
Software Product Line Reengineering: A Case
Study on the Geographic Domain ∗

Agustina Buccella1,2, Alejandra Cechich1, Matias Pol’la1,2, and Maximiliano Arias1,2

1GIISCO Research Group, Departamento de Ingenieŕıa de Sistemas, Facultad de Informática, Universidad
Nacional del Comahue, Neuquen, Argentina

{agustina.buccella, alejandra.cechich,matias.polla,maximiliano.arias}@fi.uncoma.edu.ar
2Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET

Abstract

The growing adoption of software product lines
(SPL) represents perhaps a paradigm shift in soft-
ware development aiming at improving cost, qual-
ity, time to market, and developer productivity.
While the underlying concepts are straightfor-
ward enough building a family of related prod-
ucts or systems by planned and careful reuse of
a base of generalized software development assets
the problems can be in the details, as successful
product line practice involves domain understand-
ing, technology selection, and so forth. Today,
there is an important increment on reporting ex-
periences and lessons about SPL development by
capturing aspects that have been gathered dur-
ing daily practice. Following this line, in this pa-
per we start from our experiences of developing
a software product line on the Marine Ecology
domain highlighting our reasons for reengineer-
ing a previous SPL. Then, we explain step-by-
step reengineering activities in terms of motiva-
tion, solutions, and lessons learned, which sum-
marize strengths and limitations of the applied
practices. Differently from other cases, here we
take advantage of using domain standards as well
as open source implementations within the geo-
graphic domain.

Keywords: Reengineering, Software Product
Lines, Component-Based Software Development,
Open Source Development, GIS Standards

1 Introduction

Software Product Line Engineering (SPLE) is
a relevant area which is being highly analyzed
and studied during the last years. New devel-
opments have emerged by following novel devel-
opment methodologies ([1, 2, 3, 4, 5]) and many

∗ This work is partially supported by the UNComa
project 04/F001 “Reuso de Software orientado a Dominios”
part of the program “Desarrollo de Software Basado en
Reuso”

experiences and case studies have been presented
with successful results ([3, 6, 7]). These results
have showed mainly a reduction of the develop-
ment costs, time-to-market, and complexity; and
improved some non-functional requirements as
maintenance, evolution, and reuse. The apparent
success of the SPL approach have also generated
that legacy systems are being reanalyzed in order
to take advantage of their codes and designs for
the construction of this type of systems. Thus,
methodologies and experiences on reengineering
legacy systems towards SPLs have emerged pro-
viding a wide spectrum of possible mechanisms
to be applied ([8, 9, 10, 11, 12]). All of them
try to show how the change to an SPL approach
improves software qualities. At the same time,
another aspect intimately related to SPLs is the
domain in which they are developed. A correct
analysis of the domain will define then the success
of the resultant SPL.

Building upon previous work in SPL develop-
ment ([13, 14]), in this article we describe a reengi-
neering process which faces two important as-
pects, the geographic domain and the improve-
ment of platform capabilities. With respect to
the first one, we take advantage of our previous ex-
periences and the standards provided by the ISO
Technical Committee 211 (ISO/TC 211)1 and the
Open Geospatial Consortium2 (OGC). Thus, we
apply two semantic resources, a service taxonomy
(based on the ISO 19119 standard 3) and func-
tion datasheets ([15]), in order to design a new
SPL which shows clear benefits with respect to
its previous version.

With respect to the second aspect, improve-
ments of software qualities, we apply a reengineer-
ing process which takes the domain particulari-
ties and redesign and reimplement the previous
SPL. This process is guided by open source de-
velopment principles promoting the collaborative
and iterative work ([16, 17]). Within the activ-

1http://www.isotc211.org/
2http://www.opengeospatial.org/
3Geographic information. Services International Stan-

dard 19119, ISO/IEC, 2005.

JCS&T Vol. 16 No. 1 April 2016

14

ities, we describe the way software components,
included into a three layer architecture, were de-
fined, designed, and implemented. At the same
time, we provide an exhaustive selection process
of geographic tools which are capable of imple-
menting our architectural constraints. Finally, we
show the refactoring results involving the underly-
ing technology and the way to represent the vari-
ability within the reusable components. Each ac-
tivity of the reengineering process is described in
terms of motivation, solution and lessons learned
highlighting the main strengths and limitations
found on each of them.

This paper is organized as follows. The next
section presents related work in the literature re-
garding to SPL reengineering. Section 3 presents
the background of our previous experiences on
SPL development. Section 4 details the activities
performed during the reengineering process. Fi-
nally, future work and conclusions are discussed
afterwards.

2 Related Work

The main benefits generated by the application
of new SPL developments and their proved re-
sults from different industrial cases4 have moti-
vated the creation of novel methodologies in all
fields of this engineering, such as, variability mod-
eling ([18, 19]), domain engineering ([20, 21, 22]),
etc. At the same time, the wide range of exist-
ing complex software systems have put the inter-
est on the creation of new methodologies for mi-
grating to the SPL approach. Pioneered works
on reengineering of legacy systems have been pro-
posed in [1, 10, 23, 24]. For example, the methods
MAP (Mining Architectures for Product Lines)
([24]), and OAR (Options Analysis for Reengi-
neering) ([10]), developed by the Software En-
gineering Institute5, are based on mining exist-
ing assets of legacy products for reusing in a
product line approach. Both methods can be
used together for supporting the reuse of archi-
tectures or independent components to be fit in
specific architectural constraints6. At the same
time, other two contemporary methodologies, the
PuLSE (Product Line Software Engineering) ([1])
and RE-PLACE (Reengineering Enabled Product
Line Architecture Creation and Evolution) ([23]),
support the reuse of existing assets by proposing
specific reengineering activities included in the
methodologies. PuLSE is a more general method-
ology that can also be used for a completely new

4http://www.sei.cmu.edu/productlines/
casestudies/catalog/

5http://www.sei.cmu.edu
6http://www.sei.cmu.edu/productlines/frame_

report/miningeas.htm

SPL development (without reusing legacy prod-
ucts). On the contrary, the RE-PLACE method
is specific for product line reengineering address-
ing activities to identify, model, design, and make
the transition of legacy products to an SPL ap-
proach.

During the last few years, new proposals have
emerged focusing on different branches of soft-
ware product line reengineering. A systematic
review of these branches together with particu-
larities of recent works was presented by [25]. At
the same time, in [26] authors extend this review
for generating a taxonomy based on three main di-
mensions of the SPL reengineering process – qual-
ity, SPL implementation, and legacy migration.
From these works, and following the line of the
pioneered works on methodological aspects of the
reengineering approach, we can cite recent works
that propose different views of the whole process.
For instance, works presented in [8, 12, 27] com-
bine activities for SPL reengineering with incre-
ment and iteration practices of agile methodolo-
gies7. The main idea of these works is to gain
benefits of agile approaches to be transfered to
the SPL development. Thus, for example, in [8]
authors show the results of this new approach in
which they demonstrated that the process over-
head was reduced by means of improving the in-
volvement of customer and development teams.

