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ABSTRACT 

The classic use of Stream Processing platforms enables 
working with data in real time, which allows you to 
generate data analysis quickly attending to a decision-
making process. However, you can use these platforms 
for other applications such as indexing and subsequent 
use of similarity search objects in a database. The images 
can be displayed on a metric space, which has features 
that allow rules to discard a not similar image quickly 
without making costly computations. This paper presents 
the use of a Stream Processing platform to index images 
generated by different users. For this, it is necessary to 
represent these images by vectors containing different 
MPGE-7 features. This paper shows a Stream Processing 
platform using its processing elements (PEs) in parallel to 
speed up the operations involved in the index 
construction. 

Keywords: Stream Processing, Metrics Spaces, MPEG-7, 
Sparse Spatial Selection. 

1. INTRODUCTION

Actually we are in a fully instrumented and connected 
world, there is a large number and variety of data 
resources available either software systems or hardware 
sensors. Every day, there are numerous industries where 
their process and interaction with customers generate 
millions of events that produce activity traces that are not 
exploited properly. In addition, those traces can be used 
to detect anomalies to predict the behavior and trends of 
customers, among other activities that can improve the 
productivity of a company or institution that generate this 
type of events. 
The events collected from users actions form a 
continuous amount of data stream. Some examples can be 
found in: market analysis; telecom call detail records; 
video surveillance systems; vital signs of a patient in a 
medical system; intrusion records system networks; the 
behaviour in a system of Web 2.0, among others. In all 
these applications it is necessary to collect, process and 
analyze the data stream, and then generate results or 
produce some specific actions to the process. Also, users 
can use these technologies in other type of problems, like 
no structure data indexation – example, images- so we 
use a representation about the same image to store on 
metric data base. In metric data base we use similarity 
search. Therefore it is possible to characterize an object 
with certain properties and thus determine the similarity 

with another object. To search among these objects, there 
are structures called ‘indexes’ that allow a comparison 
operation in less time and a quick access to objects as a 
result. Stream Processing platform is possible to make a 
subdivision of tasks that characterize an object. On one 
hand get MPEG-7 descriptors like: Histogram, Scalable 
Color and Color Layout, and on the other hand realize 
index process of them. This process uses pivot structure 
in space search and a stream platform for images’ 
characteristics.  
This paper is structured as follows: Section 2 describes 
stream processing paradigm and the S4 platform. Section 
3 briefly describes metric spaces concepts, MPEG-7 
standard for images, pivots based index and Sparse 
Spatial Selection technique. Section 4 describes the 
propose model. Section 5 shows the results. Finally, 
Section 6 presents the conclusions and future work. 

2. STREAM PROCESSING

In this section the main Stream Processing properties are 
discussed, where Stream Processing makes sense, and 
how it ranks within the paradigm of Big Data. S4 
processing platform, used in this paper is also described. 

