
Stream Processing To Solve Image Search by Similarity
Jair Lobos*, Verónica Gil-Costa*, Nora Reyes, A. Marcela Printista*

LIDIC, Universidad Nacional de San Luis
* Conicet, CCT-San Luis

San Luis, 5700, Argentina
gvcosta@unsl.edu.ar

and
Mauricio Marin

DIINF, Universidad de Santiago, Chile
Centro de Biotecnología y Bioingieniería, Chile

mauricio.marin@usach.cl

ABSTRACT

The classic use of Stream Processing platforms enables
working with data in real time, which allows you to
generate data analysis quickly attending to a decision-
making process. However, you can use these platforms
for other applications such as indexing and subsequent
use of similarity search objects in a database. The images
can be displayed on a metric space, which has features
that allow rules to discard a not similar image quickly
without making costly computations. This paper presents
the use of a Stream Processing platform to index images
generated by different users. For this, it is necessary to
represent these images by vectors containing different
MPGE-7 features. This paper shows a Stream Processing
platform using its processing elements (PEs) in parallel to
speed up the operations involved in the index
construction.

Keywords: Stream Processing, Metrics Spaces, MPEG-7,
Sparse Spatial Selection.

1. INTRODUCTION

Actually we are in a fully instrumented and connected
world, there is a large number and variety of data
resources available either software systems or hardware
sensors. Every day, there are numerous industries where
their process and interaction with customers generate
millions of events that produce activity traces that are not
exploited properly. In addition, those traces can be used
to detect anomalies to predict the behavior and trends of
customers, among other activities that can improve the
productivity of a company or institution that generate this
type of events.
The events collected from users actions form a
continuous amount of data stream. Some examples can be
found in: market analysis; telecom call detail records;
video surveillance systems; vital signs of a patient in a
medical system; intrusion records system networks; the
behaviour in a system of Web 2.0, among others. In all
these applications it is necessary to collect, process and
analyze the data stream, and then generate results or
produce some specific actions to the process. Also, users
can use these technologies in other type of problems, like
no structure data indexation – example, images- so we
use a representation about the same image to store on
metric data base. In metric data base we use similarity
search. Therefore it is possible to characterize an object
with certain properties and thus determine the similarity

with another object. To search among these objects, there
are structures called ‘indexes’ that allow a comparison
operation in less time and a quick access to objects as a
result. Stream Processing platform is possible to make a
subdivision of tasks that characterize an object. On one
hand get MPEG-7 descriptors like: Histogram, Scalable
Color and Color Layout, and on the other hand realize
index process of them. This process uses pivot structure
in space search and a stream platform for images’
characteristics.
This paper is structured as follows: Section 2 describes
stream processing paradigm and the S4 platform. Section
3 briefly describes metric spaces concepts, MPEG-7
standard for images, pivots based index and Sparse
Spatial Selection technique. Section 4 describes the
propose model. Section 5 shows the results. Finally,
Section 6 presents the conclusions and future work.

2. STREAM PROCESSING

In this section the main Stream Processing properties are
discussed, where Stream Processing makes sense, and
how it ranks within the paradigm of Big Data. S4
processing platform, used in this paper is also described.

A. Streaming Processing and Big Data
Big Data is defining 3D Data Management: Controlling
Data Volume, Velocity and Variety [L01]. Big Data is
used to describe the exponential growth and availability
of structured and unstructured data. A more recent
definition states that "Big Data represents information
assets that are characterized by high volume, speed and
variety to require specific technology and analysis
methods for processing into value" [DGG15].
On the other hand, stream processing is used by the needs
or requirements, including processing a variety of data in
real time and quickly. Therefore, Big Data and Stream
Processing can complement each other. Stream
processing was first used to study financial problems.
Today, it is used in almost all industries in which data
flows are generated by human activities or automatically
by sensors. Events are generated online at unpredictable
times. The union of events forms a continuous flow of
information that may have dynamic variations in traffic
intensity. In this context, the process used to store and
organize/index events in a convenient form to process
them in batches can be very expensive because of the
enormous volume of data and the amount of
computational resources required for processing them.
Even if this is feasible, it is often desirable or even

