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Abstract. An updated version of a tool for automated analysis of source code 

patches and branch differences is presented. The upgrade involves the use of 

machine learning techniques on source code, comments, and messages. It aims 

to help analysts, code reviewers, or auditors perform repetitive tasks 

continuously. The environment designed encourages collaborative work. It 

systematizes certain tasks pertaining to reviewing or auditing processes. 

Currently, the scope of the automated test is limited. Current work aims to 

increase the volume of source code analyzed per time unit, letting users focus 

on alerts automatically generated. The tool is distributed as open source 

software. This work also aims to provide arguments in support of the use of this 

type of tool. A brief overview of security problems in open source software is 

presented. It is argued that these problems were or may have been discovered 

reviewing patches and branch differences, released before the vulnerability was 

disclosed. 
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1 Introduction 

This work presents a software tool for automated source code patches and branch 

differences analysis. It aims to systematize updates and source code reviews to alert 

on potential bugs, implying some degree of system security compromise, or 

vulnerabilities. The tool is distributed as an open source project and available at 

http://github.com/gicsi/aap. Currently, we have not found other open source tools 

available for the proposed functionality presented here. Other projects have been 

published but they largely deal with software engineering. For instance: trackable 

recoveries between source code and corrected bugs through patch analysis [5], or the 

use of patches for bug reporting. In the first case, a data processing tool was presented 

for Bugzilla systems, identifying the information with CVS tags.  

In the case of open source analysis with cryptographic functionalities, Android 

case studies show that, for instance, only 17% of 269 vulnerabilities - reported in the 

period between January 2011 and May 2014 - were attributed to glitches in the 

http://github.com/gicsi/aap


cryptographic libraries. The remaining 83% were attributed to flaws in the 

application´s use of these libraries [14].  

Furthermore, Android applications were analyzed in [8]: 10.327 out of 11.748 

applications (88%) reported at least one implementation error. This last work 

presented an automatic detection tool, but was not distributed freely [15]. 

Other tools are available for general use to assist in source code management. 

However, they do not focus on security problems or patch reviews . They operate 

over the entire development cycle. Among the most common available open source 

alternatives, [12] and [23] are worth mentioning. 

In the next section, references are surveyed on open and commercial software 

alternatives, dealing with security issues [4, 19, and 22].  

It should be noted that control systems aiming at specific revisions have their own 

difficulties and limitations. 

A study analyzing 210 samples showed that over 40% were not reported in the 

evaluation of C/C++ source code with five analytical tools; while only 7% of those 

samples were appropriately reported by the five tools [30]. Analogous results were 

found in the same study, using six tools based on Java. 

The Open project OWASP [22] has identified the weaknesses of automated tests. It 

has also pointed out their strengths: ability to perform fast and repetitive analysis over 

a high volume of source code, the capacity to detect high probability errors, and the  

specificity provided in the reports. 

2 Source Code Analysis 

2.1 The Cost of Software Quality 

Source code analysis and inspections are a continuous best-practice, aiming to 

improve software quality. It should be noted that although the quantity of bugs in a 

software project is not the only quality indicator, it constitutes a valuable measure for 

control and potential enhancements to development processes. Strictly, the goal of 

these reviews is to reduce the cost of software quality by identifying and correcting 

bugs at early stages of development [25]. 

It has been shown empirically [9] that software quality depends on control 

mechanisms used as an integral part of processes. Furthermore, the rate of personal 

inspections (measured in quantity of source code lines per time unit) has been shown 

to affect the effectiveness in detection (and correction) of bugs. Data shows, for 

instance, that review quality declines as this rate exceeds its recommended maximum 

of 200 code lines per hour. The authors cite previous articles in which a rate of 125 

lines per hour is considered the optimum [3]. They also note: "it is almost one of the 

laws of nature about inspections, i.e., the faster an inspection, the fewer defects 

removed" [25]. 

2.2 Analysis Systematization 

When dealing with software quality and the effectiveness of source code review, 

analysis systematization may yield efficient quality and development control 



processes when accounting for the time demanded from an analyst. Quality assurance 

tools are an essential resource in the improvement of software applications.  

In a NIST publication, the minimum required functionality specifications in a 

source code analyzer for searching vulnerabilities are laid out [2]. The article suggests 

that it should identify security weaknesses, and report them tagging their type and 

location.  

According to SEI/CERT, relying exclusively on policies, standards, and good 

practices for software development have proven inadequate [30]. It points out that 

these factors are not being applied consistently and that manual source code audits 

can be complemented and enhanced with systematized and automated tests. 

2.2.1 Current Available Tests 

Different organizations maintain lists from which a great range of tools for testing 

source code are referenced. Among them: the NIST webpage, Source Code Security 

Analyzers [19], and the Secure Coding Tools from CERT [4].  