In addition, we can find several works describ-
ing experiences on real cases of an SPL reengi-
neering process ([9, 11, 12, 27, 28, 29, 30]). For
example, in [27], in which a collaborative ap-
proach is combined with agile product line plan-
ning, authors present the industrial case study
of the PROSOL software company. The whole
process, consisting mainly of moderated sessions
among participants, had the goal of generating
the product map of the SPL ([5]). Main results
indicated an earning in time and quality. An-
other industrial case study is described in [11]
by applying an evolutionary approach for WES
products8. Here, authors analyze the possible im-
provements generated by a proactive or a reactive
evolution and the experiences of applying them
in the WES product line. The work presented
in [12] describes the Alcatel-Lucent SPL reengi-
neering project in which four main practices were
involved. Each of them, described in detail in
terms of problems, solutions, and results, gives
a clear view of the activities performed and the
benefits obtained. Other interesting work describ-
ing a cost-benefit analysis during a migration to
a software product line approach is presented in
[29]. Here, authors show, through the application

7http://www.agilemanifesto.org/
8WES is an industrial product family developed by Fu-

dan Wingsoft Co. Ltd., in Shanghai, China.

JCS&T Vol. 16 No. 1 April 2016

15

of federated architectures, the direct cost savings
during the deployment of the line. Finally, in [30]
authors describe their experiences of reengineer-
ing legacy home service robot applications into
product line assets. The proposal applies reverse
engineering, and by refining feature-oriented mod-
els, builds a new architecture and components for
the line. The main benefits presented are based
on the use of process architecture, planned guide-
lines, and feature-oriented principles.

As we have defined in the introduction section
and according to [26], our work also includes ac-
tivities within the variant-preserving refactoring
dimension. Within this dimension, the code is an-
alyzed for implementing improvements towards
a better and simpler representation ([31]). Sev-
eral works in this area are focused on proposing
feature-oriented product-line implementations by
using feature-oriented programming (FOP) ([32]).
For example, in [33] authors propose a catalog
of four refactorings for feature-oriented SPL and
apply them for removing code clones. However,
within the refactoring activity in SPL, there are
still few works and real experiences that show the
real problems and possible challenges in this area
([26]).

In this work, considering some of these related
works on reengineering and the previous experi-
ences in this area ([10, 24, 27, 33]) we have defined
activities of the domain engineering area that in-
clude the particularities of the geographic domain
together with refactoring activities. At the same
time, these activities were defined by taking into
account main problem found in the previous SPL
and its particularities (which they are fully de-
scribed in the next section). We also considered
the semantic resources defined in [15] which were
not fully exploited in the previous SPL, in order
to generate a better design and implementation.

3 Motivation and Background

We designed the previous SPL by following a
methodology ([13, 14]) that combines advantages
of several methodologies widely referenced in
academy and industry ([2, 5, 34, 35]). Our ap-
proach extended basic characteristics to consider
complex and generic domains, such as the geo-
graphic one that can be split into different sub-
domains. We analyzed these domains by con-
sidering the geographic standards defined by the
ISO/TC 211 and the OGC, and the informa-
tion provided by expert users. In particular, we
worked with two organizations involved in the ma-
rine ecology sub-domain - the Institute of Ma-
rine Ecology and Fishery “Almirante Storni”9

9Instituto de Bioloǵıa Marina y Pesquera - http://
ibmpas.org/

(IBMPAS) and the Patagonian National Center10

(CENPAT-CONICET).
With respect to the standards is important

to highlight that we specialized the service tax-
onomy, defined in the ISO 19119 standard, by
adding specific services belonging to the sub-
domain. These specific services were defined to
be independent of particular applications, that is,
they were defined to be general enough for sup-
porting the range of possible systems developed
in the sub-domain. At the same time, these ser-
vices were classified within a three layer architec-
ture proposed as a reference model in the ISO
19119 standard. In addition, in order to take ad-
vantage of these standard services, we cataloged
them into functional datasheets in order to show
their interactions according to the architectural
layers. These datasheets describe semantically
the way in which the services can be combined
for implementing specific domain functionalities.
The main goals of creating both service taxonomy
and datasheets, were the need of provide semantic
resources to promote the communication among
stakeholders and increase the traceability of the
design decisions during the implementation of the
SPL platform.

Examples of the service taxonomy and
datasheets are presented in the next sections and
further details can be found in [15].

Then, we designed the SPL’s reference architec-
ture as composed of three layers aiming at sepa-
rating services of the taxonomy. Specifically, we
defined the three-layer reference architecture in-
volving a human interaction layer, responsible for
the interaction with the user; a user processing
layer, responsible for the functionality required
by the user; and a model/information manage-
ment layer, responsible for physical data storage
and data management. The main goal of imple-
menting this design was the need of promoting
a separation of the functionality of the system
into three independent layers that interact only
through their well-defined interfaces. Thus, differ-
ent developers would work over each one of these
layers without interfering on the others.

Although the first design and implementation
of the SPL worked fine and the derived products
got a good user’s response, some main goals afore-
mentioned were unfulfilled due to several prob-
lems. In general, we could classify these prob-
lems into two categories: those involving the de-
sign phase and those involving the implementa-
tion one.

With respect to the first category, one of the
problems came from some wrong design decisions,
which made some components lowly cohesive and

10Centro Nacional Patagónico - http://www.cenpat.
edu.ar/

JCS&T Vol. 16 No. 1 April 2016

16

therefore much broader in scope. These deci-
sions were made taking into account that the
same components could be reused in the future.
However, developing them so broadly caused each
component implements a great number of services.
At the same time, another problem came from
constraints of the underlying technology we se-
lected for implementing the component structure.
It causes some changes on the final architecture
increasing dependences among components and
therefore making the service identification harder.
Thus, the result was a strongly coupled design.

Then, the second category, which is intimately
related to the first one, implies implementing the
architecture’s components through a supporting
technology. Here, it is very important to remark
that geographic information processing usually in-
cludes a series of tools that must work together
to store and visualize information properly, that
is, in a correct and friendly way. Properties of
these tools are not always well-known and catego-
rized, making us to deal with uncertain function-
ality. Our previous selection of open-source tools
was based mainly on simplicity and understand-
ability without considering the constraints they
imposed. Thus, although the selected tools al-
lowed developers to implement the components of
the SPL, they partially complying with the archi-
tecture’s requirements. Particularly, benefits of
implementing components were hindered because
we implemented a pseudo-component structure,
which generated coupled code, hard interface sep-
aration, etc.

