
Adaptability-based Service Behavioral Assessment

Diego Anabalon∗‡1, Martin Garriga∗‡,
Andres Flores∗‡, Alejandra Cechich∗ and Alejandro Zunino†‡

∗GIISCo Research Group, Faculty of Informatics 
National University of Comahue, Neuquen, Argentina
†ISISTAN Research Institute, UNICEN University

Tandil, Buenos Aires, Argentina
‡(CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas

1corresponding author: diego.anabalon@fi.uncoma.edu.ar

Abstract—Building Service-oriented Applications implies the
selection of adequate services to fulfill required functionality. Even
a reduced set of candidate services involves an overwhelming
assessment effort. In a previous work we have presented an
approach to assist developers in the selection of Web Services. In
this paper we detail its behavioral assessment procedure, which is
based on testing and adaptation. This is done by using black-box
testing criteria to explore services behavior. In addition, helpful
information takes shape to build the needed adaptation logic to
safely integrate the selected candidate into a Service-oriented
Application. A concise case study shows the potential of this
approach for both selection and integration of a candidate Web
Service.

Keywords: Web Services, Testing, Service-Oriented Comput-
ing, Service Selection.

1. INTRODUCTION

Service-oriented Applications imply a business fac-
ing solution that consumes services from one or more
providers and integrates them into the business pro-
cess [13]. Although developers do not need to know the
underlying model and rules of a third-party service, its
proper reuse still implies quite a big effort. Yet searching
for candidate services is mainly a manual exploration of
Web catalogs usually showing poorly relevant informa-
tion [12]. Even a favorable search result requires skillful
developers to deduce the most appropriate service to be
selected for subsequent integration tasks. The effort on
assessing candidate services could be overwhelming. Not
only services interfaces must be assessed, but also their
operational behavior as key feature of a service contract.
Besides, correct adaptations must be identified so client
applications may safely consume services while enabling
loose coupling for maintainability.

To ease the development of Service-oriented Applica-
tions we presented in previous work [3], [6] a proposal
to assist developers on service selection by means of
testing and adaptation. This approach complements the
conventional compatibility assessment by using black-box
testing criteria to explore services behavior. The aim is
to fulfill the observability testing metric [8], [1] that
observes a service operational behavior by analyzing its
functional mapping of data transformations (input/output).
In addition, a helpful information takes shape concerning
the adaptation logic to integrate a service into a client
application. Hence, a wrapping algorithm was defined
based on mutation testing [4], [9], to identify the right
adapter configuration. However, mutation testing carries a
high effort (cost) both on generation and execution.

In this work, we improve the wrapping algorithm based
on a set of adaptability factors recently defined [3]. In this
way, we were able both to be more accurate on setting the
best adapter and to highly reduce the involved costs on
mutation testing. A concise case study shows the potential
of improvements implemented into our approach.

The rest of the paper is organized as follows. Section 1
presents an overview of the Selection Method. Section 3
explains the steps to build a Behavioral TS. Section 4
briefly describes the Interface Compatibility procedure.
Section 5 describes the Behavioral Compatibility proce-
dure. Section 6 presents related work. Conclusions and
future work are presented afterwards.

2. SERVICE SELECTION METHOD

During development of Service-Oriented Applications,
specific parts of the system may be implemented in the
form of in-house components. Besides, some of the com-
prising software pieces could be fulfilled by the connection
to Web Services. A set of candidate services could be
obtained by making use of any service discovery registry.
Even with a wieldy candidates’ list, a developer must be
skillful enough to determine the most appropriate service
for the consumer application. Figure 1 shows our proposal
to assist developers in the selection of Web Services, which
is briefly described as follows:

As an initial step, a simple specification is needed, in
the form of a required interface IR, as input for the three
comprising procedures.

The Interface Compatibility procedure (step 1) matches
the required interface (IR) and the interface (IS) provided
by a candidate service S. A structural-semantic analysis
is performed to characterize operation signatures (return,
name, parameters, exceptions) at four compatibility lev-
els: exact, near-exact, soft, near-soft. This analysis also
considers adaptability factors to reduce the integration
effort. The outcome of this step is an Interface Matching
list where each operation from IR may have a matching
with one or more operations from IS [3]. Particularly,
operations from IR with multiple matchings are considered
as “conflictive operations” in this approach – i.e., they must
be disambiguated yet.