A. Streaming Processing and Big Data 
Big Data is defining 3D Data Management: Controlling 
Data Volume, Velocity and Variety [L01]. Big Data is 
used to describe the exponential growth and availability 
of structured and unstructured data. A more recent 
definition states that "Big Data represents information 
assets that are characterized by high volume, speed and 
variety to require specific technology and analysis 
methods for processing into value" [DGG15]. 
On the other hand, stream processing is used by the needs 
or requirements, including processing a variety of data in 
real time and quickly. Therefore, Big Data and Stream 
Processing can complement each other. Stream 
processing was first used to study financial problems. 
Today, it is used in almost all industries in which data 
flows are generated by human activities or automatically 
by sensors. Events are generated online at unpredictable 
times. The union of events forms a continuous flow of 
information that may have dynamic variations in traffic 
intensity. In this context, the process used to store and 
organize/index events in a convenient form to process 
them in batches can be very expensive because of the 
enormous volume of data and the amount of 
computational resources required for processing them. 
Even if this is feasible, it is often desirable or even 
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essential that the data is processed as they arrive to the 
system, as soon as they are detected to deliver results in 
real time. 
Particularly, Stream Processing corresponds to a 
distributed computing paradigm that supports the process 
of gathering and also the analysis of large volumes of 
heterogeneous data stream to obtain ideas which allow 
performing actions and making decisions in real time. 
Stream Processing appears as a result of the rigorous data 
management which is increasingly demanding because of 
the information generated by business and scientific 
applications, which are fully linked to the technological 
progress. It is also related to the advancement in 
hardware and software databases; the management of 
large amount of data in distributed systems; the use of 
techniques such as signal processing, statistics, data 
mining and optimization theory. 
Stream Processing’s aims are processing data in real time 
and in a fully integrated way, providing information and 
outcomes for consumers and/or end users. Also it aims to 
integrate new information to support decision making in 
the medium and long term. 
The high volume of events flows coming from different 
data sources which makes it impossible to store this 
information, such as model-based on data warehouse 
where all the data is stored and then to make the 
appropriate processing and analysis off-line. 
Stream Processing needs to fulfill certain performance 
requirements in terms of latency and throughput. 
Specifically, processing must keep up with the rate of 
intake data, while it provides a high level of quality of 
analysis of results as fast as possible. Additionally, the 
application components and infrastructure must be fault-
tolerant. 

B. S4 - Simple Scalable Streaming System 
S4 acronym for “Simple Scalable Streaming System” is a 
system of general purpose, distributed and scalable which 
allows applications to process data flows continuously 
without restrictions [NRNK10][S414]. S4 is inspired by 
MapReduce [AGT14][DG04], designed in the context of 
data mining and machine learning of Yahoo! Labs for on-
line advertising systems. 
In S4 each event is described as a pair (key, attribute). In 
the system, processing elements (PEs) are the basic units 
and messages are exchanged among them. The PEs can 
send messages or post results. PEs are allocated in the so-
called processing nodes (PNs) servers. The PNs are 
responsible for receiving incoming events, routing the 
events to the corresponding PEs and dispatching events 
through the communication layer. The events are 
distributed using a hash function over the key of the 
events. Furthermore, the communication layer uses 
Zookeeper [HKJR10] which provides management and 
automatic replacement clusters if a node fails. 
To run an application with S4, we need to deploy an 
Adapter application. Adapters are S4 applications that 
can convert external stream into stream of S4 events. 
Figure 1. shows a simple Tweet language count for 
Twitter. In this example, input events contain a language 
descriptor for a tweet from Twitter. The Adapter gathers 
tweets from twitter and filters only the language 
descriptor. Then, the Adapter sends an event to PE1. PE1 
listens to Tweet events with all possible keys. For each 
possible key, PE1 emits a new event of type TweetLang. 
PE2-ns listen to TweetLang events emitted with the key 
lang. For example, PE1 emits an event with key 

lang=”es”. PE2 receives all the type of events with 
TweetLang keyed lang=”es”. If there is a corresponding 
PE to the emitted key, the PE is called and the counter of 
language is incremented. Otherwise a new PE is 
instantiated and linked to the new key. Whenever a PE 
increments its counter, it sends the update count to the PE 
called PEm and this shows the results. 

Figure 1. Application design with S4. 

3. METRIC SPACES

The similarity search problem can be formally defined in 
the model of metric spaces, which provides an 
independent conceptual framework of the application 
domain. A metric space (X, d) is formed by a universe of 