Finally, a last problem of the previous SPL
was the lack of integration of the pseudo-
component structure with the service taxonomy
and datasheets. Less work was made with re-
spect to this mapping due to the complexity of
this structure. However, integration is impor-
tant to determine the specific functionality of
each component, the functionality that they are
implementing, and their interactions with oth-
ers. At the same time, the integration guaran-
tees the compliance of the components with the
geographic standards.

4 Applying the Reengineering Pro-
cess: Practices

In this section we detail the main activities and
practices involved in our reengineering process in
order to restructure the previous SPL. Figure 1
presents graphically these activities with the two
main information sources involved, the SPL Doc-
umentation, which involves the analysis and de-
sign of the previous SPL; and the Service Tax-
onomy, containing the standard services defined
in the geographic domain and particularly the

Figure 1: Activities of the Reengineering Process

marine ecology subdomain. The first two activ-
ities of the process are part of the domain anal-
ysis phase in which the geographic domain is an-
alyzed and designed. Then, the other five activ-
ities are specific for the SPL reenginering. It is
important to highlight that the activities follow a
collaborative approach in which a reengineering
team must be involved. This team should be a
multi-disciplinary one involving informatics (soft-
ware engineers and developers) and domain ex-
perts. At the same time, as in the previous SPL
implementation we had already applied an open
source approach, we faced this reengineering pro-
cess based on open source development principles
([16, 17]). Thus, aspects as distribution, iteration
and reusability were strongly considered during
the execution of the activities.

1) Domain Analysis:

• Motivation: In the previous SPL we had
to face some problems during the domain
analysis activities. Firstly, as we were dis-
tributed in different cities (software engineers
and developers live in Neuquén and biologists
in San Antonio Oeste and Puerto Madryn,
which means a distance of 500 kms between
both groups) the communication did not
work well. Collaborative tools helped us
to overcome this problem; however the real
problem was having different vocabularies
and preconceptions. It made us to misunder-
stand requirements and waste precious time
during face-to-face meetings.

• Solution: We conformed the reengineering
team including again participants of the dif-
ferent involved areas. In this case, the
team involved five expert users (biologists
in general) and six informatics (software en-
gineers and developers). The informatics
and three of the biologists were involved in
the construction of the previous SPL. This
fact helped reach better understanding of the

JCS&T Vol. 16 No. 1 April 2016

17

next tasks in the process. At the same time,
we implemented specific mechanisms to guar-
antee a fluent communication among the par-
ties. We defined scheduled on-line and face-
to-face meetings and we used shared files to
work on a same line. In order to solve the
problem of misunderstanding, we took ad-
vantage of the service taxonomy and func-
tional datasheets defined in [15] and used
them as a common language and information
structure of the functions required. As we de-
scribed in Section 3, we created a service tax-
onomy according to the ISO 19119 std. This
taxonomy was performed by specializing the
abstract services of the ISO and classifying
them depending on their particular domain
or subdomain. The idea of defining these
services was to bridge the gap among the
different participant’s skills by reducing the
wide spectrum of information sharing. At
the same time, services were defined to be as
general as possible for supporting the range
of possible systems developed in the domains.
In Table 1 we can see a set of the specialized
services according to the architectural layer
and the domain level (geographic, oceano-
graphic and marine ecology) in which they
are included. Services containing a NULL
value in the “inherits from” column corre-
spond to the root services in the service tax-
onomy (the main categories of the ISO 19119
std.). Also, in the table we can observe some
examples of spatial and thematic services.
For instance, the PS-S1.1 service calculates
the distance in meters between two points
(indicated by a user) within specific zones
(represented by a layer) of the map. This
service specializes the spatial category and
belongs to the marine ecology subdomain.

Therefore, in this analysis, the stakeholders
analyzed these services and selected the spe-
cific ones they needed. In addition, the new
requirements, which had not been found in
the taxonomy, were then added as new ser-
vices and included in the correct place (by
agreement, with the consent of all parties
concerned).

• Lessons Learned: One of the main benefits
of doing the domain analysis activities
was the involvement of a multidisciplinary
team, necessary for any domain engineering
activity, and the manipulation of a standard
structure understood by everyone. How-
ever, this structure must be sound as well
as dynamic at the same time. It means
allowing stakeholders to adapt the structure
to specific requirements without losing

its core assets. Obviously, each domain
has its own characteristics, but we could
take advantage of the many standards the
geographic domain provides as a basis to
define our structure. It helped us not only
build a common vocabulary for requirements
today, but also for requirements that may
come from different organizations, all over
the world, in the future. Therefore, we
recommend the use of domain standards
whenever they exist. In case world-wide
standards are not available, it would be
highly recommendable to develop in-house
standards and/or taxonomies in order
to facilitate domain analysis. Works, as
presented in [36, 37, 38, 39], proposing
novel methodologies to create taxonomies
as semantic resources, could be taken into
account in order to assist the development.

2) Product Analysis and Scope:

• Motivation: As a consequence of the commu-
nication problems during the domain analy-
sis activity, the scope of the previous SPL
was vaguely defined. The component struc-
ture was designed by supporting only a sub-
set of services required by the domain and
implemented in a widespread way. Thus, the
final structure resulted in a set of pseudo-
components providing a set of services hardly
identifiable.

• Solution: Based on the set of standard ser-
vices, during this activity, we defined which
specific services must be part of the new SPL
platform and which ones could be product-
specific. At the end of this activity, we added
nine services to the taxonomy with four pos-
sible variabilities (which were also defined as
services). The addition of these services mod-
ified the previous product/service matrix in-
dicating the new services required by the
platform together with the product-specific
services required by each product to be im-
plemented. Finally, in this activity we re-
analyzed the pseudo-component structure of
the previous SPL and mapped it to the ser-
vices of the taxonomy. Table 2 shows some
of the pseudo-components that changed in
the reengineering process. As we can ob-
serve, the pseudo-components were defined
in a general way implementing too many ser-
vices (Section 3). For instance, the Graph-
ical Statistics component implemented the
service PS-S4 which includes all the possible
statistics the platform could contain, such
as the size and growth rate of the species

JCS&T Vol. 16 No. 1 April 2016

18

Table 1: Part of the Service Taxonomy according to the abstraction levels, architectural
layers and domains

Layer Service Name Inherits From Domain

Model

MMS.Geographic model/information
management NULL Geographic

MMS-FA.Feature Access MMS Geographic
MMS-FA1.1.Search Zones MMS-FA Marine Ecology

Processing

PS.Geographic processing services NULL Geographic
PS-S1.1.Calculate distances (meters)
between points in zones PS-S1 Marine

Ecology
PS-T2.Subsetting PS-T.Thematic Geographic
PS-T2.2.Query the name of a station PS-T2 Marine Ecology

Human
Interaction

HI.Geographic human interaction NULL Geographic
HI-LM5.1.Show/hide layers according
to specific scales HI-LM5 Marine

Ecology
HI-LM5.1.2.Show zones by polygons HI-LM5.1 Marine Ecology
HI-LM1.20.Show description of zones by labels HI-LM1 Marine Ecology

population, changes on geographical distri-
butions of species, etc. This generality on
the component implementation undermined
the easy modifiability and evolution, mak-
ing finding specific functionalities and bugs
within each module really difficult. Obvi-
ously, this also affected the independence
among components making them highly cou-
pled.

