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ABSTRACT 

 

A new high-accuracy and high-precision gravimetric geoid model (ARG05) for 

Argentina has been computed. It will be used by the entire scientific community and has 

been developed using the most current updated databases as well as the most efficient 

theory and modern methodologies. 

ARG05 is a purely gravimetric geoid model. The geoid undulations refer to the 

geocentric ellipsoid GRS80 and they were computed on a 5' x 5' grid covering all of 

Argentina (both land and ocean regions), ranging from 21°S to about 55°S in latitude 

and 53°W (307E°) to about 76°W (284E°) in longitude. 

ARG05 was computed using the classical remove-compute-restore technique. The Fast 

Fourier Transform technique was employed in the computation of the residual geoid 

and terrain effects.  

Different methods of handling the topography in practical geoid determination have 

been studied, and both direct and indirect terrain effects had to be taken into account in 

order to generate a precise gravimetric geoid model for Argentina. The treatment of the 

topography in ARG05 was based on Helmert’s second method of condensation. 

ARG05 is developed in four components. The first component is determined from the 

EGM96 global geopotential model, the second component represents the contribution of 

the local gravity data reduced by the global field, the third component was determined 

from the contribution of the terrain corrections to the geoid, and the four component is 

the primary indirect effect on the geoid.  

From comparisons between Global Positioning System (GPS) and Argentinean Height 

Datum (GPS/levelling-derived) geoid undulations with ARG05, it is estimated that the 

absolute accuracy of the new geoid, after fit, is around 32 cm in terms of standard 

deviation. The relative agreement for the whole Argentina is 1.4 to 0.2 ppm for 

baselines between 15 km and 115 km.  

Preliminaries studies and results of high-resolution marine geoids solutions by 

combining satellite altimetry and shipborne data are also presented.  
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RESUMEN 

 

La siguiente tesis presenta un nuevo geoide gravimétrico (ARG05) de alta precisión y 

alta exactitud para la Republica Argentina. En el mismo se discuten la metodología y 

los datos utilizados para su cálculo y se plantean los trabajos futuros que se realizarán 

con el fin de mejorar su precisión y exactitud. 

ARG05 es un geoide gravimétrico puro. Las ondulaciones del geoide ARG05 se 

refieren al elipsoide geocéntrico GRS80  y fueron calculadas en una grilla de 5' x 5' 

cubriendo toda la Argentina (tierra y mar) desde los 20º y 55º de latitud sur y 53º  a 76º 

de longitud oeste. 

El cálculo se realizó utilizando la técnica clásica remover-restaurar. La componente del 

geoide residual así como los efectos de terreno se calcularon utilizando la Transformada 

rápida de Fourier. Para el tratamiento de la topografía se empleó el segundo método de 

compensación de Helmert. 

ARG05 fue determinado en cuatro componentes. La primera componente fue calculada 

a partir del modelo de geopotencial EGM96, la segunda componte representa  la 

contribución de los datos de gravedad reducidos por el modelo de geopotencial, la 

tercera componente fue determinada a partir de las correcciones topográficas en el 

geoide y la cuarta componente representa el efecto indirecto primario en el geoide. 

De comparaciones realizadas entre GPS y nivelación, se estima que la exactitud 

absoluta del nuevo geoide es de 32 cm en términos de desviación Standard. La 

concordancia relativa para toda la Argentina es de 1.4 a 0.2 ppm para líneas bases entre 

15 y 115 kilómetros. 

También se presentan estudios preliminares y resultados de geoides marinos 

combinando altimetría satelital y datos de gravedad marinos. 

En el siguiente trabajo se enumeran los futuros trabajos a realizar haciendo hincapié en 

el análisis y evaluación de nuevos modelos de gravedad globales y modelos digitales de 

terreno y sus implicancias en la determinación práctica de geoides gravimétricos.  
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1.1 Introducción 

El geoide es una superficie equipotencial particular del campo de gravedad terrestre. La 

idea básica a desarrollar, consiste en determinar el geoide a partir de mediciones de 

gravedad. Se lo utiliza en varias aplicaciones de Geodesia, Geofísica y Oceanografía.  

En Geodesia, el geoide es usado como superficie de referencia para el sistema de alturas 

ortométricas. Dichas alturas pueden ser calculadas combinando un modelo de geoide 

gravimétrico con alturas elipsoidales obtenidas a través de Sistemas de Posicionamiento 

Global (GPS). Esto es una forma económica y sencilla de determinación de alturas 

ortométricas en áreas montañosas y en áreas sin nivelación convencional.  

En Geofísica, el geoide es usado para obtener información acerca de la distribución de 

masas en el interior de la Tierra; en Oceanografía, para estudiar las variaciones del nivel 

medio del mar, anomalías en el nivel mar, corrientes y mareas. 

Durante los ultimo años se han desarrollado en varias partes del mundo modelos de 

geoide gravimétricos regionales. Estos desarrollos fueron posibles debido a varios 

factores. Entre los más importantes podemos enumerar: las mejoras en los desarrollos 

teóricos y métodos prácticos para determinación del geoide, la disponibilidad de 

mejores modelos de elevación y modelos de profundidad digital, el cálculo de modelos 

geopotenciales globales precisos, la posibilidad de controlar el geoide gravimétrico con 

el geoide obtenido a través de puntos GPS/nivelación y el uso óptimo de datos 

heterogéneos. Un geoide gravimétrico preciso sobre áreas extensas es posible a través 

de la combinación de modelos geopotenciales,  datos de gravedad y altura. 

Las ondulaciones del geoide pueden ser determinadas por medio de la integral de 

Stokes, por la solución de Molodensky, por un desarrollo en armónicos esféricos o por 

colocación de mínimos cuadrados. El uso de la integral de Stokes requiere que las 

masas topográficas exteriores al geoide sean removidas completamente. Por otra parte, 

las determinaciones de gravedad en superficie deben ser reducidas también a la 

mencionada superficie de referencia mencionada.  

La teoría de Molodensky toma a la superficie de la tierra como condición de borde. 

Teóricamente, esto evita el problema de desplazamiento de masas y reducciones de 
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gravedad. Las ondulaciones del geoide son reemplazadas por anomalías de altura y el 

geoide es reemplazado por el cuasi geoide.  

También, las ondulaciones del geoide pueden ser calculadas mediante un desarrollo de 

armónicos esféricos  a partir de un dado modelo geopotencial. Ellas solo  representan la 

larga longitud de onda del campo de gravedad. 

Finalmente, la ventaja de la colocación por mínimos cuadrados reside en que permite 

utilizar como observaciones,  diferentes tipos de datos simultáneamente. Sin embargo, 

esto puede implicar que se necesite resolver un sistema con un gran número de 

ecuaciones lineales, lo que en la práctica conduce a que todos los datos no puedan ser 

utilizados al mismo tiempo dificultando el uso de grandes áreas de integración (Moritz, 

1980).  

El geoide gravimétrico preciso será determinado empleando la integral de Stokes. Para 

el cálculo de dicha integral se emplearán las técnicas espectrales basadas en la 

Transformada Rápida de Fourier (FFT), que son ampliamente usadas en el modelado de 

geoides continentales, marinos o sobre áreas extensas. (Sideris, 1997). 

Se utilizó el software desarrollado en el Departamento de Ingeniería Geomática de la 

Universidad de Calgary (Li y Sideris, 1993) y el  paquete GRAVSOFT (conjunto de 

rutinas para el modelado del campo de gravedad  desarrollado por C. C. Tscherning,  

perteneciente al Departamento de Geofísica de la Universidad de Copenhague y R. 

Foresberg y P. Knudsen del KMS). Software adicional fue desarrollado para solucionar 

problemas específicos, (cálculos de anomalías de gravedad conversión de datos, etc.) 

 

1.2 Objetivo 

.El objetivo de la tesis doctoral se logró con el cumplimiento de las siguientes tareas 

• Recopilar todos los tipos de datos disponibles que serán usados para el cálculo de 

geoide en Argentina. 

• Analizar y revisar estos datos, removiendo valores erróneos y referenciarlos a todos 

ellos a un datum único. 
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• Calcular las anomalías de aire libre incluyendo la corrección atmosférica. 

• Aplicar diferentes reducciones topográficas para tener en cuenta las masas 

topográficas. 

• Tomar en cuenta los efectos indirectos de la topografía para cada reducción 

topográfica utilizada. 

• Investigar diferentes métodos de grillado.  

• Probar diferentes modelos geopotenciales para seleccionar el que mejor modela la 

larga longitud de onda de la señal del campo de gravedad en Argentina. 

• Investigar los nuevos modelos de gravedad globales a partir de las misiones 

satelitales dedicadas CHAMP y GRACE. 

• Investigar el rol del máximo grado de expansión del modelo geopotencial en 

relación con las dimensiones del área de integración en la fórmula de Stokes que 

contiene datos locales de gravedad. 

• Calcular el modelo de geoide para toda la Argentina usando la técnica remover- 

restaurar y obtener su estimación de error. Será calculado usando la técnica de FFT 

(Schwarz et al. , 1990). 

• Comparar los resultados con modelos de geoide obtenidos por soluciones 

geopotenciales globales y ondulaciones de geoide obtenidas por GPS/nivelación.  

• Investigar los procedimientos apropiados para el ajuste de redes de alturas 

combinando GPS/nivelación/geoide para remover inconsistencias de los datums. 

• Llevar a cabo un análisis y modelado de los errores del geoide. La precisión de las 

ondulaciones del geoide gravimétrico será evaluada mediante la comparación 

externa con ondulaciones del geoide y puntos de control  GPS/nivelación  

• Determinar el modelo de geoide marino en la región costera de Argentina. 
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1.3 Metodología 

El área de investigación está situada entre las latitudes 20º y 55º Sur  y entre las 

longitudes 50º y 76º W. Parte de esta área corresponde al Océano Atlántico. 

El geoide marino de alta resolución y alta precisión será computado en el área 

comprendida entre las latitudes 34º y 55º Sur y entre las longitudes 55º y 70º W. 

Debido a que los valores de gravedad, son provistas por diferentes fuentes se pone 

especial énfasis en homogeneizarlas al sistema IGSN71.  

La Base de Datos proviene de: 

 Datos de gravedad del Instituto Geográfico Militar, el Departamento de Gravimetría, 

y otras Universidades e Instituciones. 

• Gravedad marina provista por el Bureau Gravimétrique International (BGI). 

• Varios modelos geopotenciales globales y modelos obtenidos a partir de las 

misiones satelitales CHAMP y GRACE 

• Anomalías de gravedad derivadas altimétricamente (KMS01, Sandwell y Smith, 

GSFC00.1_DG, KMS02) 

• Los datos topográficos incluyen los modelos GTOPO30 y GLOBE y las alturas de 

las estaciones gravimétricas. 

• Para aplicaciones marinas, se utilizará el Modelo Digital de Profundidad (DDM) 

desarrollado por Smith y Sandwell en 1997. 

• Datos de puntos GPS/nivelación.  

• Datos de altimetría satelital de las misiones GEOSAT, ERS1 y Topex/Poseidón. 

Los datos de gravedad del Departamento de Gravimetría fueron reprocesados y 

almacenados en una base de datos digital.  

Todos los datos compilados fueron chequeados para eliminar errores sistemáticos. La 

existencia de desviaciones y corrimientos de datum en datos de gravedad y alturas 
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terrestres puede producir errores importantes y es un punto a ser resuelto antes que el 

modelo de geoide sea calculado. 

Las anomalías de aire libre y Bouguer se calcularon utilizando reducciones Standard y 

se refirieron al GRS80 (Moritz, 1980). En el cálculo de anomalías de aire libre se tiene 

en cuenta el término de segundo orden en el gradiente de gravedad normal junto con la 

corrección atmosférica (Torge, 1989). El geoide gravimétrico se determinó por la 

técnica remover–restaurar. El efecto de la larga longitud de onda del campo de gravedad 

obtenido de un modelo geopotencial y los efectos topográficos de corta longitud de 

onda son removidos de las anomalías de gravedad observada. La integral de Stokes se 

calcula utilizando FFT  para calcular las ondulaciones residuales.  Las ondulaciones del 

geoide final fueron obtenidas restaurando las ondulaciones del geoide del modelo 

geopotencial y el efecto de la topografía (Schwarz et al. , 1990). 

El modelo geopotencial juega un rol importante en este proceso. Los modelos 

geopotenciales usados y validados son: JGM-3 (Tapley et al., 1996), OSU81 (Rapp, 

1981), OSU91A (Rapp et al., 1991), EGM96 (Lemoine et al., 1998) y GPM98a y 

GPM98b (Wenzel, 1999).Además se trabajó con el modelo combinado EIGEN_CG01C 

calculado con datos de CHAMP y GRACE. 

El método de cálculo del geoide gravimétrico se basó en el uso de la FFT. Las integrales 

de Stokes y de la corrección topográfica se reformulan como integrales de convolución 

y se evalúan por FFT.  

La FFT requiere que los datos estén grillados. Se evaluaron diferentes métodos de 

estimación para generar una grilla regular: colocación por cuadrados mínimos, basado 

en la función de covarianza empírica de los datos de gravedad (krigging ordinario), 

promedios pesados y el método de curvatura continua en tensión. Las ondulaciones del 

geoide se calcularon por la formula de Stokes utilizando distintos núcleos, como: núcleo 

riguroso esférico y el núcleo esférico aproximado (Haagmans, et al., 1992 y Strang van 

Hees). 

El efecto de la topografía es un punto sumamente importante a tener en cuenta, 

especialmente, en la zona de los Andes. Por ello, diferentes técnicas de reducciones 

gravimétricas fueron investigadas: el segundo método de condensación de Helmert,  el 

Modelo Residual de Terreno (RTM), el método de inversión de Rudski y las 
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reducciones topo-isostáticas. Cada una de ellas dependió del problema del valor de 

contorno en consideración. 

La precisión externa del modelo de geoide gravimétrico se evaluó comparándola con los 

resultados obtenidos en puntos nivelación/GPS.  

Las diferencias sistemáticas entre los datums correspondientes al geoide gravimétrico y 

el geométrico y los posibles errores de larga longitud de onda del geoide fueron 

removidos por una transformación de 4 parámetros y un modelo de transformación de 7 

parámetros (Kotsakis, 2001). 

Se calcularon, las diferencias absolutas y relativas entre los geoides gravimétricos y 

geométricos. 

.La precisión final del geoide gravimétrico residual estimado estuvo sujeta a diferentes 

errores generados por las diferentes fuentes empleadas en el cálculo (modelos 

geopotenciales, anomalías de gravedad local y alturas).  

Se seleccionaron, dos áreas de prueba para la determinación del geoide gravimétrico las 

cuales, con posterioridad, fueron extendidas al país completo. La primera incluyó la 

Provincia de Buenos Aires y parte del Océano Atlántico. Tiene una buena cobertura de 

datos de gravedad y puntos de control GPS/nivelación. Parte de la misma está en el mar 

por lo que fue necesario combinar anomalías de gravedad terrestre con anomalías de 

gravedad derivadas altimétricamente y gravedad marina. Los principales puntos a 

investigar fueron la combinación de datos heterogéneos y la  aplicación de una posible 

técnica de suavización a lo largo de la costa.  

En el área, elegida en segundo término, los Andes,  se investigó el efecto directo e 

indirecto de las masas topográficas. 

La determinación de un geoide marino de alta precisión y alta resolución en la región 

costera de Argentina fue otro de los objetivos a investigar. El mismo se calculó usando 

altimetría satelital y gravedad marina. Los datos altimétricos de la misión satelital 

ERS1, junto con gravedad  marina y anomalías de gravedad derivadas altimétricamente 

se usaron para estimar geoides gravimétricos, altimétricos y soluciones combinadas.  
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Se tuvo en cuenta el efecto de la topografía casi estacionaria (QSST) para corregir las 

alturas de la superficie del mar (SSHs) a ondulaciones del geoide. Se puso mucho 

énfasis en reducir el efecto de la variabilidad de la superficie del mar (SSV mediante la 

aplicación de filtros pasabajos para reducirlo. Se combinaron, en el dominio espectral 

los geoides altimétricos y gravimétricos para mejorar la exactitud del geoide 

gravimétrico puro y las soluciones altimétricas puras en las zonas cercanas a la costa. La 

exactitud y validación de los modelos finales se realizó comparándolos con alturas del 

nivel de mar de TOPEX/POSEIDON (T/P) SSHs. 

El método utilizado para las soluciones combinadas fue la teoría de los sistemas de 

entrada-salida (input-output system theory IOST) (Sideris, 1996; Li, 1997, Vergos, 

2000). 
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CHAPTER ONE 

INTRODUCTION AND RESEARCH BACKGROUND 

 

1.1 Introduction 

The main objective of this thesis is the determination of a precise gravimetric geoid for 

Argentina. Its importance lies on the fact that it will be the official gravimetric geoid for 

the country, thus it will be used by the entire scientific community. 

The shape of the Earth is often described by the geoid. The geoid is that equipotential 

surface of the Earth’s gravity field that most closely approximates the mean sea surface. 

At every point, the local plumb line is perpendicular to the geoid surface. It is, therefore, 

a natural reference surface for orthometric heights measured along the plumb line.  

The geoid is used in geodetic, geophysical and oceanographic applications. In geodesy, 

the geoid is used as the reference surface for the orthometric height system. Orthometric 

heights can be determined without levelling by combining a gravimetric geoid model 

and ellipsoidal heights derived from the Global Positioning System (GPS). This is a cost 

effective way for orthometric height determination in mountainous areas and in areas 

without conventional levelling. In geophysics, the geoid is used to obtain knowledge 

about the distribution of the masses in the interior of the Earth. In oceanography, the 

geoid is used to study mean sea level variations, sea level anomalies, tides and currents. 

During the last years, the development of regional gravimetric geoids has increased. 

Improvements in the theory and practical methods of geoid determination, the 

availability of better digital elevation models and digital depth models, the computation 

of accurate global geopotential models, the possibility to control the gravimetric geoid 

with the GPS/levelling derived geoid and the optimal use of heterogeneous data are the 

main factors that made the developments possible. A precise gravimetric geoid over 

large areas is possible with a combination of geopotential models, gravity data and 

heights. 

Geoid undulations can be determined by Stokes’s integration, Molodensky’s solution, 

or least squares collocation. The use of Stokes’s integral requires that the topographical 
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masses outside the geoid be removed completely and thus a gravity reduction is 

necessary in order to reduce the measurements from the Earth’s surface to the geoid.  

Molodensky’s theory takes the Earth’s surface as the boundary surface. Theoretically, it 

avoids the problem of mass shifting and gravity reduction. Geoid undulations are 

replaced by height anomalies and the geoid is replaced by the quasigeoid. 

The use of spectral techniques, based on the Fast Fourier Transform (FFT), is widely 

used for the computation of large regional and continental geoids (Sideris, 1997). 

We will use the software developed in the Department of Geomatics Engineering, 

University of Calgary (Li and Sideris, 1993) and GRAVSOFT - a set of routines for 

gravity field modeling developed by C.C. Tscherning of the Geophysical Department of 

the University of Copenhagen and R. Forsberg and P. Knudsen from Kort og 

Matrikelstyrelsen (KMS), Denmark (Tscherning et al., 1992). Some modifications, 

especially in the TC program written by Forsberg (1984) were made at the Department 

of Geomatics Engineering, University of Calgary, in order to compute different gravity 

reductions (Bajrachaya et al., 2002). 

The GRAVSOFT package contains a complete suite of programs for geoid modeling, 

conversion of satellite altimetry data to gravity, prediction of deflections of the vertical, 

etc., by a host of methods, such as, least-squares collocation, planar or spherical FFT, 

and Stokes's integration, and implements software for covariance function fit and 

approximation, computation of terrain effects, handling and manipulation of data sets 

and grids, etc. 

Additional software will be developed in order to solve specific problems (gravity 

anomalies calculation, convert all data to the same format, etc). 

 

1.2 Objectives 

The main objectives of this research are the determination of a precise land gravimetric 

geoid model for Argentina and the determination of a precise marine geoid for the 

Atlantic coastal region of Argentina. They will be achieved through the following tasks: 
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 Collect all the available data types that will be used for the computation of the 

geoids models in Argentina. 

 Remove data blunders and reference all data to a unified datum. 

 Apply reductions to the measured gravity points. The atmospheric and free air 

corrections should be applied to the data to obtain point free-air gravity anomalies. 

 Apply different topographic reductions to take into account the attraction of the 

topographic masses.  

 Take into account the topographic indirect effect for each topographic reduction 

used. 

 Investigate different gridding procedures. Collocation (krigging), continuous 

curvature splines in tension (Smith and Wessel, 1990) and weighted means will be 

used in the gridding procedure. 

 Test different geopotential models in order to select the one that best models the 

long wavelength of the gravity field signal in Argentina. 

 Compute the geoid model for the entire Argentina using the remove-restore 

technique and derive its error estimates. The gravimetric geoid model will be 

computed using the efficient Fast Fourier Transform (FFT) technique (Schwarz et 

al., 1990). 

 Make comparisons with geoid models derived from global geopotential solutions, 

and GPS/levelling derived geoid undulations. 

 Investigate proper procedures for the adjustment of combined GPS/levelling/geoid 

height networks to remove datum inconsistencies.  

 Carry out an analysis and modeling of the geoid errors. The accuracy of the 

gravimetric geoid undulations will be evaluated using an external comparison with 

geoid undulations derived from GPS/levelling on benchmarks. 

 Determine the marine geoid model in the coastal region of Argentina. 
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1.3 Methodology  

A gravimetric geoid model will be computed for Argentina. The area under 

investigation is situated between latitudes 21°S to 55°S and between longitudes 53°W to 

76°W. Part of this area is in the Atlantic Ocean. 

Since the point gravity measurements were provided by different sources, they first 

have to be homogenised. They are provided in different systems so they have to be 

unified to the International Gravity Standardisation Net 1971 (IGSN71). 

The gravimetric data to be used in the geoid computation will include:  

 Point surface gravity. Sources of these data will be the Military Geographic 

Institute, other Universities and the Gravity Department of the University of La 

Plata.  

 Marine gravity provided by the Bureau Gravimétrique International (BGI). 

 Global geopotential models.  

 Satellite altimetry derived gravity anomalies. We will use the following global 

models:  

KMS01 and KMS02 global marine free-air gravity field models computed from 

ERS1 plus GEOSAT satellite altimetry by Per Knudsen and Ole Andersen at the 

Geodetic Division of Kort og Matrikelstyrelsen (KMS), the National Survey and 

Cadastre of Denmark. 

Global marine gravity field models by processing satellite altimetry data computed 

by D. Sandwell and W Smith (Smith and Sandwell, 1997). 

GSFC00.1_DG computed from a Mean Sea Surface model in 2'x2' grid size 

between latitude ±80° (GSFC00.1_MSS).  The data were downloaded from the 

Geodynamics, Geophysics, and Space Geodesy Group at Raytheon ITSS.  

Free-air gravity anomalies provided by CLS/Space Oceanographic Group 

 The topographic data on land include GTOPO30 and GLOBE Elevation Models 

(DEMs) and point gravity station heights.  
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GTOPO30 is a global Digital Elevation Model (DEM) with a horizontal grid 

spacing of 30 arc second (approximately 1 kilometre). GTOPO30, completed in 

late 1996, was developed in the US Geological Survey's Earth Resources 

Observation Systems (EROS) Data Center (EDC). 

GLOBE (Global Land One-kilometre Base Elevation) is a global Digital Elevation 

Model (DEM) developed by NOAA National Data Center, NGDC. 

 The bathymetric data for marine application will come from the 2’ Digital Depth 

Model (DDM) developed by Smith and Sandwell in 1997. 

 GPS/levelling data.  

 Satellite altimetry data from the European Earth Remote–Sensing Satellite 1 

(ERS1) and three year stacked TOPEX/POSEIDON (T/P) Sea Surface Heights 

(SSHs). 

The gravity data belonging to the Gravity Department of the University of La Plata will 

be reprocessed and saved in a digital database. All data that have been collected need to 

be checked for systematic errors. The existence of biases and datum shifts in terrestrial 

gravity and heights is a very important point and must be resolved before a geoid model 

is calculated. Standard reductions must be applied to derive free-air gravity and refined 

Bouguer anomalies. The GRS80 normal gravity field will be used (Moritz, 1980). The 

second order term in the normal vertical gradient together with the atmospheric 

correction (Torge, 1989) will be taken into account in the free-air reduction.  

The high precision gravimetric geoid will be determined by the well-known remove- 

compute-restore technique. The long wavelength gravity field spectrum derived from a 

geopotential model and the short wavelength topographic effects will be removed from 

the observed gravity anomalies. A Fourier representation of Stokes’s integral formula 

will be used to compute residual undulations. The final geoid undulations will be 

obtained by restoring the geoid undulation of the geopotential model and of the effect of 

the topography (Schwarz et al., 1990). 

The geopotential model plays an important role in this procedure. The following global 

geopotential models will be used and validated: JGM-3 (Tapley et al., 1996), OSU81 

(Rapp, 1981), OSU91A (Rapp et al., 1991), EGM96 (Lemoine et al., 1998), GPM98a 
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and GPM98b (Wenzel, 1999) and the new high-resolution global gravity field model 

EIGEN-CG01C derived from combining CHAMP and GRACE satellite missions and 

surface gravity data (Reigber et al., 2004). Comparisons between the long wavelength 

contributions to the geoid computed by these geopotential models will be made. 

Comparisons with the geoid undulations obtained from GPS on benchmarks will allow 

us to choose the best geopotential model that will be used as reference field in 

Argentina. 

The method to compute the gravimetric geoid is based on the use of the Fast Fourier 

Transform technique (FFT). Stokes's and terrain correction integrals will be 

reformulated as convolution integrals and evaluated efficiently by Fast Fourier 

Transform if the data are given on regular grids. 

Geoid undulations will be computed via Stokes's formula with the rigorous spherical 

kernel by the one-dimensional Fast Fourier Transform algorithm (Haagmans et al. 

1993). 

FFT needs gridded data. Different methods of prediction will be evaluated to produce a 

regular grid: least-squares collocation, which is based on the empirical covariance 

function of the gravity anomalies, ordinary Krigging, weighted means and continuous 

curvature splines in tension (Smith and Wessel, 1990). In the interpolation procedure, 

we need to smooth the data to obtain the most reliable result possible.  

Different methods of handling topography will be investigated and they will depend on 

boundary value problem under consideration (Bajracharya et al., 2002): 

 The Helmert condensation method. 

 Residual Terrain Model (RTM). 

 Rudzki inversion method. 

 Topographic -isostatic reductions. 

The external accuracy of the gravimetric geoid model will be evaluated by comparing it 

with results derived from GPS/levelling data. Geometrical geoid undulation can be 

determined by combining the ellipsoidal height he with the orthometric height H on 

 



 7

levelled benchmarks occupied by GPS receivers. The systematic datum differences 

between the gravimetric geoid and the GPS/levelling data, and the possible long 

wavelength errors of the geoid, will be removed by a four-parameter transformation and 

a seven-parameter transformation model (Kotsakis, 2001). The absolute differences 

between the gravimetric and the GPS/levelling geoid will be calculated.  

The final accuracy of the predicted gravimetric geoid is subject to different errors 

coming from the different sources used in the computation (geopotential model, local 

gravity anomalies and heights). These errors will be propagated into the geoid results. 

Covariance functions, for different gravity surveys, and areas with different 

topographies will be analysed. 

Argentina is located in Southern South America; with a total area of 2,766,890 km2 is 

the second-largest country in South America (after Brazil). Argentina is a very huge 

country ranging from 20°S to about 55°S in latitude and 53°W (307E°) to about 

76°W(284E°) in longitude. Figure 1.1 illustrates the geographical location and 

topography of Argentina. Argentina is bounded to the west with the highest mountain 

range in America, the Andes, so different topographic reduction methods in practical 

gravimetric geoid determination are crucial for taking care of this problem. To the east, 

Argentina borders on the Atlantic Ocean so the combination with shipborne gravity data 

and satellite altimetry derived free air gravity anomalies constitute other of the problems 

that were also taken into account.  

Preliminary analysis will be carried out in different test areas for land and for sea. Then 

it will be extended to the entire country. The first area will be a flat area in Buenos 

Aires province. This area has a good coverage of gravity data and GPS on benchmarks 

The second area will be a rough one near the Andes, in order to investigate the direct 

effect of the topographic masses and the indirect effect to improve the short wavelength 

information of the geoid. Rigorous formulas for the terrain correction have been 

proposed (Li and Sideris, 1993). The effect of using mass prism and line prism 

topographic models will be investigated. We will use a constant density value through 

the entire investigation. 
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Figure 1.1: Geographical location and topography of Argentina 

The third area is a marine area, where a marine gravimetric geoid for the Atlantic 

coastal region of Argentina will be investigated using shipborne gravity data and 

altimetric data. The remove-restore technique will be applied again. An appropriate 

gravity reduction will be used to remove the high frequency of the bathymetry in the 

remove step and the long wavelength contribution of the gravity field will be removed 

from a geopotential model. These two contributions will be restored just after applying 

Stokes’s integral. The altimetric geoid model will be computed using altimetric data 

from the ERS1 satellite mission and the marine gravimetric geoid will be computed 

using marine gravity provided by the International Gravimetric Bureau (BGI). Both the 
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gravimetric and the altimetric geoid will be combined to obtain the final marine 

solution, using Input Output System Theory (IOST) in order to improve the accuracy of 

the marine gravimetric geoid and the altimetric geoid close to the coastlines (Sideris, 

1996; Vergos, 2002). 

The final gravimetric geoid for Argentina will be computed combining land data, 

shipborne data and altimetry data. 

 

1.4 Thesis outline 

The thesis consists of nine chapters. The content of the next eight chapters are 

summarize as follows: 

Chapter 2 describes the theoretical background and the methodology applied for the 

determination of the regional gravimetric geoid. Special emphasis will be put on the 

terrain effects for the different gravity reductions methods to handle the topography of 

western Argentina, which is one of the roughest areas in the world. 

Chapter 3 presents the theoretical background for the determination of the marine geoid. 

This includes the remove-compute-restore technique for the altimetric and gravimetric 

geoid modeling and an introduction to the Multiple Input System Theory employed in 

this investigation. 

Chapter 4 describes all the different types of data involved in the gravimetric geoid 

determination. It also includes the data preparation validation and evaluation 

procedures; these steps are crucial because the quality and the availability of the data 

will directly affect the quality of the later geoid determination in terms of accuracy. 

Chapter 5 describes some basic concepts of covariance, correlation and power spectral 

density functions. The statistical behavior of gravity anomalies will be investigated in 

different areas with different topographies in Argentina. 

Chapter 6 presents some numerical investigations carried out in different land areas with 

very different types of topography in order to investigate the best method of handling 
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topography in practical geoid determination for the subsequent geoid computation for 

the whole Argentina. 

In chapter 7, numerical results of altimetric, gravimetric and combined geoid solution 

for the Atlantic coastal region of Argentina are presented. The validation of the new 

models is carried out through comparisons with T/P Sea Surface Heights, which were 

used as control due to their very high accuracy. 

Chapter 8 presents the results of the new high precision, high-accuracy and high-

resolution gravimetric geoid for Argentina computed with the most updated database 

available for the country together with the most efficient computational methodology.  

And finally, chapter 9 outlines the main conclusions and recommendations for future 

work. 
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CHAPTER TWO 

REGIONAL GRAVIMETRIC GEOID DETERMINATION 

 

The gravimetric geoid undulations in Argentina are calculated using the remove-

compute-restore technique. This technique combines a global geopotential model (GM), 

local gravity anomalies Δg, and the topography/bathymetry, represented by a Digital 

Elevation Model (DEM) and a Digital Depth Model (DDM), respectively. 

The global geopotential model, local gravity anomalies and digital terrain/bathymetry 

model represent the low, medium and high frequencies of the gravity signal, 

respectively. 

 

2.1  Formulas for gravimetric geoid computation via the remove-compute-restore 

technique 

The long wavelength reference field of a geopotential model and the short wavelength 

topographic effects are removed mathematically from the observed gravity anomalies. 

Stokes's integration is then used to convert the reduced, or residual, gravity anomalies to 

geoid undulations. The final geoid undulation is obtained by restoring the geoid effects 

of the geopotential model reference field and of the topography represented by a Digital 

Elevation Model. 

The residual geoid undulations are estimated using the Stokes formula with gravity 

anomalies as input. Before applying Stokes’s formula, the gravity anomalies must be 

reduced in the remove step of the remove-restore technique: 

GMTFA ΔgΔgΔg Δg −= −  (2.1) 

where ΔgFA is the free-air gravity anomaly, ΔGM is the reference gravity anomaly 

computed from a geopotential model, and ΔgT is the direct terrain effect, also called 

direct topographical effect on gravity, which depends on the reduction method used. 

The gravimetric geoid is obtained, in the restore step by 

GMind NNNN g ++Δ=  (2.2) 



 12

where NGM is the reference geoidal undulation implied by the geopotential model, Nind  

is the indirect effect on the geoid and depends on the reduction method used, and NΔg 

represents residual geoid computed with residual gravity anomalies given in equation 

(2.1).  

The advantage of the terrain remove-restore scheme is that the reduced gravity 

anomalies are smaller, have lower variability, are easy to grid, and the geoid errors due 

to terrain effects are minimised (Forsberg, 1997). 