Finally, the OWASP project is an obliged reference, maintaining a thorough list of 

source code analysis tools [22]. 

3 Post Patch Vulnerabilities 

3.1 Errors in the Categorization of Vulnerabilities 

In his recent thesis [34] and revising previous work [35, 36, 33], Jason Wright - 

best known for his work in the cryptographic framework of the OpenBSD operating 

system [13] – emphasizes the importance of patch reviews. In the third section of his 

last publication, he introduces the concept of hidden impact bugs. The concept is also 

found in [35] and [33]. In the latter the term used is hidden impact vulnerabilities, 

referring to previous work [1]. However, they all deal with the same concept; i.e., 

vulnerabilities which were reported as bugs and whose real impact – their 

vulnerability category – was recognized after issuing the initial report which included 

a patch to solve what was believed to be a software flaw or defect with no security 

implications.  

Impact delay is defined as the time elapsed since the report of the flaw – as a patch 

– until the time when the bug was tagged with a CVE. In 2012, the author, 

contributing with others at a second stage of analysis, published a review of hidden 

impact bugs in the source code (patches) of the Linux Kernel and MySQL database 

[33]. Later, in 2013, they published an extended analysis, focusing on MySQL 

exclusively [35]. 

The tests consisted of detailed reviews of a subset of the reported bugs. The source 

code associated to the bugs is analyzed to determine the percentage of unclassified 

vulnerabilities. The authors extrapolate the results to yield an estimate of the total 

percentage on reported flaws. From the available data, the results are summed up as 

follows: 

- In the second stage analysis of the Linux kernel - from January 2009 to April 

2011 - results show that from a total of 185 hidden impact bugs, 73 (39%) had 



an impact delay of less than 2 weeks; 55 bugs (30%) had a delay of less than 4 

weeks; and 29 (16%) had a delay of less than 8 weeks. 

- In the MySQL study, total hidden impact bugs sum up to 29. From them, 19 

(65%) had an impact delay of less than 2 weeks, also 19 had a delay of less 

than 4 weeks, and 16 bugs (55%) had a delay of less than 8 weeks. 

 

3.2 Fixed Issues in NTP-devel 

A reference implementation of the protocol used to synchronize clocks over the 

network, known as Network Time Protcol (NTP), is distributed as part of the Linux 

operating systems, among others. In December 2014, a series of security issues – 

some of them categorized as critical – were identified. The information went public 

along with patches to fix the problems. However, the bug database used by the 

development team showed that some of these bugs had already been fixed in the devel 

version, years before.  

Additional information is available in their security webpage [16]. A brief outline 

of the particular details is given below to illustrate the way in which a comparison 

between two versions can point out critical fixes not implemented in the stable 

version. 

Although Bugzilla´s historical data show that the information was made accessible 

to the public on 12/12/2014, messages on bug 2665 [17] - regarding a weak 

cryptographic default key - point out that the vulnerability had already been 

“corrected” four years before, in the NTP-devel (4.2.7), particularly “(4.2.7p11) 

2010/01/28.” 

An additional example involves bug 2666 [18] dealing with a random number 

generator – cryptographically insecure with a weak initialization seed. Although it 

was later fixed once again before the release of version 4.2.8, messages point out that 

the development version n 4.2.7 p30 (of November 1st, 2011) had already corrected 

the problem, referring an enhancement of the seed management. 

 

3.3 Multiple Patches for Shellshok Vulnerabilities 

Recently discovered in the UNIX bash shell system, the Shellshok vulnerabilities 

represent an example of critical security problems which are not corrected completely 

or adequately in the first published patches. The importance and criticality of the 

vulnerability was highlighted in The Register [28], in which they recommended 

immediate installation of the patch to avoid wide open access to Linux and OS X 

operating systems. The news, along with a public notice from Red Hat [26], and the 

updated packages are dated September 24th, 2014. Nonetheless, later, related 

problems were identified and for which Red Hat did not offer updates until September 

26th, 2014 [27]. 

 

3.4 Simultaneous Discovery of the Heartbleed Vulnerability 

During 2014, a critical vulnerability, known as Heartbleed, was disclosed. It 

consisted of an exploitable bug in the OpenSSL library. According to Bruce Schneier, 



half a million sites were infected, turning the problem catastrophic [29]. A Red Hat 

Security representative [6] considered that the coincidence of two simultaneous 

findings of a single problem would increase the risk of maintaining the vulnerability 

secret. Consequently, it can be inferred that this rationale could have encouraged 

OpenSSL to release updated packets hastily. The rush in the releases may be 

responsible for the lack of coordination in issuing the patches. Thus, this illustrates 

how, under certain circumstances, several organizations can publish patches in an 

non-coordinated manner. 