All these problems found were reflected in a
technical report describing, for each pseudo-
component, the specific set of implemented
services and their dependences with others.

• Lessons Learned: As this activity was
mainly focused on performing an analysis
of the previous SPL, the main resource
used was again the service taxonomy. The
mappings among the pseudo-components
and standard services allowed the team
to identify the set of services provided by
each of them and determine which services
(required by the platform) were not satisfied.
At the same time, as the communication
in this activity was a main limitation, we
recommend to put special effort on doing
frequent face-to-face and on-line meetings
by sharing documents until all members of
the team agree with the platform services.
Likewise, it is necessary to define clear
objectives and commitments with agreed
changes in order to avoid an unnecessary
waste of time. Novel techniques and method-
ologies to be benefited from meetings can be
found in several different areas on the Web11.

11http://www.ilo.org/public/english/support/lib/
knowledgesharing/meetings.htm

3) and 4) Candidate Component Analy-
sis & Platform Analysis and Design:

• Motivation: The problems identified in the
last activity together with the new require-
ments of the domain, and the product/ser-
vice matrix, motivated a reengineering of the
pseudo-component structure to be applied on
the SPL architecture (Section 3). In the two
activities here, we had to improve the highly
coupled design and define specific services for
each new component according to the service
taxonomy. At the same, we had to abstract
away from the underlying technology which
had generated a bad design in the previous
SPL.

• Solution: To perform these activities, the
pseudo-component structure was completely
changed giving more importance to the ser-
vices’ interactions of the taxonomy and the
functionality required by the domain. Here,
only the software engineers and developers
participated of the activity without interven-
tion of user experts. This decision of exclud-
ing user experts was substantiated in the fact
that the tasks included software development
techniques, such as software artifacts, mod-
els, etc. Thus, the new reusable components
were designed taking the function datasheets
as basis, and adapting them to the platform
requirements. For example, Figure 2 shows
the design model of the query zone attributes
function datasheet denoting the interaction
among eight services included on the service
taxonomy. The dotted lines represent variant
choices for showing zone attributes. For ex-
ample, the PS-T2.5 (query the code of zones)
service can require the HI-LM1.2 (code zone

JCS&T Vol. 16 No. 1 April 2016

19

Table 2: Component Inventory

Pseudo-Components Implemented Services according the service taxonomy
Graphical
Interface

HI-LM5.Hide/show layers - HI-MM4.Panning & zoom - HI-LM2.Layer scales -
HI-MM2.Refreshing

Geographic
Feature

Management

HI-LM1.Show layer attributes - HI-LM5.1.Show/hide layers according to specific
scales - HI-LM6.Editing attributes

Change Detection PS-T1.1.Determine changes on population of species in different censuses -
PS-T1.3.Determine changes of distribution of species in different censuses

Proximity
Analysis PS-S3.3.Obtain geographic features around an specific area

Geographic
Statistics PS-S4.Generate statistics of geographic features

Feature Access MMS-FA1.Access to geographic feature
Map Access MMS-MA1.Access to georeferenced maps

Figure 2: Design model item of the query zone
attributes datasheet

by table) or the HI-LM1.19 (code zone by la-
bels) service depending on specific platform
requirements. The same happens with the
PS-T2.6 (query the description of zones) ser-
vice which can require, alternatively, to show
the attribute by labels or tables. At the same
time, the functionality needs the services HI-
LM.5.1.2 (show zones by poligons) and MMS-
FA1.1 (search zones) for searching the zones’
attributes in the geographic database.

Then, we took these reusable components in
order to build the final reference architecture
of the new SPL. For example, for the query
zone attributes functionality, we added the
variant services as variabilities on the show
zone attributes component.

• Lessons Learned: We have learned several as-
pects during this activity which worked fine
to us. Firstly, and considering team inte-
gration, we suggest involving only the stake-
holders who better understand methodolo-
gies and techniques to be applied. There
must be some of them, who were more in-

volved during taxonomy and/or standard
adaptation, so they are more familiar with
the common vocabulary and its implications.
They are the best candidates to be part of
the reduced team. Secondly, analyze service
interactions to identify recurrent uses with
their particularities. From there, extract in-
teractions rules and formalize them through
a committed document. In our case, this doc-
ument was the function datasheet, which es-
tablished a skeleton to start modeling and de-
signing common and variable services (trans-
lated later into components). Of course, the
use of domain standards is valuable at this
step too.
Finally, the design of service interactions
should be kept independent from any kind
of technology. Technology constraints will
be analyzed during the next step, when con-
crete components are designed according to
an implementation platform. So, we should
avoid thinking of technology limitations at
this point. This is really helpful when look-
ing for recurrent interactions that depend on
domain requirements.

5) Platform Refactoring:

• Motivation: The refactoring was the most
important activity in our reengineering pro-
cess. It was motivated by the idea of improv-
ing two main problems found in the previ-
ous SPL. Firstly, we had to select the correct
geographic open source tools that can im-
plement the architectural constraints defined
in the previous activities. Both the archi-
tectural layers and the software component
structure had to be preserved. Secondly, ac-
cording to the tools and technology selected,
we had to rewrite the code considering also

JCS&T Vol. 16 No. 1 April 2016

20

the variabilities of each functionality. These
two tasks were performed towards improv-
ing the previous coupled code, hard interface
separation, inefficient variability implementa-
tion etc.

