Digital speckle pattern interferometry applied to a surface roughness study

Mario Lehman*
Centro de Investigaciones Opticas (CIOp)
C. C. 124-1900
La Plata, Buenos Aires, Argentina

Juan A. Pomarico
Roberto D. Torraba
Centro de Investigaciones Opticas (CIOp)
C. C. 124-1900
La Plata, Buenos Aires, Argentina
and
Universidad Nacional de La Plata
Facultad de Ingeniería
La Plata, Buenos Aires, Argentina

Abstract. Surface roughness determination is of great interest for many applications. Several methods can be found in the literature, but most of them rely on indirect evaluation of the information, such as photographic techniques. We propose a method to measure surface roughness that takes advantage of digital speckle pattern interferometry for obtaining the data, and of digital image processing for evaluating it. After defining the problem, a theoretical description is presented, and finally it is compared with experimental results, showing good agreement.

Subject terms: digital speckle pattern interferometry; speckle statistics; roughness measurement; interferometry.

1 Introduction

Since the fundamental work of Beckmann et al.1 dealing with the scattering of electromagnetic waves from rough surfaces, their results have been extensively used to obtain information about surface roughness from the scattered light in the far-field region.

The correlation fringes of two speckle patterns, obtained from a rough surface under different angles of illumination, bear information about the roughness. Several optical roughness measurements techniques involve the use of a double-exposure specklegram method. The basic approach is to produce a shift in the incidence angle of the illumination beam between exposures, in order to produce, after a Fourier transformation, a set of interference fringes whose visibility depends on the rms roughness of the scattering surface.2,3 This technique is known as angular speckle correlation (ASC).

Tribillon4 showed that the degree of correlation between speckle patterns generated by two different wavelengths depends strongly on the surface roughness. The method based on this effect is known as spectral speckle correlation (SSC).5

All of the above-mentioned techniques suffer from the disadvantages of a photographic process, besides introducing a second step in the use of an optical Fourier transform. There also exist statistical methods that derive roughness information from the degree of decorrelation of imaged speckle patterns as a function of the wavelength,6 where electronic detection and processing replaces the conventional photographic record. Electronic correlation of speckle patterns is currently accomplished by a technique called digital speckle pattern interferometry (DSPI), normally used in various metrological applications.7,8,9

In DSPI a fringe pattern is obtained using video processing by storing an initial reference image of the surface in a frame grabber and then subtracting it from the one being acquired, displaying the modulus of the result on a TV monitor. Fringes, similar to those obtained in holographic interferometry, then appear when a phase change is introduced between the reference image and the subsequent ones. As noted by Wykes,10 the rms difference of the speckle intensities from different wavelengths is directly related to the degree of speckle correlation.

In this work we apply the DSPI technique on a single-wavelength basis, combined with the ASC method, to show that the visibility of the correlation fringes in this case also depends on the roughness of the object surface. A theoretical approach to the proposed technique is also given.

2 Theoretical Description

Let us suppose the situation sketched in Fig. 1. A plane wave \(\Sigma \) illuminates a rough surface \(S \) at an angle of incidence \(\theta \) with respect to the normal to the surface. In our case, the surface is considered to be formed from a set of \(n \) identical scattering elements of random height following a normal distribution of standard deviation \(\sigma \) and zero mean. A CCD camera images the surface on the detector array. A separate reference beam is added to the first one via the beamsplitter BS. Since the DSPI detects a quantity proportional to \((|l_1| - |l_2|)^2/2 \), we examine how this quantity varies with a tilt of the beam illuminating the surface.

To do that we assume

\[
A_i = A_0 \sum_{j=1}^n \exp \left\{ \frac{2\pi i}{\lambda} \left[Z_j (1 + \cos \theta) + \phi_j \right] \right\} + A_r \exp(i\phi_r)
\]

(1)

*Current affiliation: Universidad de Bahía Blanca, Buenos Aires, Argentina.

Paper 09074 received July 12, 1994; revised manuscript received Nov. 1, 1994; accepted for publication Nov. 1, 1994.

