\circ} 10$ en Fa mayor, K. 247 de Mozart, dos muestras a las que se les administró dicha prueba registraron respuestas similares, de cuyo análisis se desprendió una hipótesis de interacción conflictiva entre la superficie melódico-rítmica y las estructuras de agrupamiento, métricas y tonales.

En este trabajo nos propusimos:
i. Analizar el Divertimento No 10, K. 247 en F Mayor de Mozart aplicando conceptos de la Teoría Generativa de la Música Tonal (Lerdahl y Jackendoff [1983]2003) y de la Teoría de las Fuerzas Musicales (Larson 2012) con el fin de describir los conflictos citados.
ii. Administrar una prueba a un grupo de estudiantes para estudiar el modo en que agrupan la superficie melódico-rítmica en variantes que difieren en el grado de conflictividad superficie/estructura.
iii. Derivar conclusiones acerca de la configuración de la forma como experiencia dinámica.

Análisis del Divertimento

Teoría de las Fuerzas Musicales

La teoría de las Fuerzas Musicales explica la experiencia que tenemos con la música a través de metáforas que interpretan su movimiento de acuerdo al movimiento físico. Estas fuerzas -gravedad, magnetismo e inercia-, son análogas a las fuerzas físicas en nuestra percepción melódica y rítmica como tendencias de movimiento. La métrica es entendida como la expectación de continuación de los movimientos físicos que interpretamos en la experiencia de la obra y el significado del ritmo depende del contenido melódico en la acción de las fuerzas musicales, ya que "las alturas y las fuerzas del tono musical también dan forma al ritmo" (Larson op.cit.).

La gravedad rítmica otorga mayor peso a los momentos de mayor estabilidad métrica. Por otro lado, la estabilidad métrica determina el magnetismo rítmico, la tendencia de un evento métricamente inestable a moverse a uno más estable (en un nivel más profundo de la estructura jerárquica).

La figura 1 muestra los momentos de mayor estabilidad métrica y el modo en que los eventos de semicorchea y corchea articulados en parte débil tienden a moverse al punto de mayor estabilidad métrica (negra).

Figura 1. Análisis de las fuerzas rítmicas de gravedad y magnetismo en el fragmento motivo de estudio. El sombreado anaranjado muestra los momentos de mayor estabilidad métrica correspondientes al primer tiempo del compás de $3 / 4$. El sombreado celeste indica el modo en que los eventos de semicorchea y corchea articulados en parte débil tienden a moverse al punto de mayor estabilidad métrica (nivel del tiempo = negra).

Al analizar la relación entre las fuerzas rítmicas y las fuerzas melódicas encontramos que las segundas tienen un comportamiento que no coincide con los puntos estables de las primeras.

Primero, observamos una tendencia general al descenso de la estructura fundamental interrumpida [5-4-3-2//5-4-3-2-1] (Schenker [1935]-1979), cuya meta es el punto más estable de gravedad melódica (DO, c. 8) (figura 2).

Figura 2. Análisis de la fuerza melódica de gravedad en el fragmento motivo de estudio.

Segundo, la superficie melódica presenta un desvío de la fuerza de magnetismo melódico debido a las apoyaturas que median la llegada hacia el punto estable más cercano que supone dicha fuerza (ver figura 3, [3-4-65] en b) y [3-4-5] en c). La primer apoyatura que aparece sobre el acorde de tónica en el compás 1 (6-5) supone un desfasaje métrico entre las fuerzas melódica y rítmica de magnetismo; éste disminuye con la segunda apoyatura en el compás 2 (5-4) -ya que se produce entre notas que pertenecen a la armonía de la estructura acórdica de dominante-; finalmente la ausencia de apoyatura en el movimiento hacia el compás 3 resuelve el conflicto -aunque la apoyatura como gesto vuelve a presentarse en la semicadencia del compás $4(3-2)$ sobre la armonía de dominante y la
estructura fundamental se interrumpe al final del antecedente en el segundo grado.
a.

b.

Figura 3. Análisis de las fuerzas melódicas de magnetismo e inercia en el fragmento motivo de estudio8).

En esta superficie melódica, la apoyatura supone una fuerza que contradice el magnetismo melódico (3-4-6 en lugar de 3-4-5) por un salto que implica mayor energía (4-6) para superar la gravedad melódica -en relación al ascenso por grado conjunto (4-5)-.