• Solution: The first task was related to the
geographic domain and the geographic tools
available. As we followed an open source
development, we had to analyze the wide
set of open source tools available for the
domain. At the same time, it was important
to understand the nature of GIS and the
functions of each open source component
in order to guarantee the selection process
and then the implementation success ([40]).
To do so, we began searching and analyzing
literature and documentation of geographic
tools to understand their behavior. This
task was really hard and complex because
there exists a really huge number of geo-
graphic tools. Fortunately several works
published on the Web agree on a classifica-
tion of geographic tools into five categories.
Table 3 shows these categories exemplified
by open source tools. It is important to
highlight that some tools fit in more than
one category because they can be used to
implement functionalities of either of them.
For example, we can see in the table that
MapBender can be used as a web client or
as a development framework.

Our evaluation was based on several aspects
that must be supported by the selected tools.
The aspects analyzed were:

– Features provided: Which are the fea-
tures the tool is intended to provide?
For each layer of our architecture and
considering the functionality each com-
ponent should implement, we listed the
needed features, such as possibility of
defining spatial datatypes and opera-
tions, support to raster analysis, etc.,
which were later used to analyze the de-
gree of support of each tool.

– Maintenance/Longevity: Is the tool be-
ing maintained? Here we evaluated
whether the tool was actively main-
tained, and that it would be maintained
far into the future.

– Support: Does the tool provide a
good documentation? Are administra-
tor manuals, reference guides, and fo-
rums available and clear enough? Here
we evaluated the documentation pro-
vided by the tool as well as the active

discussion on different forums of partic-
ularities about its features.

– Extensibility: Is the tool easy to ex-
tend? Here we evaluated whether the
tool would be easily customizable and
extensible to add new features unsup-
ported by its original source.

– Independence: Is the tool independent?
Here we analyzed the software depen-
dences required by the tool. We eval-
uated with a higher score those tools
which did not need other tools to work.

– Integrability: Is the tool easily inte-
grable with other tools? We analyzed
here whether the tool had the ability
of working with others. Thus, we mea-
sured the possibility of the tools of in-
teracting among them according to our
architectural levels and the component-
based approach. A high value indicated
that the tool provided communication
mechanisms to be integrated.

– Standard-compliance: Is the tool com-
pliant with GIS standards proposed by
the OGC and/or ISO 19100? We evalu-
ated the tools considering the standards
they support, such as WFS and/or
WMS services12,13.

To evaluate these aspects we used the docu-
mentation provided by each tool including
user and administration guides, wikis and
forums in which they had been referenced,
and projects in which they had been applied.
Also, we took advantage of several Web
sites with comparisons among open source
tools within the geographic domain, such as
those provided by the OSGEO Foundation14.
Thus, we scored each tool according to the
previous aspects obtaining different results.
In Figure 3 we can see the score obtained
by OpenLayers according to each aspect
evaluated.

It is important to highlight here that the
most difficult evaluation was in the inte-
grability aspect due to the complexity to
determine in this stage the real compatibility
among the tools. Before evaluating this
aspect, we made a preselection of the tools
to make the final selection simpler. Thus,
in some cases, some tools that had been
selected in the preselection phase, were then
discharged due to their incompatibilities

12http://www.opengeospatial.org/standards/wms
13http://www.opengeospatial.org/standards/wfs
14http://www.osgeo.org/

JCS&T Vol. 16 No. 1 April 2016

21

Table 3: Classification and examples of GIS open source software

Category Examples

Desktop GIS
GRASS (http://grass.osgeo.org/) - uDig (http://udig.refractions.net/) -
QGIS (http://www.qgis.org/es/site/) - MapWindow GIS
(http://www.mapwindow.org/)

Web GIS
Clients

OpenLayers (http://openlayers.org/) - Mapbender
(http://www.mapbender.org/) - Ka-Map (http://ka-map.maptools.org/) -
MapBuilder (http://www.mapbuilder.net/)

Web Map
Server

GeoServer (http://geoserver.org/) - MapServer (http://mapserver.org/) -
MapGuide (http://mapguide.osgeo.org/) - Mapnik (http://mapnik.org/)

Spatial
Database

Management
Systems

PostGIS (http://postgis.net/) - MySQL-GIS (http://dev.mysql.com/)

Software
Development
Frameworks

GeoMajas (http://www.geomajas.org/) - MapFish (http://mapfish.org/) -
MapBender - FDO (http://fdo.osgeo.org/)

Software
Libraries and

Extensions

GDAL & OGR (http://www.gdal.org/) -GeoTools
(http://www.geotools.org/) - FDO

Figure 3: Results of the evaluation of the OpenLayer according to our evaluation aspects

to work with others. To do so, we had
to install all the preselected tools and run
some test cases in which they had to work
together. In addition, the different versions
of each tool had to be evaluated because
some new versions of the tools did not work
well with others, but older versions did.
Thus, we finally arrived into a selected set
of tools that implement services for each
architectural layer. In Figure 4 we show the
tools used in the previous SPL against the
new set of selected tools.

Based on this new set of tools, we performed
the second task within the Platform Refac-
toring activity. In this task, we had to refac-
tor the old code to adapt it to the new com-
ponent approach according to the program-
ming technology and tools selected. As we
previously described in Section 3, the previ-

ous SPL used PostGIS, GeoServer and Open-
Layers to implement services within the lay-
ers of the architecture. In Figure 4 we can see
that the two first layers (human interaction
and user processing) were implemented using
OpenLayers in its javascript version running
over an Apache Tomcat15 web server. As
the interface was coupled to the processing,
the services were implemented as javascript
libraries and HTML pages. With the new se-
lected tools, we could separate the interface
of the processing by using the GWT16 frame-
work to implement javascript code. The
GWT uses OpenLayer as a library to add
geographic abilities to the code. Then, we
used Enterprise Java Beans ([41]) technology
to implement the processing services which
interact with the model and interface ser-

15http://tomcat.apache.org/
16http://www.gwtproject.org/

JCS&T Vol. 16 No. 1 April 2016

22

Figure 4: Comparison of the previous and the new tools selected

vices to fulfill specific functionalities. Finally,
the tools applied for the last architectural
layer were the same than in the previous SPL
(GeoServer and PostGIS). At the same time,
another particularity of the new set of tools
is that they run over a JBoss17 application
server which allowed us to run EJB compo-
nents.
Thus, with these new set of tools and the def-
inition of the new underlying technology, we
began the refactoring task. In order to show
some work made for this activity, we present
Listing 1 and 2. In Listing 1 we can see an
extract of the set of files in javascript and
HTML code to implement the query zone at-
tributes functionality. Then, in Listing 2 we
can see how the code was refactored to repre-
sent the same functionality but implemented
according to our architecture and the tech-
nology chosen. As we can see there are many
differences between them. First of all, in the
previous SPL we can see that all the process-
ing and variability management were repre-
sented in the html web page. At the same
time, the javascript files, one for defining
the layers (layers.js) and the other for con-
structing the table with the zone attributes
(manageFeatures.js) access the database for
querying the zone through geoserver services.
Each layer of the system (such as zones,
stations, etc.), which must be visualized in
a product of the SPL, must be coded and
called by an HTML web page. Thus, we can
see the code is highly coupled making the
web pages contain all the processing of dif-
ferent functionalities of the platform together
with the possible variant points.
In the new SPL (Listing 2), we divided

17http://www.jboss.org/

the functionality into different components
which perform specific services. Therefore,
as we have showed in Figure 2a), three com-
ponents of the three architectural layers im-
plement services to fulfill the functionality
required. At the same time, the variability
was differently represented adding java anno-
tations technology18. Each java annotation
describes a set of features which will be ap-
plied at the instantiation time. Thus, the
variant points were represented by dummy
methods which will be fulfilled if the variabil-
ity is chosen.
The output of the Platform Refactoring ac-
tivity was a set of reusable components im-
plemented, which built the SPL platform.