JCS&T Vol. 15 No. 2 November 2015

93

essential that the data is processed as they arrive to the
system, as soon as they are detected to deliver results in
real time.
Particularly, Stream Processing corresponds to a
distributed computing paradigm that supports the process
of gathering and also the analysis of large volumes of
heterogeneous data stream to obtain ideas which allow
performing actions and making decisions in real time.
Stream Processing appears as a result of the rigorous data
management which is increasingly demanding because of
the information generated by business and scientific
applications, which are fully linked to the technological
progress. It is also related to the advancement in
hardware and software databases; the management of
large amount of data in distributed systems; the use of
techniques such as signal processing, statistics, data
mining and optimization theory.
Stream Processing’s aims are processing data in real time
and in a fully integrated way, providing information and
outcomes for consumers and/or end users. Also it aims to
integrate new information to support decision making in
the medium and long term.
The high volume of events flows coming from different
data sources which makes it impossible to store this
information, such as model-based on data warehouse
where all the data is stored and then to make the
appropriate processing and analysis off-line.
Stream Processing needs to fulfill certain performance
requirements in terms of latency and throughput.
Specifically, processing must keep up with the rate of
intake data, while it provides a high level of quality of
analysis of results as fast as possible. Additionally, the
application components and infrastructure must be fault-
tolerant.

B. S4 - Simple Scalable Streaming System
S4 acronym for “Simple Scalable Streaming System” is a
system of general purpose, distributed and scalable which
allows applications to process data flows continuously
without restrictions [NRNK10][S414]. S4 is inspired by
MapReduce [AGT14][DG04], designed in the context of
data mining and machine learning of Yahoo! Labs for on-
line advertising systems.
In S4 each event is described as a pair (key, attribute). In
the system, processing elements (PEs) are the basic units
and messages are exchanged among them. The PEs can
send messages or post results. PEs are allocated in the so-
called processing nodes (PNs) servers. The PNs are
responsible for receiving incoming events, routing the
events to the corresponding PEs and dispatching events
through the communication layer. The events are
distributed using a hash function over the key of the
events. Furthermore, the communication layer uses
Zookeeper [HKJR10] which provides management and
automatic replacement clusters if a node fails.
To run an application with S4, we need to deploy an
Adapter application. Adapters are S4 applications that
can convert external stream into stream of S4 events.
Figure 1. shows a simple Tweet language count for
Twitter. In this example, input events contain a language
descriptor for a tweet from Twitter. The Adapter gathers
tweets from twitter and filters only the language
descriptor. Then, the Adapter sends an event to PE1. PE1
listens to Tweet events with all possible keys. For each
possible key, PE1 emits a new event of type TweetLang.
PE2-ns listen to TweetLang events emitted with the key
lang. For example, PE1 emits an event with key

lang=”es”. PE2 receives all the type of events with
TweetLang keyed lang=”es”. If there is a corresponding
PE to the emitted key, the PE is called and the counter of
language is incremented. Otherwise a new PE is
instantiated and linked to the new key. Whenever a PE
increments its counter, it sends the update count to the PE
called PEm and this shows the results.

Figure 1. Application design with S4.

3. METRIC SPACES

The similarity search problem can be formally defined in
the model of metric spaces, which provides an
independent conceptual framework of the application
domain. A metric space (X, d) is formed by a universe of

valid objects X and a distance function d: X x X R+

among its elements. A finite subset U X, with | U | =
n, is the elements set or database, where queries are
performed. Distance function d will measure the "no-
similarity" among the elements while smaller is the value
of d, the elements will be more similar to each other. The
functions of distances must fulfill the following
properties which assure their consistent definition: Strict
positiveness: d(x,y) > 0 if x distinct of y; Symmetry:
d(x,y) = d(y,x); Non-Reflexivity: d(x,x) = 0. However, if d
is a metric, it must also satisfy the Triangle inequality
property where: d(x,y) ≤ d(x,z) + d(z,y), it is the only
property that avoids comparisons in the search: if the
distances are known d(x,y) and d(x,z), result of |d(x,y) –
d(x,z)| it is a lower bound for the distance d(z,y), and in
some cases knowing this, the calculation of the current
distance can be avoided.
There are different types of queries that may involve
similarity searches, but as an element q  U as query, the
most commons are:
• Range queries: recover all elements from database U

that they are at a distance as r of query q. That is to
say,{u  U / d(q,u) ≤ r}.

• K-nearest neighbour queries: retrieve k elements
from U nearest to q. That is to say, any collection
A U, that fulfills that |A| = k y v  A, v  U –
A, d(q,u) ≤ d(q,v). The query for the nearest element,
or the nearest neighbour, could be seen as the
particular case when k = 1.