In the classical solution, the geoidal undulation can be computed, in spherical 

approximation, using Stokes’s integral, which is the solution of the third boundary value 

problem (Heiskanen and Moritz, 1967)  

σψ∫∫
σ

Δ
πγ

= d)(gS
4
RN  (2.3) 

where σ denotes the sphere of integration, R is the mean radius of the Earth, γ is the 

normal gravity, S(ψ) is the Stokes kernel function defined in equation (2.5), ψ is the 

spherical distance between the data point and the computation point, and Δg is the 

residual gravity anomaly on the geoidal surface given by equation (2.1).  

Stokes formula can be written in explicit form as: 
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With gridded gravity anomalies, the discrete Stokes integral can be written as 
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where  and Pϕ Pλ are the coordinates of the computation point;  and  are the 

coordinates of the data point; 

Qϕ Qλ

ϕΔ  and λΔ  are the grid spacing in latitude and longitude; 

N and M are the number of parallels and meridians in the grid; and  is the reduced 

gravity anomaly given by equation (2.1) 

gΔ

To account for the singularity of the kernel function ( 0=ψ  when  and Pϕ=ϕ Pλ=λ ), 

the contribution to the geoid undulation of the gravity anomaly at the computation point 

can be evaluated separately as (Schwarz et al., 1990). 

g
yx

N Δ
πγ

ΔΔ
=δ  (2.8) 

The shifting of the topographical masses changes the gravitational field of the Earth, 

including the potential of the geoid, so the surface computed by the Stokes formula, 

after the displacement of the masses and without considering the indirect effect on the 

geoid, is the cogeoid.  

The indirect effect on the geoid in equation (2.2) is 

γ
Δ

=
V

indN  (2.9) 

where ΔV is the change of the gravitational potential at the geoid due to the terrain 

reduction applied and  is the normal gravity.  γ

compT VVV −=Δ  

condT VVV −=Δ   

invT VVV −=Δ  (2.10) 

RTMVVV T −=Δ   

where VT is the gravitational potential due the actual topographical masses; Vcomp is the 

gravitational potential of the compensates masses for a topographic-isostatic reduction 

using an Airy-Heiskanen or Pratt-Hayford model; Vcond is the gravitational potential of 

the condensed masses using a Helmert reduction; Vinv is the gravitational potential of 
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the inverted masses due a Rudzki inversion method and VRTM represents the 

gravitational potential of the reference masses due a RTM reduction. 

The indirect effect on gravity, which reduces gravity anomalies from the geoid to the 

cogeoid, is expressed by 

δΔg = 0.3086 Nind [mGal] (2.11) 

This effect should be added to equation (2.1) if, for example, the Helmert second’s 

method of condensation is applied. 

From the contribution of the geopotential model, a reference gravity anomaly ( GMgΔ ) 

and a reference geoidal undulation  can be calculated. The gravity anomaly 

estimated at a position ( ) is expressed in spherical approximation as: 
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and the reference geoidal undulation as: 
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where G is the mean gravity of the Earth, R is the mean radius of the Earth, m,nC  and 

m,nS  are the fully normalized spherical harmonic coefficients of the disturbing 

potential, m,nP  are the fully normalized associated Legendre functions (Heiskanen and 

Moritz, 1967), and nmax denotes the maximum degree and order of expansion of the 

geopotential solution. 

 

2.2 Fast Fourier Transform formulas for evaluating Stokes’s integral 

The Fast Fourier Transform (FFT) method will be used to evaluate the discrete Stokes 

formula. This technique allows for the evaluation of the discrete Stokes integral for all 

the points on a regular grid simultaneously. That is why, together with the fast 

computation time, it is one of the best approaches for the determination of large-scale 

regional geoids, like the Argentinean geoid. 
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The FFT is a powerful tool for the spectral evaluation of the Stokes integral in the 

frequency domain (Schwartz et al., 1990). 

The first time that the discrete Stokes integral was evaluated with the FFT method, the 

2D planar FFT, was used (Schwarz and Sideris, 1985; Schwarz et al., 1990). In planar 

approximation, the Stokes kernel function in equation (2.5) can be approximated for 

small distance  by:  ψ

PQPQPQ
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where  is the planar distance between the points P and Q, and in rectangular 

coordinates is: 

PQs

( ) ( )2P
2

PPQ QQ yyxxs −+−=  (2.15) 

The discrete Stokes formula (2.7) can be expressed in planar approximation as: 

)y,x(g
s

1
2

yx)y,x(N QQ
M

1Q

N

1Q

X

xx

y

yy PQ
PP Δ

πγ
ΔΔ

= ∑ ∑
= =

 (2.16) 

This equation is a 2D discrete convolution and N can be evaluated at all gridded points 

simultaneously by the 2D FFT (Schwartz et al., 1990) 

}}y,x(g{F}
s
1{F{F

2
yx)y,x(N PP

P

1
PP Δ

πγ
ΔΔ

= −  (2.17) 

where F and F-1 are the two-dimensional Fourier transforms operator and its inverse  

It can also be evaluated by the 1D FFT  
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Equations (2.18) and (2.19) are used when the grid size is too large to be handled by the 

capacity of the available computer memory. 
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Throughout this thesis, two methods will be used for the evaluation of the discrete 

Stokes integral: the 2D spherical FFT (Strang Van Hess, 1990) and the 1D spherical 

FFT (Haagmans et al., 1993). 

The Stokes formulas evaluated with FFT are linear convolutions but most of the fast 

Fourier algorithms are intended for the computation of circular convolutions. Edge 

effects are produced by the circular convolution; the required zero-padding methods to 

reduce these effects are described by Li (1993). 

 

2.2.1  Approximated spherical Kernel (ASK) 

Equations (2.5) and (2.6) show that the Stokes function is not only a function of latitude 

and longitude differences but also it is a function of the latitudes of the computation 

point and the data point. The discrete Stokes integral expressed in equation (2.7) is not a 

2D discrete convolution so it cannot be evaluated by 2D FFT. 

In 1990, Strang van Hess suggested to use cos2ϕm instead of in equation 

(2.6), where ϕm is the mean latitude of the whole computation area and Forsberg and 

Sideris (1993) gave a more accurate approximation given by: 
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Inserting this in equation (2.6), we obtain: 
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where ϕm is a constant for all the area and the approximated Stokes function is only 

dependent on the latitude and longitude difference. With one of these approximations, 

equation (2.7) can be written as a two-dimensional convolution. The geoid undulations 

on all gridded points can be computed simultaneously by means of the two-dimensional 

Fast Fourier Transform as: 



 17

)}(S{F}cos),(g{F{F
4

R),(N PPPP
1

PP ψϕλϕΔ
πγ

λΔϕΔ
=λϕ −  (2.23) 

 

2.2.2  Rigorous Spherical Kernel (RSK) 

Due to approximations of the kernel function, non-exact results can be achieved by the 

spherical 2D FFT method. Another approach to evaluate the convolution integrals on 

the sphere was presented by Haagmans et al. (1993) where the 1D FFT techniques is 

used instead of the traditional 2D FFT technique. Considering the fact that Stokes's 

kernel is constant for all computation points on one parallel, but different for 

computation points with different latitudes, only an east-west convolution is carried out 

by the 1D FFT while the north-south integration can be performed by pointwise 

integration. The results are the same as those from the pointwise integration on the 

sphere. Stokes’s integral on the sphere using 1D FFT can be expressed as a convolution 

in the East-West direction as: 

{ } {{∑
ϕ

ϕϕ
ψϕϕΔ

πγ
λΔϕΔ

=λϕ
=

−
M

1

P1PP1
1

1PP (SFcos)(gF{F
4

R),(N }} (2.24) 

where  represent the one-dimensional Fourier transform operator and its 

inverse, which are performed in the longitudinal direction, and 

-1
1F and F1

λΔϕΔ   and  are the grid 

spacings in latitude and longitude.  

 

2.3  Methods of handling the topography in practical geoid determination 

The effect of the topography is one of the most important aspects in the determination 

of precise geoid undulations or height anomalies, especially for mountainous regions 

such as Argentina. 

The use of Stokes’s formula in gravimetric geoid determination requires that the gravity 

anomalies represent boundary values on the geoid; this means that the measured gravity 

(usually taken on the surface of the Earth) must be reduced to the geoid and there must 

be no masses outside the geoid (Heiskanen and Moritz, 1967). The process of shifting 

or removing the masses outside the geoid is called gravity reduction. There are several 

gravity reductions used in physical geodesy and the most common methods are: the 



 18

refined Bouguer reduction, topographic-isostatic reductions, the Rudzki inversion 

method and the second method of Helmet’s condensation. The Residual Terrain Model 

(RTM) reduction (Forsberg, 1984) is another type of reduction, which takes into 

account the high frequencies of the topography and yields the quasigeoid. 

Theoretically, all reduction methods should lead us to the same geoid, if the gravity 

reductions were rigorously applied (Heiskanen and Moritz, 1967) even though each 

reduction treats the topography in a different way (Omang and Forsberg, 2000; 

Bajaracharja, 2003; Bajaracharja and Sideris, 2004; Bajaracharja and Sideris, 2005). 

As we have mentioned before, the original potential of the Earth is changed due the 

removal or shifting the masses outside the geoid in the gravity reduction process. The 

geoid is defined as the equipotential surface with potential . For a point originally on 

the geoid, after applying a gravity reduction, the potential changes by an amount 

oW

Wδ  

Thus, after the gravity reduction process, the point originally on the geoid has a 

potential (by convention) and, by the definition of geoid, it is not on the geoid 

anymore. It is on the cogeoid. That is why Stokes’s formula using equation (2.1) yields 

the cogeoid. The real geoid and the cogeoid are separated by a distance (N

WWo δ−

ind), which is 

called the indirect effect of the gravity reduction on geoid undulation, and is given by:  

γ
δ

=
WNind  (2.25) 

Comparing this formula with equation (2.8), we can see that Wδ  is the same as the 

change of the gravitational potential dV since the centrifugal potential before and after 

the gravity reduction is the same. A positive sign of Nind means that the geoid is above 

the cogeoid. See Figure (2.1). 

Since the Stokes procedure with terrain-reduced Δg yields the cogeoid rather than the 

geoid, the gravity anomalies used must be boundary values at the surface of the 

cogeoid, so gravity anomalies must be moved from the geoid (point P0) to the cogeoid 

(point Pc) by applying a simple free-air reduction expressed in equation (2.11). The 

change of Δg is δΔg, the secondary indirect effect on gravity due to the gravity 

reduction. Considering this indirect effect, equation (2.3) can be rewritten as: 

σψΔδ+∫∫
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Δ
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Figure 2.1: Geoid, cogeoid and ellipsoid 

 

The following gravimetric reduction techniques will be investigated in this thesis. 

 Refined Bouguer reduction 

 Topographic-isostatic reduction 

 Helmert’s second condensation method 

 Rudzki inversion method 

 Residual Terrain Model 

In principle, every gravity reduction that gives boundary values at the geoid is equally 

suitable for geoid determination if the indirect effect is properly taken into account. In 

all the reduction methods it is necessary to know the density of the masses between the 

geoid and the surface of the topography. During this study, a constant density 

g/cm67.2=ρ 3 is assumed. A second assumption is also made, i.e., the actual free-air 

gravity gradient is assumed to be equal to the normal free-air gravity gradient. 

 

2.3.1  Refined Bouguer reduction 

The objective of the refined Bouguer reduction is to remove all the topographic masses 

outside the geoid but, because the indirect effect is very large in this case, refined 

Bouguer anomalies are not used for geoid determination. The complete Bouguer 

reduction is used in this thesis to remove the gravimetric effect of the terrain prior the 
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interpolation and gridding in order to avoid aliasing of the short wavelength gravity 

features. Complete Bouguer anomalies have very good interpolatory properties 

(Heiskanen and Moritz, 1967). 

The refined Bouguer reduction takes into account not only the Bouguer plate, which 

considers that the area around the gravity station P is flat and the masses between the 

geoid and the earth’s surface have constant density ρ, but also the deviations of the 

actual topography from the Bouguer plate at P0 This is the terrain correction effect, 

which is usually one order of magnitude smaller than the simple Bouguer term. 

The procedure to compute refined Bouguer anomalies is: 

 measure gravity (gP) at a point P of the Earth’s surface; 

 remove all the masses outside the geoid using the Bouguer plate and terrain 

correction. This is computed by subtracting the attraction of an infinite Bouguer 

plate from the observed gravity and adding the terrain correction; 

 lower the gravity station from P to Po on the geoid using the free-air reduction F; 

 subtract normal gravity γ at corresponding point Qo on the reference ellipsoid. 

 

Earth's 
surface

P

hP

geoid
Po

Bouguer plate

 

Figure 2.2: Bouguer plate and terrain correction 

 

Refined Bouguer anomalies ( are computed by: )rBgΔ

oQTPrB Fggg γ−+Δ−=Δ  (2.27) 

The direct topographic effect on gravity due to the refined Bouguer reduction can 

be expressed as: 

BAr
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PPBT chG2Arg −ρπ==Δ  (2.28) 

where cP is the terrain correction, G is the gravitational constant and ρ is the density of 

the topographic masses. If the terrain correction is not considered, complete Bouguer 

anomalies are obtained. 

The free-air reduction (F) lowers the gravity station from the Earth’s surface point P to 

the corresponding point Po on the geoid by use of the free-air gradient: 

H
H
gF

∂
∂

−=  (2.29) 

where 
H
g

∂
∂ is the actual vertical component of the gravity gradient, the minus sign 

indicates that gravity decreases with increasing elevation, and H is the orthometric 

height.  

For many practical purposes, it is sufficient to use the normal gradient of gravity, 

h
h

F
∂

γ∂
−≈  (2.30) 

In the classical geoid determination using Stokes’s solution, the free-air gravity 

anomalies are referred to the geoid surface and they can be expressed as: 

oQPFA Fgg γ−+=Δ  (2.31) 

Normal gravity on the reference ellipsoid will be computed using Somigliana’s closed 

formula  

ϕ+ϕ

ϕ+ϕ
=γ

γγ
2222

2
b

2
a

sinbcosa

sinbcosa  (2.32) 

where γa and bγ represent the normal gravity at equator and the pole, a is the semimajor 

axis and b is the semiminor axis of the reference ellipsoid, and ϕ is the geodetic latitude. 

In this thesis, all the geometrical parameters of the reference ellipsoid will be those for 

the Geodetic Reference System 1980 (GRS80); see Moritz (2000). 

 

2.3.1.1 Formulas for terrain corrections 

Terrain corrections (TC) are very important quantities in gravity reductions not only for 

geodetic purposes but for geophysical applications, as well. In geodesy, terrain 
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corrections are used not only for the computation of gravimetric geoid undulations but 

also for interpolation and extrapolation of data. 

The terrain correction accounts for the deviations between the Bouguer plate and the 

topography. Terrain corrections will be computed in this thesis using the program 

TC2DFTPL, developed by Yecai Li at the University of Calgary (Li and Sideris, 1993). 

TC2DFTPL computes the topographic gravimetric correction by means of the 2D Fast 

Fourier Transform so gridded data are used as input data. It uses different topographic 

models, like a mass prism (MP) model or mass line (ML) model. The formulas are 

expressed by 2D convolutions and the computations can be done up third order terms. 

In order to speed up the convergence of the series, optimizations can be made (Li and 

Sideris, 1993). 

The terrain correction at a point P is  

dxdydz
)zh,yy,xx(s

)zh)(z,y,x(
Gc

E

h

h PPP
3

P
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p

∫∫ ∫
−−−

−ρ
=  (2.33) 

where the distance kernel is defined as: 2
1

))hh()yy()xx((s 2
P

2
P

2
P −+−+−= , G is 

Newton’s gravitational constant,  ρ(x,y,z) is the topographic density at the running 

point, hP is the topographic height at point P and E denotes the integration area. 

Using a gridded digital topographic model and taking the density as constant,  

we obtain 
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Performing the integral respect z, we get 

( ) ( ) dxdydz
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 (2.35) 

 

cP can then be computed using a mass prism topographic model or a mass line 

topographic model. The topographic height is given on a regular grid. The height within 

each cell is represented by a prism with the mean height and mean density of the 
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topography, which is called a mass prism topographic model (MP). When the mass of 

the prism is mathematically concentrated along its vertical symmetry axis, the 

topography within the prism is represented by a line, giving a mass line topographic 

model (ML). 

 

2.3.1.2  Computation of terrain corrections via 2D FFT 

a) Formulas with mass line topographic model 

The terrain correction cP is: 

321P cccc ++=  (2.36) 

where 
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where Hk and Rk 

Hk = F {hk}, k=0, 1, 2, 3, 4, 5, 6 (2.40) 
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The optimal value for  is one-half of the variance of the heights;  is an optimal 

parameter to improve the convergence of the series (Li, 1993). 

2α α

2

2
h2

σ
=α  (2.42) 

b) Formulas with a mass prism topographic model 

321P cccc ++=   (2.43) 
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where Hk is the same given in (2.30) and  
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2.3.2 Topographic-isostatic reduction  

The objective of an isostatic reduction of gravity is the regularization of the Earth’s 

crust, according to some model of isostasy (Heiskanen and Moritz, 1967). Isostatic 

anomalies are computed by not only removing the topographical masses but also 

restoring the effect of the compensation masses below the geoid. 

There are two classical isostatic models, the Airy-Heiskanen model and the Pratt-

Hayford model. 

 

2.3.2.1 Airy-Heiskanen topographic-isostatic reduction  

The Airy-Heiskanen (AH) model was developed by G.B. Airy in 1855.  Heiskanen gave 

a precise formulation for geodetic problems. It is based on the assumption of a constant 

crust density and a non constant level of compensation, where the normal column of 

height ( ) has a thickness D. The mountains ( ) form roots of depth t, and the 

higher the mountains are, the deeper the roots are. Below ocean (h'<0) anti-roots with a 

thickness t' are found.  

0h = 0h >

According to the Airy model, all crust blocks have the same density but different 

thickness, with higher top surfaces (mountains) having deeper roots. The root thickness 

below mountains is derived by 
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ρΔ=ρ th      ⇒     
ρΔ

ρ
=

ht  (2.57) 

and the anti-root for ocean areas is derived by: 

ρΔ=ρ−ρ '
w

' t)(h      ⇒     
ρΔ

ρ−ρ
=

)(h
t w

'
'  (2.58) 

If a crust with constant density ρ  equal to 2.67 g/cm3 floating on a denser mantle with 

constant density equal to 3.27 g/cm3 is assumed, the density contrast ρ−ρ=ρΔ m is 

equal to 0.6 g/cm3, and considering a density of 1.030 g/cm3 for the salt water, the 

thickness for the root and the anti-root are h45.4t =  and t'=2.73h'. The thickness D of 

the normal crust varies between 30 to 40 km. 

 

ρw }h' 

ρ

 t
ρm

sea level
h

t'
D

 

Figure 2.3: Airy-Heiskanen model 

 

The procedure to compute the Airy-Heiskanen topographic-isostatic anomalies is: 

 measure gravity (gP) at a point P of the Earth’s surface; 

 remove all the masses above the geoid; 

 restore compensated masses according to AH reduction;  
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 lower the gravity station from P to Po on the geoid using the free-air reduction; 

 subtract normal gravity γ at corresponding point Qo on the reference ellipsoid. 

Airy-Heiskanen topographic-isostatic anomalies are computed by: 

AHFAAHQPQ)AH(compTPAH AgAFgFAAgg
00

δ−Δ=δ−γ−+=γ−++−=Δ  (2.59) 

where  is the attraction of the compensated masses within the depth of the 

root.  

)AH(compA

The direct topographical effect on gravity due the AH reduction scheme is equal to the 

gravity attraction change  and it is evaluated at the point P on the Earth’s surface. AHAδ

)AH(compTAHT AAAg −=δ=Δ  (2.60) 

These terms can be expressed (for a point P at the origin of the coordinate system) as: 
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Equations (2.61) and (2.62) can be numerically integrated using rectangular prisms with 

the computation point coinciding with the origin of the coordinate system as (Nagy, 

1966): 
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where the coordinates x1, x2, y1, y2, z1 and z2 represent the corner of a prism 

The change of potential ΔV in equation (2.9) is for the AH topo-isostatic reduction 

scheme expressed by  

)AH(compT VVV −=Δ  (2.65) 
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where VT represents the gravitational potential of the actual topography and 

is the gravitational potential of the compensated masses due the AH 

reduction scheme. They can be given as: 

)AH(compV
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The potential change has to be evaluated at point Po on the geoid. 

The secondary indirect effect on gravity due to the AH reduction scheme has to be taken 

into account. 

Equations (2.66) and ((2.67) can also be numerically integrated using rectangular prisms 

with the computation point coinciding with the origin of the coordinate system (Nagy, 

1966): 

y)(x,2
1

2
1

h
0

y
y

x
x

1
2

1
2

1
2

T

|||)
zr
xy(tan

2
z)

yr
xz(tan

2
y)

xr
yz(tan

2
x

)rxln(yz)zyln(xz)rzln(xyGV

−−− −−−

−+++++ρ−= ∫∫∫
 (2.68) 

D
t-D-

y
y

x
x

1
2

1
2

1
2

)AH(comp

|||)
zr
xy(tan

2
z)

yr
xz(tan

2
y)

xr
yz(tan

2
x

)rxln(yz)zyln(xz)rzln(xyGV

2
1

2
1

−−−− −−−

−+++++ρΔ−= ∫∫∫
 (2.69) 

 

2.3.2.2 Pratt-Hayford topographic-isostatic reduction 

The Pratt-Hayford model assumes a crustal layer of constant thickness D and lateral 

variations in density in order to obtain isostatic equilibrium in the level of 

compensation, generally assumed as 100 km (Heiskanen and Moritz, 1967). If ρ  is the 

density of the normal crust for the normal column of height (h=0), continental columns 

(h>0) generate densities lower than ρ , while the densities below oceanic columns (h'<0) 

are higher than ρ . 

The equilibrium condition for the continents is 

1)hD(D ρ+=ρ  (2.70) 
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so below mountains there is a mass deficiency given by: 

ρ
+

=ρ−ρ=ρΔ
hD

h
1  (2.71) 

For the oceans, the condition of equal weight is expressed as 

'
w )'hd('hD ρ−+ρ=ρ  (2.72) 

thus below the oceans there is a mass surplus given by  

)(
hD

h'' w'

'
ρ−ρ

−
=ρ−ρ=ρΔ  (2.73) 

3
w

3 1.030gr/cmρ  and 2.67gr/cmρ ==  are usually taken to the normal crust density and 

the density for the oceanic crust. 
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Figure 2.4: Pratt-Hayford model 

 

The procedure to compute Pratt-Hayford topographic-isostatic anomalies is: 

 measure gravity (gP) at a point P of the Earth’s surface; 

 remove all the masses above the geoid; 
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 restore compensated masses according to PH reduction; 

 lower the gravity station from P to Po on the geoid using the free-air reduction; 

 subtract normal gravity γ at corresponding point Qo on the reference ellipsoid. 

Pratt-Hayford topographic-isostatic anomalies are computed by: 

PHFAQPHPQcompTPAH AgFAgFAAgg
00

δ−Δ=γ−+δ−=γ−++−=Δ  (2.74) 

where is the attraction of the compensated masses. )PH(compA

The direct topographical effect on gravity due the PH reduction scheme is equal to the 

attraction change , PHAδ

)PH(compTAHT AAAg −=δ=Δ  (2.75) 
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Usually the refined Bouguer reduction is done using a constant density ρ  so to restore 

equality of masses the attraction of the compensated masses according to the PH model 

is computed with a density contrast given by: 

ρ=ρΔ
D
h  (2.77) 

The change of potential ΔV in equation (2.8) for the PH topo-isostatic reduction scheme 

is expressed by  

)PH(compT VVV −=Δ  (2.78) 

where VT represents the gravitational potential of the actual topography and it is the 

same as equation (2.54) and is the gravitational potential of the compensated 

masses due AH reduction scheme and it can be given as: 
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The computation point of the potential change is at point Po on the geoid. 
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The attraction and the potential of the compensating masses can be 

evaluated in the same way as in equations (2.64) and (2.69): 
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The secondary indirect effect on gravity due to the PH gravity reduction must be taken 

into account. 

 

2.3.3 Second method of Helmert’s condensation 

The second method of Helmert’s condensation considers that the topographical masses 

between the geoid and the surface of the topography are condensed in a surface layer on 

the geoid with surface density hρ=κ , where h is the height of the topography. The 

condensation implies corrections to the gravity anomaly and the introduction of indirect 

effect due to the change of potential caused by the condensation. 

This method is one of the most common methods used in the classical solution of 

geodetic boundary value problems (Sideris and She, 1995; Omang and Forsberg, 2000; 

Li, 1993; Bajaracharja, 2003; Bajaracharja and Sideris, 2005). 

This reduction can be viewed as a limit case of the Pratt-Hayford isostatic reduction 

with depth of condensation zero. 

The procedure to compute Helmert anomalies is: 

 measure gravity (gP) at a point P of the Earth’s surface; 

 remove all the masses above the geoid. The attraction of the topographic masses 

above the geoid is computed at the point P and it is subtracted from the observed 

value (gP); 

 lower the gravity station from P to Po on the geoid using the free-air reduction; 

 condense all the masses on a layer on the geoid with density hρ=κ . The attraction 

of the condensed masses is computed at the point Po and added to the result 

computed in the preceding step; 
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 subtract normal gravity γ at corresponding point Qo on the reference ellipsoid: 
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Figure 2.5: Helmert’s method of condensation 

 

This procedure gives Helmert anomalies on the geoid computed from the expression 

HelmertFAQHelmertPQcondTPHelmert AgFAgFAAgg
00

δ−Δ=γ−+δ−=γ−++−=Δ (2.82) 

where  is the attraction of the condensed masses at PcondA 0. 

The direct topographical effect on gravity TgΔ , given in equation (2.1), due this 

reduction scheme is the attraction change Aδ , which is equal to the classical terrain 

correction cP 

PcondTHelmertT cAAAg −=−=δ=Δ  (2.83) 

Faye anomaly or Helmert’s gravity anomaly differs from the free-air gravity anomalies 

at the same point by the terrain correction. They represent boundary values in the 

Helmert/Stokes approach. 

PFAPQPFayeHelmert cgcFggg 0 +Δ=+γ−+=Δ=Δ  (2.84) 

A small correction , called the indirect effect on gravity, has to be considered 

before applying Stokes 's formula to transform gravity anomalies from geoid to cogeoid 

gΔδ

gΔδ  is, according to Sideris and She (1995), expressed as: 
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The indirect effect of Helmert’s reduction on the geoid, considering the first two terms 

is given, in planar approximation, following (Wichiencharoen, 1982) as: 
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where γ is the normal gravity and s is the planar distance between computation and 

running point. 

 

2.3.3.1 FFT formulas for the indirect effect of Helmert’s reduction on the geoid 

The indirect effect due the Helmert’s second condensation method can be computed up 

to the second term and in planar approximation with a grid of digital elevation heights 

by the following discrete formula: 
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where the second and third terms are 2D discrete convolutions and they can be 

evaluated by the 2D FFT given the indirect effect for all grid points simultaneously. 

The 2D FFT for evaluating equation (2.87) is: 
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2.3.4 The Rudzki inversion method 

The Rudzki inversion method was not a common gravimetric reduction for geoid 

determination, but during the last years studies carried out in the Canadian Rocky 

Mountains show that the Rudzki geoid solution performs as well as the Helmert and 

RTM geoids solutions in terms of the standard deviations and maximum and minimum 

range compared to GPS/levelling derived geoid heights (Bajracharya, 2003; Bajracharya 

and Sideris, 2004; Bajracharya and Sideris, 2005). The Rudzki inversion method is a 

gravity reduction that shifts all the topographic masses inside the geoid in such a way 

that the indirect effect on the geoid is zero. For this gravity reduction, equation (2.9) is: 
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0VVV invT =−=Δ  (2.89) 

so  (2.90) invT VV =

M. P. Rudzki presented the inversion method in 1911 (Rudzki, 1911). He considered the 

geoid as a sphere of radius R as it is shown in Figure (2.6). He also let a mass element 

dm at a point Q be replaced by a mass element dm’ at a certain point Q' inside the geoid 

and on the same ray from the center of the sphere. The gravitational potential at a point 

Po on the geoid due to the mass elements dm and dm' is: 

θ−+
==

cosrR2Rr

Gdm
l

dmGdV
22T  (2.91) 

θ−+
==
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'Gdm
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dmGdV
22'inv  (2.92) 

dVT is equal to dVinv  if  

dm
r
R'dm =  (2.93) 

and 
r

R'r
2

=  (2.94) 

This last condition indicates that the point Q and Q' are related by inversion in the 

sphere. 

If Q(x, y, z) and Q'(x', y', z') are any two points which are inverse in the sphere, at 

distances r and r’ respectively from the origin, the equations for the transformations of 

coordinates are according to Kellogg (1929). 
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Ry          'x

'r
Rx ====  (2.95) 

The last equation is the same as the condition (2.94). 

Even though the condition (2.95) expresses that the inverted masses dm' are smaller 

than the topographic masses dm, they can be consider equal because the change is of the 

order of 10-8. 

dm'dm =  (2.96) 
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Figure 2.6: Rudzki inversion method on the sphere 

 

It is usual to apply the Rudzki inversion reduction in planar approximation; the sphere is 

replaced by a plane and the point Q' is the ordinary mirror image of Q. The Rudzki 

reduction in planar approximation can be seen in Figure (2.7). 

earth's surface

             P

        h ρ

geoid
           Po

         h ρ

Q
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Figure 2.7: Rudzki inversion method in planar approximation 

 

The procedure to compute Rudzki anomalies is: 

 measure gravity (gP) at a point P of the Earth’s surface; 
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 remove all the masses above the geoid; 

 lower the gravity station from P to Po on the geoid using the free-air reduction; 

 restore the inverted masses; 

 subtract normal gravity γ at corresponding point Qo on the reference ellipsoid; 

 This procedure gives Rudzki anomalies on the geoid computed from the expression 

invFAinvQPQ
inv

TPRudzki AgAFgFAAgg
00

δ−Δ=δ−γ−+=γ−++−=Δ  (2.97) 

The direct topographical effect on gravity TgΔ , given in equation (2.1), due this 

reduction scheme is the attraction change invAδ  

invinvTT AAAg δ=−=Λ  (2.98) 

where AT is the attraction of the topographic masses above the geoid and is the 

attraction of the inverted topographical masses, with the density of the topographic 

masses being equal to the density of the inverted masses and the thickness of the 

inverted masses equal to the height of the topography. 
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Equations (2.99) can also be numerically integrated using rectangular prisms with the 

computation point coinciding with the origin of the coordinate system (Nagy, 1966): 
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The indirect effect due to the Rudzki inversion method on the geoid is zero. 

 

2.3.5 Residual Terrain Model (RTM) 

The RTM reduction method takes into account the high frequencies of the topography, 

so a mean elevation surface is chosen and the effect of the topography above this long 

wavelength topographic surface is first removed and later restored. 

The direct topographical effect on gravity TgΔ , given in equation (2.1), due to this 

reduction scheme is the attraction change RTMAδ  
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RTMRTMTT AAAg δ=−=Λ  
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where h is the topographical height, given by a digital elevation model and href is the 

height of the smooth reference surface. 
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Figure 2.8: RTM reduction 

 

When the mean elevation surface is a sufficiently long-wavelength surface, the RTM 

gravity terrain effect is given by the approximate expression (Forsberg, 1984) 

PrefRTM c)h(G2A h −−ρπ≈δ   (2.102) 

which is a Bouguer reduction to the reference surface and cP is the classical terrain 

correction. 

The RTM gravity anomalies are expressed as: 

RTMQPRTM Agg δ−γ−=Δ  (2.103) 

PrefFARTM c)hh(G2gg +−ρπ−Δ=Δ  (2.104) 
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where  is the surface free-air anomaly; it refers to the surface of the topography 

and it is obtained by subtracting from the surface gravity the normal gravity calculated 

with the following equation: 
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∂

∂
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∂
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where Qγ  is the normal gravity at the telluroid point Q and H* is the normal height (see 

Figure 2.9). 
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Figure 2.9: Quasigeoid, changed quasigeoid and ellipsoid 

 

QPFA gg γ−=Δ  (2.106) 

The RTM reduction method yields the quasigeoid. Equation (2.2) is replaced by the 

following equation 

indGMRTMg ζ+ζ+ζ=ζ Δ  (2.107) 

where ζ is the height anomaly, the residual height anomalies 
RTMgΔζ  are computed 

using Stokes 's formula with the RTM gravity anomalies as input. 
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ζind is the RTM indirect quasigeoid effect. It is the distance between the original 

telluroid and the changed telluroid after the RTM reduction was performed. It is shown 

in Figure 2. 9 and it is expressed in linear approximation as: 
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s
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where s is the planar distance. 

The quasigeoid is converted to geoid using the quasigeoid-geoid separation given in 

Heiskanen and Moritz (1967) as 

H
g

N B
γ

Δ
+ζ≈  (2.109) 

where γ  represents the mean normal gravity; H is the orthometric height and the 

Bouguer anomaly. 

BgΔ

 

2.4 Data error propagation 

For regional geoid determination, the accuracy of the gravimetric geoid computed with 

the remove-restore technique will depend on the density, accuracy and coverage of the 

local gravity anomalies, the height data and the errors of the geopotential model. 