• Lessons Learned: Selecting open source tools
and the underlying technology is always a
complicated task that depends on many
factors. Far from defining here a whole
process for selecting software, our lessons
are more focused on particular aspects of
the process. In our case, the main challenge
was to define the appropriate evaluation
characteristics that allow developers imple-
ment the architectural constraints defined in
the new SPL. On one hand, and similarly to
other domains, the geographic one offers a
huge number of open tools, which can turn
the selection into a chaotic unstructured
process. To mitigate this fact, we look this
as an opportunity to find more appropriate
tools by prioritizing characteristics. We put
more emphasis on three of them: standard-
compliance, extensibility and integrability.
The first one is important to design decisions
that made us to follow standards whenever

18http://docs.oracle.com/javase/tutorial/java/
annotations/

JCS&T Vol. 16 No. 1 April 2016

23

it is possible. The second one is important
because we prioritized preserving architec-
tural constraints and component structure,
so we needed the possibility of extending the
selected tools in case they were not able to
fulfill our expectations. Finally, intregrabil-
ity was relevant for achieving an adequate
performance when running the selected
tools all together. This characteristic was
tested twice to be certain of getting the
right combination of selected tools.

File: layers .js

// == Defining zone styles ==//
var zoneStyle = OpenLayers .Util.

applyDefaults (
{ strokeColor : "#99 fd00",
fillColor : "#99 fd00 ",
fillOpacity : 0.5} ,
OpenLayers . Feature . Vector . style [" default "

]);
....
// == Defining zone layers ==//
...
var zoneBC = new OpenLayers . Layer .WFS(

"BC: Bahia Creek ",
"/ geoserver /wfs",
{ typename : ’gissao : zona_BC ’},

...

File: manageFeatures .js

// == Show zone attributes in a table ==//
function showInfoFeatures (mapa){

mapa. events . register (’click ’, mapa ,
function (e) {

var url = "http :// geoserver .ods.org/
geoserver /wms"

....

File: gis - ibmpas .html

// == Including libraries ==//
...
<script src=" layers .js" type="text/

javascript " >...
<script src=" manageFeatures .js" ...
....
// == Adding layers ==//
map. addLayers ([costas ,zoneswfs , stationswfs ,

zonaBC ...]) ;
...
// == When clicking call to manageFeatures .js

==//
// == Variability point showing attributes in

table ==//
showInfoFeatures (map);
....

Listing 1: Code in JavaScript and HTML

Therefore, in addition to following a selection
process, prioritizing characteristics according
to domain and design decisions should drive
the screening and evaluation of candidate
tools.
On the other hand, code refactoring implied
rewriting several lines of code and creating
a completely new method for representing
variability. To do so, we created templates
and transformation guidelines for coding
components according to each architectural

level. These templates were annotated to
help find and instantiate the component
variability. Then, documenting refactoring
through standard documentation helped
us keep activities under control as well as
implement the refactoring itself.

Show Zone Attribute Component

// == AsynCall to Show Zone Attribute

Component ==//
callback = new AsyncCallback <List <

WFSManipulation > >(){
public void onSuccess (List <

WFSManipulation > result){
âĂę.
public void onClick (ClickEvent arg0){
...
i f (check . getValue ()){

mapaBase . addMapLayer (map , wfsZona);
variantPointInsertTableZona (wfsZona .

getName ());
...}

// == Variant Point to to show attributes in
a table format ==//

@Variability (service ={"Show attibutes in a
Table "},

type ={" optional "},
function = {"call ZoneTable "})

private void variantPointInsertTableZone (
String nameZona){

...{
public void onSuccess (List <String >

result){
table_Zone . AddFile (result)

;}
...

// == Call to Query Zones Component ==//
Servicio . QueryZone (idZone , callback);
}
...

}; // == end Asyncall ==//

Query Zone Component

public List <String > QueryZone (String idZone

, String BD){
...
List <String > zone = new ArrayList <String

>();
// == Search zone in DB through the Search

Zone Component ==//
ResultSet respuesta = SearchZones . Search (

idZone , Zones);
try {

respuesta .next ();
zone.add(respuesta . getString (" codigo

"));
zone.add(respuesta . getString ("

descripcion "));
...

Search Zone Component

public Resultset SearchZones (String idZona ,

String BD){
// == Real access to DB ==//

BDAcceso datos = new BDAcceso (BD);
datos . conectarse ();
String select =

" select * from Zonas Where codigo = ’
"+ idZona +"’";

....}

Listing 2: New code by following a component-
based approach

The final activity during the reengineering pro-
cess was validation. In this activity we performed

JCS&T Vol. 16 No. 1 April 2016

24

Table 4: Summary of good practices within each reengineering activity

Activities Summary of Practices

1. Domain Analysis
* conform a multidisciplinary team
* take advantage of domain standards whenever is possible
* develop semantic resources (i.e. in-house taxonomies)
* use domain standards and semantic resources to build a common vocabulary

2. Product Analysis
and Scope

* mappings among semantic resources and previous SPL
* frequent meetings
* clear definition of goals and commitments

3,4. Candidate
Component Analysis
& Platform Analysis

and Design

* redefine the reengineering team by selecting members more familiar with the
semantic resources

* extract recurrent uses as interaction rules
* use well-defined guides and describe through committed documentation
* keep design independent from technology constraints

5. Platform
Refactoring

* define a selection process of open source tools
* put emphasis on standard-compliance, extensability and integrability
* define templates for implementing components

some regression tests in order to verify the previ-
ous functionalities were supported and the new
ones run correctly. However, we must still work-
ing on this activity in order to fully analyze the
functionalities of the new SPL with respect to the
service taxonomy and datasheets defined in the
design activities.