© 1995 Society of Photo-Optical Instrumentation Engineers. 0091-3286/95/$5.00.
DIGITAL SPECKLE PATTERN INTERFEROMETRY APPLIED TO A SURFACE ROUGHNESS STUDY

Fig. 1 Schematic representation of two plane waves, Σ and Σ', illuminating a rough surface at two different angles, θ and $\theta + \Delta\theta$.

to be the field amplitude detected by the CCD array when the surface is illuminated at an angle θ. In this equation the first term denotes the speckle pattern amplitude field, where A_0 is the light amplitude scattered by one element, Z_j is the height of the jth scattering element, and ϕ_0 allows for the constant phase of the incident light. In the second term, A_R is the amplitude of the reference beam and ϕ_R its phase. In the following, all calculations are assumed to be made at the same point (x,y).

Similarly, if the illumination direction is changed by an amount $\Delta\theta$, the new field amplitude can be described by

$$A_2 = A_0 \sum_{j=1}^{n} e^{i\phi_0/z_j} + A_R e^{i\phi_R}$$

(2)

Equations (1) and (2) can be rewritten as the following more compact expressions:

$$A_1 = A_0 e^{i\phi} \sum_{j=1}^{n} e^{i\theta / z_j} + A_R e^{i\phi_R}$$

(3)

and

$$A_2 = A_0 e^{i\phi} \sum_{j=1}^{n} e^{-i\theta / z_j} + A_R e^{i\phi_R}$$

(4)

where $e^{i\phi}$ is the common phase term $exp[2\pi \phi_0/\lambda]$, A_R is the amplitude of the reference beam, and α and γ are abbreviations for $(2\pi/\lambda)(1 + \cos \theta)$ and $(2\pi/\lambda)(1 + \cos (\theta + \Delta\theta))$, respectively.

To obtain $(I_1 - I_2)^2$ we need to calculate (I_1^2), (I_2^2) and (I_1I_2), since

$$(I_1 - I_2)^2 = (I_1^2) + (I_2^2) - 2(I_1I_2)$$

(5)

Using Eqs. (3) and (4) we obtain

$$I_1 = A_1 A_1^*$$

$$= A_0^2 \sum_{j=1}^{n} e^{i\theta / z_j} \sum_{j=1}^{n} e^{-i\theta / z_j} + A_R^2 + A_0 A_R e^{i(\phi - \phi_R)} \sum_{j=1}^{n} e^{i\theta / z_j}$$

$$+ A_0 A_R e^{-i(\phi - \phi_R)} \sum_{j=1}^{n} e^{-i\theta / z_j}$$

(6)

and

$$I_2 = A_2 A_2^*$$

$$= A_0^2 \sum_{j=1}^{n} e^{i\theta / z_j} \sum_{j=1}^{n} e^{-i\theta / z_j} + A_R^2 + A_0 A_R e^{i(\phi - \phi_R)} \sum_{j=1}^{n} e^{i\theta / z_j}$$

$$+ A_0 A_R e^{-i(\phi - \phi_R)} \sum_{j=1}^{n} e^{-i\theta / z_j}$$

(7)

Equations (6) and (7) can be reduced to the following expressions:

$$I_1 = A_0^2 \left[n + 2 \sum_{j<k} \cos(\theta / z_j - \theta / z_k) \right] + A_R^2$$

$$+ 2A_0 A_R \sum_{j=1}^{n} \cos(\alpha z_j + \phi - \beta)$$

(8)

$$I_2 = A_0^2 \left[n + 2 \sum_{j<k} \cos(\theta / z_j - \theta / z_k) \right] + A_R^2$$

$$+ 2A_0 A_R \sum_{j=1}^{n} \cos(\gamma z_j + \phi - \beta)$$

(9)