La inercia es la tendencia de un patrón percibido que conduce nuestra expectación a que dicho patrón continúe. Un patrón de expectación de la fuerza de inercia melódica se presenta en la figura 3 (d). En la figura 4 (a) se presentan los patrones del comienzo de la obra (Figura 1) y su continuación de acuerdo a la expectación (de alturas y ritmo) que dicho patrón supondría (b); se obtiene un patrón elidido (Larson op.cit.) que implica un gesto de reducción en una métrica de 3 tiempos (c).
a.

b.

C.

Figura 4. Análisis de las fuerza de inercia rítmica para el comienzo de la melodía del fragmento motivo de estudio.

Análisis de la estructura de agrupamiento de acuerdo a la TGMT

Según Lerdhal y Jackendoff los agrupamientos responden a condiciones generales de percepción de esquemas auditivos. Proponen dos conjuntos de reglas de agrupamiento: las de formación correcta que delinean las estructuras de agrupamiento que pueden ser asignadas a una superficie musical y las de preferencia, que se corresponden con la intuición real del oyente. La hipótesis es que los oyentes escuchan la superficie musical "según aquel análisis que represente el nivel más alto de preferencia general cuando se toman en cuenta todas las reglas de preferencia" (op.cit. p. 48).

En la música hay varios factores que influyen en la percepción del agrupamiento. Si dichos factores se refuerzan el oyente tiene intuiciones fuertes acerca del agrupamiento, en tanto que si chocan sus intuiciones resultan ambiguas.
Hay dos principios básicos del agrupamiento según los cuales, los grupos quedan determinados por la proximidad y la semejanza de los componentes que deben agruparse. El primero se refiere a la incidencia que los intervalos temporales relativos entre los puntos de ataque de los eventos musicales tienen sobre la percepción del agrupamiento. El segundo se relaciona con la distancia entre las alturas (notas) por el cual las notas que estén a la misma distancia tenderán a formar un grupo por parecido de altura (sin considerar cuestiones de articulación y acentuación y sin implicancias armónicas contrapuestas).

La aplicación de estos dos principios al fragmento analizado, en un nivel de agrupamiento correspondiente a una unidad de motivo melódico-rítmico, muestra un desacuerdo entre ambos que puede dar como resultado una percepción ambigua para el primer agrupamiento que podría contener tres o cuatro articulaciones según el principio que prevalezca en la percepción (figura 5). El cuarto evento (SOL) está más cercano en altura al tercero (LA) por lo que podría agruparse con éste último si prevaleciera el principio de semejanza (agrupamiento de Tipo 1) pero se encuentra temporalmente más cerca del quinto (Ml) y por el principio de proximidad también podría ser agrupado con éste (agrupamiento de Tipo 2).

Figura 5. El arco superior muestra el agrupamiento de Tipo 1, resultante del principio de proximidad y el inferior, el agrupamiento de Tipo 2 resultante del principio de semejanza.

Las Reglas de preferencia se vinculan tanto con aspectos de 'detalle local' como asimismo con consideraciones más generales (simetrías o paralelismos motívicos, temáticos, rítmicos o armónicos). Las reglas de detalle local hacen referencia: i) al tamaño de los grupos (Regla de Formas alternativas); ii) a la percepción de transición entre eventos como límite de grupo según el intervalo temporal entre los mismos (Regla de proximidad) y iii) a la percepción de la transición entre eventos como límite de grupo según cambios en el registro, la intensidad, la articulación y la longitud (Regla de cambio). La aplicación de estas reglas al fragmento analizado refuerza el desacuerdo antes mencionado: el agrupamiento que resulta de la aplicación de la Regla de proximidad entra en conflicto con el que resulta de la aplicación de la Regla de cambio por la cual el primer grupo finalizaría en el cuarto evento (SOL) debido al cambio de articulación del siguiente evento de altura (MI stacatto).

Estimando la incidencia de las reglas de 'agrupamiento del nivel mayor' podría percibirse un tercer tipo de agrupamiento que, por la Regla de paralelismo motívico, incluye el quinto evento (MI) como parte del primer grupo (figura 6).

Figura 6. Agrupamiento de Tipo 3 resultante del principio de paralelismo motívico. E arco punteado muestra el motivo paralelo.

Metodología

Sujetos

70 estudiantes de música del primer año de las carreras de música de la Facultad de Bellas Artes de la UNLP.