When a functional requirement (IR) from an application
can be fulfilled by a potential candidate Web Service,
a Behavioral Test Suite (TS) is built (step 2) [6]. This
TS describes the required messages interchange from/to

JCS&T Vol. 15 No. 2 November 2015

75



Figure 1: Service Selection Method

a third-party service, upon a selected testing coverage
criteria [8], [1], to fulfill the observability testing metric.

The Behavioral Compatibility procedure (step 3) eval-
uates the required behavior of candidate Web Services
by executing the Behavioral TS. For this the Interface
Matching list is processed to generate a set of wrappers W
(adapters) – based on the identified conflictive operations
– allowing to run the TS against the candidate service S.

After exercising the TS against each wrapper w ∈ W , at
least one wrapper must successfully pass most of the tests
to confirm both the proper matching of conflictive oper-
ations and the behavioral compatibility of the candidate
service S. Besides, such successful wrapper allows an in-
house component to safely call service S once integrated
into the client application.

Next sections provide detailed information particularly
related to the aforementioned procedures. A simple exam-
ple will be used to illustrate the usefulness of the Selection
Method.

Proof-of-Concept
To illustrate our proposal, we assume a simple example

of a calculator application, with the four basic arithmetic
operations. Figure 2a shows the required interface (IR)
called Calculator and Figure 2b shows the interface (IS)
of a candidate Web Service named CalculatorService.

3. BEHAVIORAL TEST SUITE

In order to build a TS as a behavioral representation of
services, specific coverage criteria for component testing
has been selected [6]. The goal of this TS is to check
that a candidate service S with interface IS coincides on
behavior with a given specification described by a required
interface IR. Therefore, each test case in TS will consist of
a set of calls to IR’s operations, from where the expected
results were specified to determine acceptance or refusal
when the TS is exercised against S (through IS).

The Behavioral TS is based on the all-context-
dependence criterion [8], [1], where synchronous events
(e.g., invocations to operations) and asynchronous (e.g.,
exceptions) may have sequential dependencies on each
other, causing distinct behaviors according to the order in

which operations and exceptions are called. The criterion
requires traversing each operational sequence at least once.
In our approach, this is called “interaction protocol” [2],
formalized by using regular expressions, which allows to
automatize test case generation. The alphabet for regular
expressions comprise the signature of service operations.

In addition, an imperative specification must be built to
describe the expected behavior of the interface IR, with a
set of representative test data. This is called shadow class
and takes the same name as IR. Hence, each test case
uses these test data as input for parameters on each call to
operations of the IR’s interface. This means a black box
relationship or input/output functional mapping.

TS for Calculator
For the interface (IR) Calculator, a shadow class was

defined using the values 0 and 1 as test data to the four
arithmetic operations. Then, the interaction protocol (in
the form of a regular expression) is defined as follows:

Calculator (sum | subtract | product | divide)

This regular expression implies operational sequences
limited to an only operation to be invoked, since Calcu-
lator is a stateless service without dependencies between
operations. A set of test templates is generated from the
regular expression, representing each operational sequence.
In this case, 4 test templates are derived, each one com-
posed of the constructor operation and one arithmetic
operation.

Then, the selected test data is combined with the 4 test
templates to generate a TS in a specific format: based on
the MuJava framework [10]. From this combination, 8 test
cases were generated in the form of methods into a test
file called MujavaCalculator. Code Listing 1 shows the
test case testTS_3_1, which invokes the sum operation.

4. INTERFACE COMPATIBILITY

In the Interface Compatibility procedure is determined
the level of compatibility between the operations of the
interface IR and the operations of the interface IS of
a candidate service S [3]. A structural-semantic analysis

JCS&T Vol. 15 No. 2 November 2015

76



(a) Required Interface Calculator (b) Service Interface CalculatorService

Figure 2: Case Study of Calculator service

Listing 1: MuJava test case for Calculator
p u b l i c S t r i n g t e s t T S _ 3 _ 1 ( ) {

c a l c . c a l c u l a t o r o b t a i n e d = n u l l ;
o b t a i n e d = new c a l c . c a l c u l a t o r ( ) ;
f l o a t a rg1 = ( f l o a t ) 0 ;
f l o a t a rg2 = ( f l o a t ) 1 ;
f l o a t r e s u l t 0 = o b t a i n e d . sum ( arg1 , a rg2 ) ;
r e t u r n r e s u l t 0 . t o S t r i n g ( ) ;

