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ABSTRACT

In this paper, an algorithm inspired on the T-
Cell model of the immune system is presented,
it is used to solve Economic Dispatch Problems
with smooth objective function. The proposed
approach is called IA EDP S, which stands for
Immune Algorithm for Economic Dispatch Prob-

lem for smooth objective function, and it uses as
differentiation process a redistribution power op-
erator. The proposed approach is validated using
five problems taken from the specialized litera-
ture. Our results are compared with respect to
those obtained by several other approaches.

Keywords:Artificial immune systems , economic
dispatch problem , metaheuristics

1. INTRODUCTION

The objective of Economic Dispatch Problem
(EDP) is to minimize the total generation cost
of a power system while satisfying several con-
straints associated to the system, such as load
demands, ramp rate limits, maximum and mini-
mum limits, and prohibited operating zones. The
objective function type (smooth or non smooth)
and the constraints which are considered in the
problem will determine how hard is to solve the
problem.

Over the last years, several methods have been
proposed to solve the EDP. They can be divided
in three main groups: classical, based on artificial
intelligence (AI) and hybrid methods. Classical
methods have been proposed to solve EDP, but
they suffer from some limitations (for instance,
the objective functions and the constraints must
be differentiable). On the other hand, modern
heuristic algorithms have proved to be able to
deal with nonlinear optimization problems, e.g.,
EDPs. Surveys about these techniques can be
found in [14] and [2].

In this paper, we propose an algorithm to solve
EDPs which is inspired on the T cells from the
immune system. Once the algorithm has found a
feasible solution, it applies a redistribution power
operator in order to improve the original solution
with the aim of keeping such a solution feasible
at a low computational cost.
The remainder of this paper is organized as fol-
lows. Section 2 defines the economic dispatch
problem. In Section 3, we describe our proposed
algorithm. In Section 4, we present the test prob-
lems used to validate our proposed approach and
parameters settings. In Section 5, we present our
results and we discuss and compare them with
respect to other approaches. Finally, in Section
6, we present our conclusions and some possible
paths for future research.

2. PROBLEM FORMULATION
The schedule has to minimize the total produc-
tion cost and involves the satisfaction of both
equality and inequality constraints.
Objective Function

Minimize
TC =

∑N

i=1
Fi(Pi)

where TC is the fuel cost, N is the number of
generating units in the system, Pi is the power of
ith unit (in MW) and Fi is the total fuel cost for
the ith unit (in $/h).
An EDP with a smooth cost function represents
the simplest cost function. It can be expressed
as a single quadratic function: Fi(Pi) = aiP

2

i +
biPi + ci, where ai , bi and ci are the fuel con-
sumption cost coefficients of the ith unit.
Constraints
1. Power Balance Constraint: the power gener-

ated has to be equal to the power demand
required. It is defined as:

∑N

i=1
Pi = PD

2. Operating Limit Constraints: thermal units
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have physical limits about the minimum and
maximum power that can generate:Pmini

≤
Pi ≤ Pmaxi

, where Pmini
and Pmaxi

are the
minimum and maximum power output of the
ith unit, respectively.

3. Power Balance with Transmission Loss:
some power systems include the transmission
network loss, thus Power Balance Constraint
equation is replaced by:

∑N

i=1
Pi = PD + PL

The PL value is calculated with a function
of unit power outputs that uses a loss coef-
ficients matrix B, a vector B0 and a value
B00:
PL =

∑N

i=1

∑N

j=1
PiBijPj +

∑
i=1

B0iPi +
B00

4. Ramp Rate Limits: they restrict the oper-
ating range of all on-line units. Such limits
indicate how quickly the unit’s output can
be changed:max(Pminj

, P 0

j − DRj) ≤ Pj ≤

min(Pmaxj
, P 0

j +URj), where P
0

j is the pre-

vious output power of the jth unit(in MW)
and, URj and DRj are the up-ramp and
down-ramp limits of the jth unit (in MW/h),
respectively.

5. Prohibited Operating Zones: they restrict
the operation of the units due to steam valve
operation conditions or to vibrations in the
shaft bearing:


Pmini
≤ Pi ≤ P l

i,1

Pu
i,j1 ≤ Pi ≤ P l

i,j , j = 2, 3, ..., nj
Pu
i,nj ≤ Pi ≤ Pmaxi

where nj is the number of prohibited zones
of the ith unit, P l

i,j and Pu
i,j are the lower and

upper bounds of the jth prohibited zone.