Applying the theory of error propagation to the geoid determination, the error variance 

of the gravimetric geoid undulations can be expressed by: 

2
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2
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2
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2
N TGMgGRAV σ+σ+σ=σ

Δ
 (2.110) 

where  is the combined gravimetric geoid error variance, is the geoid 

error variance due to the error of the gravity anomalies, is the geoid error 

variance due to the errors of the geopotential model and is the geoid error variance 

due to the errors of the height data. Equation (2.101) assumes that the data errors are 

uncorrelated. 
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Each of the expressions in equation (2.101) can be given according to Li (1994) as: 
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With gridded gravity anomalies, this equation can be evaluated by the 2D Fourier 

transform as: 
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where  are the variances of the residual gravity anomalies, are the variances 

of the gravity anomalies from the geopotential model and are computed from the 

variances of the geopotential model,

2
gΔσ 2

gGMΔσ

)(S ψ is the spherical Stokes kernel and )(S ψ is the 

summation of the  Stokes spherical kernel up to degree nmax
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The contribution of the random noise of the geopotential model coefficients to the 

combined gravimetric geoid undulation error variance can be computed by: 
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where 2
Cnm

σ and  2
Snm

σ are the variance of the fully normalized geopotential coefficients 

The errors of gravity field parameters computed from a geopotential model like GMgΔ  

or used in the remove-restore procedure suffer from two effects. GMN

 The commission error produced by the statistical errors of the coefficients 

themselves. An approximate method to estimate the commission errors uses the 

error degree variances of the geopotential model (Sideris and She, 1995). 

 The omission error produced by neglecting of the coefficients above nmax. The 

estimation of the omission errors or truncation errors requires the knowledge of the 

signal degree variances above the maximum degree to which the geopotential 
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model are used (nmax) from a signal gravity anomaly degree variance model (e.g., 

the Tscherning and Rapp model (Tscherning and Rapp, 1974). 

Signal gravity anomaly degree variance are related to the coefficients of the 

geopotential model by: 

( ) )SC(1n)g,g( 2
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The expression for is: 2
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where is the error of the heights hσ

 

2.5 Summary 

The flowchart depicted in Figure 2.10 summarizes the principal steps of the remove-

compute-restore technique applied in this research to compute the combined geoid 

solution for Argentina. 



COMPUTE

RESTORE STEP

REMOVE STEP

(Δg=ΔgFA-ΔgGM)grid
Remove from the grid of free-air gravity 
anomalies the contribution of the 
reference gravity anomaly  from a global 
geopotential model

Restore the long-wavelength part of the geoid 
from a geoptentail model NGM

Restore the indirect effects Nind (depends on 
the mass reduction scheme)

Apply a terrain reduction
(e.g., Bouguer reduction) to 
remove the high frequency 
information of  the gravity 
observations and reduce 

aliasing effects on gravity

Grid reduced gravity data

Restore the terrain effects at 
the respective grid points to 
obtained a grid of free-air 

gravity anomalies 

Randomly distributed free-
air gravity anomalies 

Compute residual 
geoid heights NΔg by 
FFT spherical Stokes 
convolution

Calculate the direct topographical effect on gravity depending on 
the mass reduction scheme (Helmert ´s second method of 
condensation, RTM, Rudzki inversion method, PH and AH 
topographic-isostatic reductions  

Compute geoid 
heights Ntopo by FFT 
spherical Stokes 
convolution

Gravimetric geoid heights
N=NΔg+Ntopo+NGM+NT

 

Figure 2.10: Flowchart gravimetric geoid modeling 
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CHAPTER THREE 

MARINE GEOID DETERMINATION 

 

3.1 Introduction 

As we have seen in Figure 1.1, Argentina is limited with the Atlantic Ocean to the East 

so it is also necessary to study the marine gravity field due to its applications in marine 

geodesy, geophysics and oceanography. The main objective of this chapter is to present 

the theoretical background related to determination of a high-accuracy and high-

resolution marine geoid model by combining satellite altimetry and sea gravimetry. The 

theoretical foundations related to the estimation of the gravimetric and altimetric geoid 

models (Li and Sideris, 1997; Vergos, 2002) and the combined geoid solution using the 

Multiple Input Multiple Output System Theory (MIMOST) (Sideris, 1996; Li, 1996; 

Andritsanos et al., 2000; and Andritsanos and Tziavos, 2002) will be outlined. Satellite 

altimetry gives observations of sea surface heights that are approximately equal to geoid 

heights; they are very useful in mapping the ocean geoid and in studying the marine 

gravity field (Li, 1996). Shipborne data will be used to compute the marine gravimetric 

geoid. 

 

3.2 Computational methodology 

3.2.1 Gravimetric geoid modeling  

Marine gravimetric geoid determination is based on shipborne and satellite altimetry-

derived gravity anomalies. The latter are used to augment the ship data and fill in gaps. 

It is often that the ship gravity anomalies refer to the sea surface and not the geoid itself, 

thus their use will lead to the determination of a mean sea surface and not a geoid 

model. These gravity anomalies have to be free-air reduced so as to produce gravity 

anomalies on the surface of the geoid. The free-air gravity anomalies are computed 

using the well-known reduction formula 

Fgg FA +Δ=Δ  (3.1) 
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where F is the free-air reduction. In marine regions the height needed for the reduction 

is that of the Quasi-stationary Sea Surface Topography (QSST), which varies between 

0.2 and -0.7 m for the EGM96.QSST (Lemoine et al., 1998) in the study area.  

Thus, for practical purposes it is sufficient to use the normal gradient of gravity to 

compute the free-air reduction as 

h3086.0h
h

F −≈
δ
δγ

−≈  (3.2) 

where  is the QSST in meters, derived from a global model. h

Even though, this effect of about a tenth of a miligal and it can be considered negligible, 

it is applied in order not to introduce an additional error. 

This pre-processing step is necessary for the data homogenization so that they can be 

used for the determination of the gravimetric geoid. The marine gravimetric geoid will 

be computed using the remove-compute-restore technique employing Stokes’s formula 

for the prediction of residual geoid heights. Before the prediction of the geoid the 

gravity anomalies have to be reduced to a geopotential model during the remove step. 

Furthermore the effect of the topography, actually that of the bathymetry in marine 

areas, has to be taken into account through a topographic reduction. In this study, a 

residual terrain model (RTM) reduction was used to account for the bathymetry. The 

RTM effect on gravity is given by the approximate expression (Forsberg, 1984) 

( ) chhG2A refbbRTM −−ρΔπ≈δ  (3.3) 

where hb is the bathymetric depth given by a global bathymetry model, hbref  is the depth 

of a smooth mean reference surface and Δρ is the density contrast between Earth’s crust 

and seawater. The reference bathymetric surface is obtained by simple averaging the 

fine bathymetry grid and then low-pass filtering it using a moving-average window, 

with a resolution around 100 km. tc and tcgrid programs from the GRAVSOFT 

software (Tscherning et al., 1992) are used for the RTM reduction and to filter height 

data for RTM height reference surfaces. 

The residual gravity anomalies ( GMrefFAres gc)hh(G2gg Δ−+−ρπ−Δ=Δ ) are then 

gridded and the contribution of the bathymetry is restored prior to the grid
res )g(Δ
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calculation of the geoid height (indirect use of the terrain reduction) 

, yielding a grid of Faye gravity anomalies relative to 

the geopotential model. The bathymetry refers to masses below the geoid so its effect 

has to be restored before the use Stokes formula for the estimation of geoid heights 

(Dahl and Forsberg, 1998). The gridding is performed using program geogrid using 

weighted means from the same GRAVSOFT package. 

grid
ref

grid
res )hh(G2)g( −ρπ+Δ

Different approximations to Stokes’s kernel function are investigated to compute 

residual geoid undulations, all in the spectral domain, e.g., the 2D-FFT spherical Stokes 

convolution to evaluate the kernel function (Strang Van Hess, 1990) and the 1D-FFT 

rigorous spherical Stokes convolution (Haagmans et al., 1993).  

The final gravimetric geoid is obtained by restoring the contribution of the reference 

model. 

 

3.2.2 Altimetric geoid modeling 

An altimetric satellite measures the time taken by a radar pulse to travel from the 

satellite to the sea surface and then back to the satellite receiver. Combined with precise 

satellite location data, altimetry measurements yield Sea Surface Heights (SSHs). The 

derived SSHs have to be corrected for several geophysical effects (tides, tidal loading, 

ionosphere, wet and dry troposphere, inverse barometer and electromagnetic bias) and 

instrumental errors (ultra-stable oscillator, centre of gravity, corrections for instrument 

and algorithm effects that can not be modeled and waveforms). After applying the 

above corrections, Corrected Sea Surface Heights (CorSSHs) are available for one or 

more satellites (e.g., GEOSAT, ERS1). 

Sea Surface Heights contain information about both the geoid and the sea surface 

topography (SST); the latter consists of a time-dependent and a nearly time-independent 

component (quasi-stationary part). Stacking the repeat tracks can eliminate the effect of 

the time-dependent component and part of the sea surface variability effects that 

influence the data. 
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These altimetric measurements refer to the sea surface so they have to be reduced to the 

geoid. This is performed by estimating the QSST at each sub-satellite point and 

removing the contribution of the QSST from the CorSSH value. The quasi-stationary 

component of the SST is modeled by a spherical harmonic series of the Dynamic Ocean 

Topography (DOT) as follows: 

( ) ( ) (∑ ∑
= =

+=
maxn

1n

n

0m
nmc sinφPsinmλScosmλCRλφ,ς SST

nm
SST
nm )

)

 (3.4) 

where  is the contribution of the model coefficients, n( λφ,ςc max denotes the maximum 

degree and order of expansion of the DOT model, ( )φsinPnm  are the fully normalized 

associated Legendre functions, and SST
nm

SST
nm SC ,  are the fully normalized DOT spherical 

harmonic coefficients.  

After the removal of the effect of the QSST the CorSSHs refer to the geoid and can be 

used to derive an altimetric geoid model. As in the gravimetric geoid computation, the 

contribution of a geopotential model was removed to derive reduced SSHs (SSHsred). 

The so-reduced SSHs (SSHsred) may still contain some blunders, so a 3 rms test is used 

to identify and remove gross-errors. If the mean value of the reduced SSHs is small 

enough (e.g., bellow 10 cm), then the 3 rms test can be applied. That is so because by 

using a 3 rms test we assume that all systematic errors have been removed from the data 

and only random errors remain. If the mean value of the SSHred is larger, an RTM 

reduction is applied first to obtain smoother residual SSHs. The computation of the 

RTM effects on residual geoid heights has been based on the same concept as in the 

gravimetric geoid. In both cases, the GRAVSOFT software (Tscherning et al., 1992) 

has been used to create the reference bathymetric grid and estimate the RTM reduction 

on geoid heights.  

The residual Sea Surface Heights represent the medium wavelengths of the geoid 

heights and can be considered as residual geoid heights (Nres). After all these 

processing steps the Nres are ready to be gridded. The gridding of the randomly 

distributed data is based on a weighted means method using the inverse of the square of 

the distance as the weight for each irregular observation. It was done using the program 

geogrid from the GRAVSOFT software (Tscherning et al., 1992).  
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If the area under study is located in a closed sea, then the derived Nres constitute the 

final estimated residual altimetric geoid height. But, if the area investigated is in an 

open ocean area, then the effects of temporal oceanic phenomena like the Sea Surface 

Variability (SSV) influence the data and appear as noise in the Nres. Such effects need 

to be removed or at least reduced so as to derive reliable predictions. Since the effect of 

the SSV appears as high-frequency noise in the altimetric data, it can be reduced by 

low-pass filtering the Nres grid. This was performed using Wiener filtering, which is 

equivalent to least squares collocation in the frequency domain. Assuming Kaula’s rule 

for the geoid kernel spectrum F(ω), we have 

4
c

4

4
c)(F
ω+ω

ω
=ω  (3.5) 

where ω is the radial frequency and the cut-off frequency cω  is determined empirically 

based on a criterion of maximum noise reduction with minimum signal loss. Program 

geofour from the GRAVSOFT software (Tscherning et al., 1992) is used for applying 

this type of filter. 

Then, the final step to compute the altimetric geoid (Nalt) is to restore the contribution 

of the geopotential model and the contribution of the bathymetry. 

 

3.2.3 Combined marine geoid modeling 

A combined geoid solution can be determined using Least Square Collocation (LSC) or 

the Multiple Input Multiple Output System Theory (MIMOST) (Sideris, 1996; Wu, 

1996; Li, 1996; Li, 1996). In this research, the combined geoid will be estimated using 

MIMOST for the optimal combination of heterogeneous noisy data in order to 

investigate whether the combined use of shipborne gravity and satellite altimetry data 

improves the geoid compared to the purely gravimetric case and if the shipborne 

information can improve the low accuracy of the altimetric geoid determination in 

coastal regions. 

The system used in this research corresponds to a double-input single-output system 

with noise. The system can be seen in Figure 3.1. 
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Mathematically, the system can be expressed by: 

eh*)mn(h*)mn(n 2
altalt

1
gravgrav ++++=  (3.6) 

where n is the combined geoid output (system output),  and are the pure 

gravimetric and the pure altimetric input signals, 

gravn altn

gravm  and altm  are the input noises, 

 and  are the gravimetric and altimetric geoid 

observations considered as noise-contaminated input signals, h

gravgrav mng += altalt mna +=

1 and h2 are impulse 

responses, e is the output system noise and * is the convolution operator. 

Equation (3.6) can be written in the frequency domain as: 

)(E)(H))(M)(N()(H))(M)(N()(N 2
altalt

1
gravgrav ω+ωω+ω+ωω+ω=ω  (3.7) 

)(E)(N̂)(E)(H)(A)(H)(G)(N 21 ω+ω=ω+ωω+ωω=ω  (3.8) 

where ω is the circular frequency, N(ω) is the spectrum of the output combined geoid, 

Ngrav (ω) and Nalt (ω) are the spectrum of the input altimetric and gravimetric signals, 

Mgrav (ω) and Malt (ω) are the spectra of the gravimetric and altimetric noises,  and 

are the spectrum of the input gravimetric and  altimetric observations, H

)(G ω

)(A ω 1 (ω) and 

H2 (ω) are the corresponding frequency responses of h1 and h2, which are the theoretical 

operators connecting the input and output signals, and E(ω) is the system noise 

expressed  in the frequency domain. 
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Figure 3.1: Double-input single output system with noise 
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Equations (3.7) and (3.8) can be rewritten as: 
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[ )(H))(A)(H))(G)(N)(E 21 ]ωω+ωω−ω=ω  (3.10) 

Multiplying E(ω) by E*(ω) (super script  * denotes the complex conjugate)  and taking 

the mathematical expectation E, the system output noise power spectral density (PSD) 

is: 
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The optimal transfer functions Ĥ1(ω )and Ĥ2(ω) are the particular H1 and H2 that are 

minimizing the power spectral density of the output noise ( )(Pee ω ) at any frequency 

over all possible choices of H1 (ω ) and H2 (ω) using the next criterion.  
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The optimal frequency response functions Ĥ1(ω ) and Ĥ2(ω) are obtained by setting the 

following partial derivates equal to zero 
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Assuming that the input noises ( gravm and altm ) are uncorrelated with known PSDs and 

the signals and noises are also uncorrelated, the optimal transfer functions Ĥ1(ω )and 

Ĥ2(ω) are: 

2
PP)PP)(PP(

PPP)PP(
Ĥ
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We can expressed, the estimated output signal, in the frequency domain as: 
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and the minimum power spectral density of the system output noise by the following 

equation: 
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where  and  are the auto-power spectral densities of ngravngravn
P altnaltn

P grav and nalt;  

gravmgravm
P  and are the noise power spectral densities of naltmaltm

P grav and nalt; 

are the cross-power spectral densities between ngravalt*
n

altngravn nnPP
=

grav and nalt; 

 and are the cross-power spectral densities between the output n and ngravnn
P

 altnn  P grav 

and nalt and is the power spectral density of the prediction error. )N(P ee))

The input signals in the combined solution are the residual gravimetric and altimetric 

geoid heights before restoring the contribution of the geopotential model. That is done 

to avoid introducing long-wavelength errors. The two inputs of the system are 

contaminated by uncorrelated noise malt and mgrav with known Power Spectral Density 

(PSDs). 

The MIMOST solution can be estimated only if the noise PSD (Pmm) is known. When 

no information is available about the errors of the input data, simulated noise using a 

random number generator can be used as input errors in the prediction and the input 

error power spectrum can be computed (Andritsanos and Tziavos, 2002). The 

variances used in the generation of the noise fields will be defined from the 

comparisons of our geoid models with the T/P SSHs, which will be used as control 

points. 

The algorithm and the related formulae are given in Sideris (1996) and Andritsanos and 

Tziavos, (2002). More details of the input-output system theory (IOST) can be found in 
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(Bendat and Piersol, 1986; Li and Sideris, 1997; Andritsanos and Tziavos, 2002 and 

Vergos, 2002). 

 

3.3 Summary 

The following flowcharts summarize the computational methodologies described in this 

chapter for the gravimetric and altimetric geoid developments (Figures 3.3 and 3.4) 

respectively. 

Data: 
shipborne gravity anomalies
satellite altimetry-derived gravity 
anomalies

Shipborne free-air gravity anomalies 
refer to sea level 

       reduce to the geoid with a free-
air reduction -0.3086zQSST 

Remove the contribution of a GM

Remove the contribution of the 
bathymetry (e.g., by RTM reduction) 

Gridding Restore RTM 
effect 

              Restore the contribution of NGM 

Gravimetric Geoid Heights

3 rms test for blunders removal

Compute Nres by FFT spherical Stokes convolution

Δgres=ΔgRTM-ΔgGM

Grid of Faye 
anomalies 
relative to 

the GM 

 

Figure 3.2: Gravimetric geoid modeling 
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SSHs (from altimetry) Altimetry derived Corrected SSHs
GEOSAT, ERS1

Correct the SSHs for the QSST
(EGM96.DOT)

Remove the contribution of a GM

Remove the contribution of the 
bathymetry (e.g., by RTM reduction) 

Gridding
Low-pass filter the gridded Nres to 

reduced  the effect of the SSV

Restore the contribution of NGM and NRTM

Altimetry Geoid Heights

RTMGMres NNQSSTCORSSHsN −−−=

3 rms test for blunders removal

geophysical effects
instrumental errors

 

Figure 3.3: Altimetric geoid modeling 
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CHAPTER FOUR 

GRAVITY, ELEVATION AND BATHYMETRY DATA IN ARGENTINA 

 

4.1 Introduction 

This chapter presents all the data available for this research and describes the data 

preparation, pre-processing and evaluation for the determination of the gravimetric 

geoid model in Argentina and the optimal marine geoid determination in the Atlantic 

coastal region of Argentina. 

The original database includes: 

 Land gravity observations 

 Shipborne marine gravity observations   

 Free-air gravity anomalies derived from satellite altimetry  

 Spot Heights, Digital Elevation Models (DEM) and Digital Depth Models (DDM) 

 GPS/levelling observations 

 Global Geopotential Models  

 Gravity models from CHAMP and GRACE gravity missions 

 Corrected Sea Surface Heights from the ERS1 Geodetic Mission 

 Topex/Poseidon altimetry data 

 Quasi Stationary Sea Surface Topography (QSST) models 

4.1.1 Land gravity observations 

During the past five years many efforts were carried out in order to collect as many 

gravity data as possible in order to generate the most homogenized gravity database in 

Argentina. A total number of 73373 were collected from different sources. The 
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distribution of the land gravity observations can be seen in Figure 4.1 and Table 4.1 

shows statistical information about the gravity observations. 

Table 4.1: Statistics of the gravity observations. 
Source N° of 

points 
 Unit min max mean σ 

latitude -29.45 -20.06 -24.95 2.30 
longitude [degree] -71.41 -63.86 -67.93 1.82 
g IGSN71 [mGal] 977310.00 979294.92 978304.65 456.74 

Freie Universitaet 
Berlin, Germany 5648 pts 

height [m] 0.10 6204.00 2223.33 1383.15
latitude -42.21 -35.47 -39.38 1.60 
longitude [degree] -71.93 -62.27 -68.31 2.51 
g IGSN71 [mGal] 979252.70 980303.15 979917.46 200.96 

Freie Universitaet 
Berlin, Germany 3041 pts 

height [m] 1.00 2281.40 682.02 436.73 
latitude -28.93 -26.80 -27.89 0.50 
longitude [degree] -66.53 -64.16 -65.33 0.46 
g IGSN71 [mGal] 978271.04 979172.10 978990.13 121.18 

National University of 
Tucuman 
(UNT) 
 

348 pts 

height [m] 137.00 3290.00 503.34 388.38 
latitude -40.64 -35.00 -37.92 1.09 
longitude [degree] -64.00 -56.84 -61.25 1.82 
g IGSN71 [mGal] 979690.58 980225.85 979955.52 101.54 

 
Argentinean Institute of 
Oceanography (IADO) 
 

2757 pts 

height [m] -42.30 516.22 130.31 87.71 
latitude -54.81 -22.24 -36.63 3.45 
longitude [degree] -71.47 -56.68 -61.32 2.88 
g IGSN71 [mGal] 977645.33 981469.07 979823.51 430.17 

Gravity Department, 
University of  
La Plata (UNLP) 2466 pts 

height [m] -38.33 4220.29 211.53 660.16 
latitude -40.85 -37.10 -39.10 0.80 
longitude [degree] -66.15 -58.77 -61.68 1.60 
g IGSN71 [mGal] -79845.46 980238.66 980070.33 80.84 

Gravity Department, 
University of  
La Plata (UNLP 
&  (IADO) 

937 pts 

height [m] -68.10 516.22 47.98 68.59 
latitude -51.65 -24.12 -35.91 8.25 
longitude [degree] -73.30 -61.76 -67.87 2.81 
g IGSN71 [mGal] 977645.33 981192.97 979543.54 900.82 

Institute of Physics 
Rosario (IFIR) 
 

1234 pts  
 

height [m] 4.60 4220.29 963.43 977.54 
latitude -52.12 -51.48 -51.86 0.17 
longitude [degree] -70.75 -69.07 -69.88 0.48 
g IGSN71 [mGal] 981122.64 981212.73 981174.88 21.27 Antarctic Institute 207 pts 

height [m] 13.72 204.20 116.29 45.01 
latitude -47.61 -18.01 -29.45 7.51 
longitude [degree] -73.84 -68.00 -70.48 1.60 
g IGSN71 [mGal] 977236.91 980743.29 978876.68 924.79 Chile 2011 pts 

height [m] 1.00 4696.00 1543.17 1401.27
latitude -54.82 -22.17 -35.65 8.65 
longitude [degree] -71.70 -57.65 -65.73 3.23 
g IGSN71 [mGal] 978483.97 981464.04 979640.79 821.05 

University of Buenos 
Aires (UBA) 474 pts 

height [m] 0.00 3193.53 567.08 717.31 
latitude -54.79 -22.10 -34.66 6.21 
longitude [degree] -72.86 -53.65 -63.77 3.93 
g IGSN71 [mGal] 978099.94 981467.92 979625.32 539.37 

Military Geographic 
Institute (IGM) 13442 pts 

height [m] 1.80 3849.73 335.60 428.38 
latitude -53.36 -21.00 -27.85 6.53 
longitude [degree] -74.97 -53.00 -62.70 5.81 
g IGSN71 [mGal] 977310.00 981337.79 978910.97 733.53 

Escola Politecnica da 
Universidade de Sao 
Paulo (ESUSP) 

50527 pts 

height [m] 0.00 6204.00 939.35 1269.18
latitude -39.00 -35.01 -37.31 1.05 
longitude [degree] -68.41 -63.37 -65.22 1.31 
g IGSN71 [mGal] 979518.87 980050.37 979855.90 109.38 

Argentinean Institute of 
Oceanography (IADO) 1617 pts 

height [m] -20.90 1099.00 245.09 147.51 
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Figure 4.1: Distribution of land gravity data Figure 4.2: Distribution of shipborne gravity 

data 

 

4.1.2 Shipborne marine gravity database 

The shipborne data around Argentina was provided by the International Gravimetric 

Bureau (personal communication). The sea data records include: source number, co-

ordinates (latitude and longitude), accuracy of position, system position, type of 

observation, elevation of the station, elevation type, accuracy of elevation, 

determination of the elevation, supplemental elevation, observed gravity in microgal, 

free-air gravity anomalies, Bouguer gravity anomalies, estimate of the standard 

deviation of the free-air gravity anomalies and Bouguer gravity anomalies, terrain 

corrections, information about terrain corrections, density used for terrain corrections, 

accuracy of gravity, correction of observed gravity, date of the observation, velocity of 

the ship, Eötvos correction, country code, confidentiality, validity, original number of 

the station, sequence number, leg number, reference station and a number.  For more 
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details in the sea data format record description, BGI (International Gravimetric Bureau) 

should be contacted. 

The marine gravity database contains a total of 17352 shipborne gravity observations in 

an area limited between latitudes 21°S to 55°S and between longitudes 55°W (304°E) to 

70°W (290°E). The distribution of the shipborne gravity observation can be seen in 

Figure 4.2. 

 

4.1.3 Satellite altimetry derived gravity anomalies 

The sparse shipborne gravity distribution around Argentina can deteriorate the geoid 

accuracy near the coast. Therefore, gravity anomalies derived from altimetry can be 

very useful to improve the poorer marine gravity coverage and thus improve the quality 

and accuracy of the geoid. 

Different altimetry-derived global gravity anomaly datasets are tested to fill in the 

sparse coverage of shipborne gravity measurements offshore Argentina. The evaluation 

of these global models in the area under study will be presented in the next section.  

During the past twenty years all marine areas have been covered. There are several 

techniques to compute gravity anomalies from satellite altimetry 

4.1.3.1 Satellite altimetry gravity anomaly grids  

The satellite altimetry gravity grids available in the area under study are: 

 CLS_SHOM v.99 Free-air gravity anomaly field  

Free-Air Gravity anomaly field CLS SHOM99 has been developed by CLS (Collecte, 

Localization, Satellites) under a contract from SHOM (Service Hydrographique et 

Océanographique de la Marine). The free-air gravity anomalies have been estimated 

using a 3-year TOPEX/POSEIDON, a 2-year ERS1, a 2-year GEOSAT and the 2 168-

day non repeat cycle data sets of the ERS1 geodetic phase. All these data sets have been 

preprocessed in order to be more homogeneous and referenced to the 3-year T/P and 

also to be less contaminated by the ocean topography variable signal. A mean dynamic 

topography model has also been subtracted from the altimetric heights. This model is 
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based on the Levitus climatology (Levitus, 1994). The free-air gravity surface has been 

estimated on a grid of 2-minute by 2-minute resolution using a local inverse method, 

which also provides an estimation error field. This global model is computed between 

0.0 and 360 degrees in longitude and between 82 and -82 degrees in latitude. The free-

air gravity anomaly is referenced to the TOPEX/POSEIDON Earth ellipsoid on the 

TOPEX/POSEIDON frame (a = 6378136.3 m; 1/f= 298.257 and GM= 398600.4415 

km3/s2). For more information, please see Hernandez and Schaeffer (2000). 

 KMS01 and KMS02 

KMS01 and KMS02 are the newest release of the KMS Global marine free air gravity 

field, computed from ERS1 and GEOSAT satellite altimetry. Data from the geodetic 

missions of ERS and GEOSAT have been used, as well as from the Exact Repeat 

Mission (ERM) ERM60-63 of ERS2. The ERS ERM data (repeat 1-85) from the NASA 

Pathfinder project have also been used to ensure complete coverage in arctic and 

antarctic regions (Andersen et al., 1998; Andersen et al., 2005). KMS grids are 2 arc-

minute by 2-arc minute gravity grids and they have been computed via conversion of 

marine geoid heights using the inverse Stokes formula.  

 Sandwell v9.2 

It is a grid of gravity anomalies converted from GEOSAT and ERS1 satellite altimetry. 

Gravity anomalies are constructed from grids of east and north deflections of the 

vertical using Fourier analysis. Gravity anomalies are computed after a grid of east and 

north vertical deflections were built from satellite profiles of geoid heights by the 

integration of Lap lace's equation using FFT. The version 9.2 is available on 1 or 2 arc-

minute grids; we used the 2 arc-minute by 2 arc-minute grid to have the same grid 

spacing of the other available grids. More information can be found in the web page, 

http://topex.ucsd.edu/marine_grav/mar_grav.html. 

 GSFC00.1 Marine Gravity Anomaly  

The altimetric gravity anomaly GSFC00.1_DG produced by the Goddard Space Flight 

Center was computed from GSFC00.1_MSS in 2 arc-minute by 2 arc-minute grid by 

numerical evaluation of the inverse Stokes integral. GSFC00.1_MSS is a mean sea 

surface model in 2 arc-minute by 2 arc-minute grid size between latitude 80°S to 80°N. 
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It was computed by combining satellite altimeter data from many missions. The data 

used are: 6-years of T/P data (Cycles 11 to 232), multi-years of ERS1/2 35-day repeat 

cycle (ERS1 Phase C: Cycles 1 to 18; Phase G: Cycle 1 to 13; ERS2: Cycle 1 to 29); 

GEOSAT ERM (exact repeat mission, Cycle 1 to 41); GEOSAT GM and ERS1 168-

day data. The reference frame is: a=6378136.3 m; f=1/298.257; 

Potential=62636858.702 m2/s2 and GM=398600.4415 km3/s2. For more details on the 

data used and the methodology of mean sea surface computation, see Wang (2001). 

 

4.1.4 Digital Elevations Models 

Digital elevation models (DEMs) are an important source of data for the gravimetric 

geoid computation. Two DEMs are available for this research: GTOPO30 and GLOBE. 

 GTOPO30 

GTOPO30 is a global digital elevation model (DEM). It was developed by the US. 

Geological Survey's Earth Resources Observation Systems (EROS) Data Center (EDC) 

and it was completed in 1996. Elevations in GTOPO30 are regularly spaced at 30-arc 

seconds (approximately 1 kilometer). GTOPO30 is a global data set covering the full 

extent of latitude from 90 degrees South to 90 degrees North, and the full extent of 

longitude from 180 degrees West to 180 degrees East. The horizontal coordinate system 

is decimal degrees of latitude and longitude referenced to the World Geodetic System 

84 (WGS84). The vertical units represent elevation in meters above mean sea level.  

A rectangular subgrid was extracted over the study area where the elevation values 

range from 1 to 6,725 meters with a mean value of 701 meters and a standard deviation 

of 1056.2 meters. There is no data over ocean areas. The GTOPO30 DEM for Argentina 

can be seen in Figure 4.3. 

 Global Land One-Kilometer Base Elevation (GLOBE) 

The Global Land One-Kilometer Base Elevation (GLOBE) digital elevation model 

(DEM) was released by the National Oceanic and Atmospheric Administration, 

NOAA's National Geophysical Data Center (NGDC). GLOBE is a global data set 

covering 180 degrees West to 180 degrees East longitude and 90 degrees North to 90 
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degrees South latitude. The horizontal grid spacing is 30 arc-seconds (about 1 km) in 

latitude and longitude. The horizontal coordinate system is seconds of latitude and 

longitude is referenced to the World Geodetic System 84 (WGS84). The vertical units 

represent elevation in meters above Mean Sea Level (MSL). More information can be 

found in the following web page: http://www.ngdc.noaaa.gov/mgg/topo/globe.html. 

A rectangular subgrid was extracted over the study area where the elevation values 

range from –127 to 6798 meters, with a mean value of 701 meters and a standard 

deviation of 1055.79 meters. There is no data over ocean areas. The GLOBE DEM is 

illustrated in Figure 4.4. 

Figure 4.3: GTOPO30 DEM in Argentina Figure 4.4: GLOBE DEM in Argentina 

 

4.1.4.1 Evaluation of Digital Elevation Models 

Comparisons between the gridded height data from both DEMs and point height of the 

gravity stations have been made. Both types of heights are used in the geoid 

computation. DEM data are used, for example, for the computation of terrain correction 

or indirect effects and the height of the gravity station is used to compute point gravity 

 



 60

anomalies. One of the roughest areas in Argentina, limited by latitudes 32ºS to 42ºS and 

longitudes 72ºW to 68ºW, was selected to perform these comparisons. From GTOPO30 

and GLOBE DEMs, heights at 1452 gravity stations were interpolated using bilinear 

interpolation and the differences of both types of heights as well of the histograms of 

these differences were made.  

 Histogram of the differences between point height data and 
gridded heights of GTOPO30
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Figure 4.5: Histogram of the differences between heights at 1452 gravity stations 
and heights linearly interpolated from GTOPO30 

 

The histogram shown in Figure 4.5 presents the maximum towards positive values; an 

asymmetric distribution; and a large number of negative differences, which can be 

reflected, in a negative median (-2.409 meters). 

The histogram shown in Figure 4.6 presents, like the GTOPO30 DEM, the maximum 

towards positive values; an asymmetric distribution; and a large number of negative 

differences, which can be reflected, in a negative median (-4.746 meters). 

We can conclude that, in this test, there are no significant differences between the two 

DEMs. GTOPO30 has a standard deviation 79.723 m; a mean value of –18.299 m; and 

a median of –2.409 m. GLOBE has a standard deviation 79.835 m; a mean value of –

20.241m; and a median of –4.746 m. From these results, GTOPO30 DEM seem to have 
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a slightly better agreement with existing point heights, therefore it will be used 

throughout this research. 

 Histogram of the differences between point height data and 
gridded heights of GLOBE
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Figure 4.6: Histogram of the differences between heights at 1452 gravity stations 
and heights linearly interpolated from GLOBE 

 

Digital elevation models are very important in geoid determination but they area one of 

the most significant limitations of the geoid accuracy due to poor data quality and 

computational approximations (Smith and Roman, 2000). Most of the gravity stations 

used in this research have been measured on the high precision levelling network. In 

rough areas, the influence of the topographic masses near the gravity stations is very 

important and a more detailed grid of elevations will be necessary for further 

investigations. 