3.5 Vulnerability in OpenBSD after a Misclassified Bug 

In 2007, an IPv6 vulnerability was found in the OpenBSD kernel [21]. A specially 

crafted ICMP packet could generate a remote buffer overflow, when handled by an 

internal function which miscalculated the buffer´s length. According to the author, the 

vulnerability was identified while analyzing – and trying to reproduce – a problem 

already fixed by a patch rated as reliability fix instead of vulnerability or security fix 

[20].  

4 Patch Analysis Tool 

4.1 Automated Analysis of Patches, or AAP, version 0.2b 

4.1.1 Idea and Rationale 

Beside obvious differences in source code and binary analysis, the project is based 

on the criteria used by automated malware analysis tools, such as the Cuckoo 

Sandbox. 

In [11], two problems are identified when performing this type of analysis 

manually: the increasing volume of malware in the wild and the time required for a 

thorough inspection. 

The goal in this work also involves an efficacy assessment in the use of IA 

techniques, especially text mining and machine learning, applied to source code 

patches and “texts” in general comments. 

The rationale relies on published work regarding the discovery of vulnerabilities in 

the patches distribution of open source code projects. The references in the third 

section of this article constitute examples of this problem. 

4.1.2 Machine Learning 

Although beyond the scope of this article, a brief overview is presented here on the 

techniques and applications of machine learning implemented in the tool presented in 

this article: 

 

Natural Language Processing (NLP). Natural language is understood as the 

language used by human beings to communicate: English, Spanish, ... Generally, NLP 

involves the manipulation of a natural language through the use of computer systems. 

For instance, text analysis enables the detection of positive or negative sentiments in 

tweets – in favor or against. 



Supervised Classification. Classifying comprises assigning tags of the appropriate 

category to particular entries or inputs. The set of tags is defined beforehand. Some 

classification examples are SPAM identification or news categorization (sports, 

finance, and others). A classifier is supervised when it is trained based on data 

(corpora) containing the correct tag for each entry or input. 

 

AAP Implementation. For the generation of tagged data, bug reports, with 

attached patches, were downloaded from Red Hat and OpenBSD public bug database 

system and errata pages, respectively. The labels “vulnerability” and “bug” were 

defined according to the criticality established in the original reports. With this set of 

tagged entries or inputs, classifiers - of the naïve Bayes and decision tree types - were 

trained. These classifiers can then be used from a plugin to estimate the appropriate 

tag for each automatically analyzed patch. 

4.1.3 Functionality Currently Implemented  

Through its web interface, the tool maintains and organize information of software 

projects, reference to its repositories, branches, updates, and analysts users assigned to 

them. 

In addition, the web interface handles the general configuration for the automatic 

reviews of patches and different versions. These rules are implemented in the form of 

plugins, programmed in Python and editable on the interface itself. 

The verifications of these rules, automatically executed over patches or over 

branch differences of a software project update, activates alerts whenever necessary. 

Currently, these rules include, among others, searching for configured patterns in 

source code and comments, detecting source code implementing cryptographic 

functionality, and checking for changes in specific files or done by particular authors 

or committers. 

Since version 0.2b, the tool contemplates the application of machine learning 

techniques through trained classifiers with patches and comments from public bug 

information repositories. Classification analysis applies a per “vulnerability” or “bug” 

criteria. 

Configured rule inspections are performed over patches recovered from GIT 

repositories [10]. 

The periodic batch process updates the repositories and automatically performs the 

analysis configured  for each of its branches. The outcome includes the generation of 

system alerts -and optionally sending notification emails with analysis results- to the 

assigned analysts. 

4.1.4 Technologies 

The tool consists of a web-based application developed in the Python language 

[24] and using Web Django framework [7]. It makes use of GIT versatility for 

updating and handling source codes [10]. Other external tools may be used  

optionally. 

Currently, plugins to classify patches and comments are implemented using an 

open source library or toolkit, also developed in Python: NLTK (Natural Language 



Toolkit). It includes software, data and documentation, and can be freely downloaded 

from http://nltk.org/.  

NLTK Trainer constitutes another resource – a set of Python scripts for NLTK 

model training.  

Particular plugins for static analysis were implemented for different languages 

(C/C++, Python, Perl, PHP) based on the use of open source tools like FlawFinder, 

RATS, Splint and CppCheck. 

4.1.5 Open Source Software 

The tool's source code is publicly published using a free service for open source 

projects management: http://github.com/gicsi/aap. It is licensed under the terms of the 

GPL, or GNU General Public License, from the Free Software Foundation. 

5 Further Work 

Functionality enhancements are under design. The expectation is to capture the 

interest of other developers and encourage them to get involved with the project. 

Among other improvements, the following features are under consideration: to 

achieve a higher degree of sophistication in rule and algorithm design, to extend the 

use of machine learning in the tool, to incorporate information retrieved from 

developers´ discussion forums, and to integrate the tool with other databases dealing 

with vulnerability reports and security advisories. 
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