valid objects X and a distance function d: X x X  R+ 

among its elements. A finite subset U  X, with | U |  = 
n, is the elements set or database, where queries are 
performed. Distance function d will measure the "no-
similarity" among the elements while smaller is the value 
of d, the elements will be more similar to each other. The 
functions of distances must fulfill the following 
properties which assure their consistent definition: Strict 
positiveness: d(x,y) > 0 if x distinct of y; Symmetry: 
d(x,y) = d(y,x); Non-Reflexivity: d(x,x) = 0. However, if d 
is  a metric, it must also satisfy the Triangle inequality 
property where: d(x,y) ≤ d(x,z) + d(z,y), it is the only 
property that avoids comparisons in the search: if the 
distances are known d(x,y) and d(x,z), result of |d(x,y) – 
d(x,z)| it is a lower bound for the distance d(z,y), and in 
some cases knowing this, the calculation of the current 
distance can be avoided. 
There are different types of queries that may involve 
similarity searches, but as an element q  U as query, the 
most commons are:  
• Range queries: recover all elements from database U

that they are at a distance as r of query q. That is to
say,{u  U / d(q,u) ≤ r}.

• K-nearest neighbour queries: retrieve k elements
from U nearest to q. That is to say, any collection
A  U, that fulfills that   |A| = k y v  A, v  U –
A, d(q,u) ≤ d(q,v). The query for the nearest element,
or the nearest neighbour, could be seen as the
particular case when k = 1.
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Overall the calculation of distance function can be very 
expensive and therefore, in large databases, it is not 
feasible to conduct a thorough search to a query. Thus, 
the general solution is to pre-process data base U in order 
to construct an index, which allows to save distance 
calculations during searches. There are basically two 
general approaches to constructing indexes: based on 
compact partitions and based on pivots. In the indexes 
based on compact partitions a set of objects called centers 
are selected and the remaining objects are divided among 
those centers by proximity, thereby determining the zones 
associated with each center; searches are discarded by the 
triangle inequality entire regions of space using 
information areas. In pivots indexes a set of objects called 
pivot are selected, the distances for all the database 
objects to these pivots are calculated and stored; during 
the search, it is calculated the distance of query q to the 
pivots and the objects are discarded using the triangle 
inequality [ZADB06] [S05] [CNBYM01]. This paper is 
focused on pivot-based methods. 
 
Mpeg-7 
MPEG-7 is a standard representation of audiovisual 
information that allows multimedia content description. 
This standard arises from the need to describe audiovisual 
content due to the increasing amount of information. 
Within the scope of this standard it is important to 
describe the major aspects of the contents such as audio, 
voice, video, graphics and 3D models. In MPEG-7 
[SBMCA05] there are descriptors representing a 
syntactically and semantically defined characteristic. In 
the case of images, we have some descriptors such as:  

Scalable Color: is a descriptor of a histogram 
in an HSV colour space into a container 256 using a Haar 
transformation to compress.  

Color Layout: this descriptor represents the 
spatial distribution of the images in a compact form. The 
image is divided into discrete blocks of 8 x 8 and the 
representative colours in the YCbCr space are extracted. 
The descriptor is obtained by applying the discrete cosine 
transform on each block using coefficients. The 
descriptor produces a representation (64-Y, 64-Cb, Cr-
64) of the image. 

Histogram: represents the distribution of five 
types of edges in the image. It is divided into 4 x 4 sub-
images and computes. A 16-block produces an image 
descriptor of 80 bins. 

 
Pivots Index  
As mentioned, an index corresponds to a data structure 
built to facilitate searches in a set U of elements. In 

particular, an index based on pivots selects a set P  X of 
elements called pivots and stores the distance to each 
pivot pi ϵ P to every element u ϵ U in any appropriate 
data structure. These distances define an equivalence 

relation over U. So, if one has a set P = {p1, p2, ..., pm}  
X of pivots, of size m = | P |, distances d(p1,u), d(p2,u), 

..., d(pm,u), u ϵ U are calculated, which makes up the 
index properly. 
Different pivot-based methods, such as: Approximating 
and Eliminating Search Algorithm (AESA), Burkhard-
Keller Tree (BKT), Fixed-Queries Tree (FQT), Fixed-
Height FQT (FHQT), Vantage Point Tree (VPT), Linear 
AESA (LAESA) and Sparse Spatial Selection (SSS), they 
differ from each other mainly for the method they choose 

the P set [BNC03] and the structure wherein the distances 
are stored [CNBYM01]. Most of them are static, because 
they need to know beforehand the elements of the 
database to build the index. However, the proposed index 
in [Bris06], Sparse Spatial Selection (SSS), admits to 
being created as elements of the database arrive, which is 
the setting of interest for this paper. 
 