3. OUR PROPOSED ALGORITHM
In this paper, an adaptive immune system model
based on the immune responses mediated by the
T cells is presented. These cells present special
receptors on their surface called T cell recep-
tors (TCR: are responsible for recognizing anti-
gens bound to major histocompatibility complex
(MHC) molecules.) [6].
The model considers some processes that T cells
suffer. These are proliferation (to clone a cell) and
differentiation (to change the clones so that they
acquire specialized functional properties); this is
the so-called activation process.
IA EDP S (Immune Algorithm for Economic Dis-
patch Problem with Smooth Objective Function)
is an adaptation of an algorithm inspired on
the activation process [2], which is proposed to
solve the EDP with Smooth Objective Function.
IA EDP S operates on one population which is
composed of a set of T cells.

For each cell, the following information is kept:
1. TCR: it identifies the decision variables of

the problem (TCR ∈ ℜN ). Each thermal
unit is represented by one decision variable.

2. objective: objective function value for TCR,
(TC(TCR)).

3. prolif : it is the number of clones that will be
assigned to the cell, it is N for all problems.

4. differ: it is the number of decision variables
that will be changed when the differentiation
process takes place (if applicable).

5. TP : it is the power generated by TCR
(
∑N

i=1
TCRi).

6. PL: it is the transmission loss for TCR (if
the problem does not consider transmission
loss, then PL = 0).

7. ECV : it is the equality constraint violation
for TCR (| TP − PD − PL |). If ECV > 0,
then the power generated is bigger than the
demanded power, and if ECV < 0 then the
power generated is lower than the required
power.

8. ICS: it is the inequality constraints sum,∑nj

i=1
poz(TCRi, i), where poz(p, i) ={

min(p− PZlli , PZuli − p) ifp ∈ PZ
0 otherwise

where nj is the number of prohibited oper-
ating zones and PZ = [PZlli , PZuli ] is the
prohibited range for the ith thermal unit.

9. feasible: it indicates if the cell is feasible or
not. A cell is considered as feasible if: 1)
ECV = 0 for problems without transmis-
sion network loss and 0 ≤ ECV < ǫ for
problems with transmission loss. This means
that if a solution generates less than the de-
manded power, then it is considered as in-
feasible (ECV < 0) and 2) ICS = 0 for
problems which consider prohibited operat-
ing zones.

Differentiation for feasible cells - Redis-

tribution Process: The idea is to take a value
(called d) from one unit (say i) and assign it
to another unit (variable). ith unit is modi-
fied according to: cell.TCRi = cell.TCRi − d,
where d = U(prob ∗D,D), D = min(cell.TCRi−
lli, U(min,max))), U(w1, w2) refers to a random
number with a uniform distribution in the range
(w1,w2), max is the maximum power that can be
generated by the other units according to their
current outputs (i.e. max = maxNn=1∧n6=i(uln −
cell.TCRn), min is the minimum power that can
be generated by the other units according to their
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current outputs (i.e. min = minNn=1∧n 6=i(uln −
cell.TCRn)).
d was designed to avoid: 1) that the ith unit falls
below its lower limit and 2) to take from the ith

unit more power of what other units can generate.
Next, d has to increase the power of another unit
(say k). In a random way k is selected considering
cell.TCRk + d ≤ ulk.
The main difference between IA EDP S and the
algorithm proposed in [2] arises in the number
of variables that are modified. This version just
changes i and k while version [2] changes i and
one o more variables. Note this operator only
preserve the feasibility of solutions by taking into
account the power balance constraints.
Differentiation for infeasible cells: For

infeasible cells, the number of decision vari-
ables to be changed is determined by their dif-
ferentiation level. This level is calculated as
U(1, N). Each variable to be changed is cho-
sen in a random way and it is modified ac-
cording to: cell.TCR

′

i = cell.TCRi ± m, where

cell.TCRi and cell.TCR
′

i are the original and the
mutated decision variables, respectively. m =
U(0, 1)∗ | cell.ECV + cell.ICS |. In a random
way, it decides if m will be added or subtracted
to cell.TCRi. If the procedure cannot find a
TCR′

i in the allowable range, then a random num-
ber with a uniform distribution is assigned to it
(cell.TCR

′

i = U(cell.TCRi, uli) if m should be

added or cell.TCR
′

i = U(lli, cell.TCRi), other-
wise).
The algorithm works in the following way (see Al-
gorithm 1). First, the TCRs are randomly initial-
ized within the limits of the units (Step 1). Then,
ECV and ICS are calculated for each cell (Step
2). Only if a cell is feasible, its objective func-
tion value is calculated (Step 3). Next, while a
predetermined number of objective function eval-
uations had not been reached or if after 50 itera-
tions the best value does not improve (Steps 4-6)
the cells are proliferated and differentiated con-
sidering if they are feasible or infeasible. Finally,
statistics are calculated (Step 8).