}

is performed to operation signatures. Structural aspects
consider signatures and data types, while semantic aspects
consider identifiers and terms in the names of operations
and parameters. Information Retrieval (IR) techniques and
the WordNet1 dictionary are used for semantic aspects.
A scheme of constraints allows to characterize pairs of
operations (opR ∈ IR, opS ∈ IS) in four compatibility lev-
els: exact, near-exact, soft and near-soft. Such constraints
describe similarity cases based on adaptability (structural
and/or semantic) conditions for each element of an opera-
tion signature (return, name, parameters, exceptions). As a
result an Interface Matching list is generated, where each
operation opR ∈ IR may have a match to one or more
operations opS ∈ IS , with likely one o more matchings
in the parameters list.

In some cases, certain required operations (opR ∈ IR)
could obtain multiple matchings (with the same compati-
bility) – at level of operations and/or parameters – to the
candidate service interface (IS). At operation level: an opR
has matching to several opS . At parameters level: an opR
has several matchings in the parameters list – i.e., a set of
all possible permutations of arguments. These operations
need a disambiguation and they are called “conflicting
operations” in this approach.

For non-conflictive operations it is possible to assume
a high reliability in the operation matching – i.e., they
may confirm their compatibility through the Behavioral
Compatibility procedure.

Calculator-CalculatorService Interface Matching
Table I shows the interface matching result for Calcula-

tor and CalculatorService. Operations sum and product
of Calculator are identified as conflictive operations at
operation level. They obtained three matchings with oper-
ations add, subtract and multiply of CalculatorService,
with the same level of compatibility near-soft (n_soft_55).
Operations subtract and divide of Calculator are non-
conflictive operations. They obtained a unique correspon-

1https://wordnet.princeton.edu/

dence of higher compatibility level to their homonyms
from CalculatorService – i.e., exact match for subtract
operation and near-exact (n_exact_3) match for divide
operation.

Moreover, all operations obtained a unique matching
at parameters level. Parameters (float x, float y) of op-
erations sum, subtract and product of Calculator are
identical (in name and type) to their counterparts of Cal-
culatorService. For divide operation of Calculator, its
parameters have identical types and equivalent (synonyms)
names – dividend with numerator and divisor with
denominator – with the operation of CalculatorService.

5. BEHAVIOR COMPATIBILITY

To carry out the Behavior Compatibility evaluation for
a candidate service S, a set of wrappers (adapters) W
needs to be built to allow executing the Behavioral TS
and compare their results with those specified in the
interface IR. The wrappers set is generated by processing
the Interface Matching list, according to the multiple
correspondences from the conflictive operations identified
– both at operation and parameters levels. Hence, those
multiples correspondences could be disambiguated so to
identify proper univocal correspondences.

Wrappers generation can be seen as applying the In-
terface Mutation technique [4], [9], by using a mutation
operator to change invocations to operations and to change
arguments in the parameters list. Thus, each wrapper
is considered a faulty version (or mutant) regarding the
wrapper that contains the proper matchings of operations
and parameters.

Previously [6], our approach was only based on struc-
tural aspects (signatures and data types) to generate wrap-
pers, producing a larger set of wrappers W . This is because
usually a larger number of conflictive operations were
identified – both at operation and parameters levels.

A major improvement in this work involves to consider
the semantic aspects provided by the Interface Matching
list, in which a less number of conflictive operations is
identified, effectively reducing the W set.