Sparse Spatial Selection 
Sparse Spatial Selection (SSS) [BFPR06] is the technique 
that dynamically selects a set of well distributed pivots 
around the metric space. This index is based on the idea 
that, if the pivots are scattered "spatially" in space, they 
will be able to discard more objects during the search. To 
achieve this, when an object is inserted into the database, 
it is selected as a new pivot if it is "quite far" from the 
already selected pivots, which is a desirable property of a 
set of pivots [BNC03]. It is considered that an element is 
"quite far" from another pivot if it is greater or equal 
distance M × α where M is the maximum distance 
between any two objects in X and α a parameter whose 
optimal values are near 0.4 (i.e. The object is selected as 
a pivot if there is a little less than half of the maximum 
distance from all other pivots). Figure 2 shows an 
example of a set of objects on the plane R2 with 
Euclidean distance and how the pivots are distributed in 
space. 
 
 

 
Figure 2. Example distribution pivots with 

 SSS. 
 
The α parameter affects the number of pivots that are 
selected. And for the M parameter you must have in 
advance all the items in the collection of objects to 
estimate its value. 
A great advantage of this technique, apart from the 
dynamics, it should not be fixed in advance the number 
of pivots, because the number of pivots adapts to the 
"complexity" or dimension of metric space. It has been 
empirically shown that the number of pivots that SSS 
obtained is very similar to the optimum number obtained 
with other strategies.  

 
4. S4 MODELING 

 
This section presents the design of an application that 
receives objects, images, processes and index them into a 
system based on pivot index. The application is designed 
to take advantage of the characteristics of the S4 platform 
and performs image processing in real time. To do this, 
each image that enters the system should be transformed 
into a vector of descriptors, which can be handled easily 
by the indexing algorithm. Figure 3 shows the application 
schema. 
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The application Adapter initially reads the images and 
sends them to a PE (Init), where they will be routed to a 
process of reducing the image (Est0 and Est1). That is, if 
you enter an image of 512x512 pixels, the image 
becomes 8x8 pixels. In this paper two reducers images 
were used so that the utilization does not exceed 50%. 
The new reduced image is sent to the PEs to be 
responsible to obtain a characteristic of MPEG-7 using 
the open-source library LIRE [L13]. Each PE works 
independently. In particular, in this paper we use the 
features of MPGE-7 called histogram (Hist), Scalable 
Color (SC) and Color Layout (CL). At the same time, the 
process Color Layout can be parallelized by three 
processes which are responsible for obtaining red, green 
and blue images colour filters (Y, Cb and Cr). The 
process that calculates the Histogram generates a vector 
of 80 descriptors. Scalable Color process generates a 
descriptor vector of 32, and the process that computes the 
Color Layout generates a vector of 64 descriptors. 
Therefore, each vector representing an image having a 
size of 176 descriptors. 
Each PEs that is responsible for obtaining MPGE-7 
features sends the result of the descriptor vector to a PE 
(Join) in charge of joining all the features in a single 
vector. 
The descriptor vector representing the image is sent to a 
PE responsible for determining whether the vector 
corresponding to a pivot. To this objective, the PE 
previously called DLi (i = 0..3), calculates the distance 
between the existing pivots for image collection and the 
new image vector generated. This distance calculation 
process is parallelized so that any PE participating in the 
operation exceeds 50% utilization. Finally, the PE called 
PIV applies the function SSS described in the previous 
section to determine if the new vector image corresponds 
to a pivot. 
To parallelize the construction of the index, we use an 
approach based on partitioning columns or pivots. In 
other words, a PE Index will be responsible for managing 
a sub-set of pivots. To do this, there is initially a single 
PE Index (Ind0) responsible for building the pivot index. 
When the PE Index exceeds 50% utilization, it creates a 
second PE Index, This new PE manages another sub-set 
of pivots. This process is repeated as many times as 
necessary to avoid saturation of the PE Index. 
When Pivot PE receives a vector image, this PE sends all 
the vector images to the PE Index. If a vector is not 
selected as a pivot for the PE Pivot, then this vector is 
attached as a row in each PE Index. Note that this 
involves calculating the distance between the vector and 
all the pivots of the sub-table pertaining to each PE 
Index. 
If the vector is selected as a pivot, this vector is also sent 
to all PEs Index to be annexed as row, because a pivot 
table is also part of the collection of images that can be a 
candidate in response to a query. Figure 4 left shows this 
situation. 
However, as shown in Figure 4 on the right side, the 
work to be performed is more computationally expensive 
for the PE responsible for appending Index as pivot (as a 
column). Because PE must not only compute distances 
between vectors of the sub-images and new pivot table, 
PE must also compute the distance between the new pivot 
to all pivots existing in the sub-table. That is to say, as a 
last resort PE should append a column and a row of 
distances. 