 

4.1.5 Digital Depth Model 

The topographic/bathymetric data used, for example, for the RTM reduction in the 

marine geoid determination were those of the Smith and Sandwell model (Smith and 

Sandwell, 1997), which were derived from altimetry. Sandwell and Smith have 
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computed a global marine gravity field by processing satellite altimetry data, and the 

topography (bathymetry) of the seafloor has been predicted from the gravity data. The 

statistics of the sea floor topography can be seen in Table 4.2 and the map of the 

bathymetry in the area under study is depicted in Figure 4.7. 

Table 4.2: Seafloor topography in the area under study. Unit: [m]. 
 min max mean σ 
DDM (Sandwell and Smith, 1997) -8057 588 -1850.99 2025.68 

 

Figure 4.7: Seafloor topography in the area under 
study 

(Sandwell and Smith, 1997) 

Figure 4.8: Distribution of GPS/levelling 
points 

 

4.1.6 GPS/levelling networks  

The accuracy of the gravimetric geoid undulations can be evaluated by two methods: 

one is the external comparison with geometrical geoid undulations from GPS and spirit 

levelling and the other is the internal propagation of data errors. For the first method, 

points with GPS-derived ellipsoidal heights and orthometric heights with respect to a 
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local datum constitute an important type of data to be incorporated in the database in 

order to determine discrete precise geoid undulations by the geometrical approach.  

Geometrical geoid undulation on land can be determined, for the absolute and relative 

cases (height differences between two points i and j), by:  

HhN e
GPS −=  (4.1)  

)HH()hh(NN ijeiej
GPS

i
GPS

j −−−=− ⇒  (4.2) HhN e
GPS Δ−Δ=Δ

where he is the ellipsoidal height from GPS and H is the orthometric height. However, 

the use of the relationship (4.1) has some limitations due to systematic and random 

errors in the derived heights he and H. There are systematic and gross errors in levelling, 

especially at higher altitudes. Levelling points are often difficult to access and they are 

sometimes covered by vegetation or destroyed. Other limitations are: datum 

inconsistencies (he and H refer to different reference surfaces); assumptions and 

theoretical approximations made in the normal/orthometric correction; the effect of not 

taking into account the differences between the ellipsoidal normal and the plumb line 

(deflection of the vertical) which can cause an error in the geometric geoid 

determination (Zhang, 1997). Geometrical geoid cannot be derived at sea, so 

interpolation is difficult near the coast. The geometrical geoid can be derived with a 

very high relative and absolute accuracy but one of the main disadvantages is its poor 

resolution. 

The errors that affect the accuracy of the ellipsoidal heights are originated from three 

sources: satellite or orbit errors, signal propagation and receiver errors (Fotopoulos, 

2003). Some of these errors are: atmospheric effects produced by the ionosphere and 

troposphere, the Earth body tides, the ocean tides, the atmospheric loading, orbital 

errors of the GPS satellites, the antenna phase centre, set-up effects of the antenna, and 

multipath effects. 

GPS/benchmark height information on 744 points across Argentina has been collected 

from different institutions since 1999. This data includes latitude and longitude, 

ellipsoidal heights and levelling heights. The ellipsoidal heights are referred to the 

POSGAR 1994 (POSiciones Geodesicas ARgentinas) datum, except for the Chubut 

network, and the levelling data correspond to the existing high precision levelling of 
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Argentina. POSGAR 94 is Argentina’s official geodetic system and it was established 

through GPS measurements to realize the WGS84 reference system in the country.  

Nine GPS/levelling networks will be used for the external evaluation of the gravimetric 

geoid accuracy. The nine networks are located in the provinces of Mendoza (Lenzano, 

2001), Santa Fe (Rodriguez et al., 1999), Neuquén (Querejeta, 2001), Buenos Aires 

(Perdomo and Del Cogliano, 1999), Santiago del Estero (Goldar, 2001), Tierra del 

Fuego (Perdomo and Hormaechea, 1999) and Chubut (Orellano, 2002), one is in 

Uruguay (Subiza, 1999) and another one is the PosgAR network. These GPS networks 

are located in different topographies. The distribution of GPS/levelling points in 

Argentina is shown in Figure 4.8. Information about the GPS networks is summarized 

in Table 4.3. 

Table 4.3: Statistics of the ten GPS networks in Argentina. 

Area 
N° of 
points 

 

Latitude 
range 

Longitude 
range Reference 

PosgAR94 27 22.1538 S° 43.9094 S° 58.0092°W 70.0816°W IGM 

Buenos Aires 180 33.4196 S° 40.7799 S° 56.6775°W 63.4417°W (Perdomo et 
al., 1999) 

116 32.5888 S° 33.9481 S° 68.6833°W 69.3586°W 
(Lenzano et 

al., 
2001) Mendoza 

139 32.5906 S° 35.4794 S° 67.5097°W 69.5891°W  

Neuquén 48 34.9635 S° 41.0514 S° 68.0541°W 71.9435°W (Querejeta, 
2001) 

Santa Fe 93 27.450 S° 34.319 S° 58.987°W 62.731°W (Rodríguez et 
al., 1999) 

Santiago del Estero 47 25.8041 S° 29.7635 S° 61.8179°W 65.1606°W (Goldar, 2001)

Tierra del Fuego 56 52.6591 S° 54.8076 S° 67.1903°W 68.6064°W (Perdomo et 
al., 1999) 

Chubut 10 42.2745 S° 45.8938 S° 64.2636°W 70.4439°W (Orellano, 
2002) 

Uruguay 28 30.5982 S° 34.8883 S° 53.5808°W 58.5140°W Subiza 1999 

All of Argentina 744 22.1538 S° 54.8076 S° 53.5808°W 71.9435°W  

 

Before all these GPS/levelling points are used for comparisons, it was necessary to 

clean the data (identify outliers and blunders). A 2D contour map of the geometric geoid 

was plotted and after a visual inspection test, a total of 192 points were identified as 

blunders and were eliminated from the original database. The 2D contour maps, before 
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and after blunders removal, can be seen in Figures 4.9 and 4.10, respectively. The 

biggest discrepancy was found at a point of the PosgAR network where the difference 

between the GPS/leveling derived geoid and the geoid computed from EGM96 was 

77.74 m; two points were eliminated from the Neuquén network where the differences 

were of the order of 23 and 26 meters; in Santa Fe, only one point with 16 meters 

difference was eliminated; the complete set of points of Mendoza and the complete 

Santiago del Estero network where the differences were very doubtful were eliminated. 

The final GPS/levelling data in Argentina after the suspicious observations were 

removed consist of 552 GPS/levelling points. 
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Figure 4.9: GPS/levelling-derived geoid (before blunders removal) 
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Figure 4.10: GPS/levelling-derived geoid (after blunders removal) 

 

4.1.7 Global Geopotential Models 

The gravimetric geoid of Argentina will be determined using the remove-compute-

restore technique where the use of a global geopotential model (GGM) plays an 

important role. Global geopotential models provide the long-wavelength structure of the  

gravity field. They are based on spherical harmonics expansions and they are given as a 

set of coefficients. The analysis of satellite orbits can determine the low degree 

coefficients of the geopotential model while higher degrees can be obtained mainly 

from terrestrial gravity anomalies and satellite altimetry. 
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The resolution of the gravity field parameters (e.g., gravity anomalies) computed from a 

geopotential model is related to its maximum degree and order and it can be 

calculated from the following formula: 

maxn

max
GGM n

180res
o

=  in degrees (4.3) 

or by: 

max
GGM n

km20000res =  in km (4.4) 

 

The global geopotential models that are derived from only satellite observations are 

called satellite-only solutions. The first high degree geopotential model was developed 

to degree 180 for the first time in 1978 (Rapp, 1978). Since then, other models have 

been computed in 1981 (OSU81) (Rapp, 1981); in 1985 (GPM2) (Wenzel, 1985); in 

1986 (OSU86) (Rapp and Cruz, 1986) completed to degree and order 360; in 1990 

OSU89 (Rapp and Pavlis, 1990); in 1991 OSU91 (Rapp et al., 1991). In 1996, the Earth 

Gravity Model (EGM96), complete to degree and order 360 was computed as a 

National Aeronautics and Space Administration (NASA)/US National Imagery and 

Mapping Agency (NIMA), and OSU (Ohio State University) effort (Lemoine et al., 

1998). 

The ultra-high degree geopotential models (GPM98A and GPM98B) were developed to 

degree and order 1800, which corresponds to nearly 11 km spatial resolution by Wenzel 

in 1998 (Wenzel, 1999). 

EGM96 is a spherical harmonic model of the Earth's gravitational potential to degree 

360 which incorporates improved surface gravity data, altimeter-derived anomalies 

from ERS1 and from the GEOSAT Geodetic Mission (GM), extensive satellite tracking 

data - including new data from Satellite Laser Ranging (SLR), the Global Positioning 

System (GPS), NASA's Tracking and Data Relay Satellite System (TDRSS), the French 

Doppler Orbitography and Radiolocation Integrated by Satellite (DORIS) system, and 

the US Navy TRANET Doppler tracking system - as well as direct altimeter ranges 

from TOPEX/POSEIDON (T/P), ERS1, and GEOSAT. The final solution blends a low-
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degree combination model to degree 70, a block-diagonal solution from degree 71 to 

359, and a quadrature solution at degree 360. The model is used to compute geoid 

undulations globally accurate to better than one meter and realize WGS84 as a true 

three-dimensional reference system (Lemoine, 1998). 

Several global geopotential models listed in Table 4.4 are available for this research. 

Table 4.4: Global Geopotential Models available in this research. 
Geopotential model nmax resGGM(km) resGGM(deg) year Reference 

GPM98A 1800 ≈11 0.1 1998 Wenzel (1998) 
GPM98B 1800 ≈11 0.1 1998 Wenzel (1998) 

GPM98CR 720 ≈28 0.3 1998 Wenzel (1998) 
EGM96 360 ≈55 0.5 1996 Lemoine et al.(1996) 

OSU91A 360 ≈55 0.5 1991 Rapp et al. (1991) 
GPM2 200 ≈100 0.9 1984 Wenzel (1985) 
OSU81 180 ≈111 1.0 1981 Rapp (1981) 
JGM3 70 ≈286 2.57 1996 Tapley et.al. (1996) 

 

From Table 4.4, we can see that the maximum degree of the geopotential models ranges 

from 70 to 1800. It corresponds to a resolution of any gravity quantity computed from a 

spherical harmonic model of the Earth's gravitational potential between ~11 km and 

~286 km. 

The high-resolution global gravity field model EIGEN-CG01C, complete to degree and 

order 360, was generated using CHAMP (860 days) and GRACE satellite gravity data 

combined with 0.5 x 0.5 degree surface data (gravimetry and altimetry). It was released 

to the public in October 29, 2004. 

EIGEN-CG01C is a combination of 200 days of GRACE mission, 860 days of CHAMP 

data, and gravimetry and altimetry surface data. The 200 days of GRACE mission were 

during the months of April, May, August and November 2002 and April, May, August, 

October and November 2003. The 860 days of CHAMP data were from October 2000 

to June 2003. The surface data used to develop the model are described in Reigber et al., 

(2005). 

CHAMP (CHAllenging Minisatellite Payload) is a Gravity And Magnetic Field 

German satellite Mission. The CHAMP satellite was launched on July 15, 2000 into an 
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almost circular, near polar (i = 87°) orbit with an initial altitude of 454 km. The design 

lifetime of the satellite system is 5 years. The Earth's gravity field recovery is the most 

important scientific objective of CHAMP for this thesis. 

The GRACE (Gravity Recover and Climate Experiment) mission was launched in 

March of 2002. Since then, the GRACE mission is making detailed measurements of 

the Earth's gravity field. It has a 5-year lifetime. The GRACE mission has two identical 

spacecrafts flying about 220 kilometers apart in a polar orbit 500 kilometers above the 

Earth. GRACE is a joint partnership between the National Aeronautics and Space 

Administration (NASA) in the United States and Deutsche Forschungsanstalt für Luft 

und Raumfahrt (DLR) in Germany. 

4.1.8 Altimetric data 

 ERS1 data 

The satellite altimetry data were 70510 CORSSHs measurements from the geodetic 

mission (GM) of the European Remote-Sensing Satellite 1 (ERS1), which are generated 

by the CLS Space Oceanography Division and provided by AVISO (Archiving, 

Validation and Interpretation of Satellite Oceanographic data). The ERS1 satellite's 

main mission is to observe the Earth, in particular its atmosphere and ocean. It was built 

by the European Space Agency (ESA) and it carried several instruments, including a 

radar altimeter. ERS1 was launched on July 1991, switched off in June 1996 and it was 

retired in March 2000. The cross-track spacing of ERS1-GM is about 8 km. The 

distribution of the ERS1 tracks in the area under study is depicted in Figure 4.11. 

 TOPEX/POSEIDON data 

To assess the accuracy of all the marine geoid models computed through this thesis, we 

will compare them with stacked 3rd year T/P SSHs.  

The TOPEX/POSEIDON satellite was launched on 10 August 1992 with the objective 

of observing and understanding the ocean circulation. It was a joint project between 

NASA, the US space agency, and Centrale Nationale d' Etudes Speciales (CNES), the 

French space agency. It carries two radar altimeters and precise orbit determination 

systems, including the DORIS system.  
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The TOPEX/POSEIDON Corrected Sea Surface Heights (CORSSH) are generated by 

the CLS Space Oceanography Division and distributed by AVISO. The 3 rd year of the 

mission was extracted from the AVISO CORSSH GDRs and provided to us by George 

Vergos after the stacking of the T/P data was performed. The 3
rd

 year was selected for 

the comparisons in order to have a common observation period with the ERS1 data.The 

cross-track spacing of TOPEX/POSEIDON is about 330 km. The stacked T/P tracks can 

be seen in Figure 4.12. 

ERS1 and T/P CORSSHs are generated by AVISO as Geophysical Data Records 

(GDRs) after quality control, validation of altimetric data and geophysical corrections 

have been applied. 

  

Figure 4.11: Distribution of ERS1-GM SSH Figure 4.12: TOPEX/POSEIDON tracks 

 

4.1.9 Quasi Stationary Sea Surface Topography (QSST) models  

The EGM96 DOT model, which is a spherical harmonic expansion of the sea surface 

topography (SST), complete to degree and order 20 was used. It should be considered as 

a representation of the mean SST field for the time period that corresponds to TOPEX 
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cycles 11 through 84 (December 31, 1992 to January 4, 1995).  This estimate was 

derived from altimeter data from the aforementioned cycles of TOPEX, and altimeter 

data from ERS1 35-day repeat cycles 6, 8, 11, 14 and 17 (Lemoine et al., 1998). The 

model was derived during the simultaneous adjustment for the development of the 

EGM96 geopotential model. 

 

4.2 Data pre-processing, evaluation and validation 

Surface gravity measurements data have been collected from different universities and 

organizations. Major part of the gravimetric data in Argentina comes from the database 

of the Military Geographic Institute (IGM). 

Since the point gravity measurements were provided by different sources, they first 

have to be homogenized. They were provided in different systems so they were unified 

to the International Gravity Standardization Net 1971 (IGSN71). IGSN71 was 

introduced by a resolution of the International Union of Geodesy and Geophysics 

(IUGG) in 1974.  

The information given for each data point includes: latitude (degree), longitude 

(degree), height above sea level (m) and observed gravity (mGal). 

Most of the gravity data were generally given in the Potsdam Gravity System 

established in 1909. The transformation of these values into IGSN71 is 

g (IGSN71) = g (Potsdam) – 14.93 mGal (4.5) 

The horizontal geodetic coordinates were converted from the classic Geodetic System 

Campo Inchauspe 69 (CAI69), used in Argentina for many years, to the Geodetic 

Reference System 1980 (GRS80). The Geodetic Reference System 1980 has been 

adopted at the XVII General Assembly of the IUGG in Canberra, December 1979 

(Moritz, 2000). 

4.2.1 Gravity reduction and gravity anomaly 

The gravity anomaly  is defined as: gΔ
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γ−=Δ PP gg  (4.6) 

where P is on the geoid (Stokes’s approach) or on the topography (Molodensky´s 

approach) and  is the normal gravity on the ellipsoid γ ( )
0Qγ  or on the telluroid ( )Qγ , 

respectively. 

The point free-air gravity anomalies used in the classical boundary value problem are 

computed with equation (2.30), where the gravity on the geoid is computed from the 

measured gravity (usually measured at the topographic surface) using the actual 

gradient of gravity and the orthometric height of the point above the geoid. We will 

refer to these anomalies as the classical free-air anomalies. If P is on the topographic 

surface (Molodensky boundary value problem) the free-air gravity anomalies are 

computed using equation (2.97) where the normal gravity evaluated by equation (2.96) 

using the normal height H* is subtracted from the surface gravity. The resulting 

anomalies are the surface free-air gravity anomalies. 

For numerical computations, the classical free-air anomalies can be computed 

(Featherstone and Denith, 1998) from: 

oQ
26

FA h7210.0h3086.0gg γ−+−=Δ −  (4.7) 

The 0.3086 mGal/m is the numerical value adopted for the free-air gradient, assuming 

an spherical Earth with radius R.  

The normal gravity on the GRS80 reference ellipsoid (γQo) is evaluated through 

Somigliana´s closed formula, see also equation (2.32).  

ϕ−

ϕ+
γ=γ

22

2
aQ

sine1

sink1
0  (4.8) 

where  is the GRS80 geodetic latitude of the observation point, k is the normal gravity 

constant, 

ϕ

aγ  is the normal gravity on the equator, and is the square of the first 

eccentricity. For GRS80, these constants are: 

2e

γa = 978032.67715 mGal  (4.9) 
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1
a
b

k
e

P −
γ
γ

=  = 0.001931851353  (4.10) 

2

22
2

a
bae −

=  = 0.0066943800229 (4.11) 

The normal gravity calculated with this equation on GRS80 contains the gravitation of 

the atmospheric mass but the gravity measured on or near the Earth’s surface does not. 

If this normal gravity is used for the computation of gravity anomalies, an atmospheric 

gravity correction δgatm has to be added to the observed gravity. The following 

empirical formula for its calculation is given by Torge, (1989). 

[ ] [ ]
2
m

8
m

4
atm h10 356.0h10 99.0874.0g −− +−=δ [mGal] (4.12) 

where the height h is in meters. 

The atmospherically corrected classical free-air gravity anomaly can be computed using 

equation (4.13) or equation (4.14), if the second-order free-air reduction is applied 

oQ
26

atmFA h7210.0h3086.0ggg γ−+−δ+=Δ −  (4.13) 

oQ
2

2
e2e

atmFA )h
a

3h)sinf2mf1(
a

2
ggg γ−

γ
−ϕ−++

γ
−δ+=Δ  (4.14) 

where f is the ellipsoidal flattening (for GRS80, 0.0033528106818), a is the semi-major 

axis (for GRS80, 6378137m) and 

6003080.00344978
GM

bam
22

=
ω

= for GRS80  (4.15) 

The point complete Bouguer anomalies are computed through the following equations 

land 0 h for        hG2gg FAB ≥ρπ−Δ=Δ  (4.16) 

sea 0 h for        h)(G2gg wFAB <ρ−ρπ+Δ=Δ  (4.17) 

where  is the free-air anomaly, ρ and ρFAgΔ w are the densities of the rock and water 

respectively, h is the height or the depth of the gravity station. 
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During this study, we assume a constant density for the mean crust of 2.67 gr/cm3 and 

for the seawater 1.03 gr/cm3, so the Bouguer gravity anomalies can be calculated as 

follows: 

land 0 h for        h1119.0gg FAB ≥−Δ=Δ  [mGal] (4.18) 

sea 0 h for        h0699.0gg FAB <+Δ=Δ [mGal] (4.19) 

The point refined Bouguer anomalies can be computed after applying the terrain 

correction to the Bouguer anomaly. 

 

4.2.2 Terrain corrections 

Terrain corrections were computed using program Tc2DFTPL developed at the 

Department of Geomatics Engineering at the University of Calgary by Yecai Li in 1993. 

This program computes terrain corrections via 2D FFT with either a mass prism or a 

mass line topographic model. First, terrain corrections were computed from the Digital 

Elevation Model GTOPO30 which has an original grid spacing of 30 arc seconds 

corresponding to an approximate spacing of 1 kilometre in North-South and East-West 

directions. But due to the convergence of the meridians, this spacing varies according to 

latitude. Due to some numerical instabilities, terrain corrections were computed again 

but this time with the Digital Elevation Model with a grid spacing of 2 arc-minutes by 2 

arc-minutes. The maximum, minimum, mean and standard deviation of the heights and 

terrain corrections for the entire Argentina can be seen in Table 4.5. 

Terrain corrections were computed using formulas (2.36) and (2.43), which correspond 

to the mass line (ML) and the mass prism (MP) topographic models. The computations 

were done over the whole area without any integration cap size. Figure 4.13 shows a 

map of terrain corrections for Argentina computed with a mass prism topographic 

model. 

The highest area of Argentina was selected to study terrain corrections computed with 

different mass representations and their effect on the geoid. This area corresponds to a 

grid which is bounded between latitudes 29°S to 36°S and longitudes 73°W to 63°W. 
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Table 4.5: Terrain corrections in Argentina in mGal. 
 max min mean σ 
Height [m] 6402.69 0.00 407.11 885.54

c1 (MP)  74.30 0.00 2.89 2.70
c1+c2 (MP) 73.47 0.00 1.02 2.90
c1+c2+c3 (MP) 73.48 0.00 1.02 2.90
(c1+c2+c3)-(c1+c2)  (MP) 0.79 -0.25 0.00 0.01
(c1+c2)-c1 (MP) 0.29 -3.02 0.03 0.03
c1 (ML) 71.51 0.00 0.96 2.53
c1+c2 (ML) 70.68 0.00 0.97 2.54
c1+c2+c3 (ML) 70.71 0.00 0.97 2.54
(c1+c2+c3)-(c1+c2)  (ML) 0.22 -0.09 0.00 0.00
(c1+c2)-c1 (ML) 0.14 -1.79 0.00 0.02
(c1+c2+c3)MP - (c1+c2+c3)ML 5.45 -0.07 0.06 0.21

 
 

Latitude 
20°S to 

55°S 
 

Longitude 
76°W to 

53°W 

(c1+c2)MP - (c1+c2)ML 4.87 -0.02 0.06 0.20
 (c1)MP - (c1)ML 6.36 0.00 0.05 0.19

 

 

Figure 4.13: Terrain Corrections 

Table 4.6 shows the statistics of topographic heights and terrain corrections computed 

for the whole computation area and with an integration cap size of approximately 100 

kilometres and for all the three terms (c1+c2+c3). MP3 are terrain corrections computed 

for all three terms using a mass prism representation, ML3 are terrain corrections 
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computed for all three terms using a mass line model, w means that the integration was 

done over the whole area and c indicates that terrain corrections were computed using a 

cap size of 100 km by 100 km. 

Table 4.6 indicates that the standard deviation of the differences between computed 

terrain corrections with a mass line model and a mass prism model is 0.40 mGal and the 

maximum value is 5.30 mGal. Plotting these differences we can see that they are 

correlated with the topography. The effect of the terrain correction computed with both 

topographic representations on the geoid can also be seen in Table 4.6. The effect of the 

terrain correction differences on the geoid has a standard deviation of 4 cm and a 

maximum of approximate 20 cm.  

Table 4.6: Effect of different models and cap size on terrain corrections and geoid. 
Height [m] 

min max mean σ 
0.00 5947.63 914.72 1092.47 

Terrain corrections [mGal] Effect on the geoid [m] 
 min max mean σ min max mean σ 
MP3 (w) 0.03 61.44 2.58 4.24 0.509 2.702 1.281 0.523 
ML3 (w) 0.03 56.74 2.40 3.88 0.474 2.507 1.192 0.484 
MP3 (w) - ML3 (w) 0.03 5.30 0.18 0.40 0.035 0.202 0.089 0.039 
MP3 (c) 0.00 53.67 2.05 3.76 0.401 2.191 1.022 0.431 
ML3  (c) 0.00 49.00 1.87 3.39 0.366 1.995 0.933 0.392 
MP3 (c) - ML3 (c) 0.01 5.30 0.18 0.40 0.035 0.202 0.089 0.039 
MP3 (w) - MP3 (c) 0.03 7.78 0.52 0.64 0.108 0.511 0.259 0.097 
ML3 (w) - ML3 (c) 0.03 7.74 0.52 0.64 0.108 0.511 0.289 0.094 

 

Table 4.6 also shows that the limitation of the integration of the cap size to 100 km by 

100 km produces an effect on the geoid of about 9 cm in terms of the standard deviation 

both mass representations. 

Table 4.6 shows that the effect on the geoid when terrain corrections were computed 

with a limited cap size and using a mass line topographic model instead of a mass prism 

topographic model is 4 cm in terms of the standard deviation; this result is the same as 

when the computation was done over the whole area. 

For geoid determination in rough areas, the mass prism topographic model has to be 

used instead of the mass line topographic model for the computation of terrain 
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corrections. The computation of the terrain corrections should be done up to the second 

term of the terrain correction series for either the mass line or the mass prism 

topographic model. The effect of the third term is negligible. The integration cap size 

should be large enough for the computation of terrain corrections. There is a 9 cm (σ) 

geoid undulation error when the integration cap size is limited to 100 km by 100 km 

instead of using the whole computation area. 

We conclude, that for the whole Argentina, we will compute terrain corrections with a 

mass prism model, without a limited integration radius, and include the second term c2. 

4.2.3 Pre-processing of land gravity data  

The land data described in section 4.1.1 was collected from different data sources, so 

special care was taken in order to detect and remove data blunders, duplicate points, and 

all data points that were considered as suspicious observations. Special software was 

developed to remove repeated points from the database in order to generate the most 

homogenized gravity database for Argentina. 

Point free-air gravity anomalies and point Bouguer gravity anomalies were computed 

for each observation with equations (4.13) and (4.18), respectively. Table 4.7 shows the 

statistics after the database was cleaned. 

Table 4.7: Statistics of the gravity points of the Argentinean database after data 
removal.  
 Unit min max mean σ 

66717 points 

latitude [degree] -54.82 -20.01 -29.93 7.47 
longitude [degree] -74.83 -53.00 -63.23 5.53 
Height [m] -68.10 6204.00 842.61 1186.16 
g IGSN71 [mGal] 977310.00 981469.07 979107.27 798.95 
Free-air gravity anomaly [mGal] -145.32 280.00 7.71 38.40 
Bouguer gravity anomalies [mGal] -489.95 126.87 -86.56 117.98 

 

The gravity anomalies computed from the geopotential model EGM96 were removed 

from the point free-air gravity anomalies. With this reduced gravity anomalies, a 

contour map was made and some points with gross errors were detected and removed 

from the original database. A contour map of Bouguer gravity anomalies was also 
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generated and deep holes and steep spikes were considered as suspicious observations. 

The total area was divided in small areas where 2D contour maps of the Bouguer 

anomalies were done and a careful visual inspection was performed in order to detect 

outliers.  

 

4.2.4 Pre-processing of shipborne data 

The shipborne gravity data described in section 4.1.2 are referred to the Geodetic 

Reference System 1967 (GRS67), thus they have to be transformed to GRS80. This was 

done using the following basic formula (Moritz, 2000): 

80GRS67GRS67GRS80GRS gg γ−γ+Δ=Δ  (4.20) 

where ΔgGRS80 denotes gravity anomaly in GRS80, ΔgGRS67 gravity anomaly in GRS67 

and γGRS67 and γGRS80 are the magnitudes of the normal gravity in GRS67 and GRS80, 

respectively. Normal gravity can be computed for the GRS80 using formula (4.8).  For 

GRS67 (ibid): 

)25sin0.0000232760sin0.005278961(8459.978031 42
67GRS ϕ+ϕ+=γ  mGal (4.21) 

The statistics of the original shipborne free-air gravity anomalies and the statistics of the 

shipborne free-air gravity anomalies after they have been transformed to GRS80 is 

shown in Table 4.8. 

Table 4.8: Statistics of shipborne free-air gravity anomalies referred to MSS. Unit 
[mGal]. 
Free-air gravity anomalies min max mean σ 

FAgΔ (17352 values) GRS67 -132.35 532.80 24.98 97.05 

FAgΔ  (17352 values) GRS80  -133.16 531.92 24.14 97.05 

 

Three ship tracks corresponding to a total of 4529 points were removed from the 

original database as they were considered as blunders; hence the final marine database 

will consist of 12823 free-air shipborne gravity anomalies is shown in Table 4.9. 
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Table 4.9: Statistics of shipborne free-air gravity anomalies referred to MSS. Unit 
[mGal]. 
 min max mean σ 

FAgΔ (12823 values) GRS80 -133.16 142.38 3.96 28.64 

 

It is often that the ship gravity anomalies refer to the sea surface and not the geoid itself, 

thus their use will lead to the determination of a mean sea surface and not a geoid 

model. These gravity anomalies have to be free-air reduced so as to produce gravity 

anomalies on the surface of the geoid. The free-air gravity anomalies are computed 

using the well-known reduction formula 

FggFA −Δ=Δ  (4.22) 

where F is the free-air reduction. In marine regions, the height needed for the reduction 

is that of the QSST, which varies between 0 and -0.30 m in the study area. Thus, for 

practical purposes it is sufficient to use the normal gradient of gravity to compute the 

free-air reduction as  

QSSTQSST h3086.0h
h

F −≈
δ
δγ

−≈  (4.23) 

where h is the QSST in meters, derived from a global model. 

The statistics of the shipborne gravity anomalies after reducing them to the surface of 

the geoid can be seen in Table 4.10. 

Table 4.10: Statistics of shipborne free-air gravity anomalies referred to the geoid. Unit 
[mGal]. 
 min max mean σ 

FAgΔ (12823 values) GRS80 -133.03 142.57 4.01 28.64 

 

These two pre-processing steps are necessary for the data homogenization so that they 

can be used for the determination of the gravimetric geoid. 
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4.2.5 Validation of altimetry-derived free-air gravity anomalies 

Altimetry-derived gravity anomaly grids offshore Argentina were compared with one 

another and with shipborne gravity anomalies computed from the shipborne gravity 

database. 

Sub-grids were extracted from the available global marine gravity field grids over the 

study area bounded by 21º to 55º in latitude and 76º to 53º in longitude. Some of these 

grids, like the KMS grids, have been filled in with EGM96 gravity anomalies in the land 

areas. The statistics of the gravity anomalies for each grid, after land gravity anomalies 

were removed using the grdlandmask option in GMT (Wessel, 1995) can be seen in 

Table 4.11 together with the statistics of the gravity anomalies computed from EGM96 

computed in the same marine grid. 

Table 4.11: Statistics of the gravity anomalies derived from satellite altimetry and 
EGM96 gravity anomalies. 
Grid min max mean σ 
CLS_SHOM99 (2’x2’)  -270.86 226.19 -3.34 41.14 
CLS_SHOM99 (1’x1’)  -272.39 223.53 -3.31 41.02 
GSFC (2’x2’)  -256.20 164.30 -3.69 40.76 
GSFC (1’x1’) -254.48 137.53 -3.74 40.56 
KMS01 (2’x2’)  -252.23 182.43 -3.71 40.34 
KMS01 (1’x1’)  -252.84 182.44 -3.71 40.34 
Sandwell (2’x2’)  -260.36 150.63 -4.05 40.95 
Sandwell (1’x1’)  -260.31 140.85 -3.64 40.86 
KMS02 (2’x2’)  -252.57 178.16 -3.69 40.56 
KMS02 (1’x1’)  -252.57 183.88 -3.69 40.56 
EGM96 (2’x2’)  -214.78 163.19 -3.55 38.86 

 

It can be seen that the altimetrically derived marine gravity anomalies have similar 

statistics. 

In order to make comparisons among the different grids, the data has to be re-gridded 

onto one arc-minute by one arc-minute grid using the surface option in GMT (Wessel, 

1995) because the Sandwell and CLS_SHOM grids nodes are offset by one minute with 

respect to the KMS and GSFC grids. The statistics of the differences of the grids around 

Argentina can be seen in Table 4.12 and their images are shown in Figures 4.14 to 4.23. 
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The locations of the shipborne data were bilinear interpolated from the different grids of 

altimeter-derived gravity anomalies grids. Table 4.13 shows the statistics of the 

differences between the altimeter data and the shipborne free-air gravity anomalies that 

can be seen in Figures 4.24 to 4.28. 