Wrappers Generation
A tree structure is built to generate wrappers, where

each path from the root to a leaf node represents a
specific matching between operations of IR and IS (i.e., a
wrapper to be generated). Thus, the number of leaf nodes
determines the size of the wrappers set W . Each conflictive
operation produces several branches on the tree. On the

JCS&T Vol. 15 No. 2 November 2015

77



Table I: Interface Compatibility for Calculator-CalculatorService

Calculator CalculatorService
float subtract
(float x, float y)

[1, exact, float subtract (float x, float y)]
{(x:float-x:float), (y:float-y:float)}

[109, n_soft_55, float add
(float x, float y)]

[109, n_soft_55, float multiply
(float x, float y)]

float sum (float x,
float y)

[109, n_soft_55, float add (float x, float y)]
{(x:float-x:float), (y:float-y:float)}

[109, n_soft_55, float subtract
(float x, float y)]
{(x:float-x:float), (y:float-y:float)}

[109, n_soft_55, float multiply
(float x, float y)]
{(x:float-x:float), (y:float-y:float)}

float divide
(float dividend,
float divisor)

[4, n_exact_3, float divide (float numerator,
float denominator)] {(dividend:float-numerator:float),
(divisor:float-denominator:float)}

[116, n_soft_62, float add
(float x, float y)]

[116, n_soft_62, float subtract
(float x, float y)]

float product
(float x, float y)

[109, n_soft_55, float add (float x, float y)]
{(x:float-x:float), (y:float-y:float)}

[109, n_soft_55, float subtract
(float x, float y)]
{(x:float-x:float), (y:float-y:float)}

[109, n_soft_55, float multiply
(float x, float y)]
{(x:float-x:float), (y:float-y:float)}

contrary, a non-conflictive operation (implying a univocal
match) does not involve additional branches in the tree.

In the case of a conflictive operation at operation level,
a new branch is added for each matching to a service
operation. At parameters level, a new branch is added for
each arguments matching from the set of permutations –
even though there could be a univocal operation matching.

Particularly, in this work was updated the algorithm that
implements the mutation operator to change arguments into
the wrappers generation. Thereby, the new algorithm to
treat parameters matchings considers the following cases:

1) Without any matching: if any matching was identified
at all (structural and/or semantic), parameters will be
permuted between each other, producing branches
for each arguments combination.

2) Only structural matching: If a semantic match-
ing was not identified, parameters are related only
through the structural information (data types). If
multiple matchings were identified, for each of them
a branch is produced. For the remaining parameters
the case 1 is applied.

3) Structural-semantic matching: Parameters are related
through the structural and semantic information. If
multiple matchings were identified, for each of them
a branch is produced. For the remaining parameters
the case 2 is applied.

4) Service’s extra parameters: If a service operation
contains more parameters than the required oper-
ation, then some parameters are left outside of
the matchings. For them, a test value is required
when invoking the service operation. Hence, in this
approach a default value is assigned according to
each parameter data type – "" (quotes) for strings,
’ ’ (space character) for characters, true value for
booleans, and 0 (zero) for numerical types.

Wrappers for Calculator-CalculatorService
Figure 3 shows the wrapper generation tree for Calcula-

tor and CalculatorService. Branches were only produced
at operation level according to the conflictive operations
identified: sum y product of Calculator with respect
to add, subtract and multiply of CalculatorService.
Regarding to parameters matching, the case 3 was applied
since a structural-semantic matching was identified for all
parameters.

The total number of wrappers (size of W ) to be gener-
ated is 9, which is the number of leaves on the tree. Notice
that without considering semantic aspects, particularly for
parameters, a major number of permutations there had

been generated. Since all parameters are of the same type,
multiple structural matchings there had been identified,
making the size of W scaling to 144 wrappers.

Listing Code 2 and 3 show a fragment of the code from
wrapper2 and wrapper3 respectively. Where wrapper2
represents both the tree path down-to the third leaf node
and the most appropriate matchings. Likewise, wrapper3
represents the path down-to the fourth leaf node – being a
faulty (mutant) version.

Listing 2: Wrapper2 for Calculate-CalculateService
p u b l i c c l a s s C a l c u l a t o r {
p r o t e c t e d k a t z e . . . . . C a l c u l a t o r S e r v i c e proxy

= n u l l ;
p u b l i c C a l c u l a t o r ( ) {

t h i s . p roxy = new
k a t z e . . . . C a l c u l a t o r S e r v i c e ( ) ;

}
p u b l i c f l o a t sum ( f l o a t arg1 , f l o a t a r g2 ) {

f l o a t r e t 0 ;
t r y { r e t 0 = c a n d i d a t e . add ( arg1 , a r g2 ) ;
} c a t c h ( e x c e p t i o n ex ) {

ex . p r i n t S t a c k T r a c e ( ) ;
th row new Run t imeExcep t ion ( ex ) ;