JCS&T Vol. 15 No. 2 November 2015

94

Overall the calculation of distance function can be very
expensive and therefore, in large databases, it is not
feasible to conduct a thorough search to a query. Thus,
the general solution is to pre-process data base U in order
to construct an index, which allows to save distance
calculations during searches. There are basically two
general approaches to constructing indexes: based on
compact partitions and based on pivots. In the indexes
based on compact partitions a set of objects called centers
are selected and the remaining objects are divided among
those centers by proximity, thereby determining the zones
associated with each center; searches are discarded by the
triangle inequality entire regions of space using
information areas. In pivots indexes a set of objects called
pivot are selected, the distances for all the database
objects to these pivots are calculated and stored; during
the search, it is calculated the distance of query q to the
pivots and the objects are discarded using the triangle
inequality [ZADB06] [S05] [CNBYM01]. This paper is
focused on pivot-based methods.

Mpeg-7
MPEG-7 is a standard representation of audiovisual
information that allows multimedia content description.
This standard arises from the need to describe audiovisual
content due to the increasing amount of information.
Within the scope of this standard it is important to
describe the major aspects of the contents such as audio,
voice, video, graphics and 3D models. In MPEG-7
[SBMCA05] there are descriptors representing a
syntactically and semantically defined characteristic. In
the case of images, we have some descriptors such as:

Scalable Color: is a descriptor of a histogram
in an HSV colour space into a container 256 using a Haar
transformation to compress.

Color Layout: this descriptor represents the
spatial distribution of the images in a compact form. The
image is divided into discrete blocks of 8 x 8 and the
representative colours in the YCbCr space are extracted.
The descriptor is obtained by applying the discrete cosine
transform on each block using coefficients. The
descriptor produces a representation (64-Y, 64-Cb, Cr-
64) of the image.

Histogram: represents the distribution of five
types of edges in the image. It is divided into 4 x 4 sub-
images and computes. A 16-block produces an image
descriptor of 80 bins.

Pivots Index
As mentioned, an index corresponds to a data structure
built to facilitate searches in a set U of elements. In

particular, an index based on pivots selects a set P X of
elements called pivots and stores the distance to each
pivot pi ϵ P to every element u ϵ U in any appropriate
data structure. These distances define an equivalence

relation over U. So, if one has a set P = {p1, p2, ..., pm}
X of pivots, of size m = | P |, distances d(p1,u), d(p2,u),

..., d(pm,u), u ϵ U are calculated, which makes up the
index properly.
Different pivot-based methods, such as: Approximating
and Eliminating Search Algorithm (AESA), Burkhard-
Keller Tree (BKT), Fixed-Queries Tree (FQT), Fixed-
Height FQT (FHQT), Vantage Point Tree (VPT), Linear
AESA (LAESA) and Sparse Spatial Selection (SSS), they
differ from each other mainly for the method they choose

the P set [BNC03] and the structure wherein the distances
are stored [CNBYM01]. Most of them are static, because
they need to know beforehand the elements of the
database to build the index. However, the proposed index
in [Bris06], Sparse Spatial Selection (SSS), admits to
being created as elements of the database arrive, which is
the setting of interest for this paper.

Sparse Spatial Selection
Sparse Spatial Selection (SSS) [BFPR06] is the technique
that dynamically selects a set of well distributed pivots
around the metric space. This index is based on the idea
that, if the pivots are scattered "spatially" in space, they
will be able to discard more objects during the search. To
achieve this, when an object is inserted into the database,
it is selected as a new pivot if it is "quite far" from the
already selected pivots, which is a desirable property of a
set of pivots [BNC03]. It is considered that an element is
"quite far" from another pivot if it is greater or equal
distance M × α where M is the maximum distance
between any two objects in X and α a parameter whose
optimal values are near 0.4 (i.e. The object is selected as
a pivot if there is a little less than half of the maximum
distance from all other pivots). Figure 2 shows an
example of a set of objects on the plane R2 with
Euclidean distance and how the pivots are distributed in
space.

Figure 2. Example distribution pivots with

 SSS.

The α parameter affects the number of pivots that are
selected. And for the M parameter you must have in
advance all the items in the collection of objects to
estimate its value.
A great advantage of this technique, apart from the
dynamics, it should not be fixed in advance the number
of pivots, because the number of pivots adapts to the
"complexity" or dimension of metric space. It has been
empirically shown that the number of pivots that SSS
obtained is very similar to the optimum number obtained
with other strategies.