Table 4.12: Statistics of the differences between different altimetric gravity anomalies 
grids around Argentina. Unit [mGal]. 
Grid at sea min max mean σ 
KMS02-KMS01 -47.68 64.58 0.01 4.65 
KMS02-Sandwell -66.02 119.7 -0.05 4.19 
KMS02-GSFC -111.09 97.16 0.05 4.88 
KMS02-CLS -234.96 253.43 -0.38 6.80 
KMS01-Sandwell -71.70 68.22 -0.06 5.44 
KMS01-GSFC -115.62 83.77 0.03 6.11 
KMS01-CLS -236.98 256.97 -0.38 7.53 
Sandwell-GSFC -154.93 73.72 0.09 5.43 
Sandwell-cls 229.77 261.07 -0.33 6.78 
GSFC-CLS -245.98 249.99 -0.42 7.35 

 

Table 4.13: Statistics of the differences between different altimetric gravity anomalies 
grids and marine gravity anomalies grids around Argentina. Unit [mGal]. 
 min max mean σ 
KMS01-shipborne -61.47 67.74 0.99 10.31 
KMS02-shipborne -63.67 66.31 1.25 9.99 
CLS-SHOM99 – shipborne -154.04 162.27 0.74 11.68 
GSFC-shipborne -57.66 77.23 1.41 10.41 
Sandwell-shipborne -61.21 67.92 1.13 10.11 

 

There are differences between the marine free-air gravity anomalies due to the different 

computation methods employed. The smaller differences are between the KMS02 and 

Sandwell grids and the smaller differences in terms of standard deviations between both 

grids and the shipborne data is achieved with the KMS02. The KMS02 grid will be 

used, even though some numerical results presented in this research used the KMS01 

grid as the KMS02 was delivered for public use after this thesis has started. 
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Figure 4.14: Differences between KMS02 
and KMS01 gravity anomalies 

Figure 4.15: Differences between KMS02 
and GSFC gravity anomalies 

Figure 4.16: Differences between KMS02 
and Sandwell gravity anomalies 

Figure 4.17: Differences between KMS02 and
CLS_SHOM gravity anomalies 
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Figure 4.18: Differences between KMS01 and
Sandwell gravity anomalies 

Figure 4.19: Differences between KMS01 and
CLS_SHOM gravity anomalies 

Figure 4.20: Differences between KMS01 and 
GSFC gravity anomalies 

Figure 4.21: Differences between Sandwell 
and CLS_SHOM gravity anomalies 

 

 



 84

Figure 4.22: Differences between Sandwell 
and GSFC gravity anomalies 

Figure 4.23: Differences between GSFC and 
CLS gravity anomalies 

  

Figure 4.24: Differences between CLS and 
shipborne gravity anomalies 

Figure 4.25 Differences between GSFC and 
shipborne gravity anomalies 
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Figure 4.26: Differences between KMS01 and
shipborne gravity data 

Figure 4.27: Differences between Sandwell 
and shipborne gravity data 

 

 

Figure 4.28: Differences between KMS01 and 
shipborne gravity data 
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4.3 Determination of the best fitting Global Geopotential Model in Argentina 

In order to determine the Argentinean gravimetric geoid it is first necessary to choose 

the best fitting global geopotential model (GGM) for Argentina. 

The best GGM will be the one that best fits the gravity anomalies and the geoid in 

Argentina, and it will be determined through the following statistical tests: 

 Comparisons between geoid undulations computed from different geopotential 

models and geometrical geoid undulations at GPS/levelling points. 

 Comparisons between gravity anomalies computed from different global 

geopotential models and land, marine and free-air gravity anomalies derived from 

satellite altimetry. 

4.3.1 Comparisons between geoid undulations computed from different 

geopotential models and geoid undulations derived from GPS/levelling points 

Geoid undulation values (NGM) are computed from a set of normalized coefficients in 

spherical harmonic approximation using formula (2.13). 

The quality of the geopotential model geoid can be evaluated by comparing the geoid 

undulations values computed from a geopotential model (NGM) to those from 

GPS/levelling (NGPS): 

iNiHih0NN eGM
GPS
i i

−−==−  (4.24) 

In practice, there are a lot factors that affect equation (4.24); these factors have been 

described by Fotopoulos et al. (1999) and Kotsakis and Sideris (1999). Some of these 

factors are: 

 random errors in the values of he, H and N 

 datum inconsistencies; each data type (he, H and N) refers to a different reference 

surface and the result is a datum shift between the gravimetric geoid and the 

GPS/levelling derived geoid 
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 systematic effects and distortions, like long wavelength errors in NGM, poorly 

modeled GPS errors, and distortions in the vertical datum due to over constraining 

the levelling network 

 geodynamics effects (post glacial rebound, land subsidence, monuments 

instabilities, mean sea level rise) 

 theoretical approximations in the computation of either the gravimetric geoid N or 

the orthometric height H (improper terrain modeling in the gravimetric geoid, 

neglecting the Sea Surface Topography (SST) at the tide gauges, errors in the 

orthometric correction  

Datum inconsistencies and systematic effects are the most important effects that cause 

discrepancies in equation (4.24). Most of the geoid studies that use GPS/levelling 

derived geoid as an external evaluation are based in the following corrector surface 

model: 

i
T
iGM

GPS
i

T
iiiie xaNNxaNHh ν+=−=ν+=−−  (4.25) 

where x is an n x 1  vector of unknown parameters,  is an n x 1 vector of known 

coefficients and 

ia

iν  is the residual random noise term (Fotopoulos, 1999). 

The model of equation (4.25) is applied to all reliable GPS network points and the least-

squares adjusted values for the residuals iν  give a realistic picture of the level of 

absolute agreement between the GGM geoid or the gravimetric geoid and the 

GPS/levelling data, and they are taken as the final external indication of the geoid 

accuracy (Fotopoulos, 1999). 

The parametric part  can describe all possible datum inconsistencies and systematic 

distortions of the data. 

xa T
i

One of the most common models is the four-parameter transformation model given by 

i4ii3ii21
T
i sinxsincosxcoscosxxxa ϕ+λϕ+λϕ+=  (4.26) 
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where and  are the latitude and longitude of the GPS/levelling points, xiϕ iλ 1 is the 

shift parameter between the vertical datum implied by the GPS/levelling data and the 

datum of the GGM, x2, x3, and  x4 are the translation parameters implied by the 

GPS/levelling data and the geopotential model.  

Other classes of models are polynomials referred to as the multiple regression formula 

(MRE) in Fotopoulos (1999): 

q
m

0i
n

0i
M

0m

N

0n

T
i x)()(xa λ−λϕ−ϕ= ∑ ∑

= =
 (4.27) 

where  are the mean values of the latitude and longitude of the GPS/levelling 

points and x

00 ,λϕ

q contains the q unknown coefficients; q varies according to the number of 

terms up to a maximum of q = (N+1)(M+1).  

Another model is the seven-parameters similarity transformation model given by 

Kotsakis (2001): 

.
)

W
sin

(x)
W
senf1

(x)
W

coscossin
(x

)
W

sincossin
(xsinxcoscosxcoscosxxa

i
2

7
i

22

6
iii

5

iii
4i3ii2ii1

T
i

ϕ
+

ϕ−
+

λϕϕ

+
λϕϕ

+ϕ+λϕ+λϕ=
 (4.28) 

where i
22 sine1W ϕ−= ,  is the eccentricity and f is the flattening of the reference 

ellipsoid. The parametric model corresponds to a parallel datum shift plus two small 

rotations around the x- and y-axes, plus one change in the semi-major axis of the 

reference ellipsoid, plus one change in the flattening of the reference ellipsoid. 

2e

During the numerical result carried out through this thesis, these three types of models 

were used. 

 

National Analysis 

The statistics of the absolute differences between the geoid model derived from 

different geopotential models and GPS/levelling-derived undulations for the entire 

Argentinean region can be seen in Appendix 1. Appendix 1 also shows the statistics of 
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the discrepancies between the geoid from different geopotential models and 

GPS/levelling after the fit of a 3rd order polynomial model, the least-square fitting of a 

four-parameter transformation model and a differential similarity transformation model, 

with 7 parameters. 

Before the least squares fitting was applied, a 3 root-mean-square value (rms) test was 

employed to remove some remaining outliers that could not be removed by the simple 

visualization method. The number of points depends on the geopotential model used 

(for example, 4 points for the EIGEN_CG01C and only 1 point for EGM96). 
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Figure 4.29: Standard deviation of the absolute differences between the different geoid 

undulations computed from geopotential models with GPS/levelling-derived geoid (before and 
after fit) 

 

To summarize the results presented in the Appendix 1, the standard deviations of the 

differences between the geoid undulations computed from the different geopotential 

models with the GPS/levelling derived geoids before and after fir are plotted in Figure 

4.29.  

From the statistics shown in Appendix 1, it can be seen that EIGEN_CG01C and 

EGM96 are the best global geopotential models that represent the long wavelength 

gravity field in Argentina.  
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For the EIGEN_CG01C, it can be seen from Appendix 1 that there is 5 cm, 7 cm and 6 

cm improvement in the standard deviation of the differences after using a four-

parameter, a third polynomial and a seven-parameters similarity transformation model, 

respectively. 

 

Regional Analysis 

The absolute differences between the geoid undulations computed from different geoid 

models with GPS/levelling derived geoid undulations at each network are presented in 

Appendices 2 to 9. From these tables, we can see that the EIGEN_CG01C global 

gravity model best fits the long-wavelength structure of the gravity field in almost all 

the GPS/levelling networks, with the exception of the Tierra del Fuego network where 

the OSU91A (σ ≈ 21 cm) model is superior in terms of the standard deviation to the 

EIGEN_CG01C (σ ≈ 27 cm), before and after fitting a four parameter, a seven 

parameter and third order polynomial model. But in terms of mean values, the results is 

reverse; 57 cm for OSU91A and 7 cm for EIGEN_CG01C. 

The differences, after a four-parameter transformation model has been applied to the 

differences between the geoid computed from the different geopotential models with the 

geoid derived from GPS/levelling, are depicted in Appendix 10. 

After applying the model given in (4.25), the remaining, mostly random errors were not 

considered. In other studies, these errors are usually modeled by least-squares 

collocation and added to the corrector surface. 

 

4.3.2 Comparisons between gravity anomalies computed from different global 

geopotential models and marine, land and free-air gravity anomalies derived from 

satellite altimetry  

Gravity anomalies from the geopotential models OSU91A, EGM96, GPM98A and 

GPM98B and EIGEN-CG01C were computed using formula (2.12) and they were 

compared with land, sea and altimetry free-air gravity anomalies in Argentina.  
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Table 4.14: Statistical comparisons between gravity anomalies computed from GGMs and 
marine gravity anomalies. Unit: [mGal]. 
 min max mean σ 
Marine Δg  -133.03 142.57 4.01 28.64 
Δg OSU91A -98.21 104.85 2.68 24.51 
Δg EGM96 -109.98 116.19 3.18 27.05 
Δg GPM98A -132.83 114.74 3.09 27.19 
Δg GPM98B -133.85 116.27 3.38 27.21 
Δg EIGEN-CG01C -118.97 119.71 2.95 27.51 
Marine Δg - Δg OSU91A -75.87 63.89 1.33 12.79 
Marine Δg - Δg EGM96 -80.51 62.15 0.83 12.54 
Marine Δg - Δg GPM98A -46.78 68.64 0.92 8.79 
Marine Δg - Δg GPM98B -46.31 68.40 0.63 9.00 
Marine Δg - Δg EIGEN-CG01C -81.00 71.77 1.06 13.40 

 
Table 4.15: Statistical comparisons between gravity anomalies computed from GGMs and 
KMS02 satellite derived free-air gravity anomalies. Unit: [mGal]. 
16961 KMS02 points min max mean σ 

KMS02 Δg  -98.37 131.47 3.46 16.96 
Δg OSU91A -87.18 105.60 1.34 14.61 
Δg EGM96 -95.00 108.22 2.92 15.76 
Δg GPM98A -100.88 128.94 1.90 16.71 
Δg GPM98B -100.91 127.74 1.48 16.71 
Δg EIGEN-CG01C -106.71 100.14 1.70 15.16 
KMS02 Δg - Δg OSU91A -31.49 47.67 2.11 7.90 
KMS02 Δg - Δg EGM96 -25.88 48.33 0.54 6.79 
KMS02 Δg - Δg GPM98A -140.83 103.73 1.56 6.31 
KMS02 Δg - Δg GPM98B -139.89 102.25 1.98 6.37 
KMS02 Δg - Δg EIGEN-CG01C -27.46 61.51 1.76 6.79 

 
Table 4.16: Statistical comparisons between gravity anomalies computed from GGMs and land 
gravity anomalies. Unit:[mGal]. 
 min max mean σ 
Land Δg  -145.32 280.00 7.71 38.40 
Δg OSU91A -142.27 237.91 19.26 41.73 
Δg EGM96 -112.66 247.60 13.65 41.49 
Δg GPM98A -92.59 319.21 23.61 41.47 
Δg GPM98B -92.71 378.56 23.87 41.76 
Δg EIGEN-CG01C -100.27 248.96 14.59 40.57 
Land Δg - Δg OSU91A -298.85 231.12 -11.56 34.62 
Land Δg - Δg EGM96 -321.92 216.73 -5.95 28.26 
Land Δg - Δg GPM98A -313.47 245.73 -15.97 28.46 
Land Δg - Δg GPM98B -352.46 262.40 -16.09 28.26 
Land Δg - Δg EIGEN-CG01C -300.82 225.15 -6.88 28.33 
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The smallest standard deviation in the differences between the gravity anomalies from 

the database and the gravity anomalies derived from the geopotential model can be 

taken as an indication of the best geopotential model. 

The free-air gravity anomalies were selected from the gravity database. Their statistics 

can be seen in Tables 4.14, 4.15 and 4.16 for shipborne, KMS02 and land gravity 

anomalies, respectively. 

From the above tables, the GPM98A and GPM98B show better standard deviation in 

the marine and altimetry comparisons but in the comparisons with land data all models 

show similar statistics. Considering these results in conjunction with the comparisons 

made with the GPS/levelling-derived geoid, the EIGEN_CG01C gave better results 

overall and it is the GGM that best fits the long wavelength structure of the gravity field 

in Argentina, followed by EGM96. Some of the numerical tests carried out during this 

research were done before the public distribution of the EIGEN_CG01C global gravity 

model to the scientific community. 

 

4.4 Summary 

The following data and models were selected after the evaluations described in this 

chapter and will be used in the numerical results presented in the following chapters. 

Gravimetric geoid Altimetric geoid 
Gravity data  

 66717 land free-air gravity anomalies 
 66717 Bouguer gravity anomalies 
 12823 shipborne free-air gravity  

anomalies 
 KMS01 & KMS02 global altimetry- 

derived marine free-air gravity anomalies 

70510 Corrected Sea Surface Heights from 
the ERS1 Geodetic Mission 
 

EGM96 & EIGEN_CG01C 
Global Gravity Models 

EGM96 & CHAMP/GRACE-type EGMs 
(Vergos et al., 2004) 

EGM96.DOT 
GTOPO30 DEM  

552 GPS/levelling data T/P SSHs 
Sandwell and Smith v9.2 Digital Bathymetry Model (DDM) 
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CHAPTER FIVE 

PREDICTION AND STATISTICAL BEHAVIOR OF GRAVITY ANOMALIES 

 

The gravimetric geoid model for Argentina will be computed by the Fast Fourier 

Transform. The use of FFT requires that random gravity data points be interpolated on a 

grid. 

The gridding methods of weighted means, continuous curvature in tension and least- 

squares collocation will be described. This chapter also presents the basic concepts of 

covariance, correlation and power spectral density (PSD) functions. The results of a 

covariance analysis for areas with different topographic schemes in Argentina are also 

presented in this chapter. 

 

5.1 Three predictions methods for gravity anomalies 

5.1.1 Weighted means 

The inverse distance weighting is a deterministic interpolation method where the values 

at grid points are estimated by values located at arbitrary points. 

The original inverse distance weighted interpolation method was given in Shepard, 

(1968). The basic formula for the prediction of a function f(x,y) was given in Morrison 

and Douglas (1984), and it can be expressed as:  

( )
( ) (

( )

)

∑

∑

=
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1k
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p

2
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−+−=  (5.2) 
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where w is the weighting function and p is the power of the prediction,  p>0. The user 

specifies the value of p. The most common choice is p= 2. xk and yk are the coordinates 

of the N sampling points.  

For the prediction of gravity anomalies at a point (x,y), (5.1) becomes:: 

( )
( ) (

( )

)

∑

∑

=

=
Δ

=Δ
N

1k
kk

N

1k
kkkk

y,y,x,xw

y,y,x,xwy,xg
y,xg  (5.3) 

The estimated value  is based on the weighted sum of N close observations gΔ

( )kk y,xgΔ . 

 

5.1.2 Continuous curvature splines in tension 

The minimum curvature method interpolates the data to be gridded with a surface 

having continuous second derivates and minimum total squared curvature (Smith and 

Wessel, 1990). Minimum curvature surfaces may have large and suspicious inflections 

points, which are not suitable for gridding, and they can be eliminated adding a tension 

parameter.  

The total squared curvature C is: 

dxdy)z(C 22∫∫ ∇=  (5.4) 

supposing  g)y,x(fz Δ==

Minimizing equation (5.4) leads to the following differential equation:  

)yy,xx(f)g( ii
i

i
22 −−δ=Δ∇∇ ∑  (5.5) 

where  is the Laplacian operator and 2∇ )g,y,x( iii Δ  are constraining data. The fi must 

be chosen such that  and the boundary conditions along the 

edges are: 

)y,x()y,x( as gg iii →Δ→Δ
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0
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Δ∂  (5.6) 
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∂
∂  (5.7) 

where 
n∂
∂ is the derivate normal  to an edge, and at the corners  

0
yx
z2
=

∂∂
∂  (5.8). 

Equations (5.6), (5.7) and (5.8) are the free edge conditions and with these conditions, 

equation  (5.5) has a unique solution with continuous second derivates.  

Smith and Wessel (1990) expressed equation (5.5) in a general form as follows: 
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where D is the constant flexural rigidity; q is the normal vertical stress; and Txx, Txy and 

Tyy are the constant horizontal forces per unit length. 

When 0T and  TTT xyyyxx ===   (5.10) 

equation (5.9) becomes: 

qgT)g(D 222 =Δ∇−Δ∇∇  (5.11) 

or according to Smith and Wessel (1990): 

)yy,xx(fgT)g()T1( ii
i

i
222 −−δ=Δ∇−Δ∇∇− ∑  (5.12) 

where T is the tension parameter between 0 and 1. 

T=0 gives the minimum curvature spline surface solution. (5.13) 
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The adjustable tension continuous curvature surface gridding algorithm is also used in 

this research. This algorithm is implemented in the surface routine of the Generic 

Mapping Tools (GMT). 

Smith and Wessel recommend, according to their experience, that T≈ 0.25 usually 

works well for potential field data and a T larger than T≈ 0.35 for steep topography 

data. T = 1 gives a harmonic surface. 

 

5.1.3 Least-square collocation 

The method of least-squares collocation can be used for the prediction of gravity 

anomalies; it uses the statistical information inherent in the covariance function and 

takes into account the errors of the observations (Torge, 2001).  

The interpolated gravity anomaly at a point P (Heiskanen and Moritz, 1967; Torge, 

2001) is: 

( ) i
1T

PP gΔDCCgΔ −+=  (5.14) 

where  (i =1….n) is the vector of gravity anomalies at n observations points, and igΔ

( )Pn3P2P1P
T

P C.....CCCC =  and  (5.15) 
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T
PC is the covariance vector between and  (measured and predicted gravity 

anomalies) and C is the covariance matrix of the measurements . All the covariance 

elements  and  are obtained from the same covariance function C(s) or C (ψ), 

which is assumed to depend only on the horizontal distance s or the spherical distance ψ 

of the points under consideration. 

PgΔ igΔ

igΔ

PiC ijC

)C(or  )s(CC and )C(or  )s(CC ijijijPiPiPi ψ=ψ=  (5.16) 
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where  is the horizontal distance or the spherical distance between P and PPiPi or  s ψ i and 

 is the horizontal distance or the spherical distance between Pijij or  s ψ i and Pj.
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....
D    ..D
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D  (5.17) 

is the covariance matrix of the observation errors. 

The prediction error is gΔgΔ
)

−=ε . The error covariance matrix for the estimate is 

computed from: 

P
1T

PPPPP C)DC(CCE −+−=  (5.18) 

The covariance matrices , C and D are determined from models for covariance 

functions. 

T
PC

 

5.2 Covariance functions 

The knowledge of the covariance function of the gravity anomalies is essential for the 

gravity anomaly prediction by least-square collocation and it is the basic descriptor of 

the statistical properties of the variations of the gravity field (Forsberg, 1984). The basic 

concept of the covariance function will be presented first and then the gravity anomaly 

covariance function will be discussed. 

The covariance function of two functions )y,x(Cgh ( )11 y,xg and ( )22 y,xh  is defined as: 

( ) ( )( ) ( )( )[ ]hy,xhgy,xgEy,xC 2211gh −−=ΔΔ               (5.19) 

where , , E is the mathematical expectation operator, and 12 xxx −=Δ 12 yyy −=Δ g  

and h  are the mean values of the functions ( )11 y,xg  and ( )22 y,xh , respectively. 
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When the two functions are equal, ( ) )y,x(hy,xg 2211 = , equation (5.10) gives the auto-

covariance function and when ( ) )y,x(hy,xg 2211 ≠ the covariance is known as the cross-

covariance function. 

If g  = h =0,  and are called centered functions. ( 11 y,xg ) )( 22 y,xh

 

5.3 Gravity anomaly covariance function 

The average product of the gravity anomalies  at each pair of points Pji gΔ gΔ i and Pj 

that are distance s apart is called the covariance of the gravity anomalies and is defined 

as:  

C(s) = { } { }sjiji ggMs,g,gC ΔΔ≡ΔΔ  (5.20) 

where M is the averaging operator on the sphere and it is extended over all pair of 

points Pi and Pj for which the distance between =s is PP ji constant. 

The covariance function represents the statistical behavior of the gravity anomalies It 

can be can be expressed in spherical coordinates ),( λϕ by: 

C (ψ) = { } { } σΔΔ
π

=ΔΔ≡ψΔΔ ∫∫
σ

ψ
dgg

4
1ggM,g,gC jijiji  (5.21) 

where ψ is the spherical distance on the unit sphere.  

For s = 0 or , 0=ψ ggg ji Δ=Δ=Δ  and equation (5.21) yields the variance: 

σΔ
π

=Δ=Δσ ∫∫
σ

dg
4
1}g{M)g( 222  (5.22) 

The covariance function shows the correlation of gravity anomalies with distance. The 

correlation coefficient r is: 

{ }
)g(

,g,gC
),g,g(r

2
ji

ji
Δσ

ψΔΔ
=ψΔΔ  (5.23) 
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Usually, the correlation decreases as the spherical distance increases. 

 

5.4 Computation of empirical covariance functions 

There are two methods to compute the empirical covariance function; one is the direct 

method, which computes the empirical covariance function directly from the data and 

the other is the indirect method, which computes the empirical covariance function from 

the power spectral density (PSD) function. 

5.4.1 Direct method 

The empirical covariance function estimated directly from the local data in the space 

domain can be expressed (Esan, 2000) as: 

k

k
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k n

gg
)s(C

∑ ΔΔ
=  or 

k

k
ji

k n

gg
)(C

∑ ΔΔ
=ψ  (5.24) 

where  are the number of products between all pairs of gravity anomalies according 

to the class distance or . 

kn

ks kψ

5.4.2 Indirect method  

The second method estimates the covariance function using the FFT technique. The 

covariance function can also be defined (Schwarz et al., 1990) as: 

}hg)y,x(R)y,x(C ghgh −ΔΔ=ΔΔ  (5.25) 

where  is the correlation function of and  defined as: )y,x(R gh )y,x(g 11 )y,x(h 22

[ )y,x(h)y,x(gE)y,x(R 2211gh =ΔΔ ] (5.26) 

If 0h  g == , the correlation function is the same as the covariance function. 

The power spectral density function is the frequency domain equivalent of the 

correlation function: 
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{ })y,x(RF)v,u(P ghgh =  (5.27) 

where u and v are the spatial frequencies corresponding to x and y, respectively. Thus, 

{ )v,u(PF)y,x(R hg
1

hg
−= }

}

 (5.28) 

For centered data, the inverse Fourier transform of the PSD function provides the 

covariance function:  

{ )v,u(PF)y,x(C hg
1

hg
−=  (5.29) 

 

5.5 Local and global covariance functions 

The covariance functions can be either local or global. A local covariance function 

represents the gravity field structure for a certain area after trend removal (Schwartz et 

al., 1990). 

The essential parameters used to describe the characteristics of the local covariance 

function of the gravity anomalies are: the variance Co, the correlation length ξ and the 

curvature parameter χ or the gradient variance Go. The variance Co is the value of the 

covariance value at distance zero. 

The correlation length ξ is defined as the distance at which the covariance is half of the 

variance value: 

( ) oC
2
1C =ξ  (5.30) 

The variance and correlation length are depicted in Figure 5.1. 

The curvature parameter χ is related to the curvature of the covariance curve at 0=ψ  by 

χ =  (5.31) o
2 C/κξ

The gradient variance Go is the variance of the horizontal gradient of  or half of the 

variance of the vertical gradient of 

gΔ

gΔ , and it is related to the curvature parameter by: 
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ξ 

Figure 5.1: Empirical covariance function and essential parameters 

Covariance functions with the same essential parameters show a similar interpolation 

behavior independent of the model. 

 

5.6 Modeling the empirical covariance function 

Modeling the empirical gravity anomaly covariance function implies the determination 

of an analytical covariance function that fits the empirical values. The adjustment of the 

local covariance is done by estimating the values of the three essentials parameters. The 

information provided by the analytical function is used for the prediction method. 

There are various planar covariance models for gravity field modeling used for 

prediction; several examples of planar covariance functions are described in Moritz 

(1980). Some of these models are the Gaussian, Hirvonen, and first-order, second order 

and third order Markov model.  

As an example, the second-order Markov model is expressed as  

D/s
0 e

D
s1C)s(C −⎟
⎠
⎞

⎜
⎝
⎛ +=  (5.33) 
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where s is the distance,  is the variance and D is a  constant parameter. oC

For spherical Earth, the Tscherning/Rapp model (Tscherning and Rapp, 1974) is a 

degree variance model and it will be used in this research for covariance modeling. 

The gravity anomaly covariance function  on the can also be derived by 

covariance propagation from the basic covariance function K (P, Q) of the disturbing 

potential T, which can be expressed in terms of Legendre polynomials (Moritz, 1980) 

as: 
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where are the anomalous potential degree variances, R)T,T(nσ B is the radius of the 

Bjerhammar sphere, r and r ′  represent the geocentric radial distances of points P and Q 

separated by a spherical distance ψ . 

The numerical examples carried out in the sequel used residual gravity anomalies 

observations to compute the empirical covariance function. The empirical covariance 

function is computed by first removing the gravity anomalies computed from a 

geopotential model and the direct effect of the terrain. 

TGMobs gggg Δ−Δ−Δ=Δ  (5.35) 
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The covariance function of the residual local gravity anomalies can be expresses as: 
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where the  are the error anomaly degree variances associated with the 

coefficients of the geopotential model; a is a scale factor; and  are signal 

gravity anomaly degree variances estimated using the Tscherning/Rapp model as 

follows: 

)g,g(n ΔΔε

)g,g(n ΔΔσ

)T,T(
R

)1n()g,g( n2

2
n ε
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=ΔΔε  (5.39) 
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where are the variances of the fully normalized geopotential coefficients. 2
Snm

2
Cnm e and e

The degree variances of the disturbing potential )T,T(nσ  can be estimated from the 

Tscherning/Rapp model as: 

)Bn)(2n)(1n(
A)T,T(n

+−−
=σ  (5.41) 

where A is a free parameter to be determined, B was first set at 24 in the original work 

of Tscherning and Rapp, but in this study we will set it equal to 4 following the 

recommendations of Tscherning (1997). 

The degree variances of the gravity anomalies are related with the degree variances of 

the disturbing potential by the following relationship: 

)T,T(
R

)1n()g,g( n2

2
n σ

−
=ΔΔσ  (5.42) 

The covariance function given in equation (5.28) is global and it must be adjusted to fit 

the local characteristics of the field in local gravity field computation. The adjustment of 

the global model requires the estimation of the parameters: A, the scaling factor a, and 

the radius of the Bjerhammar sphere. The estimation of these parameters is done by 

fitting the global model to the empirical covariance values for the local area by least 

squares in an iterative procedure. 
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5.7 Covariance analysis in Argentina 

The empirical covariance function will be computed in different areas of Argentina with 

different topographic structures and statistical behavior of free-air anomalies, reduced 

free-air gravity anomalies by the geopotential model EGM96 complete to degree and 

order 360, and residual free-air gravity anomalies after removal of the EGM96 and 

terrain effects. The Residual Terrain Model (RTM) gravity reduction was used to 

compute the terrain effects of the topography.  

Three selected areas were chosen as test areas within the Argentinean territory and their 

location can be seen in Figure 5.2. 

  

Figure 5.2: Location of test areas and distribution of gravity data 
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5.7.1 Andes Area. Block 1 

The first area is a rough area and we will refer to this area as Block 1. Block 1 is located 

in the Andes, which are the highest mountain range of the country. Its dimensions are 

10° by 4° in the latitude and longitude, respectively. The coordinates of the lower-left 

corner of the area are 42°S and 72°W. The area has 1428 gravity points with a mean 

elevation height of about 960 meters. The statistical information of this area can be seen 

in Table 5.1.  

Table 5.1: Statistical information for Block 1. 
Rough area min max mean σ 
Latitude -42.00 -32.02 -36.90 2.70 
Longitude -72.00 -68.00 -69.76 1.15 
Observed gravity [mGal] 978584.68 980206.92 979607.476 317.85 
Height [m] 3.90 3362.00 959.66 551.28 

 

The average inter-point distance (IPD) is calculated from 

A
NPIPD =  (5.43) 

where NP is the number of gravity points and A is the area size.  NP is equal to 1428 

gravity points so an IPD of 3.8 minutes represents the actual data resolution. 

The statistics of the free-air anomalies for the Block 1 test area can be seen in Table 5.2. 

This table also shows the statistics of residual gravity anomalies after the contribution of 

EGM96 geopotential model has been removed and the statistics of the residual gravity 

anomalies after the RTM effects have been also removed. 

Table 5.2: Statistics for the gravity anomalies for Block 1. Unit:[mGal]. 
Rough area min max mean σ 

FAgΔ  -127.45 147.53 3.79 39.08 

GMFA gg Δ−Δ  -209.59 138.08 -19.69 33.09 
RTMGMFA AgΔgΔ δ−−  -106.50 100.68 10.54 31.14 

 

5.7.2 Flat area. Block 2 

The second area is a flat area located in the eastern part of the country; we will refer to 

it as Block 2. Its dimensions are 4.5° by 5.5° in latitude and longitude, respectively. The 
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coordinates of the lower-left corner of the area are 38.5°S and 59°W. The area has 4276 

gravity points with a mean elevation height of about 126 meters. The statistical 

information of this area can be seen in Table 5.3. 

Table 5.3: Statistical information for Block 2. 
Flat Area min Max mean σ 
Latitude -38.50 -34.00 -36.25 1.34 
Longitude -64.50 -59.00 -61.66 1.61 
Observed gravity [mGal] 979594.81 980033.47 979812.78 105.22 
Height [m] -12.50 474.70 126.17 66.07 

 

The average inter-point distance (IPD) is equal to 14.3 minutes and it represents the 

actual data resolution. 

The statistics of the free-air anomalies for the Block 2 test area can be seen in Table 5.4. 

This table also shows the statistics of residual gravity anomalies after the contribution of 

the EGM96 geopotential model has been removed and the statistics of the residual 

gravity anomalies after the RTM effects have also been removed. 

Table 5.4: Statistics for the gravity anomalies for Block 2. Unit:[mGal]. 
Flat area min max mean σ 

FAgΔ  -23.18 52.01 9.89 11.47 

GMFA gg Δ−Δ  -22.93 22.76 1.69 6.80 

RTMGMFA AgΔgΔ δ−−  -22.42 30.12 1.83 7.11 

 

5.7.3 Marine area. Block 3 

The third area is a marine area located in the Atlantic Ocean near Argentina. We will 

refer to this area as Block 3. Its dimensions are 5° by 5° in latitude and longitude, 

respectively. The coordinates of the lower-left corner of the area are 45°S and 61°W. 

The area has 4017 free-air shipborne and KMS02 gravity anomalies. The statistics of 

the free-air anomalies for the Block 3 test area can be seen in Table 5.5. This table also 

shows the statistics of residual gravity anomalies after the contribution of EGM96 

geopotential model has been removed and the residual anomalies after the RTM effects 

were also removed. 

The average inter-point distance (IPD) is 13.4 minutes. 
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Table 5.5: Statistics for the gravity anomalies for Block 3. Unit:[mGal]. 
Marine area min max mean σ 

FAgΔ  -62.46 76.01 4.68 24.16 

GMFA gg Δ−Δ  -32.80 38.27 1.82 9.36 
RTMGMFA AgΔgΔ δ−−  -28.51 32.87 2.08 8.88 

 

5.8 Estimation and modeling of empirical local covariance functions  

The empirical gravity anomaly covariance functions for actual data were computed in 

the space domain using the program empcov of the GRAVSOFT software (Tscherning 

et al., 1992) for the three test areas. The empirical covariance functions were computed 

for free-air gravity anomalies, for free-air gravity anomalies minus the gravity 

anomalies computed from EGM96 and for the anomalies from which the RTM-effects 

have also been subtracted. 

Figure 5.3, Figure 5.4 and Figure 5.5 show the empirical local covariances functions of 

residual gravity anomaly field after the removal of the long component of the gravity 

data with the EGM96 geopotential model, complete to degree and order 360 and also 

after removing the RTM effects. The empirical covariance function is estimated in the 

space domain with 5 arc-minute spherical distance interval for Block 1, Block 2 and 

Block 3, respectively. The essential parameters are listed in Table 5.6 for the three 

areas. 