Estímulos

Se utilizó un fragmento del Divertimento No. 10 in F Mayor, K. 247 de Mozart y cuatro variantes del mismo (figura7) elaboradas de acuerdo al análisis de conflictos que dicho fragmento presenta según las teorías de Larson y de Lerdhal \& Jackendoff, para estudiar la incidencia de dichos conflictos en la percepción del oyente. Las variantes fueron escritas en un editor de partituras y posteriormente grabadas con un software que interpreta el texto musical (como información midi) en sonido.

El original y sus variantes se organizaron en 5 condiciones (en adelante C1, C2, C3, C4 y C5) a saber:

1. Partitura original interpretada por orquesta
2. Partitura original interpretada por software en tempo original (negra=60)
3. Partitura con la línea melódica modificada de acuerdo a los principios de la teoría de las fuerzas musicales. Se omitió el evento que en la partitura corresponde al tiempo fuerte del compás y que funciona como apoyatura. Interpretada por software
4. Partitura con la línea melódica modificada de acuerdo a los principios de agrupamiento por semejanza y proximidad según la TGMT. Se omite el quinto evento en los compases 1 y 2 de la partitura original. Interpretada por software
5. Partitura original, interpretada por software en tempo más rápido (negra= 80)

Figura 7: Partitura del fragmento del Divertimento No. 10 in F Mayor, K. 247 de Mozart utilizado como estímulo en C1, C2 y C5 y fragmentos modificados (C3 y C4).

Aparatos

Se utilizó el editor de partituras Sibelius 6 y el software Reason 4.0 (dispositivo: Combinator; sonido: Griffin's Secret Strings). Se reprodujeron los audios utilizando un sistema de amplificación.

Diseño y Procedimiento

La muestra fue dividida en 5 grupos de 14 participantes. Cada grupo fue testeado en una de las condiciones de prueba. En todos los casos los participantes debieron escuchar el estímulo y:
i. Agrupar los eventos melódicos y rítmicos utilizando alguna grafía de su preferencia
ii. Colocar sobre la partitura las barras de compás.
iii. Escribir una cifra de compás que a su criterio representase la estructura métrica del estímulo.

El estímulo fue presentado 4 veces: las 3 primeras para la actividad i y la restante para las actividades ii y iii. Los participantes contaron con una planilla que contiene la representación gráfica de los eventos de altura y duración de la melodía grabada según la condición de prueba (Anexo 1). Dicha representación aparece cuatro veces. Las tres primeras estuvieron destinadas a cada una de las escuchas de la actividad i, con el propósito de registrar el proceso de pensamiento de los alumnos en la tarea de análisis. La planilla contiene una breve descripción de las tareas demandadas; no obstante las consignas fueron explicadas de manera detallada en forma oral a los participantes.

Resultados

Análisis de las fuerzas musicales en las respuestas para todas las condiciones

Las barras de compás escritas fueron interpretadas como los momentos de fuerza musical percibidos por los sujetos. Para el análisis de las respuestas se asignó un número a cada evento presentado en la partitura de la planilla sobre el cual dichas barras fueron dibujadas (figura 8). La C4 presentó un estímulo con eventos omitidos, por lo cual en dicho caso no se presentaron datos en los eventos 6, 12, 27 y 33 .

Figura 8. Números asignados a los eventos de la melodía de Mozart, Divertimento No. 10 in F Mayor, K.247. La partitura 'a' corresponde a C1, C2, C3 y C5; la partitura "b" pertenece a C4, en donde se observa que los eventos 6, 12, 27, 33 fueron omitidos en el diseño del estímulo.

Se contabilizó en cada condición la cantidad de respuestas por evento y se representó dicha cifra con barras de diferente color según la condición en un gráfico de grilla métrica. En las figuras 9,10 y 11 se ubicó a la partitura original en concordancia con la grilla. La longitud de las barras representa la cantidad de respuestas para cada evento sobre el total de 14 sujetos en cada condición. Las barras sombreadas en negro representan los puntos de fuerza obtenidos en el análisis de la obra.

Las barras obtenidas en C5 (color naranja) se corresponden mejor con la fuerza de gravedad rítmica, en donde se enfatiza el primer tiempo de la estructura métrica (ver su correspondencia con las barras negras que representan dicha fuerza en la Figura 9).

Figura 9. Respuestas obtenidas para cada evento en las 5 condiciones del test en relación a la fuerza de gravedad rítmica (barras negras).