4. S4 MODELING

This section presents the design of an application that
receives objects, images, processes and index them into a
system based on pivot index. The application is designed
to take advantage of the characteristics of the S4 platform
and performs image processing in real time. To do this,
each image that enters the system should be transformed
into a vector of descriptors, which can be handled easily
by the indexing algorithm. Figure 3 shows the application
schema.

JCS&T Vol. 15 No. 2 November 2015

95

The application Adapter initially reads the images and
sends them to a PE (Init), where they will be routed to a
process of reducing the image (Est0 and Est1). That is, if
you enter an image of 512x512 pixels, the image
becomes 8x8 pixels. In this paper two reducers images
were used so that the utilization does not exceed 50%.
The new reduced image is sent to the PEs to be
responsible to obtain a characteristic of MPEG-7 using
the open-source library LIRE [L13]. Each PE works
independently. In particular, in this paper we use the
features of MPGE-7 called histogram (Hist), Scalable
Color (SC) and Color Layout (CL). At the same time, the
process Color Layout can be parallelized by three
processes which are responsible for obtaining red, green
and blue images colour filters (Y, Cb and Cr). The
process that calculates the Histogram generates a vector
of 80 descriptors. Scalable Color process generates a
descriptor vector of 32, and the process that computes the
Color Layout generates a vector of 64 descriptors.
Therefore, each vector representing an image having a
size of 176 descriptors.
Each PEs that is responsible for obtaining MPGE-7
features sends the result of the descriptor vector to a PE
(Join) in charge of joining all the features in a single
vector.
The descriptor vector representing the image is sent to a
PE responsible for determining whether the vector
corresponding to a pivot. To this objective, the PE
previously called DLi (i = 0..3), calculates the distance
between the existing pivots for image collection and the
new image vector generated. This distance calculation
process is parallelized so that any PE participating in the
operation exceeds 50% utilization. Finally, the PE called
PIV applies the function SSS described in the previous
section to determine if the new vector image corresponds
to a pivot.
To parallelize the construction of the index, we use an
approach based on partitioning columns or pivots. In
other words, a PE Index will be responsible for managing
a sub-set of pivots. To do this, there is initially a single
PE Index (Ind0) responsible for building the pivot index.
When the PE Index exceeds 50% utilization, it creates a
second PE Index, This new PE manages another sub-set
of pivots. This process is repeated as many times as
necessary to avoid saturation of the PE Index.
When Pivot PE receives a vector image, this PE sends all
the vector images to the PE Index. If a vector is not
selected as a pivot for the PE Pivot, then this vector is
attached as a row in each PE Index. Note that this
involves calculating the distance between the vector and
all the pivots of the sub-table pertaining to each PE
Index.
If the vector is selected as a pivot, this vector is also sent
to all PEs Index to be annexed as row, because a pivot
table is also part of the collection of images that can be a
candidate in response to a query. Figure 4 left shows this
situation.
However, as shown in Figure 4 on the right side, the
work to be performed is more computationally expensive
for the PE responsible for appending Index as pivot (as a
column). Because PE must not only compute distances
between vectors of the sub-images and new pivot table,
PE must also compute the distance between the new pivot
to all pivots existing in the sub-table. That is to say, as a
last resort PE should append a column and a row of
distances.

Figure 3. Application schema.

Figure 4: Selecting a new pivot application
computational cost.

5. RESULTS

The results obtained are presented. In particular, we focus
on service time and PEs utilization. Utilization is
measured by taking the service time divided by the total
runtime of the application. In other words this metric
indicates the workload of each PE and allows detecting
potential bottlenecks. In the case of PE Index also we
evaluate the throughput (number of vectors indexed per
unit time), and the average time to index a new vector.

JCS&T Vol. 15 No. 2 November 2015

96

The tests were performed on a cluster with 16 CPUs with
64-bit Intel Core Quad Q9550 2.83GHz processor and
4GB RAM DDR3 1333 Mhz each node.
We worked with a set of images [Food] which are hosted
locally on each cluster node. This set contains 101
photographs of food categories, a total of 101,000 images
(5 Gb of space). The total execution time required to
index all the images is 479 minutes (8 hours).