Table 5.6: Essential parameters for the GM and RTM-reduced gravity anomaly empirical 
covariance function. 
Test Areas Co: [mGal**2] ξ: [degrees] ξ: [km] Co/ξ: [mGal**2/km] 
Block 1 Rough area 1078 0.40 45 12.1 
Block 2 Flat area 49 0.17 19 0.8 
Block 3 Marine area 68 0.17 19 0.8 

 

The modeling of the empirically covariance function is done using program covfit from 

the GRAVSOFT software (Tscherning et al., 1992). The space domain empirical 

covariance functions are fitted to the Tscherning/Rapp degree-variance model. The 

factors A, and the radius of the Bjerhammar sphere must be fixed and gravity error 

degree variances for the EGM96 coefficients were used. 

α
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The analytical covariance function is also displayed in Figures 5.3 to 5.5. The results 

presented in Figures 5.3 to 5.5 show that the covariance function varies in the three 

areas with different topography. The variance is higher in the rough area than the 

variances in the marine and flat area. 
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Figure 5.3: The empirical and model covariance function for free-air gravity anomalies reduced 
from EGM96 and RTM effects (Block 1-rough area) 
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Figure 5.4: The empirical and model covariance function for free-air gravity anomalies reduced 
from EGM96 and RTM effects (Block 2-flat area) 
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Figure 5.5: The empirical and model covariance function for free-air gravity anomalies reduced 
from EGM96 and RTM effects (Block 3-marine area) 

 

5.9 Geoid spectrum 

The geoid spectrum from different gravity field signals can be investigated in order to 

estimate the best combination of GM and local gravity data. 

The power spectrum of the geoid can be represented by the undulation degree variances 

that are estimated for the different geoid components. )N,N(nσ

For T, the degree variances are given by: 

( ) )SC(
R

GM)T,T( 2
nm

n

0m

2
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2
n +=σ ∑

=
 (5.44) 

The geoid degree variances can then be obtained from: 

2
n

n
)T,T(

)N,N(
γ

σ
=σ  (5.45) 

The anomalous potential degree variances )T,T(nσ will be estimated in the following 

manner: 
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1) The 2D power spectral density (PSD) function of the gravity anomalies is 

computed directly from the actual gravity anomaly data grid by Fourier Transform: 

*
gg )}y,x(g{F)}y,x(g{F)v,u(P ΔΔ=ΔΔ  (5.46) 

In general, the estimated 2D PSD is non-isotropic, so the next step is to obtain an 

isotropic estimate of the PSD. 

2) The isotropic estimate of the PSD can be obtained using a circular averaging 

process (Schwarz et al., 1990): 

θθθ
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For the isotropic case,  

)q(P)v,u(P ´
gggg ΔΔΔΔ = ;     (5.48) ( ) 2/122 vuq +=

3) The anomaly degree variances are related to the isotropic PSD by the relationship 

given by Forsberg, (1984): 
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4) The covariance function of the gravity anomalies and the corresponding anomaly 

degree variances are related by a Legendre transform (Heiskanen and Moritz, 1967; 

Schwartz et al., 1990). 
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The anomaly degree variances describe the global spectral behavior of the gravity field. 

The potential degree variances are related to the gravity anomalies degrees variances by 

the expression: 

)g,g(
)1n(

R)T,T( n2

2
n ΔΔσ

−
=σ  (5.53) 

The undulation degree variances )N(nσ  can be obtained from the anomaly degree 

variance by the expression: 
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CHAPTER SIX 

DIFFERENT TOPOGRAPHIC REDUCTION METHODS IN PRACTICAL 

GRAVIMETRIC GEOID DETERMINATION 

 

6.1 Introduction 

As a preliminary analysis for the development and evaluation of a precise gravimetric 

geoid for Argentina, different gravimetric geoid solutions were computed using 

different gravity reduction techniques in three test areas. One area was covering part of 

Mendoza and Neuquén provinces. This test area was bounded by latitudes 32°S to 42°S 

and longitudes 68°W and 72°W, and it was selected due to the presence of 

GPS/levelling data, sparse gravity coverage coming from different sources and rough 

topography (Block 1). Another test area was an extension of the pervious one and it was 

bounded by latitude 20º S to 42º S and longitude 72º W to 67º W (Block 2). The other 

test area was a flat area, with more dense gravity data ranging from 34°S to 38.5°S in 

latitude and 59°W to 64.5°W in longitude (Flat Area). Figure 6.1 shows the location of 

the three tests areas in rectangular blocks. 

 
Figure 6.1: Distribution of test areas blocks in Argentina 
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These three areas were selected to study gravimetric geoids using different gravity 

reductions, in planar approximation. The following terrain reductions techniques were 

used: Helmert’s second condensation method, the Airy-Heiskanen topographic-isostatic 

reduction (AH), the residual terrain model (RTM) method and the Rudzki inversion 

method. 

 

6.2 Gravimetric geoid determination in a flat area 

A total of 4276 gravity points, with a spacing of approximately 8 km were selected in 

the flat area. The distribution of the gravity points is shown in Figure 6.2.

 

Figure 6.2: Distribution of gravity stations on elevation map 

 

The maximum and minimum values of the observed gravity were 980033.47 mGal and 

979594.81 mGal, respectively. 

Free-air gravity anomalies were calculated using the parameters of the Geodetic 

Reference System 1980 (GRS80) and the normal gradient of 0.3086 mGal/m. The 

atmospheric correction was applied to the observed gravity according to formula (4.12) 

(Torge, 1989). The statistics of the free-air anomalies can be seen in Table 6.1 and 

Figure 6.3 shows the free-air anomalies computed with formula (4.14). 
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Figure 6.3: Free-air gravity anomalies 

 

The global digital elevation model GTOPO30 with a horizontal grid spacing of 30 arc 

seconds (approximately 0.758 kilometre in the North-South direction at the mean 

latitude of the area and 0.920 kilometre in the East-West direction) was used to 

represent the topography in this test area. The maximum, minimum, mean and standard 

deviation height is 1617 m, 1 m, 136.109 m and 115.393 m, respectively. 

Terrain corrections ( ) were calculated by FFT from the GTOPO30 DEM using the 

TC2DFTPL program (Li, 1993; Li and Sideris, 1994). They were computed at all points 

of a grid of 720 rows by 900 columns with different topographic representations and 

they were then interpolated from the grids at the gravity stations using the bilinear 

interpolation of program geoip from GRAVSOFT software (Tscherning et al., 1992). 

The statistics of terrain corrections in gravity stations up to second order term of a mass 

line model have a maximum of 0.96 mGal, a minimum of 0.00 mGal, a mean value of 

0.02 mGal and a standard deviation of 0.03 mGal. 

Pc
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The refined Bouguer anomalies were computed using formula (4.18), their statistics are 

also presented in Table 6.1 and they are shown in Figure 6.4. 

The Helmert or Faye gravity anomalies were computed according equation (2.82), their 

statistics are also presented in Table 6.1 and they are depicted in Figure 6.5. 

 

Figure 6.4: Refined Bouguer gravity anomalies 

 

Table 6.1: The statistics of gravity anomalies. Unit: [mGal].  
 min max mean σ 

Free-air anomalies -23.18 52.01 9.89 11.47 

Refined Bouguer anomalies -48.22 41.55 -4.21 13.78 
96EGMgΔ  -25.61 42.27 8.20 10.34 

Helmert (Faye anomalies) -23.14 52.15 9.90 11.46 

AH anomalies -30.89 45.74 8.51 11.52 
RTM anomalies -26.15 45.62 10.03 11.20 

Rudzki anomalies -23.33 49.95 9.89 11.47 
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Figure 6.5: Faye gravity anomalies 

 
 

The tc program from GRAVSOFT software (Tscherning et al., 1992) was used to 

compute the RTM effects and also the geoid RTM effects for use in the restore step 

(Forsberg, 1984) and it was also used to compute the direct topographical effect on 

gravity using the Airy-Heiskanen (AH) model (constant density). This program was 

also used to compute the indirect topographical effect on geoid using the (AH) 

reduction scheme (constant density assuming the normal thickness of the crust equal to 

32 km and the density of mantle equal to 3.27 g/cm3). 

The tcgrid program from GRAVSOFT software (Tscherning et al., 1992) was used to 

prepare the reference height grid, with a resolution around 100 kilometres. 

Airy-Heiskanen and RTM gravity anomalies were computed using formulas (2.59) and 

(2.103), they are shown in Figures 6.6 and 6.7, respectively and their statistics are in 

Table 6.1. 
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Figure 6.6: Airy-Heiskanen gravity anomalies 

 
Figure 6.7: RTM gravity anomalies 
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Tc was modified to compute the direct topographical effects on gravity using the Rudzki 

inversion gravimetric reduction scheme using constant density (Bajracharya et al., 

2001). Figure 6.8 shows the Rudzki gravity anomalies computed with formula (2.89). 

Their statistics are also presented in Table 6.1. 

 
Figure 6.8: Rudzki gravity anomalies 

 

After applying different terrain reductions, the long-wavelength contribution of the 

geopotential model was removed from the reduced terrain gravity anomalies. The 

reference gravity field was computed from the EGM96 geopotential model (Lemoine et 

al., 1998) complete to degree and order 360. In spherical approximation, the reference 

gravity anomaly estimated at position φP,λP is expressed by (2.12); these are depicted in 

Figure 6.9. The statistics of the gravity anomalies computed from EGM96 are also 

shown in Table 6.1 and the statistics of the residual gravity anomalies can be seen in 

Table 6.2. 
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Figure 6.9: EGM96 gravity anomalies 

 
Table 6.2: The statistics of the residual gravity anomalies. Unit: [mGal].  
 min max mean σ 

Free-air anomalies -  96EGMgΔ 22.77 -22.99 1.69 6.81 

Bouguer anomalies -  96EGMgΔ 15.86 -42.82 -12.41 9.41 

Helmert (Faye anomalies) -  96EGMgΔ 22.78 -22.98 1.70 6.81 

RTM anomalies -  96EGMgΔ 30.12 -22.42 1.83 7.11 

AH anomalies -  96EGMgΔ 27.00 -25.71 0.18 7.20 

Rudzki anomalies -  96EGMgΔ 22.77 -22.99 1.69 6.81 

 

The residual geoid undulations were computed using the program fftgeoid developed by 

Yecai Li at the University of Calgary. This program takes the residual gravity anomaly 

grid as input and computes the residual geoid undulations on the same grid 

simultaneously using the Stokes integral by means the Fast Fourier Transform. The 

rigorous spherical kernel (RSK) and the approximated spherical kernel (ASK) were 

investigated. 
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During these numerical tests, the gridding was performed using a weighted means 

algorithm implemented in the program geogrid from GRAVSOFT software (Tscherning 

et al., 1992).  

Finally, the gravimetric geoid undulations were computed by restoring the geoid 

undulations computed from the EGM96 geopotential model and the indirect effect on 

the geoid due to each reduction scheme. 

The indirect effects on gravity were neglected before applying Stokes’s formula since 

the area was very flat. The topographic indirect effect on the geoid due to Helmert’s 

second method of condensation was computed using program ind developed by Yecai 

Li at the University of Calgary. This program computes the topographic indirect effect 

on the geoid undulation due to the second method of Helmert's condensation of the 

topography with the formula given in (2.86). The topographic indirect effect on the 

geoid did not add any significant contribution to the gravimetric geoid undulations. The 

computation was done only considering the first term in equation (2.86) and it has a 

maximum of 0.004 m a minimum of -0.001 m, and a standard deviation of 0.001 m. For 

the Rudzki geoid the indirect effect on the geoid is zero. The indirect effect on geoid 

undulations for the AH isostatic reduction changes the geoid by as much as 1 m. 

A total of 125 GPS/levelling points in three different networks were used for 

comparison with the different gravimetric geoid solutions computed with different 

terrain reductions. The distributions of the GPS points can be seen in Figure 6.10. There 

were no GPS/levelling points above the elevation of 308 m. 

  
Figure 6.10: Distribution of GPS/levelling benchmarks on elevation map 
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In order to get a good agreement of the gravimetric geoid with respect to the 

GPS/levelling-derived geoid, the systematic datum differences between the gravimetric 

geoid and the GPS/levelling data and the long wavelengths errors of the geoid were 

removed by the four-parameter transformation model expressed in equation (4.26), 

(Heiskanen and Moritz, 1967) and a differential similarity transformation model with 

seven parameters; see equation (4.28) (Kotsakis, 2001). 

The statistics of the absolute differences between the GPS/levelling derived-geoid and 

the gravimetric geoids computed using different methods of handling the topography 

are summarized in Table 6.3, where NRSK means geoid heights computed with the 

rigorous spherical kernel and NASK are geoid undulations computed with the 

approximately spherical kernel. 

Table 6.3: Statistics of the differences between gravimetric geoids with GPS/levelling–derived 
geoid in the flat area. Unit: [m]. 

Flat Area  min max mean σ 
Original (125 pts) Before fit -0.431 1.159 0.589 0.299 

4-param -0.962 0.318 0.000 0.198 NEGM96 - NGPS

After fit 7-param -0.868 0.280 0.000 0.189 
3 

Geoid Model: Rudzki  min max mean σ 
Original (125 pts) Before fit 0.089 1.270 0.962 0.208 

4-param -0.873 0.206 0.000 0.179 NRSK - NGPS

After fit 7-param -0.824 0.241 0.000 0.157 
Original (125 pts) Before fit 0.084 1.271 0.962 0.208 

4-param -0.535 0.717 0.000 0.151 NASK - NGPS

After fit 7-param -0.823 0.242 0.000 0.157 
 

Geoid Model: Helmert  min max mean σ 
Original (125 pts) Before fit 0.118 1.360 1.024 0.222 

4-param -0.895 0.240 0.000 0.186 NRSK - NGPS

After fit 7-param -0.830 0.247 0.000 0.167 
Original (125 pts) Before fit 0.113 1.362 1.023 0.223 

4-param -0.895 1.362 0.000 0.186 NASK - NGPS

After fit 7-param 0.118 1.360 1.024 0.222 
 

Geoid Model: AH  min max mean σ 
Original (125 pts) Before fit 0.127 .0.289 1.044 0.186 

4-param -0.924 0.251 0.000 0.175 NRSK - NGPS

After fit 7-param -0.850 0.227 0.000 0.163 
Original (125 pts) Before fit 0.131 1.289 1.045 0.186 

4-param -0.924 0.251 0.00 0.175 NASK - NGPS

After fit 7-param -0.849 0.228 0.000 0.163 
 

Geoid Model: RTM  min max mean σ 
Original (125 pts) Before fit 0.160 1.353 1.026 0.212 

4-param -0.895 0.254 0.000 0.181 NRSK - NGPS

After fit 7-param -0.836 0.235 0.000 0.164 
Original (125 pts) Before fit 0.159 1.356 1.026 0.212 

4-param -0.895 0.256 0000 0.182 NASK - NGPS

After fit 7-param -0.836 0.239 0.000 0.164 
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Four different gravity reduction methods have been presented. They treat the 

topography in a very different way. Helmert’s second method of condensation and the 

RTM method are the most used reduction techniques for the determination of a 

gravimetric geoid. The Airy-Heiskanen topographic-isostatic reduction and the Rudzki 

inversion method were applied as well; the latter is not very often used, even though it 

has the advantage of no indirect effect. 

The main conclusion of these results was that the four reduction methods gave almost 

identical results, as expected for a flat area.  

Table 6.3 shows that the agreement between the gravimetric geoid and the 

GPS/levelling geoid is around 15 to 20 cm in terms of the standard deviation after fit, 

and there is no significant difference between the geoid undulations computed with the 

rigorous spherical kernel (NRSK) and with the approximated spherical kernel (NASK). 

 

6.3 Gravimetric geoid determination in a rough area 

A total of 1452 gravity points, with a spacing of approximately 20 km were selected in 

the rough area (Block 1). The distribution of the gravity points is shown in Figure 6.11. 

The maximum and minimum values of the observed gravity were 980206.92 mGal and 

978584.68 mGal, respectively. 

Free-air gravity anomalies were calculated using the parameters of the Geodetic 

Reference System 1980 (GRS80) and the second order free-air reduction. The 

atmospheric correction was applied to the observed gravity according equation (4.12). 

The statistics of the Free-air gravity anomalies can be seen in Table 6.4, Figure 6.13 

shows the free-air anomalies computed with formula (4.7). 

The global digital elevation model GTOPO30 with a horizontal grid spacing of 30 arc 

seconds (approximately 0.758 kilometre in the North-South direction at the mean 

latitude of the area and 0.920 in the East-West direction) was used to represent the 

topography in this test area. The maximum, minimum, mean and standard deviation 

height was 6795 m, 0 m, 1125.236 m and 896.927 m, respectively.  
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Figure 6.11: Distribution of gravity stations on 
elevation map 

 

Figure 6.12: Distribution of GPS/levelling on 
benchmarks on elevation map

 

Table 6.4: The statistics of gravity anomalies. Unit: [mGal].  
 min max mean σ 

Free-air anomalies -127.45 147.53 3.79 39.08 

Bouguer anomalies -302.68 64.01 -103.57 57.94 

Refined Bouguer anomalies -279.54 65.27 -100.92 56.13 

Helmert (Faye anomalies) -124.76 173.59 6.44 39.23 

RTM anomalies -73.26 154.67 34.01 28.30 

AH anomalies -101.67 121.56 7.22 29.53 

Rudzki anomalies -122.73 127.09 10.55 37.80 
96EGMgΔ  -112.66 182.71 23.26 43.21 

 



 124

Terrain corrections ( ) were calculated by FFT from the GTOPO30 DEM using the 

TC2DFTPL program (Li, 1993); they were computed at all points of a grid of 1440 

rows by 600 columns with different topographic representations. Terrain corrections 

were then interpolated from the grids in the gravity stations using the bilinear 

interpolation of program geoip from GRAVSOFT software (Tscherning et al., 1992). 

The statistics of terrain corrections in gravity stations up to third order term of a mass 

prism model had a maximum of 35.39 mGal, a minimum of 0.07 mGal, a mean value of 

2.65 mGal and a standard deviation of 3.78 mGal.  

Pc

Table 6.4 also shows the statistics of the gravity anomalies computed from EGM96 and 

the statistics of the Helmert, RTM, Airy-Heiskanen and Rudzki gravity anomalies.  

Figures 6.14 to 6.18 show EGM96, Bouguer, Faye, AH, RTM and Rudzki gravity 

anomalies respectively. The standard constant density of 2.67 g/cm3 was assumed.  

 

 
Figure 6.13: Free-air gravity anomalies 

 
Figure 6.14: EGM96 gravity anomalies 
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Figure 6.15: Refined Bouguer gravity anomalies 

 
Figure 6.16: Faye gravity anomalies 

Figure 6.17: Airy-Heiskanen gravity anomalies Figure 6.18: RTM gravity anomalies 



 126

 
Figure 6.19: Rudzki gravity anomalies 

 

Table 6.4 also shows the statistics of the gravity anomalies computed from EGM96 and 

the statistics of the Helmert, RTM, Airy-Heiskanen and Rudzki gravity anomalies.  

Table 6.4: The statistics of gravity anomalies. Unit: [mGal].  
 min max mean σ 

Free-air anomalies -127.45 147.53 3.79 39.08 

Bouguer anomalies -302.68 64.01 -103.57 57.94 

Refined Bouguer anomalies -279.54 65.27 -100.92 56.13 

Helmert (Faye anomalies) -124.76 173.59 6.44 39.23 

RTM anomalies -73.26 154.67 34.01 28.30 

AH anomalies -101.67 121.56 7.22 29.53 

Rudzki anomalies -122.73 127.09 10.55 37.80 
96EGMgΔ  -112.66 182.71 23.26 43.21 

 

From Table 6.4, we can see that the RTM gravity anomalies are the smoothest gravity 

anomalies in terms of the standard deviations and also they had the smallest range. 
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RTM statistics are similar to those of the AH gravity anomalies. Free-air and Helmert 

anomalies show similar statistics to each other, as well. 

The reference gravity field was computed from the EGM96 geopotential model 

(Lemoine et al., 1996) complete to degree and order 360. The statistics of the residual 

gravity anomalies can be seen in Table 6.5. A 3 rms test was performed in order to 

detect some blunders. 

Table 6.5: The statistics of the residual gravity anomalies. Unit: [mGal].  
 min max mean σ 

Free-air anomalies -  96EGMgΔ -219.75 140.46 -19.47 33.96 

Bouguer anomalies -  96EGMgΔ -485.39 21.54 -126.83 70.15 

Helmert (Faye anomalies) -  96EGMgΔ -187.47 149.65 -16.82 32.75 

RTM anomalies -  96EGMgΔ -106.50 100.68 10.54 31.14 

AH anomalies -  96EGMgΔ -229.63 66.98 -16.04 40.10 

Rudzki anomalies -  96EGMgΔ 94.23 -94.77 -12.71 26.20 

 

The gridding, interpolation, reduction and computational procedures were the same as 

the ones used in the previous test area. 

The indirect effect on gravity due to Helmert’s second method of condensation was 

considered before applying Stokes’s formula. The statistics of this effect, together with 

the indirect effect on the geoid in the rough area, can be seen in Table 6.6. The values of 

the first, the second and the third term of the indirect effect caused by the second 

method of Helmert’s topographic condensation at 163 GPS/levelling points can be seen 

in Figure 6.20. In the mountainous area, the computation of the indirect effect on the 

geoid should be done up to the third order term.  The third order term contributes an 

indirect effect with maximum values of about 20 cm. The maximum indirect effects are 

correlated with the topography. 

Table 6.6: Statistics of indirect effects due to the Helmert’s condensation method. 
 min max mean σ 
On gravity [mGal] 0.199 0.000 0.022 0.025 
On geoid [m]1st +2 nd +3rd  terms -1.171 0.000 -0.111 0.225 
On geoid [m] 1st term -1.192 0.000 -0.109 0.226 
On geoid [m] 2nd term -0.023 0.025 0.000 0.006 
On geoid [m] 3rd term -0.174 0.147 -0.002 0.026 
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Figure 6.20: Indirect effect on the geoid undulation 

 

For the Rudzki geoid the indirect effect is zero. 

A total of 163 GPS/levelling points in three different networks were used for 

comparison with the different gravimetric geoid solutions computed with different 

terrain reductions. The distributions of the GPS points can be seen in Figure 6.12. There 

are no GPS/levelling points above the elevation of 1890 m. 

A four-parameter transformation model (Heiskanen and Moritz, 1967) and a differential 

similarity transformation model with seven parameters (Kotsakis, 2001) were applied to 

fit the geoid solutions to the GPS/levelling-derived geoid. 

The statistics of the absolute differences between the GPS/levelling derived-geoid and 

the gravimetric geoids computed using different methods of handling the topography 

are summarized in Table 6.7. 

Figure 6.21 shows the graph of the standard deviation of the differences between the 

different geoid solutions computed with different gravity reduction schemes and with 

different approximations of the spherical Stokes formula with GPS/levelling-derived 

geoid. 
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Table 6.7: Statistics of the differences between gravimetric geoids with GPS/levelling–derived 
geoid in the rough Block 1. Unit: [m]. 

Block 1  min max mean σ 
Original (163 pts) Before 

fit -2.43 1.88 0.62 0.91 

4-param -1.87 1.72 0.00 0.47 NEGM96 - NGPS

After fit 7-param -1.52 1.30 0.00 0.40 
 

Geoid Model: Rudzki  min max mean σ 
Original (163 pts) Before fit 2.60 6.47 4.19 0.60 

4-param -1.82 1.84 0.00 0.41 NRSK - NGPS

After fit 7-param -1.63 1.88 0.00 0.39 
Original (163 pts) Before fit 2.65 6.45 4.21 0.60 

4-param -1.82 1.85 0.00 0.41 NASK - NGPS
After fit 7-param -1.63 1.89 0.00 0.39 

 
Geoid Model: Helmert  min max mean σ 

Original (163 pts) Before fit 3.12 8.00 5.46 0.81 
4-param -2.51 2.81 0.00 0.46 NRSK - NGPS

After fit 7-param -2.23 2.46 0.00 0.42 
Original (163 pts) Before fit 3.18 7.98 5.50 0.82 

4-param -2.51 2.79 0.00 0.46 NASK - NGPS
After fit 7-param -2.24 2.45 0.00 0.22 

 
Geoid Model: RTM  min max mean σ 

Original (163 pts) Before fit -4.10 5.72 -0.69 0.89
4-param -2.44 4.42 0.00 0.68NRSK - NGPS

After fit 7-param -2.69 4.39 0.00 0.64
Original (163 pts) Before fit -4.05 5.80 -0.67 0.89

4-param -2.41 4.42 0.00 0.67NASK - NGPS
After fit 7-param -2.69 4.41 0.00 0.63

 
Geoid Model: AH  min max mean σ 

Original (163 pts) Before fit -4.10 3.73 -2.07 1.54
4-param -1.97 5.20 0.00 1.40NRSK - NGPS

After fit 7-param -2.19 4.32 0.00 1.02
Original (163 pts) Before fit -4.10 3.81 -2.00 1.54

4-param -2.22 5.15 0.00 1.39NASK - NGPS
After fit 7-param -2.44 4.28 0.00 1.01

 

The gravimetric geoid determination based on the Rudzki inversion topographic reduction 

shows the smallest differences from GPS-levelling before and after fit. The standard deviation 

of the difference between the gravimetric solution based on AH or the RTM reduction and GPS-

levelling is much higher compared to those of Rudzki and Helmert methods. 
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Figure 6.21: Standard deviation of the differences between the geoid undulations from different 

solutions and the GPS/levelling-derived geoid.(Before fit and after fit with four-parameter 

transformation model (4P) and with differential similarity transformation model with 7 

parameters (7P)) 

 

6.4 Gravimetric geoid determination in the Andes 

A rugged area bounded by latitude 20º S to 42º S and longitude 72º W to 67º W was 

chosen to compute the geoids using the same terrain reductions methods as in the test 

areas mentioned before. 

The interpolation, gridding and computation employed in this area were the same 

applied in Block 1 and Block 2. 

The external accuracy of the gravimetric geoid models was evaluated by comparing 

them with 166 GPS/levelling points in three different networks. A four-parameter 

transformation was used again to remove the systematic datum differences between the 

gravimetric geoid and the GPS/levelling undulations, and the possible long wavelength 

errors of the geoid. 

The point gravity measurements, provided by different sources, were referenced to the 

International Gravity Standardization Net 1971 (IGSN71).  
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A total of 11132 measured gravity points, with a mean data spacing of approximately 12 

km are used in the mountainous area. The distribution of the gravity points is shown in 

Figure 6.22. Gravity anomalies are computed using the parameters of GRS80 according 

to the formulas given in Torge (1989).  

The reference gravity field is computed from the EGM96 geopotential model (Lemoine 

et al., 1998) complete to degree and order 360. 

The global digital elevation model GTOPO30 with a horizontal grid spacing of 30 arc 

seconds (approximately 1 kilometre) is used to represent the topography in this test 

area.  

A total of 166 GPS/levelling points in three different networks were used for 

comparison with the gravimetric geoid in the rough area. The distribution of the GPS 

points can be seen in Figure 6.23. 
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Figure 6.22: Distribution of gravity stations in 

the area under study 

 
Figure 6.23: Distribution of GPS/levelling 
points in the area under study 
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Terrain corrections ( ) were calculated by FFT for each gravity point from the 

GTOPO30 DEM using the TC2DFTPL program (Li, 1993). A third order term of a 

mass prism model was used.  

Pc

The indirect effect on gravity due to Helmert’s second method of condensation was 

considered before applying Stokes’s formula. The computation of the indirect effect on 

the geoid should be considered to, at least, second order term. The maximum indirect 

effects are correlated with the topography. The statistics of the topographic and data 

terrain corrections on gravity stations can be seen in Table 6.8. 

Table 6.8: Statistics of the GTOPO30. Unit:[m] and cP. Unit:[mGal]. 
 min max  mean σ 
GTOPO30 0 6795  1399 1465 
cP 0.20 42.13  2.55 2.70 

 

The statistics of the gravity anomalies calculated with the four topographic gravity 

reductions are presented in Table 6.9. 

Table 6.9: Statistics of the gravity anomalies calculated with the four topographic reductions. 
Unit [mGal]. 
 Gravity anomalies min max mean σ 

ΔgFA + cP -139.09 258.63 30.53 54.95 Faye (Helmert) 
ΔgFA + cP - ΔgEGM96 -180.00 155.62 -20.62 36.38 

ΔgFA - ΔgRU -121.55 255.70 41.77 50.87 Rudzki 
ΔgFA - ΔgRU - ΔgEGM96 -113.09 112.28 -9.38 27.22 

ΔgFA - ΔgRTM -71.12 285.45 64.79 38.66 RTM 
ΔgFA - ΔgRTM - ΔgEGM96 -128.37 166.00 14.04 37.58 

ΔgFA - ΔgAH -74.58 185.01 42.74 51.65 Airy-Heiskanen (AH) 
ΔgFA - ΔgAH - ΔgEGM96 -179.59 144.75 -8.41 57.57 

 

The statistics of the absolute differences between the GPS/levelling derived-geoid and 

the gravimetric geoids computed using different methods of handling the topography 

are summarized in Table 6.10. The numbers in parentheses refer to the results after the 

least squares fitting of the four-parameter transformation model has been applied to the 

original differences. Before applying the four-parameter transformation model, two 

GPS on benchmark points having large gross error in either the GPS or the levelling 

data were removed. 
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The gravimetric geoid computed with the Rudzki inversion method gave better results 

compared with the GPS/levelling-derived geoid before and after fit and was the only 

method that improved the gravimetric geoid compared to the EGM96 results. 

The gravimetric data needs to be improved in the area of the Andes in order to see 

further improvements in the geoid. 

Table 6.10: Statistics of different gravimetric geoid solutions (Values in the parentheses are 
after fit) Unit: [m]. 
 min max mean σ 

-1.64 2.86 0.44 0.68 Rudzki (-1.64) (1.92) (0.00) (0.44) 
-1.49 3.37 0.71 0.77 Helmert (-1.63) (2.11) (0.00) (0.54) 
-1.66 2.32 1.17 1.10 RTM (-1.95) (1.09) (0.00) (0.51) 
-8.83 -0.81 -5.99 1.84 Airy-Heiskanen (3.43) (-1.75) (0.00) (0.61) 

 

6.5Summary 

The flowchart shown in Figure 6.24 describes the computational methodology used in 

this chapter to compute gravimetric geoid solution with different gravity reduction mass 

schemes. All solutions were computed with the remove-compute-restore technique, and 

they only differ in the way they handle the topography. 

Three different areas with very different topographies were selected to compute 

different gravimetric geoid solutions with AH isostatic reduction, the Rudzki inversion 

method, Helmert’s second method of condensation and the RTM. 

In the rough areas, the Rudzki geoid is the best solution compared to other reductions 

schemes. The major advantage of the Rudzki inversion method is that the indirect 

effects on the geoid have not to be computed. In the flat area, all the reductions methods 

gave identical results as expected 

A detailed analysis using a remove-restore technique for gravity gridding will be 

investigated in chapter 8 using digital terrain data in order to diminish aliasing in 

gravity anomalies, smooth the residual gravity anomalies, and reduce interpolation 

errors. 
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Figure 6.24: Gravimetric geoid solution with different gravity reduction schemes 
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CHAPTER SEVEN 

OPTIMAL MARINE GEOID DETERMINATION IN THE ATLANTIC 

COASTAL REGION OF ARGENTINA 

 

7.1 Introduction  

The main objective of this chapter is the determination of a high-accuracy and high-

resolution marine geoid model in the Atlantic coastal region of Argentina. The 

theoretical background related to the estimation of the gravimetric and altimetric geoid 

models (Vergos, 2002) and the combined one using the Multiple Input Multiple Output 

System Theory (MIMOST) method (Sideris, 1996; Andritsanos and Tziavos, 2002), 

was outlined in chapter three. In this chapter, some numerical studies that were carried 

out will be presented, together with the description of the data available in the area 

under study. 

The area under study is located in the Atlantic coastal region of Argentina, bounded by 

34°S to 55°S in latitude and 56°W (304°E) to 70°W (290° E) in longitude. The data 

available have been described in chapter four and consist of 17352 marine gravity 

anomalies coming from shipborne campaigns provided by the International Gravimetric 

Bureau (BGI, 2001) and 2 arc-minute by 2 arc-minute altimetry derived gravity 

anomalies from the KMS01 and KMS02 global marine free-air gravity fields, computed 

from ERS1 and GEOSAT satellite altimetry (Andersen and Knudsen, 2005). KMS02 is 

the newest compilation of a global altimetry-derived marine free-air gravity field by the 

KMS group at the Danish Surveying and Cadastre. 

Gaps in the sparse shipborne data distribution were filled out using 2' x 2' KMS01 and 

KMS02 multi-satellite altimetry-derived gravity fields; see Figure 7.1.  

The QSST was computed from the EGM96.DOT model and it is shown in Figure 7.2. 

The bathymetric data come from the 2' Digital Depth Model (DDM) developed by 

Smith and Sandwell in 1997. 
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Figure 7.1: Shipborne data (red) filled with 

KMS in gaps (in blue) 

Figure 7.2: The EGM96 QSST in the area under 

study 

 

The reference gravity field is computed from the EGM96 geopotential model (Lemoine 

et al., 1998) complete to degree and order 360 and from a “combined” EGM derived 

from the latest CHAMP and GRACE type of Earth Gravity Models (EGMs) (Vergos et 

al., 2004). It should be mentioned that this so-called combined EGM is not a new model 

determined from raw CHAMP and GRACE data, but it is a combination of the 

harmonic coefficients of a number of new EGMs estimated from CHAMP and GRACE 

data. Therefore, by inspecting the CHAMP and GRACE degree and error-degree 

variances, we defined which one was more accurate for different harmonic degrees, and 

then a “combined” EGM was developed, using the GFZ EIGEN2 for n=2-5, the CSR 

GGM01C for n=6-116 and EGM96 for n=117-360 (Vergos et al., 2004). 