Figure 3. Application schema. 

Figure 4: Selecting a new pivot application 
computational cost. 

5. RESULTS

The results obtained are presented. In particular, we focus 
on service time and PEs utilization. Utilization is 
measured by taking the service time divided by the total 
runtime of the application. In other words this metric 
indicates the workload of each PE and allows detecting 
potential bottlenecks. In the case of PE Index also we 
evaluate the throughput (number of vectors indexed per 
unit time), and the average time to index a new vector. 
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The tests were performed on a cluster with 16 CPUs with 
64-bit Intel Core Quad Q9550 2.83GHz processor and 
4GB RAM DDR3 1333 Mhz each node. 
We worked with a set of images [Food] which are hosted 
locally on each cluster node. This set contains 101 
photographs of food categories, a total of 101,000 images 
(5 Gb of space). The total execution time required to 
index all the images is 479 minutes (8 hours). 

Vector construction evaluation  
Figure 5 shows the service time consumed by each PE 
that participates in the process of constructing the vector 
for each image received by the system.  

Figure 5: PEs service time used for constructing an image 
vector. 

The x-axis shows the runtime in minutes required to 
process all images. The y-axis shows the time of service 
of each PE in logarithmic scale and in microseconds. In 
the case of partitioned PEs as DLi and EST, for 
simplicity and clarity of graphical average of results 
obtained for these PEs is shown. 
In general, all PEs have a similar service time. The 
process that performs the routing of the Color Layout is 
the shortest one which is followed by Join and JoinCL 
processes. 

Figure 6 shows the utilization reported by PEs 
participants in the vector images construction process. As 
expected, the operation reported a high utilization in the 
process to determine if a new vector is selected as the 
pivot for the collection or not, using the SSS technique. 
This operation requires a lot of comparisons of distances, 
which tends to increase when increasing the size of the 
collection of indexed images. 

Figure 6: Utilization reported by responsible PEs for 
creating the vector image 

Index construction evaluation  
Next, we show the results obtained by the PE responsible 
for building the pivots index. Remember that an 
important objective of this paper is the PEs that build the 
pivot table and store the distances between the vector 
images and the lists of pivots do not exceed 50% 
utilization. In other words, when an PE Index reported a 
utilization of 50%, system creates a new PE Index for 
administering the new pivots. 
Figures 7 and 8 show the utilization and service time in 
logarithmic scale respectively of the PEs responsible for 
building and maintaining the index pivots. Initially the 
system starts with only one PE Index. When it reaches 
50% utilization, a second PE Index is created. To process 
all images a third PE Index is created at about 4 hours 
after the index system has begun to operate. 