Sin embargo, se observa que las barras que representan mayor valor en C1, C2, C3 y C4 se encuentran distribuidas entre las fuerzas de gravedad (figura 9) e inercia (figura 10). El primer evento de cada patrón de expectación de acuerdo a la fuerza de inercia (ver figura 4, a y b) representó un punto de fuerza para los sujetos. Dicho conflicto existente entre fuerzas se representa mejor en la figura 11, en donde las fuerzas obtenidas coinciden con las barras negras que corresponden a la fuerza de magnetismo rítmico.

Figura 10. Valores obtenidos para cada evento en las 5 condiciones del test en relación a la fuerza de inercia rítmica (barras negras).

Figura 11. Valores obtenidos para cada evento en las 5 condiciones del test en relación a la fuerza de magnetismo rítmico (barras negras).

Análisis del agrupamiento preferido (C1, C2 y C4)

Se clasificaron los agrupamientos preferidos por los oyentes en la sección comprendida entre los tiempos 1 y 6 del fragmento (figura 12) y se compararon.

Figura 12. Sección del fragmento musical en la que se realizó el análisis de agrupamientos.

Análisis del Tipo de agrupamiento

Se consideraron los Tipos 1, 2 y 3 (en adelante T1, T2 y T3) mencionados en el análisis previo.

La omisión del quinto evento (MI) en la C4 modifica el T3 aunque permite igualmente un agrupamiento por paralelismo. En este caso semejanza y paralelismo se refuerzan entre sí (figura 13). Los resultados se muestran en la Tabla 1.

Figura 13. Los arcos verdes señalan el agrupamiento que resulta del principio de semejanza que, en C4 coincide con el que resulta por paralelismo.

	C1 (12 casos)	C2 (13 casos)	C4 (10 casos)
T1	9	11	10
T2			
T3	3	2	

Tabla 1. Cantidad de casos que seleccionan cada tipo de agrupamiento según la condición de prueba

Se observa una prevalencia del principio de semejanza. En C1 y C2, para algunos oyentes el principio de paralelismo tiene mayor fuerza. En C4 se observa un acuerdo general en el modo de agrupar la superficie.

Se desprende que el principio de proximidad no tendría incidencia en los agrupamientos y que la ambigüedad de agrupamiento en el fragmento original estaría vinculada al desfasaje entre los principios de semejanza y paralelismo. Esto se refuerza por el hecho de que en C1, dos participantes que seleccionan agrupamientos T3, en la primera audición agrupan según T1.

Concordancia entre el Tipo de agrupamiento preferido y las barras de compás

Los resultados se muestran en la Tabla 2.

	C1 (13 casos)	C2 (13 casos)	C4 (10 casos)
Concuerdan	2	3	7
No concuerdan	11	10	3

Tabla 2. Cantidad de casos que muestran concordancia entre el agrupamiento preferido y las barras de compás colocadas según la condición de prueba.

Si bien la cantidad de casos es menor, en C4 aumenta la concordancia entre el tipo de agrupamiento preferido y las barras de compás.

Análisis del agrupamiento preferido en C5

Esta condición tuvo como objetivo testear si el cambio de velocidad afecta los conflictos de agrupamiento en la experiencia auditiva. Los resultados se muestran en la Tabla 3.

	C1 (12 casos)	C2 (13 casos)	C4 (10 casos)	C5 (11 casos)
T1	9	11	10	9
T2				1
T3	3	2		1

Tabla 3. Cantidad de casos que seleccionan cada tipo de agrupamiento según la condición de prueba

En C5, el conflicto entre las reglas de semejanza y proximidad queda evidenciado en un caso que selecciona en la primera audición un agrupamiento T1 y lo cambia en la segunda audición a uno T2. Del mismo modo, el conflicto entre el principio de semejanza y la regla de paralelismo se manifiesta en un participante que en la primera audición selecciona un agrupamiento T3 y en la segunda agrupa según T1.

Análisis de la cifra de compás elegida

Arrojó los resultados mostrados en la Tabla 4.

	C1 (10 casos)	C2 (13 casos)	C4 (14 casos)	C5 (14 casos)
$3 / 4$	6	10	10	13
$2 / 4$	2		2	1
$4 / 4$	2		1	
$6 / 8$		2		
$9 / 8$		1		
$9 / 16$			1	

Tabla 4. Cantidad de casos que seleccionan las diversas cifras de compás consignadas en la columna de la izquierda, según la condición de prueba.