Algorithm 1 IA EDP S Algorithm
1: Initialize Population();
2: Evaluate Constraints();
3: Evaluate Objective Function();
4: while A predetermined number of evaluations has not

been reached or Not improve do

5: Proliferation Population();
6: Differentiation Population();
7: end while

8: Statistics();

4. VALIDATION

IA EDP S performance was validated with five
test problems, SYS 3U, SYS 6U, SYS 15U,

SYS 18U and SYS 20U (see [2] for full descrip-
tion). Table 1 provides their most relevant char-
acteristics and the maximum number of function
evaluations (Eval). IA EDP S was implemented
in Java (version 1.6.0 24) and the experiments
were performed in an Intel Q9550 Quad Core pro-
cessor running at 2.83GHz and with 4GB DDR3
1333Mz in RAM.

Table 1: Test Problems Characteristics - PZ in-
dicates if prohibited zones are considered

Problem N PL PZ PD (MW) Eval
SYS 3U 3 No No 850.0 1000
SYS 6U 6 Yes Yes 1263.0 3000
SYS 15U 15 Yes Yes 2630.0 20000
SYS 18U 18 No No 365.0 40000
SYS 20U 20 Yes No 2500.0 20000

The required parameters by IA EDP S are: size
of population, number of objective function eval-
uations, and probability for redistribution opera-
tor. To analyze the effect of the first and third
parameters on IA EDP S’s behavior, we tested it
with different parameters settings. Some prelimi-
nary experiments were performed to discard some
values for the population size parameter. Hence,
the selected parameter levels were: a) Population
size (C) has four levels: 1, 5, 10 and 20 cells and
b) Probability has three levels: 0.01, 0.1 and 0.5.

Thus, we have 12 parameters settings for five
problems. They are identified as C<size>-
Pr<Prob>, where C and Pr indicate the popu-
lation size and the probability, respectively. For
each problem, 100 independent runs were per-
formed.

The box plot method was selected to visualize
the distribution of the objective function values
for each power system. This allowed us to deter-
mine the robustness of our proposed algorithm
with respect to its parameters. Figure 1 shows
in the x-axis the parameter combinations and
the y-axis indicates the objective function val-
ues for each problem. We can see that better
results are reached with the lowest probability
value and the highest population size. So, C=5
and Pr=0.01 were used to compare the results
got by IA EDP S with those produced by other
approaches.

Considering the lowest number of objective func-
tion evaluations used by the other approaches
(see [2]) we take as maximum number of func-
tion evaluations, 1000, 40000, 3000, 20000 and
20000 for SYS 3U, SYS 18U, SYS 6U, SYS 15U
and SYS 20U, respectively. Also, we set ǫ=0.1 for
those problems which consider loss transmission
(e.d. SYS 6U, SYS 15U and SYS 20U).
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Figure 1: Box plots for the test problems with the best parameters combination

5. COMPARISON OF RESULTS AND

DISCUSSION
Table 2 shows: the best, worst, mean, median,
standard deviation and number of function evalu-
ations obtained by IA EDP S. Only four decimal
digits are shown due to space restrictions. For all
the test problems, our proposed IA EDP S found
feasible solutions in all the runs performed.
Problems which do not consider transmission loss,
rate ramp limits or prohibited zones, i.e., SYS 3U
and SYS 18U, do not seem to be a challenge for
IA EDP S. The standard deviations obtained by
IA EDP S are lower than 1. Additionally, the
problem dimensionality does not seem to affect
the performance of our proposed approach either.
For problems which consider transmission loss,
rate ramp limits and prohibited zones, SYS 6U a
and SYS 15U, the standard deviations increase
with the problem dimensionality.
For the only problem which considers transmis-
sion loss but not rate ramp limits or prohibited
zones, SYS 20U, the standard deviation is lower
than SYS 15U’s standard deviation.
Eleven methods are compared with respect to
IA EDP S. They are cited in Table 3. The run-

ning time of each algorithm is affected by both the
hardware environment and the software environ-
ment. That is the reason why the main compar-
ison criterion that we adopted for assessing effi-
ciency was the number of objective function eval-
uations performed by each approach. For having
a fair comparison of the running times of all the
algorithms considered in our study, they should
all be run in the same software and hardware en-
vironment (something that was not possible in
our case, since we do not have the source code
of several of them). Clearly, in our case, the em-
phasis is to identify which approach requires the
lowest number of objective function evaluations
to find solutions of a certain acceptable quality.