}
r e t u r n r e t 0 ;

}
/ / . . .
p u b l i c f l o a t p r o d u c t ( f l o a t arg1 , f l o a t a rg 2 ) {

f l o a t r e t 0 ;
t r y { r e t 0 = c a n d i d a t e . m u l t i p l y ( arg1 , a r g2 ) ;
} c a t c h ( e x c e p t i o n ex ) {

ex . p r i n t S t a c k T r a c e ( ) ;
th row new Run t imeExcep t ion ( ex ) ;

}
}

r e t u r n r e t 0 ;
}

Wrappers Evaluation
Once generated the set of wrappers W , the Behavior

TS is executed against each wrapper w ∈ W to assess
the behavior of the candidate service S. Using our tool
based on the MuJava framework, the TS is exercised
against the IR and iterating over the list of wrappers. After
that, results are compared to determine for each wrapper
the number of test cases that failed – which produced a
result different from the one expected. A wrapper may
survive (as mutation case) when most of the test cases are
successful. A successful wrapper allows to disambiguate
the conflictive operations, confirming the right matchings
both at operation and parameters levels. In addition, this
wrapper may be used as integration artifact allowing a safe
communication to the candidate service S.

JCS&T Vol. 15 No. 2 November 2015

78



Figure 3: Wrapper generation tree to Calculator Service

Listing 3: Wrapper3 for Calculate-CalculateService
p u b l i c c l a s s C a l c u l a t o r {
/ / . . .
p u b l i c f l o a t sum ( f l o a t arg1 , f l o a t a r g2 ) {

f l o a t r e t 0 ;
t r y { r e t 0 = c a n d i d a t e . s u b s t r a c t ( arg1 , a rg2 ) ;
} c a t c h ( e x c e p t i o n ex ) {

ex . p r i n t S t a c k T r a c e ( ) ;
th row new Run t imeExcep t ion ( ex ) ;

}
r e t u r n r e t 0 ;

}
/ / . . .
p u b l i c f l o a t p r o d u c t ( f l o a t arg1 , f l o a t a rg 2 ) {

f l o a t r e t 0 ;
t r y { r e t 0 = c a n d i d a t e . add ( arg1 , a rg 2 ) ;
} c a t c h ( e x c e p t i o n ex ) {

ex . p r i n t S t a c k T r a c e ( ) ;
th row new Run t imeExcep t ion ( ex ) ;

}
r e t u r n r e t 0 ;

}
}

Behavioral Evaluation for Calculator-
CalculatorService

The TS called MujavaCalculator was executed against
Calculator (IR) and the 9 wrappers generated for Calcu-
latorService. Table II shows the execution results, where
wrapper2 passed successfully 100% allowing to confirm
the behavioral compatibility of CalculatorService. In
addition, this wrapper contains the right matchings of
operations (sum-add, subtract-subtract, divide-divide,
product-multiply). Finally, wrapper2 can be used as an
adapter for the safe integration of CalculatorService in
the client application.

Table II: Execution results of TS for Calculator-
CalculatorService

Wrappers Test Cases
successful failed success rate

wrapper3
wrapper4
wrapper6
wrapper7

0 4 0

wrapper0
wrapper1
wrapper5
wrapper8

2 2 50

wrapper2 4 0 100

6. RELATED WORK

Due to lack of space this section briefly presents related
work without a detailed comparison with our approach.

In [7] we survey current approaches on selection, testing
and adaptation of services with focus on composition. Ser-
vice selection approaches are closely related to discovery,
in which IR techniques and/or a semantic basis (e.g., on-
tologies) are generally used. Service evaluation mainly use
WSDL documents and/or XML schemes of data types, or
even WSDL-based ad-hoc enriched specifications. Service
implementation may also affect its evaluation: contract-
first services are designed prior to code, improving their
WSDL descriptions; code-first services use automatic tools
to derive WSDL documents from source code, reducing
their description quality.

Regarding service testing, the work in [2] presents a
survey of approaches that use strategies of verification
and software testing. Some of them evaluate individual
operations of atomic services, others also use a semantic
basis such as OWL-S, and others evaluate a group of
services that could interact in a composition.