Vector construction evaluation
Figure 5 shows the service time consumed by each PE
that participates in the process of constructing the vector
for each image received by the system.

Figure 5: PEs service time used for constructing an image
vector.

The x-axis shows the runtime in minutes required to
process all images. The y-axis shows the time of service
of each PE in logarithmic scale and in microseconds. In
the case of partitioned PEs as DLi and EST, for
simplicity and clarity of graphical average of results
obtained for these PEs is shown.
In general, all PEs have a similar service time. The
process that performs the routing of the Color Layout is
the shortest one which is followed by Join and JoinCL
processes.

Figure 6 shows the utilization reported by PEs
participants in the vector images construction process. As
expected, the operation reported a high utilization in the
process to determine if a new vector is selected as the
pivot for the collection or not, using the SSS technique.
This operation requires a lot of comparisons of distances,
which tends to increase when increasing the size of the
collection of indexed images.

Figure 6: Utilization reported by responsible PEs for
creating the vector image

Index construction evaluation
Next, we show the results obtained by the PE responsible
for building the pivots index. Remember that an
important objective of this paper is the PEs that build the
pivot table and store the distances between the vector
images and the lists of pivots do not exceed 50%
utilization. In other words, when an PE Index reported a
utilization of 50%, system creates a new PE Index for
administering the new pivots.
Figures 7 and 8 show the utilization and service time in
logarithmic scale respectively of the PEs responsible for
building and maintaining the index pivots. Initially the
system starts with only one PE Index. When it reaches
50% utilization, a second PE Index is created. To process
all images a third PE Index is created at about 4 hours
after the index system has begun to operate.

Figure 7: PEs Index utilization making index process.

Figure 9 shows the throughput measured as the number
of vector images index per unit time in each PE Index.
The graphic shows that PEs tends to start with a value of
high throughput (700 for Ind0, 580 for IND1 and 390 for
IND2). This throughput value tends to decrease as they
enter more images to system and indexing work is
divided among more PEs.
Figure 10 shows the average time to index every image in
microseconds. As expected, this time increases as the
system contains a greater amount of vector images,
because the new image must be compared to more pivots
in each index partition.

Figure 8: Service time in microseconds of PEs
responsible for indexing the images.

Similarity search
In this section the performance of the proposed search of
images in a system based on pivot index is evaluated. To

JCS&T Vol. 15 No. 2 November 2015

97

do this, given the collection of 101,000 images, 70% of
these images were indexed and the 30% rest was used for
similar searches.
A radius of 3 is used in the search system. The algorithm
shows the images that are a distance of no more than 3 of
the query image.

Figure 9: Throughput for PE Index.

Search process works as follows. Once we obtained the
representing vector of the image in PE called Join, this
vector is sent to each PE DLi to calculate the distance for
each existing pivots to the new query vector. Then,
distances with the vector query is sent to PE PIV. In this
case, as the incoming event is a "QUERY" PE PIV
redirects this event to PE Index. PE Index calculated the
triangle inequality between images stored locally and
vector image to discard the no similar images. Those
images that cannot be discarded are directly comparable
to the query. Finally, if the distance is d (q, vi) ≤r then the
image represented by the vector vi is reported as a result.

Figure 10: Service time in microseconds of PEs
responsible for indexing the images.

Figure 11 shows the number of queries processed per
minute in each PE Index. At the start of the
implementation of PE Index reported a low number of
processed queries. This is the effect of start-up system
that can be discarded, because the system quickly reaches
a state stable execution, where an average of 13 queries
per minute were resolved by the PE Index.
Figure 12 shows the average number of candidate images
reported every minute by the system to process queries.
In general, it can be observed that the PE Index I3, is the
one that discarded images the most.
Figure 13 shows the average time required to process a
query in microseconds. The results show that the query
processing time is directly related to the amount of
candidate results. In other words, as shown in Figure 12,
the PE Index IND2 reports less candidate images for

queries which have a direct effect on the processing time
for each query. IND2 is the shortest time reported in the
Figure 13.

Figure 11. Query number processed by PE Index.

Figure 12. Average number of candidate images for
queries.

Figure 13. Average time to process a query.