5 Discussion

Our main goals for a reengineering process were
oriented towards reaching highly cohesive and in-
dependent designs that minimize coupling among
services. To do so, we defined and applied
standard resources, domain-services (placed on
the service taxonomy) and function datasheets.
These resources helped us organize the marine
ecology domain (and some of its superdomains)
into a set of fine-grained services, which can inter-
act in different ways to satisfy the requirements
of this domain. At the same time, as the stan-
dard services and the datasheets were defined by
applying guides and rules proposed by geographic
information standards, the reference architecture,
created after the reengineering process, imposed
well-defined design decisions for future extensions.
In addition, this software design enforced special
requirements with respect to implementation is-
sues constraining the underlying technology.

In a previous work [42], we have focused on
the validation process of the new SPL analyzing
aspects such as time required for the construction
of each product, percentage of bugs that were
found in reusable and specific components, and
time required in the construction of product-
specific components. In the analysis we could
see important improvements in time and cost;
so we considered that extracting hints from our

experiences might result interesting to people
involved in similar reengineering efforts. Thus, in
Table 4 we summarize the recommendations that
might help stakeholders to perform the activities.

6 Conclusion and Future Work

In this article we have described our work on
reengineering a software product line within the
geographic domain. We have presented an orig-
inal SPL that combines the use of domain stan-
dards together with open source software; how-
ever, this design is deficient with respect to sepa-
ration of concerns when designing and implement-
ing on a concrete platform. These deficiencies
came from an incorrect selection and use of the
underlying technology and a non-standardized
design and application rules. Thus, we have
showed how the application of some good prac-
tices, such as the definition of standard services,
user’s guides (defined as function datasheets) and
well-design structures, have improved the soft-
ware design and implementation of the reengi-
neered SPL.

In order to summarize our work, we have ex-
tracted a set of good practices coming from our
experiences performing each activity of the reengi-
neering process as well as from the original SPL
development.

As another contribution for geographic infor-
mation system development, we have described a
selection of geographic software that is quite com-
plex in practice. Our experiences suggest taking
into account a component-based software design
and integrability as core elements for selecting
tools; without neglecting other quality features,
especially standard compliance and extensibility.

JCS&T Vol. 16 No. 1 April 2016

25

As a final conclusion, the reengineered SPL has
showed how some bad habits, highly promoted
sometimes such as fast implementations, coupled
code, circular dependences, etc., can be avoided
consequently improving reusability capabilities.

Our future work is focused on evaluating the
final architecture more formally and improving
the mechanisms for variability management of our
component-based structures.

References

[1] J. Bayer, O. Flege, P. Knauber, R. Laqua,
D. Muthig, K. Schmid, T. Widen, and J. De-
Baud, “Pulse: A methodology to develop
software product lines,” in Proceedings of
the 1999 Symposium on Software Reusability,
SSR ’99, (New York, NY, USA), pp. 122–131,
ACM, 1999.

[2] J. Bosch, Design and use of software archi-
tectures: adopting and evolving a product-
line approach. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 2000.

[3] P. C. Clements and L. Northrop, Soft-
ware Product Lines: Practices and Patterns.
Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 2001.

[4] M. Matinlassi, “Comparison of software
product line architecture design methods:
Copa, fast, form, kobra and qada,” in Pro-
ceedings of the ICSE ’04: 26th International
Conference on Software Engineering, (Wash-
ington, DC, USA), pp. 127–136, IEEE Com-
puter Society, 2004.

[5] K. Pohl, G. Böckle, and F. J. v. d. Linden,
Software Product Line Engineering: Founda-
tions, Principles and Techniques. Secaucus,
NJ, USA: Springer-Verlag New York, Inc.,
2005.

[6] M. Fajar, K. Hisazumi, T. Nakanishi, and
A. Fukuda, “Introducing software product
line development for wireless sensor/actua-
tor network based agriculture systems,” in
AFITA 2010 International Conference on
Quality Information for Competitive Agri-
cultural Based Production System and Com-
merce, (Bogor, Indonesia), pp. 83–88, IPB
(Bogor Agricultural University), 2010.

[7] F. van der Linden, K. Schmid, and
E. Rommes, Software Product Lines in Ac-
tion: The Best Industrial Practice in Prod-
uct Line Engineering. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2007.

[8] J. Bosch and P. M.. Bosch-Sijtsema, “Intro-
ducing agile customer-centered development
in a legacy software product line,” Software
Practice & Experience, vol. 41, pp. 871–882,
July 2011.

[9] W. Jirapanthong, “Experience on re-
engineering applying with software product
line,” CoRR, vol. abs/1206.4120, 2012.

[10] D. B.. Smith, L. O’Brien, and J. Bergey,
“Using the options analysis for reengineering
(oar) method for mining components for a
product line,” in Second International Con-
ference of Software Product Lines, pp. 316–
327, 2002.

[11] Y. Wu, X. Peng, and W. Zhao, “Architec-
ture evolution in software product line: An
industrial case study,” in Proceedings of the
12th International Conference on Top Pro-
ductivity Through Software Reuse, ICSR’11,
(Berlin, Heidelberg), pp. 135–150, Springer-
Verlag, 2011.

[12] G. Zhang, L. Shen, X. Peng, Z. Xing, and
W. Zhao, “Incremental and iterative reengi-
neering towards software product line: An
industrial case study,” in Proceedings of the
2011 27th IEEE International Conference on
Software Maintenance, ICSM ’11, (Washing-
ton, DC, USA), pp. 418–427, IEEE Com-
puter Society, 2011.

[13] P. Pernich, A. Buccella, A. Cechich,
S. Doldan, and E. Morsan, “Reusing geo-
graphic e-services: A case study in the ma-
rine ecological domain,” in Software Ser-
vices for e-World (W. Cellary and E. Es-
tevez, eds.), vol. 341 of IFIP Advances in In-
formation and Communication Technology,
pp. 193–204, Springer Boston, 2010.

[14] P. Pernich, A. Buccella, A. Cechich,
S. Doldan, E. Morsan, M. Arias, and
M. Pol’la, “Product-line instantiation guided
by subdomain characterization: A case
study,” Journal of Computer Science and
Technology, Special Issue 12(3), vol. 12,
no. 3, pp. 116–122, 2012.

[15] A. Buccella, A. Cechich, M. Pol’la, M. Arias,
S. Doldan, and E. Morsan, “Marine ecol-
ogy service reuse through taxonomy-oriented
SPL development,” Computers & Geo-
sciences, vol. 73, no. 0, pp. 108 – 121, 2014.

[16] I. Haddad and B. Warner, “Understanding
the open source development model,” Linux
Journal, 2011.