The work in [5] presents an overview on service adapta-
tion, at service interface and business protocol levels. This
is required even though the Web Service standardization
reduces the heterogeneity and simplifies interaction. At
interface level adaptations deal with operation signatures,
that implies perform message transformations or data
mapping. At business protocol level, services behavior is
affected on the order constraints of the message exchange
sequences – such as deadlock and non-specified reception.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach to assist
developers in the selection of services, when developing
a Service-oriented Application. Particularly, our approach
addresses two main aspects. On the one side, confirming
the suitability of a candidate service by a dynamic behav-
ioral evaluation (execution behavior), in which the applied
testing criteria increase the reliability level. On the other
side, effectively building the right adaptation logic for a
selected Web Service, while reducing the adaptation and
integration effort.

Currently, we are working on service compositions [7].
This is particularly useful when a single service cannot
provide all the required functionality. In this context, it
is necessary to generate software artifacts (e.g., tests and
adapters) according to specifications in business process
languages such as BPEL and BPML [14]. Finally, another
interesting extension of this work is to automatically derive
software artifacts from system models – for example from
models described in SoaML [11], a UML profile for
modeling Service-oriented Applications.

JCS&T Vol. 15 No. 2 November 2015

79



REFERENCES

[1] Xiaoying Bai, Wenli Dong, W-T Tsai, and Yinong Chen.
Wsdl-based automatic test case generation for web services
testing. In Service-Oriented System Engineering, 2005.
SOSE 2005. IEEE International Workshop, pages 207–212.
IEEE, 2005.

[2] M. Bozkurt, M. Harman, and Y Hassoun. Testing and ver-
ification in service-oriented architecture: a survey. Software
Testing, Verification and Reliability, 23(4):261–313, 2013.

[3] A. De Renzis, M. Garriga, A. Flores, A. Zunino, and
A. Cechich. Semantic-structural assessment scheme for
integrability in service-oriented applications. In Latin-
american Symposium of Enterprise Computing, held during
CLEI’2014, September 2014.

[4] M. Delamaro, J. Maidonado, and A. Mathur. Interface muta-
tion: An approach for integration testing. IEEE Transactions
on Software Engineering, 27(3):228–247, 2001.

[5] Maryam Eslamichalandar, Kamel Barkaoui, and Hamid Reza
Motahari-Nezhad. Service composition adaptation: An
overview. 2nd IEEE IWAISE, page 20À7, 2012.

[6] M. Garriga, A. Flores, A. Cechich, and A Zunino. Behavior
assessment based selection method for service oriented ap-
plications integrability. In Proceedings of the 41st Argentine
Symposium on Software Engineering, ASSE ’12, pages 339–
353, La Plata, BA, Argentina, 2012. SADIO.

[7] Martin Garriga, Andres Flores, Alejandra Cechich, and Ale-

jandro Zunino. Web services composition mechanisms: A
review. IETE Technical Review, In press, 2015.

[8] M. Jaffar-Ur Rehman, F. Jabeen, A. Bertolino, and A. Polini.
Testing Software Components for Integration: a Survey of
Issues and Techniques. Software Testing, Verification and
Reliability, 17(2):95–133, June 2007.

[9] Jia, Y. y Harman, M. An Analysis and Survey of the
Development of Mutation Testing. IEEE Transactions on
Software Engineering, 37(5):649–678, 2011.

[10] µJava Home Page. Mutation system for Java programs,
2008. http://www.cs.gmu.edu/ offutt/mujava/.

[11] OMG. Service oriented architecture modeling
language (soaml) specification. Technical
report, Object Management Group, Inc., 2012.
http://www.omg.org/spec/SoaML/1.0.1/PDF/.

[12] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-oriented computing: A research roadmap. In-
ternational Journal of Cooperative Information Systems,
17(02):223–255, 2008.

[13] D. Sprott and L. Wilkes. Understanding Service-
Oriented Architecture. The Architecture Journal. MSDN
Library. Microsoft Corporation, 1:13, January 2004.
http://msdn.microsoft.com/en-us/library/aa480021.aspx.

[14] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and
D. Ferguson. Web Services Platform Architecture: SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More. Prentice Hall PTR, 2005.

JCS&T Vol. 15 No. 2 November 2015

80