Figure 7: PEs Index utilization making index process. 

Figure 9 shows the throughput measured as the number 
of vector images index per unit time in each PE Index. 
The graphic shows that PEs tends to start with a value of 
high throughput (700 for Ind0, 580 for IND1 and 390 for 
IND2). This throughput value tends to decrease as they 
enter more images to system and indexing work is 
divided among more PEs. 
Figure 10 shows the average time to index every image in 
microseconds. As expected, this time increases as the 
system contains a greater amount of vector images, 
because the new image must be compared to more pivots 
in each index partition. 

Figure 8: Service time in microseconds of PEs 
responsible for indexing the images.  

Similarity search 
In this section the performance of the proposed search of 
images in a system based on pivot index is evaluated. To 
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do this, given the collection of 101,000 images, 70% of 
these images were indexed and the 30% rest was used for 
similar searches. 
A radius of 3 is used in the search system. The algorithm 
shows the images that are a distance of no more than 3 of 
the query image. 

Figure 9: Throughput for PE Index. 

Search process works as follows. Once we obtained the 
representing vector of the image in PE called Join, this 
vector is sent to each PE DLi to calculate the distance for 
each existing pivots to the new query vector. Then, 
distances with the vector query is sent to PE PIV. In this 
case, as the incoming event is a "QUERY" PE PIV 
redirects this event to PE Index. PE Index calculated the 
triangle inequality between images stored locally and 
vector image to discard the no similar images. Those 
images that cannot be discarded are directly comparable 
to the query. Finally, if the distance is d (q, vi) ≤r then the 
image represented by the vector vi is reported as a result. 

Figure 10: Service time in microseconds of PEs 
responsible for indexing the images. 

Figure 11 shows the number of queries processed per 
minute in each PE Index. At the start of the 
implementation of PE Index reported a low number of 
processed queries. This is the effect of start-up system 
that can be discarded, because the system quickly reaches 
a state stable execution, where an average of 13 queries 
per minute were resolved by the PE Index. 
Figure 12 shows the average number of candidate images 
reported every minute by the system to process queries. 
In general, it can be observed that the PE Index I3, is the 
one that discarded images the most. 
Figure 13 shows the average time required to process a 
query in microseconds. The results show that the query 
processing time is directly related to the amount of 
candidate results. In other words, as shown in Figure 12, 
the PE Index IND2 reports less candidate images for 

queries which have a direct effect on the processing time 
for each query. IND2 is the shortest time reported in the 
Figure 13. 

Figure 11. Query number processed by PE Index. 

Figure 12. Average number of candidate images for 
queries.  

Figure 13. Average time to process a query. 

6. CONCLUSIONS AND FUTURE WORK

Although there is a significant progress in Big Data 
technology for efficient processing of large volumes of 
unstructured data, today's world presents challenges 
which current platforms, by themselves, are not enough. 
The reason is the additional requirement for fast 
processing of the data to be useful in decision making 
organizations. Thus, the demands for stream processing 
techniques provide solutions that are designed to handle 
large volumes in real time, allowing the effect of 
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"analysis and subsequent reaction with data in motion". 
In this paper we used the stream processing platform, 
called S4 to accelerate image processing system, when a 
continuous flow of objects are expected. The design of 
the application architecture that is capable to analyze and 
act on a flow of images in real time is presented here. 
Finally, an experimental study of the performance of each 
step involved in the process is done. As to the 
construction of the feature vector, it is visible the impact 
of the SSS technique used to search, making this one of 
the points to continue to develop to optimize the 
proposed architecture. Regarding the construction of the 
index, the technique used to maintain the utilization of PE 
50%, showing its positive impact on time indexing of 
objects-images. Finally, this paper analyzes the 
performance of the whole process of similarity search of 
images, showing how the process is favoured when it has 
a solid architecture, and dynamic time, enabling it to rule 
out candidates during the search process. 
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