Estos resultados muestran una variedad en la elección de la cifra de compas en C1, C2 y C4 en tanto que en C5 hay un alto grado de acuerdo. Asimismo, en C1 se observa la omisión de dicha cifra.

Interpretación de los resultados y conclusiones

Los resultados del estudio contribuyen a una caracterización de la experiencia de la música como forma sónica en movimiento. En este caso, los conflictos cinéticos y energéticos emergentes de la superficie musical y de sus estructuras de reducción se configuraron en la audición de un modo dinámico que incidió en las expectativas de los participantes para organizar su escucha. En las condiciones 1 a 4 la experiencia de la superficie musical como fuerza en movimiento estuvo representada predominantemente por la fuerza de magnetismo rítmico, que determinó la configuración de un patrón elidido de tres tiempos que contenía el módulo corto-largo en su interior. Pero dado el conflicto existente entre las fuerzas de gravedad e inercia rítmicas emergentes de la superficie de la obra, los oyentes tendían a interpretar dicho patrón sobre la base de una fuerza o de la otra, dando por resultado la elección de un metro tético o anacrúsico al colocar las barras de compás. En cuanto a la tarea de agrupamiento en las cinco condiciones predominó el agrupamiento por semejanza, siendo la Condición 4, que presentaba una superficie en la que se desambiguaban los conflictos de agrupamiento por semejanza, proximidad y paralelismo, la única que obtuvo un acuerdo total en los agrupamientos. En la Condición 5, que presentaba la obra en un tempo más rápido, se encontró que el aumento de velocidad desambiguó la configuración de la estructura métrica y al mismo tiempo reforzó la elección del patrón elidido corto-largo, tendiendo a integrar a los eventos del comienzo en el gesto anacrúsico correspondiente y a perpetuar dicho gesto coincidentemente con la organización de los grupos de acuerdo al principio de semejanza. En otras palabras, el aumento de la velocidad generó una cinética de movimiento donde se reforzó la dirección de movimiento hacia los puntos de gravedad métrica. De la gestualidad resultante del aumento de la velocidad emergió una forma sónica en
movimiento que comunicó de un modo coherente las relaciones dinámicas entre la estructura métrica y la estructura de agrupamiento.

Referencias

LaRue, J. (2007). Análisis del estilo musical. Madrid: Mundimúsica Ediciones.
Larson, S. (2004). Musical forces and melodic expectations: comparing computer models and experimental results. Music Perception 21(4) pp. 457-498.
Larson, S. (2012). Musical Forces: Motion, Metaphor, and Meaning in Music. Bloomington: Indiana University Press.
Leman, M. (2008) Embodied Music Cognition and mediation technology. Massachusettes: The MIT Press.

Lerdahl, F. (2001) Tonal Pitch Space. New York: Oxford University Press.
Lerdahl, F. y Jackendoff, R. ([1983] 2003) A Generative Theory of Tonal Music [Teoría Generativa de la Música Tonal (J. González- Castelao, traductor) Fdez. Ciudad: Akal]. Cambridge, MA: MIT Press.
Martínez, I. C. (2008) The cognitive reality of prolongational structures in tonal music. Tesis doctoral inédita. Disponible en http://roehampton.openrepository.com/roehampton/handle/ 10142/107557.
Rothfarb, L. (2002) Energetics. En T. Christensen (ed.) Cambridge History of Western Music Theory. Cambridge: Cambridge University Press. pp. 927955.

Anexo1: Planillas utilizadas por los alumnos durante la tarea.

C1, C2 y C5

Escuche el siguiente fragmento musical y agrupe las figuras según escucha

1) Primera audición

2) Segunda audición (sólo completar si cambia su percepción)

3) Tercera audición (sólo completar si cambia su percepción)

Ahora coloque las barras de compás según lo escucha

C3

```
AUDIOPERCEPTIVA
Apellidoy Nombre
``` Planilla 3 S

Escuche el siguiente fragmento musical y agrupe las figuras según escucha
1) Primera audición

2) Segunda audición (sólo completar si cambia su percepción)

3) Tercera audición (sólo completar si cambia su percepción)

C4

AUDIOPERCEPTIVA Planilla 4S

Escuche el siguiente fragmento musical y agrupe las figuras según escucha
1) Primera audición

2) Segunda audición (sólo completar si cambia su percepción)

3) Tercera audición (sólo completar si cambia su percepción)

Ahora coloque las barras de compás según lo escucha
```