From the contribution of the EGM96 geopotential model and the so-called “combined” 

EGM, a reference gravity anomaly ( GMgΔ ) and a reference geoidal undulation 

can be calculated using equations 2.1 and 2.2, respectively.  

)( GMN  
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The next paragraphs will present the first numerical investigations for marine geoid 

modeling determination using satellite altimetry and shipborne data ever carried out in 

the Atlantic coastal region of Argentina. 

The optimal marine geoid modeling process can be summarizes as follows: 

 compute gravimetric and ERS1 altimetric geoid solutions; 

 use EGM96 geopotential model and the "combined EGM” to model the low-

frequency part of the gravity field spectrum; 

 apply RTM reduction to take into account the high frequency part of the gravity 

field spectrum due to the bathymetry;  

 take into account the high Sea Surface Variability; 

 estimate combined solutions using MIMOST; and 

 compare the results with T/P SSHs known for to their high accuracy and estimate 

the accuracy of the final gravimetric, altimetric and combined solution. 

The altimetric geoid solutions will be first presented, then the gravimetric ones, and 

finally the combined solutions using the Input-Output System Theory.  

 

7.2 Geoid model development 

7.2.1 Altimetric geoid model with ERS1-GM data 

The ERS1 satellite altimetry CORSSHs were provided in the usual Geophysical Data 

Records (GDRs) format and were corrected for all geophysical and instrumental errors 

as well as orbit errors in a pre-processing step according to the models and methods 

described in the AVISO handbook (AVISO, 1998).  

As the ERS1-GM CORSSHs refer to sea surface, they were reduced to the geoid by 

removing the effect of the QSST. That was performed using equation (3.4) to predict 

QSST values on the irregular ERS1 points. Then, the corrected ERS1-GM Sea Surface 

Heights referred to the geoid were ready to be used for the estimation of a purely 
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altimetric geoid. The contribution of the EGM96 geopotential model was then removed 

to derive reduced SSHs (SSHsred). These reduced SSHs may still contain some 

blunders, which should be removed. A three root mean square (3 rms) test was used for 

blunder detection. When the 3 rms test is applied, all the points whose absolute value is 

greater than three times the rms value of the entire dataset is removed as a blunder. To 

apply the 3 rms test, all biases in the dataset are supposed to be removed so only 

random errors are remaining. The reduced SSHs were checked for their mean value and 

after examining the mean value of the reduced field it was not found to be small enough 

for a 3 rms test to be performed. Thus, the bathymetry was first taken into account with 

an RTM reduction and after that, a 3 rms test for blunder detection has been applied. 

After the 3 rms test, 678 points were removed and the resulting point data (Nres) were 

gridded using the weighted means method on a 3 arc-minute by 3 arc-minute grid.  

To reduce the high-frequency Sea Surface Variability effects the data were low-pass 

filtered using Wiener filtering. The cut-off frequency was determined empirically based 

on a criterion of maximum noise reduction with minimum signal loss. A number of cut-

off frequencies were tested (14 km, 16 km, 18 km, 20 km, 28 km) and finally a cut-off 

frequency corresponding to a wavelength of 20 km was chosen. That selection gave the 

best results as far as both the noise reduction and the minimization of the differences 

with T/P SSHs are concerned. 

Thus the first altimetric geoid solution was obtained by restoring the contribution of the 

EGM96 geopotential model and that of the RTM effects of the bathymetry. We will 

refer to this solution as "Altimetric Geoid one" (AG1). 

In order to determine a high-accuracy and high-resolution geoid model for the Atlantic 

coastal region of Argentina, the study was focused on the improvement of our previous 

results using the “combined EGM”. This second solution will be referred as "Altimetric 

Geoid two"(AG2). 

Table 7.1 presents the statistics of the ERS1-GM altimetric geoid processing for the 

area under study using EGM96 and the so-called "combined EGM”, respectively, which 

is depicted in Figure 7.3. 

Due to the very high SSV also present in the residual field of this second solution, the 

data were low-pass filtered with a Wiener type of filter. A cut-off frequency 
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corresponding to 22 km was selected for AG2, after different cut-off frequencies were 

empirically tested, for the low-pass filtering procedures using a collocation type of filter 

assuming Kaula’s rule for the geoid spectrum. Figures 7.3 and 7.4 illustrate the 

altimetric geoid solutions after and before the gridded Nres have been low-pass filtered at 

22 km 

Table 7.1: Statistics of the ERS1-GM altimetric geoid models. Unit: [m]. 
 min max mean σ 
Nalt with EGM96. (AG1). Unit: [m]. 

 0.447 19.665 11.406 ±3.026

Nalt with the "combined EGM”. (AG2). Unit: [m]. 
 

0.794 19.384 11.368 ±3.018

 
  

 
Figure 7.3: Altimetric geoid with Nres after 

filtering at 22 km 
Figure 7.4: Altimetric geoid with Nres without 

low-pass filtering 

 

The differences between the altimetric geoid computed with the "combined" EGM 

(AG2) and the solution computed with EGM96 (AG1) have a maximum, a minimum 

mean and a standard deviation of 1.624 m, -0.609 m, -0.038 m and 0.071 m, 

respectively. 
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From the results shown in Tables 7.1, we cannot conclude about which solution is better 

but later, we will show that from comparisons made with the solution computed with 

the EGM96 geopotential model and T/P SSHs and the comparisons between the 

altimetric solution with the “combined EGM” and T/P SSHs, the use of the “combined 

EGM” improves the results by 1 cm in terms of the standard deviation, which is not 

really significant.  

 

7.2.2 Gravimetric geoid model  

Three gravimetric geoid models were determined using the computational procedure 

described in section 3.2.1. One solution was computed with EGM96 and KMS01; we 

will refer to this solution as "Gravimetric Geoid one" (GG1). The other two solutions 

were estimated with the "combined EGM” and KMS01; this solution will be referred as 

"Gravimetric Geoid two" (GG2). The third solution was calculated with the "combined 

EGM” and KMS02; this will be referred as “Gravimetric Geoid three” (GG3).  

Tables 7.2 presents the statistics of the gravimetric geoid processing computed with the 

"combined EGM” and gaps of shipborne data filled in with KMS01 (GG2) and the 

statistics for the “Gravimetric Geoid three” (GG3). 

The main difference in the processing flow with the altimetric geoid modeling is that 

the RTM reduction is restored before the prediction of the gravimetric residual geoid 

heights.. After the pre-processing of the shipborne gravity anomalies (transformation 

from GRS67 to GRS80, remove data blunders, reduce gravity anomalies from sea 

surface to geoid with EGM96.DOT and fill gaps with sparse distribution with KMS 

free-air gravity anomalies derived altimetrically), marine gravity was ready for geoid 

determination.  

The RTM-reduced gravity anomalies, using the Sandwell and Smith bathymetry model 

to account for bathymetry, were ready for gridding using the same algorithm that was 

used for the altimetric geoid. After gridding, the contribution of the bathymetry was 

restored prior to the geoid prediction. The residual geoid prediction was carried out by 

applying the 2D FFT approximated Stokes convolution on the 3 arc-minute by 3 arc-
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minute grid using program fftgeoid (Li and Sideris, 1993) The final gravimetric geoid 

solutions were computed by restoring the contribution of the geopotential model. 

The statistics of the gravimetric geoid computed with EGM96 as reference field with 

KMS01 (GG1) for the area under study have a maximum, a minimum, a mean and a 

standard deviation of 19.333 m, 0.628 m, 11.309 m and 2.984 m, respectively.  

The gravimetric geoid solution with the “combined EGM” can be seen in Figure 7.5. This 

solution was computed with the "combined" EGM and KMS02 data (GG3). 

 

Figure 7.5: Gravimetric geoid in the Atlantic coastal region of Argentina 

 

Table 7.2: Statistics of gravimetric geoid models. Unit:[m] 
 min max mean σ 
Ngrav GG2 (with “combined EGM” and 
KMS01) 1.079 19.079 11.249 ±2.869 

Ngrav GG3 (with “combined EGM” and 
KMS02) 1.079 19.096 11.245 ±2.869 
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From the statistics shown in Tables 7.2, we can conclude that there is no differences 

between the "Gravimetric Geoid two" (GG2) and the Gravimetric Geoid three” (GG3). 

There are no differences in the gravimetric geoid solutions computed using either 

KMS01 or KMS02 altimetry-derived free-air gravity anomalies. 

We can also conclude that there is no significant improvement in the gravimetric geoid 

solutions computed with the“combined EGM” (solutions GG2 and GG3) compared to 

the one computed with the EGM96 (solution GG1). 

 

7.2.2.1 Validation of KMS01 and KMS02 altimetry-derived free-air gravity 

anomalies 

KMS01 and KMS02 altimeter-derived gravity anomaly grids offshore Argentina were 

compared with one another and with ship-track gravity anomalies computed from the 

BGI gravity database. 

Sub-grids were extracted from the global grids over the study area. The statistics of the 

gravity anomalies for each grid, after land gravity anomalies were removed using the 

grdlandmask option in GMT (Wessel and Smith, 1998) can be seen in Table 7.3. 

Table 7.3: Statistics of KMS01 and KMS02 grids, their differences and shipborne gravity 
anomalies offshore Argentina Unit: [mGal]. 
 min max mean σ 
KMS01 -137.57 130.77 4.41 ±25.59 
KMS02 -134.26 131.47 4.39 ±25.90 
Shipborne data -133.03 142.57 4.01 ±28.64 
KMS02-KMS01 -41.37 64.17 -0.02 ±4.15 

 

From Table 7.3 we can see that both KMS models have similar statistics and the 

shipborne gravity anomalies data have a comparable range. 

The statistics of the differences between KMS02 and KMS01 can also be seen in Table 

7.3; these differences are depicted in Figure 7.6. From Figure 7.6, the larger differences 

occur over the South American-Scotia plate boundary and at the edge of the continental 

shelf of Argentina. 
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The KMS gravity anomalies were bilinearly interpolated to the locations of the 

shipborne data. Table 7.4 presents the statistics of the differences between both grids 

and the 12823 shipborne gravity points using program geoip from the GRAVSOFT 

software (Tscherning et al., 1992). Plotting the differences between the two different 

KMS grids and the shipborne marine gravity anomalies, we conclude that the large 

differences correspond to specific ship-tracks, which were removed.. Figure 7.7 shows 

the differences between shipborne data and KMS02. Due to the uncertain quality of the 

shipborne data, they should be used with caution to provide any reliable indication of 

the quality of the altimeter grids. 

Table 7.4: Statistics of the differences between KMS grids and the shipborne marine gravity 
anomalies. Unit: [mGal]. 
 min Max mean σ 

KMS01-shipborne -61.47 67.74 0.99 ±10.31 
KMS02-shipborne -63.67 66.31 1.25 ±9.99 

 

 

Figure 7.6: KMS02-KMS01 in Argentina Figure 7.7: Differences between shipborne 
data and KMS02 
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7.2.3 MIMOST Combined solution 

The combined geoid solutions were estimated using the MIMOST method in a smaller 

area between 40°S to 50°S in latitude and 56°W (304°E) to 66°W (294° E) in longitude. 

The final solution from the combined method was estimated using the formulas 

described in chapter 3 for two inputs and one output. 

Table 7.5 shows the statistics of three gravimetric geoid solutions, one estimated with 

EGM96 and KMS01 (GG1), other with “combined EGM” and KMS01 (GG2) and the 

third with “combined EGM” and KMS02 (GG3). The same table also shows the statistics 

of two ERS1-GM geoid solutions, one with EGM96 (AG1) and the other with the 

“combined EGM” (AG2), and the statistics of the three combined MIMOST solutions, 

one (CG1) with AG1 and GG1; the second (CG2) with AG2 and GG2; and the third 

(CG3) with AG2 and the gravimetric one with KMS02 (GG3). All the geoid solutions 

can be seen in Figures 7.8 through 7.15. 

The inputs of MIMOST were residual gravimetric geoid heights and residual altimetric 

geoid heights with the contribution of the geopotential model removed in order to avoid 

long wavelength errors. 

The input noises for each dataset were generated using the standard deviation of the 

differences between T/P SSHs and the gravimetric geoid (25 cm) and between T/P 

SSHs and the altimetric geoid (20 cm) geoid models for the combined solution 1 (CG1) 

and using the standard deviation of 19 cm for the altimetric geoid heights and the 21 cm 

standard deviation for the gravimetric solutions for the combined solution 2 and 3 (CG2 

and CG3). 

Table 7.5: Statistics of the geoid models in the smaller area. Unit: [m]. 
 Min max mean σ 
Nalt (AG1) 0.505 14.722 10.285 ±3.287 
Ngrav (GG1) 0.642 14.954 10.244 ±3.268 
Ncomb (CG1) 0.574 14.912 10.257 ±3.275 
Nalt (AG2) 0.794 14.663 10.246 ±3.279 
Ngrav (GG2) 1.079 14.715 10.201 ±3.088 
Ngrav (GG3) 1.076 14.722 10.202 ±3.087 
Ncomb (CG2) 0.788 14.618 10.247 ±3.278 
Ncomb (CG3) 0.785 14.618 10.247 ±3.278 
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Figure 7.8: ERS1-GM altimetric geoid (AG1) Figure 7.9: ERS1-GM altimetric geoid (AG2) 

  
Figure 7.10: Gravimetric geoid (GG1) Figure 7.11: Gravimetric geoid (GG2) 

  
Figure 7.12: Gravimetric geoid (GG3) Figure 7.13: MISOT geoid (CG1) 

 
Figure 7.14: MISOT geoid (CG2) 

 
Figure 7.15: MISOT geoid (CG3) 
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7.3 Validation of the estimated geoid models 

The accuracy of the models was assessed through comparisons with stacked T/P SSHs. 

The computed differences between T/P and each geoid solution were minimized using a 

3rd order polynomial model and a four-parameter similarity transformation model. 

From the results tabulated in Table 7.6, we conclude that the use of a third order 

polynomial model is preferable compared to the use of the four-parameter 

transformation.  

The statistics of the differences before and after the bias and tilt fit between the T/P 

SSHs and the estimated geoid solutions are also given in Table 7.6. From that table it 

can be seen that the overall best agreement is achieved for the altimetric geoid solutions 

while the data combination improves the gravimetric geoid by about 2 cm.  

Table 7.6: Statistics of geoid height differences between the estimated models and T/P SSHs in 
the test area. Unit: [m]. (before and after bias and tilt fit). 
 min max mean σ 
Nalt (AG1) - T/P SSHs -1.21 1.01 0.11 ±0.21 
After 3P -1.07 1.11 0.00 ±0.20 
After 4P -1.20 1.00 0.00 ±0.20 
Nalt (AG2) - T/P SSHs -1.15 1.15 0.15 ±0.20 
After 3P -1.06 1.2 0.00 ±0.19 
After 4P -1.21 1.09 0.00 ±0.20 
Ngrav (GG1)-T/P SSHs -0.85 1.76 0.15 ±0.26 
After 3P -1.00 1.35 0.00 ±0.23 
After 4P 1.66 -0.93 0.00 ±0.25 
Ngrav (GG2)-T/P SSHs -0.66 1.05 0.20 ±0.28 
After 3P -0.80 0.85 0.00 ±0.21 
After 4P -1.18 0.57 0.00 ±0.23 
Ngrav (GG3)-T/P SSHs -0.67 1.05 0.20 ±0.28 
After 3P -0.80 0.84 0.00 ±0.21 
After 4P -1.19 0.57 0.00 ±0.23 
Ncomb (CG1)-T/P SSHs -0.94 1.53 0.14 ±0.24 
After 3P -0.80 1.39 0.00 ±0.22 
After 4P -0.93 1.49 0.00 ±0.23 
Ncomb (CG2)-T/P SSHs -1.16 1.11 0.15 ±0.20 
After 3P -1.04 1.18 0.00 ±0.19 
After 4P -1.20 1.05 0.00 ±0.20 
Ncomb (CG3)-T/P SSHs -1.16 1.11 0.15 ±0.20 
After 3P -1.04 1.18 0.00 ±0.19 
After 4P -1.20 1.05 0.00 ±0.20 
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From these results we conclude that there is no differences in the gravimetric geoid 

solutions computed using either KMS01 (GG2) or KMS02 (GG3) gravity anomalies 

and this fact is also reflected in the results of the combined solutions using the 

MIMOST method (CG2 and CG3).  

From Table 7.6, we also conclude from comparisons made with the solutions computed 

with EGM96 geopotential model and T/P SSHs for the same area, that the use of the 

“combined EGM” improves the results by 1 cm in terms of the standard deviation for 

the pure altimetric solutions, 2 cm in terms of the standard deviation for the pure 

gravimetric solutions and 3 cm in terms of the standard deviation for the combined 

solutions. 

We also notice that the combined solution computed with EGM96 geopotential model is 

worse than, e.g., the altimetric one, this will be an indication of improper weighting of 

the gravimetric and altimetric data. When the “combined EGM” is used, the combined 

solution improves the gravimetric ones n in terms of standard deviation and mean 

values but it does not improve the altimetric solution. 

Figures 7.16 depict the differences between T/P SSHs and the ERS1 altimetric geoid 

computed with the new EGM. The combined geoid and the gravimetric geoid solution 

can be seen in Figure 7.17. 

It is worth mentioning, though, that the σ of the differences for the comparisons with 

the altimetric models is quite high, at the 20 cm level, while a value close to 9 cm would 

be expected based on previous studies (Li and Sideris 1997; Vergos 2002). Plotting the 

differences it was noticed that their largest and smallest values are located close to the 

coastline and more specifically between -45o ≤ ϕ ≤ -44ο and 294o ≤ λ ≤ 296ο where the 

effects of SSV and other oceanic phenomena are very strong. In the rest of the region, 

the differences are within their expected values, ranging between -60 and 60 cm. In our 

opinion, this is an indication that the accuracy of the altimetric geoid models is much 

better than the comparisons with T/P imply. Neglecting a few T/P points that refer to 

the aforementioned regions the standard devition of the differences reduces to about 5 to 

8 cm for the altimetric geoid models. The same improvement of more than 9 cm holds 

for the gravimetric and combined models, too. So it can be concluded that by only 

stacking the T/P data, part of the oceanic effects, which clearly influence the SSHs used 
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for the comparisons, cannot be removed. Probably, the T/P data had to be low-pass 

filtered as well in their along-track direction, to further reduce the effect of the SSV and 

make the comparisons more representative or more simply by rejecting all T/P points 

close to the coasts. 

 

 

Figure 7.16: Geoid height differences between T/P and the ERS1 altimetric geoid (AG2) 

solution 

 

  

Figure 7.17: Geoid height differences between T/P and the gravimetric (GG2) (left) and the 

combined (CG2) solutions (right) 
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7.4 Summary 

An altimetric, gravimetric and a combined final geoid height solution have been 

determined in the Atlantic coastal region of Argentina. The MIMOST theory for the 

optimal combination of heterogeneous data has been applied to improve the gravimetric 

geoid solution close to the coastline.  

From the results and validation procedures carried out, it is evident that when altimetry 

and shipborne gravity data are handled properly (i.e., correcting them for all error 

sources, removing blunders, using accurate geopotential and DOT models, removing the 

the QSST signal, accounting for the bathymetry using an accurate model, low-pass 

filtering the altimetry data, etc.), then, altimetric geoid modeling accurate to about 7 cm 

is feasible, while the combined solution improves the gravimetric one, by about 2 cm, in 

terms of the σ of the differences with T/P SSHs. These differences refer to purely 

oceanic areas (not close to the coastline) and regions where the effect of the variability 

of the oceans is not very strong. 

The effect of oceanic phenomena in the densely spaced GM datasets, especially in areas 

with high ocean dynamics, is profound and should be reduced by low-pass filtering the 

altimetric datasets. If this step is neglected, then the resulting geoid solutions can be less 

accurate by about 2-5 cm. A point that needs further research is the use of crossover 

adjustment for the reduction of such noisy signals. Finally, the altimetry data should be 

corrected for the QSST signal to refer to the geoid and not the sea surface; the question 

that arises is not on the necessity of such a correction, but on the selection and the 

development of accurate DOT models. 

From the numerical results presented in this chapter, we conclude that the best pure 

gravimetric and altimetric geoid solutions are those computed using the “combined 

EGM” derived from the latest CHAMP and GRACE type of EGMs (Vergos et al., 

2004). We also conclude that from comparisons made with the solutions computed with 

EGM96 geopotential model and T/P SSHs, the use of the “combined EGM” improves 

the results by 1 cm in terms of the standard deviation for the pure altimetric solutions, 2 

cm in terms of the standard deviation for the pure gravimetric solutions and 3 cm in 

terms of the standard deviation for the combined solutions. From such comparisons, we 

can also conclude that the use of the “combined EGM” improves the results by 4 cm in 
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terms of the mean differences for the pure altimetric solutions, 5 cm in terms of the 

mean differences for the pure gravimetric solutions but for the combined solutions the 

mean differences increase in 1 cm. 
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CHAPTER EIGHT 

A HIGH-PRECISION GRAVIMETRIC GEOID MODEL FOR ARGENTINA 

 

8.1 Introduction 

This chapter describes the process selected, based on the tests conducted in the previous 

chapters, for the determination of a new gravimetric geoid model for Argentina. During 

the past years, many efforts were carried out to compute a high precision and high 

accuracy gravimetric geoid model for the whole country. The methodology finally 

applied for its computation as well as the most recent evaluated data are discussed. 

Argentina is located in Southern South America; with a total area of 2,766,890 km2 is 

the second-largest country in South America (after Brazil). It is bounded to the west by 

the highest mountain range in America, the Andes, so different topographic reduction 

methods are crucial in practical gravimetric geoid determination. To the east, Argentina 

borders on the Atlantic Ocean so the combination of shipborne gravity data and 

altimetry derived free air gravity anomalies was also taken into account.  

The remove-compute restore technique was adopted for the geoid determination and the 

contribution of the local data to the geoid was computed by FFT (Sideris, 1994; Sideris 

and Li, 1993; Featherstone et al., 1996; Sideris and She, 1995; Li and Sideris 1994; 

Mainville et al., 1992).  

As an external evaluation, the gravimetric geoid was compared with geoid undulations 

of 539 GPS/levelling points available for the country.  

The importance of this new gravimetric geoid lies in the fact that it will be the official 

gravimetric geoid for the country, and thus it will be of interest to the entire scientific 

community utilizing geospatial data, like, e.g., GPS users in topographic and cadastral 

mapping, construction and infrastructure works, vehicle navigation, military operations 

and floods control. 

 

 



 152
 

 
 

8.2 Area under study and data availability  

The gravimetric geoid model was computed for the whole country, covering both 

landmasses and the Atlantic Ocean, ranging from 20°S to 55°S in latitude and 53°W 

(307°E) to 76°W (284° E) in longitude. Part of this area is offshore, so the KMS02 2′×2′ 

altimetry derived free-air gravity anomaly field (Andersen et al., 2005) has been used to 

fill in information in the Atlantic and Pacific Oceans with the purpose to improve the 

quality and accuracy of the geoid. 

The distribution of the land gravity data is depicted in Figure 8.1. The input gravity data 

consisted of: terrestrial, shipborne and altimetry derived gravity measurements. The 

gravity data were referred to GRS80 (Moritz, 2000). The gravity values were based on 

the International Gravity Standardization Net 1971 (IGSN71). 

To derive the long-wavelength information of the gravity field we used and compared 

the results of two gravity field models: EGM96 and EIGEN_CG01C. 

Two gravimetric geoid solutions will be presented in this chapter; one solution was 

referenced to the EGM96 global geopotential model (Lemoine et al., 1998) complete to 

degree and order 360 and the other solution was referenced to the combined global 

gravity model EIGEN_CG01C (Reigber et al., 2005).  

The high-resolution global gravity field model EIGEN-CG01C, complete to degree and 

order 360, was generated using CHAMP and GRACE satellite gravity data combined 

with 0.5 x 0.5 degree surface data (gravimetry and altimetry). The geopotential model 

EGM96 and the global gravity model EIGEN-CG01C complete to degree and order 360 

were used as reference fields. 

The topographic data used to compute terrain corrections (the direct topographical 

effect on gravity, and indirect effects on the geoid) were those of the GTOPO30 DEM 

model, with an original grid spacing of approximately 1 km by 1 km; however, these 

quantities were computed from the GTOPO30 with a grid spacing 4 km by 4 km due to 

the numerical instabilities encountered as the inclination of the topography increased. 

These numerical instabilities occur when dense height grids are used in rough 

topographies (Tziavos, 1992). Table 8.1 shows statistics of the topography and the 
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terrain corrections for the area under study. The GTOPO30 DEM has no values at sea, 

so zeros were used to replace the NaN numbers in order to compute terrain corrections.  

Table 8.1: Statistics of the heights and terrain corrections in Argentina. 
  min max mean σ 
Topographic heights Unit: [m]  0.00 6402.69 407.11 885.54 
Terrain corrections Unit: [mGal]  0.00 73.48 1.02 2.72 

A total of 539 GPS/levelling points as well stacked T/P SSHs in the Atlantic Ocean 

were used for the evaluation and validation of the gravimetric geoid heights. 

All these data have been described in chapter four. 

 

Figure 8.1: Distribution of gravity data in the area under study 

 



 154
 

 
 

8.3 Computational methodology 

8.3.1 Gravimetric geoid modeling 

As it was mentioned before, the gravimetric geoid was computed using the remove-

compute-restore technique employing Stokes’s formula for the prediction of residual 

geoid heights. Before the prediction of the residual geoid, the free-air gravity anomalies 

had to be reduced to a geopotential model during the remove step. Furthermore, the 

effect of the topography had to be taken into account through a topographic reduction. 

Several gravity terrain reductions have been analyzed during the development of this 

research for the computation of the gravimetric geoid.  

According to the results obtained in chapter 6, the Rudzki inversion method and 

Helmert's second method of condensation method were the most promising gravity 

reduction techniques so both will be utilized in this chapter to find the best gravimetric 

geoid solution for the whole of Argentina. 

We will show in this chapter that, even though the best gravimetric geoids solutions 

were achieved by the Rudzki inversion gravity reduction in the test areas presented in 

chapter 6, Helmert's second method of condensation will be finally used because it gave 

the best results in the final gravimetric solution for all of Argentina. 

Stokes’s integral formula with the rigorous spherical kernel function evaluated by the 

one-dimensional spherical Fast Fourier Transform (1D FFT) was used to compute the 

gravimetric geoid for Argentina (Haagmans et al., 1993). 

The indirect effect of Helmert’s reduction on the geoid, up the second order was 

computed, in planar approximation, by equation (2.78) (Wichiencharoen, 1982), which 

was evaluated by FFT (Li, 1993). 

The direct topographical effect on gravity using the Rudzki inversion gravimetric 

reduction scheme with constant density was computed using program Rudzki 

(Bajracharya, 2003), which it is a modified version of the program tc from GRAVSOFT 

software (Tscherning et al., 1992). 
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8.3.2 Gravity gridding 

During the past years, many studies were carried out in order to reduce the effect of 

aliasing in gravity and geoid heights, using digital terrain data (Sideris and Forsberg, 

1991, Featherstone and Kirby, 2000; Li et al., 1995; Bajracharya, 2003; Bajracharya and 

Sideris, 2005). Terrain reductions were used to generate a grid of free-air gravity 

anomalies in rough areas like the West part of Argentina in order to avoid aliasing 

problems due to the high-correlation between the free-air gravity anomalies with the 

gravity station heights. Three different procedures were used to grid free-air gravity 

anomalies on land.  

Procedure 1 

The free-air gravity anomalies on land were gridded in the following way: 

1) Simple Bouguer anomalies ( BgΔ ) were computed at each of the gravity 

observations by . hG2gg FAB ρπ−Δ=Δ

2) The simple Bouguer anomalies were interpolated at the grid nodes that define the 

DEM, in this study, 2 arc-minute by 2 arc-minute, yielding a grid of simple Bouguer 

anomalies denoted by . ( )grid
BgΔ

3) Free-air anomalies were reconstructed at each point of the grid where the simple 

Bouguer anomalies were interpolated by adding the Bouguer plate term. The Bouguer 

plate was computed using the height of the DEM in each cell and the same topographic 

density used to compute the simple Bouguer anomalies. The reconstructed free-air 

anomalies were on a grid of 2 arc-minute by 2 arc-minute and they were computed 

by ( ) ( ) ( )grid
DEM

grid
B

grid
FA hG2gg ρπ+Δ=Δ . 

The  values at sea were eliminated and filled in with KMS02 free-air gravity 

anomalies. No smoothing conditions were applied to remove inconsistencies along the 

coastline. 

( )grid
FAgΔ
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The area was bounded between latitudes 20º S to 55º S (1051 rows) and longitudes 

284ºE to 307ºE (691 columns). The grid has 706241 points, from which 407313 were 

computed as described above and 318928 were KMS02 gravity anomalies. 

4) The free-air anomalies were still not ready for the geoid computation and they had 

to be terrain-corrected. Following Featherstone and Kirby, (2000) we called these 

anomalies reconstructed terrain-corrected free-air (TCFA) anomalies. They were 

calculated by: 

)h(TC)h(g)h(g DEMDEMFADEMTCFA +Δ=Δ  (8.1) 

where were the gravimetric terrain corrections computed from the DEM 

heights, were the reconstructed free-air anomalies on land and 

 at sea. 

)h(TC DEM

)h(g DEMFAΔ

)02KMS(gFAΔ

5) The reconstructed TCFA anomalies in each cell were averaged into a coarser grid of 

5 arc-minute by 5 arc-minute. This was done in order to diminish the errors present in 

the DEM that could propagate into the reconstructed TCFA grid. 

At this point, a grid of mean TCFA of 5 arc-minute by 5 arc-minute (grid 1) was 

constructed and it could be used to compute the gravimetric geoid. Table 8.2 shows the 

statistics of the reconstructed terrain-corrected free-air gravity anomalies. 

Table 8.2: Statistics of the Terrain Corrected reconstructed Free-Air gravity anomalies (TCFA) 
(5’ x 5’). Unit:[mGal]. 
Grid 1 min max mean σ 

TCFAgΔ  (land & KMS02) -249.46 454.56 10.16 47.08 

 

Procedure 2 

The free-air gravity anomalies on land were gridded in the following way: 

The three first stages were similar than in the procedure 1; but in this procedure stage 4 

was not applied.  
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The free-air gravity anomalies in each cell were averaged into a coarser grid of 5 arc-

minute by 5 arc-minute. At this point, a mean free-air gravity anomaly grid of 5 arc-

minute by 5 arc-minute (grid 2) was obtained to be used in the computation of the 

geoid. Table 8.3 shows the statistics of the reconstructed free-air gravity anomalies. 

Table 8.3: Statistics of the free-air gravity anomalies (5’ x 5’). Unit: [mGal] 
Grid 2 min max mean σ 

FAgΔ  (land & KMS02) -250.50 400.75 9.13 45.65 

Terrain corrections were computed using program Tc2DFTPL developed at the 

Department of Geomatics Engineering at the University of Calgary by Yecai Li in 1993. 

Terrain corrections were computed with the GTOPO30 Digital Elevation Model with a 

grid spacing of 2 arc-minutes by 2 arc-minutes. The topographic indirect effect on the 

geoid due to Helmert’s second method of condensation was computed using program 

ind developed by Yecai Li at the University of Calgary using the same GTOPO30 grid. 

 

Procedure 3 

In order to quantify the effect of the aliasing on the gravity anomalies, terrain 

corrections were interpolated at each gravity station and added to the free-air gravity 

anomalies. Then the free-air gravity anomalies plus the terrain correction were 

arithmetically averaged to form a grid of 2 arc-minutes by 2 arc-minutes. The resultant 

gravity anomalies grid had values on both land and sea, so the values at sea had to be 

eliminated and filled in with KMS02 free-air gravity anomalies. 

The free-air gravity anomalies terrain corrected on land and KMS02 at sea were 

averaged into a coarser grid of 5 arc-minute by 5 arc-minute. 

At this point, we had a 5´x 5´ grid of mean free-air gravity anomalies terrain corrected 

on land and KMS02 at sea (grid 3). Table 8.4 shows the statistics of the reconstructed 

free-air gravity anomalies. 

Table 8.4: Statistics of the Terrain Corrected free-air gravity anomalies (5’ x 5’). Unit: [mGal]. 
Grid 3 Min max mean σ 

cg FA +Δ  (land & KMS02) -250.50 275.69 3.50 36.82 
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These three procedures were investigated in order to explore the effect of gravity 

reduction on gravity gridding and how the gridding affects the geoid prediction 

accuracy. 

8.4 Analysis of the geoid power spectrum 

All the residual geoid undulations presented in this chapter were computed with the 

one-dimensional FFT implemented in the computer software fftgeoid developed at the 

University of Calgary (Li and Sideris, 1993). As fftgeoid can evaluate the contribution 

of residual gravity anomalies for the whole integration area or within a specified cap 

size, several computations using different cap sizes were computed in order to select the 

one that best fits the differences between the gravimetric geoid and the GPS/levelling-

derived geoid. Finally, the geoid computation was performed using the modified kernel 

over a two-degree integration spherical cap size. 