However, the running times are also compared
in an indirect manner, to give at least a rough
idea of the complexities of the different algorithms
considered in our comparative study. For all test
problems IA EDP S found the best cost in the
lowest time. Except for SYS 3U, where fast-PSO
just required 0.01 second and IA EDP S spent
0.18 seconds to find the best solution.

Table 3 summarizes the performance IA EDP S
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Table 2: Results obtained by IA EDP S

Problem Best Worst Mean Median SD. Ev.
SYS 3U 8194.3561 8194.3784 8194.3597 8194.3584 0.004 987.16
SYS 18U 25429.8005 25433.0655 25430.9312 25430.8415 0.614 35103.15
SYS 6U 15442.8962 15455.2466 15444.3082 15443.6071 1.877 1490.62
SYS 15U 32700.2971 32865.2657 32763.5364 32758.1897 35.765 18321.5
SYS 20U 62476.1186 62636.5875 62522.3703 62513.2753 30.371 8151.36

Table 3: Comparison of results. The best values are shown in boldface.

Problem/
Algorithm Best Worst Mean Std. Time(s) Ev.
SYS 3U
IEP[10] 8194.35 - - - - -
MPSO[9] 8194.35 - - - - -
IPSO [11] 8194.35 - - - 0.42 3000
ModPSO [12] 8194.40 - - - - -
fast-CPSO[4] 8194.35 - - - 0.01 3000
IA EDP S 8194.35 8194.37 8194.35 0.004 0.18 987
SYS 18U
ICA-PSO [13] 25430.16 25462.34 25440.89 - 18.585 40000
IA EDP S 25429.80 25433.06 25430.93 0.614 1.168 35103
SYS 6U
IHS[7] 15444.30 - 15449.86 4.531 - 100000
BBO [3] 15443.09 15443.09 15443.09 - - 50000
ICA-PSO[13] 15443.24 15444.33 15443.97 - - 20000
IA EDP S 15442.89 15455.24 15444.30 1.877 0.828 1490
SYS 15U
CCPSO[8] 32704.45 32704.45 32704.45 0.0 16.2 30000
MDE[1] 32704.9 32711.5 32708.1 - - 160000
SA-PSO [5] 32708.00 32789.00 32732.00 18.025 12.79 20000
IA EDP S 32700.29 32865.26 32763.53 35.76 1.328 18321
SYS 20U
IA EDP S 62476.11 62636.58 62522.37 30.371 2.016 8151

with respect to that of the other methods. As
shown in Table 3, considering the best cost found,
IA EDP S outperforms all other approaches.
Considering running times, IA EDP S requires
less than one second to find solutions with an
acceptable quality for SYS 3U and SYS 6U. It
requires less than 1.4 second for SYS 15U and
SYS 18U. And it requires less than 2.1 second for
SYS 20U.

We could not found an approach that report feasi-
ble solutions for SYS 20U, so IA EDP S obtained
the best results.

6. CONCLUSIONS AND FUTURE

WORK

This paper presented an adaptation of an algo-
rithm inspired on the T-Cell model of the immune
system, called IA EDP S, which was used to solve
economic dispatch problems. IA EDP S is able to
handle the five types of constraints that are in-
volved in an economic dispatch problem: power
balance constraint with and without transmission
loss, operating limit constraints, ramp rate limit
constraint and prohibited operating zones.

At the beginning, the search performed by
IA EDP S is based on a simple differentiation op-
erator which takes an infeasible solution and mod-
ifies some of its decision variables by taking into
account their constraint violation. Once the al-
gorithm finds a feasible solution, a redistribution
power operator is applied. This operator modi-
fies two decision variables at a time, it decreases
the power in one unit, and it selects other unit to
generate the power that has been taken.

The approach was validated with five test prob-
lems having different characteristics and compar-
isons were provided with respect to some ap-
proaches that have been reported in the special-
ized literature. Our results indicated that dimen-
sionality increases standard deviations when the
same types of constraints are considered but pro-
hibited zones have more impact on the perfor-
mance than dimensionality. Our proposed ap-
proach produced competitive results in all cases,
being able to outperform the other approaches
while performing a lower number of objective
function evaluations than the other approaches.

As part of our future work, we are interested in
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redesigning the redistribution operator in order to
maintain the solutions’ feasibility when a problem
involves prohibited operating zones.
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