Squaring Eq. (8) yields

$$I_1^2 = A_0^4 n^2 + 4nA_0^2 \sum_{j<k} \cos(\theta / z_j - \theta / z_k)$$

$$+ 4A_0^2 \sum_{j<k} \cos^2(\alpha z_j - \alpha z_k) + A_R^4$$

$$+ 8A_0^2 \sum_{j<k} \cos(\alpha z_j - \alpha z_k) \cos(\alpha z_k - \alpha z_m)$$

$$+ 4A_0^2 A_R^2 \sum_{j=1}^{n} \cos^2(\alpha z_j + \phi - \beta)$$

$$+ 8A_0^2 A_R^2 \sum_{j<k} \cos(\alpha z_j + \phi - \beta) \cos(\alpha z_k + \phi - \beta)$$

$$+ 2A_0^2 A_R^2 \left[n + 2 \sum_{j<k} \cos(\alpha z_j - \alpha z_k) \right]$$

$$+ 4A_0^2 A_R^2 \sum_{j=1}^{n} \cos(\alpha z_j + \phi - \beta)$$

$$+ 8A_0^2 A_R^2 \sum_{j<k} \cos(\alpha z_j + \phi - \beta) \cos(\alpha z_k + \phi - \beta)$$

$$+ 4A_0^2 A_R^2 \sum_{j=1}^{n} \cos(\alpha z_j + \phi - \beta)$$

(10)

OPTICAL ENGINEERING / April 1995 / Vol. 34 No. 4 / 1149

438
LEHMAN, POMARICO, and TORROBA

from which we obtain, taking into account\(^\text{11}\) that the mean
g value of the cosine function evaluates to zero when the phase
is uniformly distributed in the interval \([-\pi, \pi]\).

\[
\langle l^2 \rangle = A_0^2 \pi^2 + 4A_0^4 \frac{n^2 - r}{4} + A_0^2 + 4A_0^2 A^2 R + 2A_0^2 A^2 \pi.
\]

(11)

Clearly, since this last expression for \(\langle l^2 \rangle\) does not depend
on either \(a\) or \(y\), the same result holds for \(\langle l' \rangle\).

To obtain the third term in Eq. (5) we need now to calculate
the mean value of the product \(l_1 l_2\):

\[
l_1 l_2 = A_0^2 \left[n^2 + 2n \left(\sum_{j \neq k} \cos(z_j - z_k) + \sum_{j \neq k} \cos(2\gamma z_j - 2\gamma z_k) \right) + 4 \sum_{j \neq k} \cos(z_j - z_k) \sum_{j \neq k} \cos(z_j - z_k) \right]
\]

\[+ A_0^2 + 4A_0^2 A^2 R \left(\sum_{j \neq k} \cos(\alpha z_j + \phi - \beta) \sum_{j \neq k} \cos(\alpha z_j + \phi - \beta) \right) \times \cos(\gamma z_j + \phi - \beta) \right] + A_0^4 R \left[2n + 2 \left(\sum_{j \neq k} \cos(z_j - z_k) \sum_{j \neq k} \cos(z_j - z_k) \right) + 2A_0^2 A^2 R \right]
\]

\[\times \cos(\gamma z_j + \phi - \beta) \right].
\]

Taking into account that
\[
\cos(z_j - z_k) \cos(\gamma z_j - \gamma z_k) = \frac{1}{2} \left[\cos[(\alpha + \gamma)(z_j - z_k)] + \cos[(\alpha - \gamma)(z_j - z_k)] \right],
\]

the mean value \(\langle \cos(z_j - z_k) \cos(\gamma z_j - \gamma z_k) \rangle\) evaluates to

\[\frac{1}{2} \langle \cos(\alpha - \gamma)(z_j - z_k) \rangle.
\]

Taking into account that we assumed a normal distribution
with standard deviation \(\sigma\) and zero mean, this last equation can be expressed as

\[\frac{1}{2} \exp[-(\alpha - \gamma)^2/(\sigma z_j - \sigma z_k)^2] \right)
\]

This ensemble average evaluates to

\[\frac{1}{2} \exp\left[-\frac{1}{2} (\alpha - \gamma)^2 (\sigma z_j - \sigma z_k)^2 \right] \right)
\]

(14)

\[\frac{1}{2} \exp[-(\alpha - \gamma)^2/(\sigma z_j - \sigma z_k)^2] \right) \right)
\]

\[\frac{1}{2} \exp\left[-\frac{1}{2} (\alpha - \gamma)^2 (\sigma z_j - \sigma z_k)^2 \right] \right)
\]

(13)