JCS&T Vol. 16 No. 1 April 2016

26

[17] M. Sojer and J. Henkel, “Code reuse in open
source software development: Quantitative
evidence, drivers, and impediments,” Jour-
nal of the Association for Information Sys-
tems, vol. 11, no. 12, 2010.

[18] L. Chen and M. A.. Babar, “A systematic re-
view of evaluation of variability management
approaches in software product lines,” In-
formation and Software Technology, vol. 53,
pp. 344–362, Apr. 2011.

[19] S. Mahdavi-Hezavehi, M. Galster, and
P. Avgeriou, “Variability in quality at-
tributes of service-based software systems:
A systematic literature review,” Informa-
tion and Software Technology, vol. 55,
no. 2, pp. 320 – 343, 2013. Special Sec-
tion: Component-Based Software Engineer-
ing (CBSE), 2011.

[20] K. Czarnecki, Domain Engineering, ch. 3.
John Wiley & Sons, Inc., 2002.

[21] M. Harsu, “A survey on domain engineering,”
Report 31, Tampere University of Technol-
ogy, 2002.

[22] L. B. Lisboa, V. C. Garcia, D. Lucrédio,
E. S. de Almeida, S. R. de Lemos Meira, and
R. P. de Mattos Fortes, “A systematic review
of domain analysis tools,” Information and
Software Technology, vol. 52, no. 1, pp. 1–13,
2010.

[23] J. Bayer, , J. Girard, M. Würthner, J. De-
Baud, and M. Apel, “Transitioning legacy
assets to a product line architecture,” SIG-
SOFT Softw. Eng. Notes, vol. 24, no. 6,
pp. 446–463, 1999.

[24] C. Stoermer and L. O’Brien, “Map - min-
ing architectures for product line evalu-
ations,” in Proceedings of the Working
IEEE/IFIP Conference on Software Archi-
tecture, WICSA ’01, (Washington, DC,
USA), pp. 35–, IEEE Computer Society,
2001.

[25] M. A.. Laguna and Y. Crespo, “A system-
atic mapping study on software product line
evolution: From legacy system reengineering
to product line refactoring,” Science of Com-
puter Programming, vol. 78, no. 8, pp. 1010–
1034, 2013.

[26] W. Fenske, T. Thüm, and G. Saake, “A
taxonomy of software product line reengi-
neering,” in Proceedings of the Eighth Inter-
national Workshop on Variability Modelling
of Software-Intensive Systems, VaMoS ’14,

(New York, NY, USA), pp. 4:1–4:8, ACM,
2013.

[27] M. A.. Noor, R. Rabiser, and P. Grünbacher,
“Agile product line planning: A collaborative
approach and a case study,” Journal of Sys-
tems and Software, vol. 81, no. 6, pp. 868 –
882, 2008. Agile Product Line Engineering.

[28] H. P. Breivold, S. Larsson, and R. Land,
“Migrating industrial systems towards soft-
ware product lines: Experiences and obser-
vations through case studies,” in Proceed-
ings of the 2008 34th Euromicro Conference
Software Engineering and Advanced Appli-
cations, SEAA’08, (Washington, DC, USA),
pp. 232–239, IEEE Computer Society, 2008.

[29] D. Faust and C. Verhoef, “Software prod-
uct line migration and deployment,” Soft-
ware Practice & Experiences, vol. 33, no. 10,
pp. 933–955, 2003.

[30] K. Kang, M. Kim, J. Lee, and B. Kim,
“Feature-oriented re-engineering of legacy
systems into product line assets: A case
study,” in Proceedings of the 9th Interna-
tional Conference on Software Product Lines,
SPLC’05, (Berlin, Heidelberg), pp. 45–56,
Springer-Verlag, 2005.

[31] M. Fowler, Refactoring: Improving the De-
sign of Existing Code. Boston, MA, USA:
Addison-Wesley Longman Publishing Co.,
Inc., 1999.

[32] S. Apel and C. Kästner, “An overview
of feature-oriented software development,”
Journal of Object Technology, vol. 8, no. 5,
pp. 49–84, 2009.

[33] S. Schulze, T. Thüm, M. Kuhlemann, and
G. Saake, “Variant-preserving refactoring in
feature-oriented software product lines,” in
Proceedings of the Sixth International Work-
shop on Variability Modeling of Software-
Intensive Systems, VaMoS ’12, (New York,
NY, USA), pp. 73–81, 2012.

[34] K. Czarnecki, S. Helsen, and U. W. Eise-
necker, “Formalizing cardinality-based fea-
ture models and their specialization,” Soft-
ware Process: Improvement and Practice,
vol. 10, no. 1, pp. 7–29, 2005.

[35] K. Kang, S. Cohen, J. Hess, W. Nowak,
and S. Peterson, “Feature-Oriented Domain
Analysis (FODA) Feasibility Study,” Tech-
nical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon Uni-
versity Pittsburgh, PA., 1990.

JCS&T Vol. 16 No. 1 April 2016

27

[36] D. Bruno and H. Richmond, “The truth
about taxonomies,” Information Manage-
ment Journal, vol. 37, no. 2, 2003.

[37] C. E. B. Choksy, “8 steps to develop a tax-
onomy,” Information Management Journal,
vol. 40, no. 6, pp. 30–41, 2006.

[38] I. Hunink, E. Rene, S. Jansen, and
S. Brinkkemper, “Industry taxonomy engi-
neering: the case of the european software
ecosystem,” in Proceedings of the Fourth Eu-
ropean Conference on Software Architecture:
Companion Volume, ECSA ’10, (New York,
NY, USA), pp. 111–118, ACM, 2010.

[39] R. C. Nickerson, U. Varshney, J. Munter-
mann, and H. Isaac, “Taxonomy develop-
ment in information systems: Developing a
taxonomy of mobile applications,” in 17th

European Conference on Information Sys-
tems, ECIS 2009, (Italy), pp. 1138–1149,
2009.

[40] D. A.. Garbin and J. L.. Fisher, “Open
source for enterprise geographic information
systems,” IT Professional, vol. 12, no. 6,
pp. 38–45, 2010.

[41] B. Burke and R. Monson-Haefel, Enterprise
JavaBeans 3.0 (5th Edition). O’Reilly Media,
Inc., 2006.

[42] A. Buccella, A. Cechich, M. Arias, M. Pol’la,
S. Doldan, and E. Morsan, “Towards sys-
tematic software reuse of GIS: Insights from
a case study,” Computers & Geosciences,
vol. 54, no. 0, pp. 9 – 20, 2013.

JCS&T Vol. 16 No. 1 April 2016

28