6. CONCLUSIONS AND FUTURE WORK

Although there is a significant progress in Big Data
technology for efficient processing of large volumes of
unstructured data, today's world presents challenges
which current platforms, by themselves, are not enough.
The reason is the additional requirement for fast
processing of the data to be useful in decision making
organizations. Thus, the demands for stream processing
techniques provide solutions that are designed to handle
large volumes in real time, allowing the effect of

JCS&T Vol. 15 No. 2 November 2015

98

"analysis and subsequent reaction with data in motion".
In this paper we used the stream processing platform,
called S4 to accelerate image processing system, when a
continuous flow of objects are expected. The design of
the application architecture that is capable to analyze and
act on a flow of images in real time is presented here.
Finally, an experimental study of the performance of each
step involved in the process is done. As to the
construction of the feature vector, it is visible the impact
of the SSS technique used to search, making this one of
the points to continue to develop to optimize the
proposed architecture. Regarding the construction of the
index, the technique used to maintain the utilization of PE
50%, showing its positive impact on time indexing of
objects-images. Finally, this paper analyzes the
performance of the whole process of similarity search of
images, showing how the process is favoured when it has
a solid architecture, and dynamic time, enabling it to rule
out candidates during the search process.

7. REFERENCES

[AGT14] Andrade H., Gedik B. and Turaga D.,
Fundamentals of Stream Processing Aplications Design,
System and Analytics, Cambridge University Press,
2014.

[B13] Barlow, Real-Time Big Data Analytics: Emerging
Architecture. Kindle Edition. O'Reilly Media Inc. 2013.

[BFPR06] Brisaboa N.R., Farina A., Pedreira O., Reyes
N.: Similarity search using sparse pivots for efficient
multimedia information retrieval. In: ISM. pp. 881–888
(2006).

[BNC03] Bustos B., Navarro G. and Chávez E. Pivot
selection techniques for proximity searching in metric
spaces, Pattern Recognition Letters, Volume 24, Issue 14,
October 2003, Pages 2357-2366, ISSN 0167-8655.

[CNBYM01] Chávez E., Navarro G. and Baeza-Yates R.,
and Marroquín J L. Searching in metric spaces. ACM
Comput. Surv. 33, 3 (September 2001), 273-321.

[Food] The Food-101 Data Set:
http://www.vision.ee.ethz.ch/datasets extra/food-101/

[DGG15] A. De Mauro, M. Greco, and M. Grimaldi.
“What is big data? A consensual definition and a review
of key research topics”, in AIP, 2015 pp. 97–104.

[DG04] Dean J. and Ghemawat S. MapReduce:
Simplified Data Processing on Large Clusters.
COMMUNICATIONS OF THE ACM, 2008, vol. 51, no 1,
p. 107.

[HKJR10] Hunt P., Konar M., Junqueira F.P. and Reed
B. Zookeeper: wait-free coordination for internet-scale
systems. In Proceedings of the 2010 USENIX conference
on USENIX annual technical conference,
USENIXATC’10, pp 11–11, Berkeley, CA, USA, 2010.
USENIX Association.

[L01] D. Laney, “3D Data Management: Controlling
Data Volume, Velocity and Variety”, Gartner, 2001, pp.
1-4

[L13] Lux M. LIRE: Open Source Image Retrieval in
Java, In Proceedings of the 21st ACM International
Conference on Multimedia. New York, NY, USA , pp.
843-846 (2013). ACM.

[MSCJ13] Mayer-Schönberger V., Cukier K., and Jurado
A.I.. Big data: La revolución de los datos masivos.
Turner. 2013.

[NRNK10] Neumeyer L., Robbins B., Nair A. and Kesari
A. ”S4: Distributed Stream Computing Platform,” Data
Mining Workshops (ICDMW), 2010 IEEE International
Conference on , vol., no., pp.170,177, 13-13 Dec. 2010.

[S414] S4- Distributed Stream Computing Platform:
revisada en Julio 2014.
http://incubator.apache.org/s4/

[S05] Samet H. Foundations of Multidimensional and
Metric Data Structures (The Morgan Kaufmann Series in
Computer Graphics and Geometric Modeling). 2005.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

[SBMCA05] Spyrou E., Borgne H. L., Mailis T.P.,
Cooke E., Avrithis Y.S., and O’Connor N.E. Fusing
mpeg-7 visual descriptors for image classification, in
ICANN (2), 2005, pp. 847–852.

[ZADB06] Zezula P., Amato G., Dohnal V., Batko M.
Similarity Search: The Metric Space Approach,
Advances in Database Systems, Springer, 2006.

JCS&T Vol. 15 No. 2 November 2015

99