This ensemble average evaluates to

\[\frac{1}{2} \exp\left[-\frac{1}{2} (\alpha - \gamma)^2 (\sigma z_j - \sigma z_k)^2 \right] \right)

(14)

and \(\langle Z_j - Z_k \rangle^2 = 2a^2 \pi^2 (1 - r k),\) where \(r k\) is the normalized
surface correlation. Since from Eq. (12) we have \(j \neq k,\) and if
the individual steps \(Z_j\) are uncorrelated with each other, then
Eq. (13) reduces to

\[\frac{1}{2} \exp[-(\alpha - \gamma)^2/(\sigma z_j - \sigma z_k)^2] \right) \right)
\]

(15)

With this result, the final expression for \(\langle l_1 l_2 \rangle\) becomes

\[\langle l_1 l_2 \rangle = A_0^2 \left(n^2 + 2n \frac{r^2 - n}{2} \exp\left[-\epsilon^2(\sigma z_j - \sigma z_k)^2 \right] \right) + 2A_0^2 \exp\left[-\epsilon^2(\sigma z_j - \sigma z_k)^2 \right] \right)
\]

(16)

where \(\epsilon = \alpha - \gamma = (2\pi/\lambda)\cos(\theta) - \cos(\theta + \Delta \theta)\) and \(\Delta \theta = \Delta \theta,\) from Eqs. (11) and (16) the following expression for
\(\langle l_1 l_2 \rangle\) can be obtained:

\[\langle l_1 l_2 \rangle = A_0^2 \left((n - 1) A_0^2 \left[1 - \exp(-\epsilon^2(\sigma z_j - \sigma z_k)^2 \right) \right) + 2A_0^2 \exp\left[-\epsilon^2(\sigma z_j - \sigma z_k)^2 \right] \right)
\]

(17)

The number of scatterers producing the speckle field, \(n,\)
is very large, and thus \(n - 1 \approx n.\) In addition, we suppose that
\(n A_0^2\) represents the total light intensity emanating from
the surface and \(A_0^2\) can be chosen to be equal to \(A_0^2.\) With
these assumptions, the final expression for \(\langle l_1 l_2 \rangle\) results:

\[\langle l_1 l_2 \rangle = A_0^2 \left[3 - \exp(-\epsilon^2(\sigma z_j - \sigma z_k)^2 \right) - 2 \exp\left[-\epsilon^2(\sigma z_j - \sigma z_k)^2 \right] \right)
\]

(18)

We are primarily concerned with the determination of the
local visibility \(V_L\) and its variation with respect to \(\Delta \theta.\) By
using the substitution \(\langle l_1 l_2 \rangle = \langle l \rangle^2,\) the local visibility is defined as

\[\frac{\langle l \rangle^2 - \langle l \rangle^2}{\langle l \rangle^2 + \langle l \rangle^2} = V_L = \frac{\langle l \rangle^2}{\langle l \rangle^2 + \langle l \rangle^2} \right)
\]

(19)

In practice, it is equivalent to measure the global visibility
through the fringe pattern that arises because of the tilt \(\Delta \theta\)
of the illuminating beam, defined by the equation

\[\frac{\langle l \rangle^2}{\langle l \rangle^2 + \langle l \rangle^2} = V = \frac{l_{\text{max}} - l_{\text{min}}}{l_{\text{max}} + l_{\text{min}}} \right)
\]

(20)

where \(l_{\text{max}} \text{ and } l_{\text{min}}\) are the maximum and minimum intensity
values present in the fringe pattern, respectively.

For the case of \(\Delta \theta = 0,\) we have \(\langle l_1 l_2 \rangle \neq 0,\) (no
fringes are present), and Eq. (19) becomes undefined. The
responding visibility can be taken as one, as for all other
cases, having \(\Delta \theta \neq 0,\) lower values are obtained.

Figure 2 shows the variation of the local visibility defined
in Eq. (19) versus the rotation \(\Delta \theta\) for \(\sigma = 6.3 \mu m.\)
3 Experimental Results

The experimental arrangement of Fig. 3 was used to reproduce the conditions used in the theoretical approach. A 10-mW HeNe laser beam was divided by the beamsplitter BS1. One of the beams obtained in this way was expanded, collimated, and used to illuminate the rough surface under study at an angle \(\theta \) with its normal. The second beam was overlapped with the image of the surface, which is a speckle pattern, at the detector array of the CCD camera by using the beamsplitter BS2. It is clear that the optical system does not resolve the individual scatterers. The video signal from the camera is sent to the frame grabber for further processing.

At the frame grabber the following operation, which can be accomplished at near-real-time rates, is performed: a first image of the surface is acquired and stored as a reference, the subsequent images coming from the camera are subtracted from the first one, and the result is then displayed, in modulus, on a TV monitor. If an image is obtained under the same illumination conditions as the reference, then no differences are present between them, and the TV monitor appears dark. On the other hand, when the beam illuminating the surface is rotated by an angle \(\Delta \theta \), a linear phase change occurs, altering the speckle pattern generated by the surface. At points where this phase change equals \(2m\pi \), with \(m \) an integer, the speckle pattern reproduces itself and the TV monitor shows a dark spot. On the other hand, for phase changes other than \(2m\pi \), the subtraction gives a nonzero value and the monitor shows a spot whose gray level varies accordingly to the phase change. Thus the monitor shows a set of fringes immersed in speckle noise and following the zones of constant phase change. Both the spatial frequency and the visibility of these fringes depends on the rotation \(\Delta \theta \) of the beam illuminating the surface, as demonstrated above.

In our experiment, the rotation \(\Delta \theta \) was obtained by a lateral shift \(\Delta x \) of the collimating lens L1, which was mounted on a translator driven by a stepper motor capable of a minimum displacement of 2 \(\mu \)m. Lens L1 was chosen to have a focal length of 22 cm. Thus, the rotation \(\Delta \theta \) can be obtained from the simple equation

\[
\tan \Delta \theta = \frac{\Delta x}{f}
\]

with \(\Delta x \) varying from several microns to a few millimeters.

Although this produces not only a rotation but also a displacement of the object beam, using plane waves ensures that all phase changes are only a consequence of the rotation, provided that the whole field of view of the camera (which can always be chosen smaller than the illuminated area) remains unchanged.

The curves plotted in Fig. 4 (fringe visibility as a function of \(\Delta \theta \)) were obtained for three different values of the surface roughness, \(\sigma = 6.3, 12.5, \) and 25 \(\mu \)m, and for \(\theta = 19 \) deg, the best fit to the experimental data.
using standard surface roughness test plates. Clearly the visibility drops faster as the roughness increases, as can be expected from Eq. (18). Visibility measurements were carried out using an indirect digital method,\(^2\) where a peak ratio at a Fourier plane is measured, instead of direct fringe visibility analysis. In this way, speckle noise is reduced and the error in the visibility remains around 1.4%. For a given roughness, if the incidence angle \(\theta\) of the beam illuminating the surface is changed, the maximum value of \(\Delta \Psi\) for which a variation in the fringes’ visibility can be detected also changes, as illustrated in Fig. 5 for \(\sigma = 6.3 \, \mu m\) and \(\theta = 12, 19,\) and 25 deg. The sensitivity of the method (which is limited by the fringe density) can thus be controlled by setting the proper value of \(\theta\).

For both, Figs. 4 and 5, solid curves represent the best fit to the experimental values.

4 Conclusions

A method for surface roughness determination using digital speckle pattern interferometry has been described theoretically and tested experimentally, showing good agreement. The experimental setup requires an image processor but not sophisticated optical components, making the method suitable for, among others, industrial applications. In addition, the whole process can be accomplished digitally, thus reducing the time needed for a measurement. The range of operation can be controlled by adjusting the parameters.

Acknowledgments

This work was supported by Fundación Antorchas (Argentina), the Alexander Von Humboldt Foundation (Germany), and CONICET PIP Nr.:3974/912 (Argentina). We also thank B. Ruiz for her valuable help with the mathematics involved in this work.

References

10. C. Wykes, “De-correlation effects in speckle-pattern interferometry. 1. Wavelength change dependent de-correlation with application to con-