The geoid power spectrum was computed for Argentina, in order to choose the best way 

to combine global data from the geopotential model (GM data) and local data (Essan, 

2000). 

The geoid power spectrum derived from the EGM96 geopotential model 

(NDV_EGM96) using formula (5.8) is shown in Figure 8.2, together with the power 

spectrum of the geoid represented by the geoid degree variances from the local gravity 

data (NDV_grav) and the geoid spectrum of the terrain correction (NDV_TC) and of the 

geoid indirect effect (NDV_ind); see formula (5.39). 

The GM geoid degree variances were computed up to degree and order 360. The local 

gravity anomalies consisted of a grid of residual gravity anomalies and a grid of terrain 

corrections. 

In Figure 8.3, the cap sizes in degrees are represented by the vertical lines. The geoid 

power spectrum from local gravity data was higher than the geoid power spectrum from 

the EGM96 for frequencies corresponding to a cap size of 1.2º x1.2º. 

For frequencies below the cap size of 1.2º, the geoid power spectrum was dominated by 

the contribution of the EGM96. 
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The residual geoid heights were computed with cap sizes of 1º and 2º, with the latter 

yielding slightly better results than the former one. 
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Figure 8.2: Geoid power spectrum for the different gravity field signals involucrate in the 

gravimetric geoid determination 
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Figure 8.3: Geoid power spectrum from EGM96 and local gravity data 
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8.5 Gravimetric geoid model development 

Different gravimetric geoid solutions were determined using the computational 

procedure described in section 2.1, introducing some modifications when grid 1 or grid 

3 was used. Grid 1 and grid 3 were grids of Faye gravity anomalies. 

Six gravimetric geoid solutions were computed, by a combination of the three different 

grids of free-air gravity anomalies explained in the former section with the two global 

gravity models, namely the EGM96 (complete to degree and order 360) and the 

EIGEN_CG01C (complete to degree and order 360) which were used to model the long 

wavelength part of the geoid.  

Two more geoid solutions were also computed using a Rudzki inversion method. 

The geoid heights were referred to the Geodetic Reference System 1980 (GRS80) 

ellipsoid and were computed on a 5' by 5' grid. 

Table 8.5: Names of the different geoid solutions presented in this chapter. 
Geoid name Solution  GM 
ARG05_procedure 1_egm96 solution 1 Procedure 1 EGM96 
ARG05_procedure 2_egm96 solution 2 Procedure 2 EGM96 
ARG05_procedure 3_egm96 solution 3 Procedure 3 EGM96 
ARG05_procedure 1_eigen_cg01c solution 4 Procedure 1 EIGEN_CG01C 
ARG05_procedure 2_eigen_cg01c solution 5 Procedure 2 EIGEN_CG01C 
ARG05_procedure 3_eigen_cg01c solution 6 Procedure 3 EIGEN_CG01C 
ARG05_Rudzki_egm96 solution 7  EGM96 
ARG05_Rudzki_eigen_cg01c solution 8  EIGEN_CG01C 

 

8.6 Validation of the estimated geoid models  

8.6.1 Comparisons at GPS benchmarks 

The accuracy of the computed models was assessed through comparisons with 

interpolated values of the gravimetric geoid (NGRAV) at a network of GPS/levelling 

points (NGPS). The computed differences between GPS/levelling and each geoid solution 

were minimized using the four-parameter transformation model given in equation 

(4.26). This model absorbs all the systematic differences between the gravimetric geoid 

and the GPS/levelling data as well as all possible long wavelength errors and biases of 

the geoid (Sideris et al., 1992).  



 161
 

 
 

A total of 539 GPS/levelling points with the outliers removed were used as an external 

control for the quality of the gravimetric geoid solutions. These GPS/levelling points 

belong to eight GPS/levelling networks, which are located in different topographies. 

The distribution of GPS/levelling points in Argentina is shown in Figure 8.4.  

 

Figure 8.4: Distribution of GPS/levelling points (land) and T/P SSHs (ocean) 

 

8.6.1.1 Absolute differences between gravimetric geoid models and GPS/levelling 

The statistics of the absolute differences before and after the bias and tilt fit between the 

GPS/levelling derived-geoid and the estimated gravimetric geoid solutions for the entire 

Argentina are given in Table 8.6. The values in parentheses are the results after the four-

parameter transformation model has been fitted. 

Table 8.6 shows that solution 3 and solution 6 gave the worst results before and after fit, while 

the overall best agreement is achieved in the solutions 2 and 5. In both solutions, the 

gravimetrically derived geoid with support of the EGM96 and the one derived with the 

EIGEN_CG01C present nearly the same external accuracy, which is at the 0.41-0.42 m level 
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before fit and at the 0.32-0.33 m level after fit. This result suggests that the accuracy and 

resolution of the gravity data have to still be improved in Argentina. 

Table 8.6: Geoid height difference between various geoid models and GPS/levelling-derived 
geoid model (All of Argentina). Unit: [m]. 
Geoid model min max mean σ 
 All of Argentina 
EGM96 - NGPS -2.434 (-2.180) 1.888 (2.000) 0.155 (0.000) 0.805 (0.537) 
EIGEN-CG01C - NGPS -1.370 (-1.738) 1.605 (1.209) 0.485 (0.000) 0.401 (0.359) 
Solution 1 - NGPS -1.746 (-1.870) 1.742 (1.260) 0.491 (0.000) 0.437 (0.360) 
Solution 2  - NGPS -0.663 (1.740) 2.693 (0.990) 1.381 (0.000) 0.412 (0.317) 
Solution 3  - NGPS -17.165 (-6.820) 1.373 (6.180) -2.786 (0.000) 5.134 (2.404) 
Solution 4 - NGPS -1.940 (2.060) 1.859 (1.070) 0.507 (0.000) 0.472 (0.395) 
Solution 5 - NGPS -0.830 (-1.930) 3.017 (1.150) 1.426 (0.000) 0.419 (0.334) 
Solution 6 - NGPS -17.493 (-7.190) 1.475 (6.290) -2.775 (0.000) 5.091(2.347) 
Solution 7 - NGPS -0.574(-1.640) 5.699(2.390) 1.246(0.000) 1.323(0.493) 
Solution 8 - NGPS -1.932(-2.340) 3.458(1.810) 0.994(0.000) 0.946(0.580 

Table 8.6 also shows that the global gravity field EIGEN_CG01C describes better than EGM96 

the long-wavelength structure of the gravity field in Argentina. After fit, EGM96 alone fits the 

GPS/levelling derived geoid with a standard deviation (σ) of near 54 cm while the 

EIGEN_CG01C alone fits with a standard deviation of 36 cm. Before the fit, EIGEN_CG01C 

alone reduces to half the standard deviation of the differences compared to EGM96 alone. 

From the statistics shown in Table 8.6, it can be seen that solutions 2 and 5 are the best 

gravimetric geoid solutions in a national scale in Argentina. From this point on, only 

these solutions are considered for analysis. Both gravimetric geoid solutions are 

depicted in Figures 8.5 and 8.6, respectively.  

A regional analysis of the differences between both solutions (2 and 5) was carried out 

for each of the GPS/levelling networks. The standard deviations of the absolute 

differences before and after fit) between the gravimetrically geoids and the 

GPS/levelling-derived geoid at each GPS/levelling network can be seen in Figure 8.7 

and Figure 8.8, respectively. 

Buenos Aires, Santa Fe and Uruguay networks are located in flat areas. Both global 

models (EGM96 and EIGEN_CG01C) have similar representation of the gravity field in 

each of these areas, but the agreement level is different for the three different flat areas. 

In Buenos Aires, the agreement level is approximately 15 cm in terms of the standard 

deviation for both EGM96 and EIGEN_CG01C; in Santa Fe, is around 32 cm and in 

Uruguay, is of the order of 50 cm. Both gravimetric geoids (solution 2 and solution 5) 

show an improvement of about 8 cm in Buenos Aires; in Santa Fe the best agreement 
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was achieved with solution 5 (20 cm) rather than solution 2 (30 cm); in Uruguay, the 

differences in the standard deviation between solution 5 and solution 2 is around 4 cm. 

Figure 8.5: Gravimetric geoid. Solution 2 Figure 8.6: Gravimetric geoid. Solution 5 

Mendoza and Neuquén are GPS/levelling networks located in the rough areas in 

Western Argentina. In the Neuquén area, both global models have similar standard 

deviation agreement with the GPS/levelling data (44 cm), but in Mendoza, the global 

gravity field EIGEN_CG01C is superior by 7 cm compared to EGM96. This result is 

reflected in the corresponding gravimetric geoids: solution 2 was computed using 

EGM96 as reference field in contrast to solution 5 that was calculated with 

EIGEN_CG01C. In Neuquén, even though both global model present similar behavior, 

solution 2 is better than solution 5 by 2 cm.  

The Chubut GPS/levelling network shows a very different behavior with respect to the 

global models. This network will not be used from this point on because the ellipsoid 

heights were not referred to the same datum as the other GPS points. 
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The Tierra del Fuego network is located in the Southern part of Argentina; both 

gravimetric geoid solutions have the same level of agreement  (15 cm) but these results 

are slightly worst than the ones obtain with the global models alone. 
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Figure 8.7: standard deviation of the absolute differences (before fit) between the 

gravimetrically geoids and the GPS/levelling-derived geoid 
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Figure 8.8: standard deviation of the absolute differences (after fit) between the gravimetrically 
geoids and the GPS/levelling-derived geoid 
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8.6.1.2 Relative agreement of geoid models with respect to GPS/levelling  

To evaluate the relative accuracy of the best four geoid models with respect to the 

GPS/levelling-derived geoid, relative geoid heights differences ( were 

formed for all the baselines and plotted as a function of the baseline length (spherical 

distance in km) in parts per million (ppm). The relative differences in ppm were formed 

after all outliers were removed. Figure 8.9 and Figure 8.10 show the relative differences 

across the entire Argentina before and after fit, respectively. 
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Figure 8.9: Relative accuracy between geoid models and GPS/levelling-derived geoid across 

Argentina (before fit) 

The two global gravity field models have the same relative accuracies up to baseline 

lengths of 15 km, ranging from 8.5 ppm to 1.6 ppm. For larger baseline lengths ranging 

from 15 to 125 km, we can see an improvement in the long wavelength structure of the 

EIGEN_CG01C global model compared to the EGM96. For baseline lengths larger than 

125 km to near 500 km, both models show similar relative accuracies. For 500 km to 

1200 km, we can observe again an improvement of the EIGEN_CG01C global model 

compared to the EGM96, tending to 0 ppm for lengths over 1800 km. 

The two new geoid models (solution 2 and solution 5) present for the entire country, 

similar behavior for all baseline lengths, except for baselines between 15 to 115 km 



 166
 

 
 
where EIGEN_CG01C is slightly better than EGM96 and for baselines 115 km to 700 

km where EGM96 performs slightly better than EIGEN_CG01C. 

Comparing Figure 8.9 and Figure 8.10, we can appreciate that there is a significant 

improvement in the relative agreement after the fit, especially for distances greater than 

225 km where both gravimetric geoid models perform better than the global 

geopotential models. This demonstrated the importance of using local gravity data to 

improve the relative accuracy. 
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Figure 8.10: Relative accuracy between geoid models and GPS/levelling-derived geoid across 

Argentina (after fit) 

 

8.6.2 Comparison of geoid height solutions with T/P SSHs. 

The four-geoid solutions considered in the previous section were compared with stacked 

T/P SSHs from the third year of the satellite mission, considered as geoid heights when 

the dynamic ocean topography was accounted for, and known for their high accuracy. 

Figure 8.4 shows the geographical distribution of the T/P SSHs used as control points in 

the area under study, in the Atlantic ocean region of Argentina. Table 8.7 shows the 

statistics of the differences between the different geoid solutions with T/P SSHs. As 

with the GPS/levelling benchmarks, a four-parameter transformation model was used to 
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minimize the differences. The values in parentheses correspond to values after bias and 

tilt fit.  

Table 8.7: Geoid height difference between various geoid models and T/P SSHs. Unit: [m]. 
Geoid model min max mean σ 
EGM96 - T/P SSHs -1.680 (-1.521) 0.888 (1.053) -0.199 (0.000) 0.257 (0.256) 
EIGEN-CG01C - T/P SSHs  -1.503 (-1.096) 1.051 (1.350) -0.226 (0.000) 0.315 (0.286) 
Solution 2  - T/P SSHs -0.332 (-0.714) 1.959 (1.327) 0.324 (0.000) 0.242 (0.197) 
Solution 5 - T/P SSHs  -0.541 (-0.844) 1.788 (1.028) 0.327 (0.000) 0.294 (0.214) 

Comparing the use of the two reference gravity models, it can be concluded that the 

gravimetric geoid solution 2 that was computed using EGM96 gives 5 cm (before fit) 

and 1 cm (after fit) better agreement that the gravimetric geoid solution 5 computed 

using EIGEN_CG01C. 

The differences between both gravimetric geoid solutions (solution 2 and solution 5) are 

plotted in Figures 8.11 and 8.12, respectively. 

Figure 8.11: Differences solution 2 and stacked 
T/P SSHs. Unit: [m] 

Figure 8.12: Differences between solution 5 and 
stacked T/P SSHs. Unit: [m] 
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The standard deviation between the gravimetric solution 2 and the stacked T/P SSHs, 

improves the gravimetric geoid solutions presented in that chapter 7 by 5 cm after 

applying the four-parameter transformation model. 

One of the main differences between the gravimetric geoids computed in this chapter 

with the ones obtained in chapter 7 was the way that the topography/bathymetry was 

handled. Again, it is worth to mention the importance of the treatment of the gravity 

reductions in geoid computations. 

 

8.6.3 Comparisons between geoid models  

Comparisons between the models EGM96 and EIGEN_CG01C, as well as solution 2 

and solution 5 were also performed in order to investigate the accuracy of the two new 

gravimetric geoid models. Table 8.8 presents the statistics of the four gravimetric geoid 

solutions and their differences for the area under study.  

Table 8.8: Statistics for various geoid models and their differences. Unit: [m]. 
Geoid model min max mean σ 
EGM96 -4.737 47.673 16.681 8.820 
EIGEN_CG01C -4.430 46.281 16.696 8.747 
EGM96 - EIGEN_CG01C -5.845 6.636 -0.793 1.110 
Solution 2 -4.125 48.533 17.470 8.938 
Solution 5 -3.361 48.569 17.474 8.952 
Solution 2 - Solution 5 -1.534 1.007 -0.005 0.246 

A comparison between the two gravimetric geoid models shows that the main 

differences are located along the Andes, especially in the south part of the country 

called Patagonia. These differences are correlated with the differences between the 

geoid undulations from EIGEN_CG01C and EGM96. Figure 8.1 shows the sparse 

gravity measurements located in southern Argentina, where the largest discrepancies 

between the models are located. 

 

8.7 Summary 

Eight new gravimetric geoid models for Argentina were developed during my stay at 

the Department of Geomatics Engineering at the University of Calgary. The area 
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covered by these solutions is from 20°S to 55°S in latitude and 53°W (307°E) to 76°W 

(284° E) in longitude with a grid spacing of 5'.  

The gravimetric geoid models have been computed for Argentina using global 

geopotential models and terrestrial gravity and satellite derived marine gravity 

anomalies and heights. The differences between the eight models were in the use of two 

geopotential models, namely, EGM96 and EIGEN_CG01C, in the treatment of the 

gravity data, and also in the way how the topography was handled. Three procedures 

were investigated. Two of these procedures used mean free-air gravity anomalies 

reconstructed using a digital elevation model but differed in the way that terrain 

corrections were taken into account, and the last procedure used point free-air gravity 

anomalies. 

From these eight solutions, we selected only solutions 2 and 5 because they were the 

ones that show the best agreement with GPS/levelling-derived geoid. 

The two new gravimetric Argentinean geoids model were renamed as ARG05_egm96 

(solution 2) and ARG05_eigen_cg01c (solution 5). 

They were based on the classical remove-compute-restore technique using the most 

accurate current gravity database for Argentina, which includes land; marine and 

satellite derived marine gravity anomalies from KMS02. Marine data was finally 

excluded for the final solutions because they did not yield any geoid improvement.  

The gravity data in Argentina is not homogeneous. There are some areas such as 

Buenos Aires where the gravity distribution is very dense but areas like Patagonia, 

located in the south part of the country, has sparse gravity observations. Due to the very 

high topography in the west part of the country, it is usual that gravity stations were 

observed in lowlands and valleys. That is why the reconstruction method of free-air 

gravity anomalies from Bouguer anomalies and the use of the DEM minimize aliasing 

effects. 

The comparison of both geoid solutions with the GPS/levelling data show that the 

absolute agreement with respect to the GPS/levelling-derived undulations (after the 
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systematic datum differences were removed) is 32 cm in terms of standard deviation for 

ARG05_egm96 and 33 cm for ARG05_eigen_cg01c. 

A regional analysis was carried out and the statistics shows that the absolute agreement 

level of the differences between the gravimetric solutions and the GPS/levelling-derived 

undulations for each network is different for areas of flat terrain like the Buenos Aires 

province than mountainous areas located in the Andes. The lack of gravity data and the 

roughness of the topography are similar in the areas where these GPS networks are 

located so it is necessary to investigate the accuracy of the GPS/leveling-derived geoid 

heights especially in rough areas where the accuracy of the leveling heights is much 

poorer. 

The overall best absolute agreement for the whole Argentina is achieved by the 

ARG05_egm96 gravimetric geoid, with a standard deviation of 0.32 m. It will be named 

ARG05. 
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CHAPTER NINE 

CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter summarizes the most important investigations carried out in this research: 

(i) compilation, generation, editing and evaluation of a new gravity anomaly database 

and all other data necessary for the estimation of a regional marine and land geoid 

model; (ii) a covariance analysis for different areas across Argentina; (iii) the 

investigation of different gravity reduction methods to handle topography in practical 

geoid computation; (iv) the computation of a marine geoid model; and (v) the 

computation of a regional gravimetric model for Argentina. 

A new database of gravity anomalies has been created from land, marine and satellite 

derived free-air gravity anomalies towards the determination of a high-accuracy and 

high-resolution gravimetric geoid model in Argentina. 

Local empirical covariance functions were estimated, in the space domain, for selected 

areas with different topographies of Argentina. The numerical results carried out in a 

mountainous, flat and marine areas showed a non uniform signal covariance function 

and the existence of correlation with the topography. 

Different topographic terrain reductions were used in the determination of the 

gravimetric geoid in different areas, with very different topographies, across Argentina. 

These methods were the usual Helmert second method of condensation, the RTM, the 

AH and the PH topographic-isostatic gravity reductions, and the Rudzki inversion 

method. The Rudzki inversion is not a traditional method used for the determination of 

geoid, even though it has the main advantage that the indirect effect on the geoid is zero 

thus it does not need to be computed. 

Although the Rudzki inversion method performed better than other methods in some 

rough test areas presented in chapter 6, for the whole Argentina, the best agreement with 

the GPS/levelling derived geoid was achieved with the Helmert’s second method of 

condensation.  

ARG05 is a new gravimetric geoid model for the whole of Argentina that was 
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developed at the Department of Gravity of the University of La Plata in Argentina and 

at the Department of Geomatics Engineering of the University of Calgary. The area 

covered by the gravimetric geoid solution is from 20°S to 55°S in latitude and 53°W 

(307°E) to 76°W (284° E) in longitude. 

The ARG05 geoid undulations refer to the geocentric GRS80 ellipsoid. ARG05 was 

computed on a 5 arc-minute x 5 arc-minute grid, covering all of Argentina.  

The computation of the new gravimetric Argentinean geoid model was based on the 

classical Remove-Compute-Restore (RCR) technique using the most accurate current 

gravity database for Argentina. The fast Fourier transform technique was applied to 

compute residual geoid heights and terrain effects.  The classical Helmert condensation 

method was used to handle the topography in the geoid determination. 

The long, medium and short wavelengths components of the ARG05 geoid were 

determined from EGM96 global geopotential model, 5' x 5' residual gravity anomalies 

and 2' x 2' digital elevations heights from GTOPO30 global DEM. The residual gravity 

anomalies consisted of a combination with land free-air gravity anomalies and KMS02 

free-air gravity anomalies derived from satellite altimetry. 

The Global Gravity Model EIGEN_CG01C was the model that best fits the long 

wavelength data in Argentina but when it was combined with residual gravity 

anomalies and digital elevation heights, EGM96 gave a slightly better gravimetric 

geoid. 

For absolute geoid determination, the original rigorous spherical kernel function should 

be used instead of the approximate ones, with best (in Argentina) integration cap size 

of 2 degrees. 

The topographic indirect effect adds significant contribution to the gravimetric geoid 

undulations, especially in mountainous areas. The first order term is the dominant term. 

On the 163 benchmarks in the Andes, the maximum contribution of the first term is 22 

cm.  

As Helmert's condensation method is not a very good smoothing method, other terrain 

reductions methods have to be used in a remove-restore fashion in order to obtain 
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smooth data easy to grid. Free-air gravity anomalies were reconstructed from a grid of 

simple Bouguer anomalies using the digital elevation model. Their effect on the geoid 

together with the effect computed from the grid of terrain corrections yielded the best 

improvements on geoid computation. This “reconstruction” technique was employed for 

gravity gridding in order to minimize the aliasing effect, especially when most gravity 

observations are made in valleys. 

The main advantage of FFT-spectral methods like the ones used in this research is that 

they can efficiently handle large files of gridded data and give results on all grid points 

simultaneously. FFT spectral methods were used to compute residual geoid heights, 

terrain corrections, and indirect effects on the geoid due to the second method of 

Helmert’s condensation. Even though FFT methods present some problems like phase 

shifting, edge effects or circular convolution and planar approximation (Li, 1994), they 

can all be corrected or eliminated. To avoid planar approximation, FFT can be evaluated 

on the sphere (Strang van Hess, 1990; Forsberg and Sideris, 1993; Haagmans et al., 

1992). The phase shifting can be corrected using the shifting property of the Fourier 

transform and the effect of circular convolution was corrected using zero padding. FFT 

is the most efficient technique to compute large regional gravimetric geoid models, like 

the Argentinean geoid. 

The overall agreement of ARG05 and the GPS/levelling-derived geoid is approximately 

32 cm, after datum inconsistencies and bias as have been removed using a four-

parameter transformation model and outliers have been removed from the GPS/levelling 

data.  

The comparison of the gravimetric geoid solution referenced to EIGEN_CG01C with 

the GPS/levelling data showed that the absolute agreement with respect to the 

GPS/levelling-derived undulations (after the systematic datum differences were 

removed) is near 33 cm in terms of standard deviation.  

It is possible to determine absolute gravimetric geoid undulations in flat areas with an 

accuracy of 8 cm with respect to geoid undulations derived from GPS/levelling after 

removing the systematic biases. In mountainous areas, the standard deviation 

discrepancies between the two geoid representations on 115 benchmarks in Mendoza is 

about 26 cm, and on 45 benchmarks in Neuquén is about 31 cm.  
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The relative agreement for the whole Argentina is 1.4 to 0.2 ppm for baselines between 

15 km and 115 km. 

Marine geoid solutions were computed by combining altimetric data and shipborne 

gravity (Tocho et al., 2005). Pure altimetric and pure gravimetric geoid solutions were 

computed in the Atlantic coastal region of Argentina. Marine geoid modeling in the 

Atlantic coastal region of Argentina is problematic. Firstly, because of the insufficient 

amount of available shipborne gravity data, which renders a purely gravimetric solution 

not feasible. Secondly, because of the very strong ocean currents, which affect the 

quality of satellite altimetry data, so that a purely altimetric model is too noisy even 

after low-pass filtering the Sea Surface Heights (SSHs) to remove (part of) the influence 

of the oceanographic signals. Thus, the recommended solution is to employ a 

combination method and use all the available gravity and altimetry data together. This is 

a suitable solution since (i) combination methods such as least-squares collocation and 

Input Output System Theory (IOST) inherently low-pass filter and weigh the data, and 

(ii) will make use of the altimetric heights to fill the gaps of the shipborne gravity data. 

Following this idea, purely altimetric, gravimetric and combined (using the IOST 

method) marine geoid models have been estimated for Argentina employing all 

available shipborne gravity data, satellite altimetry SSHs, EGM96 and the latest Earth 

Gravity Models (EGMs) developed from the missions of CHAMP and GRACE. The 

MIMOST theory used for the combination of heterogeneous data was applied for the 

first times in Argentina with the aim of determining a final marine geoid model. From 

the comparison of the estimated geoid models to stacked TOPEX/POSEIDON SSHs, 

we found that the altimetric model provides the best agreement while the combined use 

of satellite altimetry and shipborne gravity data improved the accuracy of the results by 

2 cm in terms of the standard deviation compared to the purely gravimetric solution 

with the use a new “combined EGM”. From comparisons made with the older solutions 

computed with the EGM96 geopotential model and T/P SSHs for the same area, the use 

of the new “combined EGM” improves the results by 1 cm in terms of the σ for the pure 

altimetric solutions, 2 cm in terms of the σ for the pure gravimetric solutions and 3 cm 

in terms of the σ for the combined solutions. 

The Generic Mapping Tools (GMT) was a potent tool used for the manipulation of large 

grids of data. It was used, not only for obtaining final illustrations but also for the 
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processing and treatment of the data across the land/sea boundary (select data on sea or 

on land; create "wet-dry" mask grid files from shoreline data base; resample a grid file 

onto a new grid, etc). 

Two geopotential models were used to compute geoid undulations, and comparisons 

between interpolated GM geoid undulations on GPS benchmarks and GPS/leveling 

undulations were made The computed differences reflected datum inconsistencies 

between the different types of heights data, long-wavelength geoid errors, GPS and 

levelling errors. In order to minimize these deviations, a four-parameter model, a seven-

parameter similarity transformation model, and a third order polynomial were used  

We used these three types of models in order to assess possible improvements between 

them. From the statistics of the computed differences for all of Argentina, the best 

agreement, at the 0.41 m level, before the bias and tilt fit, was offered by the 

EIGEN_CG01C model while for the EGM96 model it was 0.81 m. After the bias and 

tilt fit the improvement was at the 4 cm for the EIGEN_CG01C and 27 cm for the 

EGM96, using a four-parameter model. 

The effects of gravity reduction procedures play an important role not only in gravity 

gridding but as well in geoid modelling.  

To predict accurate values in a regular grid from randomly distributed observations, an 

optimal procedure needs to be chosen. This procedure includes two aspects: the best 

gridding method based on efficiency and accuracy, and a reduction of aliasing in gravity 

anomalies and geoid heights using digital terrain data.  

Three procedures were used to grid the free-air gravity anomalies on land. The best one 

used to develop the ARG05 was the procedure 2 that was described in chapter 8.  

Several methods of handling topography in geoid determination were investigated. 

Gravity is usually measured at the surface of the Earth and in order to compute geoid 

undulations using Stokes formula gravity anomalies should be boundary values at the 

geoid with no masses external to the geoid. The gravity must be reduced to the geoid 

and this was done using the following methods: the Helmert condensation method, 

residual Terrain Model (RTM), Rudzki inversion method, and topographic-isostatic 

reductions. These methods treat the topography in a different way and all methods gave 
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comparable results at the 15 to 20 cm level in the flat area. The Rudzki inversion 

method gave good results in some tests areas located in rough areas, while for the whole 

country the Helmert second method of condensation presented the best results.  

Recommendations and future work 

Gravity data coverage, density and quality have to be improved in Argentina, especially 

in rough areas like the Andes. The densification of gravity data in the Andes can be 

carried out with modern measurement techniques like airborne gravimetry. This will 

make possible to improve the accuracy of the geoid in order to meet the requirements 

needed nowadays for modern geodetic, oceanographic and geophysical applications. 

As digital elevation models play an important role in the remove-compute-restore 

technique and they represent an essential type of data used in gravity field modeling, 

principally in mountain areas like the ones located in the west part of Argentina, it is 

necessary to evaluate the use of global DEM models like the SRTM3 (JPL, 2004) 

model, which has been released to the public for evaluation by the research and 

applications user community. The SRTM3 data from the Shuttle Topography Mission, 

has a resolution of 3'' (90 meters) and covers the 80% of the land masses between 

latitudes 60° N to 54° S. 

A numerical solution for the altimetry-gravimetry boundary value problem (AGBVP) 

should be evaluated in order to combine different types of gravity data along the 

coastline. Also, the effect on geoid modeling of applying smoothing conditions along 

the coastline to remove data discontinuities has to be investigated  (Grebenitcharsky, 

2004). 

More work has to be done in order to estimate an accurate and precise marine geoid 

model in the Atlantic coastal region of Argentina. The use of heterogeneous data, new 

results using more recent altimetry data and the use of combined methods like the 

traditional least-squares collocation for the optimal combination of heterogeneous data 

need to be investigated. 

Different Earth Gravitational Models, such as the upcoming EGM05 (Pavlis, 2004) 

need to be evaluated in future work. EGM05, complete to degree and order 2160 is 
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expected to be a composite model like the EGM96, and it will combine information of 

the GRACE satellite mission with terrestrial gravity and satellite altimetry. 
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Appendix 1: Statistics of the differences between geoids derived from global geopotential 
models with GPS/leveling–derived geoid. (All of Argentina). Unit: [m] 

GPM98A All of Argentina min max mean σ 
Original (552pts) Before fit -4.528 3.696 0.691 1.223 
After 3 rms (550 pts) Before fit -3.132 3.696 0.701 1.204 

4-param -2.961 3.451 0.000 0.922 
3rd pol -3.021 4.074 0.000 0.638 

NGPM98A - NGPS 
After fit 

7-param -3.107 2.991 0.000 0.671 
GPM98B All of Argentina min max mean σ 

Original (552 pts) Before fit -5.000 3.784 0.702 1.264 
After 3 rms (550 pts) Before fit -3.269 3.784 0.722 1.221 

4-param -2.960 3.507 0.000 0.938 
3rd pol -3.027 4.169 0.000 0.646 

NGPM98B - NGPS 
After fit 

7-param -3.117 3.074 0.000 0.679 
GPM98CR All of Argentina min max mean σ 

Original (552 pts) Before fit -2.799 2.375 0.251 0.849 
After 3 rms (551 pts) Before fit -2.497 2.375 0.256 0.840 

4-param -2.648 2.772 0.000 0.700 
3rd pol -2.836 2.876 0.000 0.648 

NGPM98CR - NGPS 
After fit 

7-param -2.806 2.878 0.000 0.684 
 

EGM96 All of Argentina min max mean σ 
Original (552 pts) Before fit -2.598 1.880 0.135 0.823 
After 3 rms (551 pts) Before fit -2.440 1.880 0.140 0.816 

4-param -2.714 1.978 0.000 0.554 
3rd pol -2.955 1.936 0.000 0.454 

NEGM96 - NGPS 
After fit 

7-param -2.953 1.910 0.000 0.504 
 

EIGEN-CG01C All of Argentina min max mean σ 
Original (552 pts) Before fit -2.878 2.131 0.459 0.463 
After 3  rms (548 pts) Before fit -1.362 1.604 -0.472 0.407 

4-param -1.729 1.220 0.000 0.358 
3rd pol -1.822 1.283 0.000 0.341 

NEIGEN-CG01C - NGPS 
After fit 

7-param -1.791 1.211 0.000 0.350 
 

OSU91A All of Argentina min max mean σ 
Original (552 pts) Before fit -7.817 4.751 0.755 1.058 
After 3 rms (548 pts) Before fit -2.776 3.792 0.770 0.928 

4-param -3.518 3.209 0.000 0.909 
3rd pol -3.438 2.972 0.000 0.852 

NOSU91A - NGPS 
After fit 

7-param -3.583 2.999 0.000 0.866 
GPM2 All of Argentina min max mean σ 

Original (552 pts) Before fit -7.582 9.285 1.225 2.838 
After 3 rms (551 pts) Before fit -7.582 9.226 1.211 2.819 

4-param -10.975 5.373 0.000 2.121 
3rd pol -9.833 5.602 0.000 1.563 

NGPM2 - NGPS 
After fit 

7-param -9.975 5.858 0.000 1.623 
OSU81 All of Argentina min max mean σ 

Original (552 pts) Before fit -3.483 8.567 2.596 2.196 
After 3 rms (552 pts) Before fit -3.483 8.567 2.596 2.196 

4-param -7.747 4.386 0.000 1.784 
3rd pol -8.761 6.248 0.000 1.450 

NOSU81- NGPS 
After fit 

7-param -8.923 6.049 0.000 1.462 
JGM3 All of Argentina min max mean σ 

Original (552 pts) Before fit -9.583 4.591 1.161 1.661 
After 3 rms (551 pts) Before fit -4.301 4.591 1.180 1.598 

4-param -6.522 3.201 0.000 1.329 
3rd pol -6.733 2.965 0.000 1.116 

NJGM3 - NGPS 
After fit 

7-param -6.662 3.141 0.000 1.181 
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Appendix 2: Statistics of the differences between geoids derived from global geopotential 
models with GPS/leveling–derived geoid in Buenos Aires province. Unit: [m] 

GPM98A Buenos Aires min max mean σ 
Original (180 pts) Before fit 
After 3 rms (180 pts) Before fit -0.130 2.312 1.354 0.615 

4-param -0.850 0.690 0.000 0.342 
3rd pol -0.883 0.633 0.000 0.287 

NGPM98A - NGPS 
After fit 

7-param -0.854 0.744 0.000 0.298 
GPM98B Buenos Aires min max mean σ 

Original (180 pts) Before fit 
After 3 rms (180 pts) Before fit -0.115 2.340 1.386 0.621 

4-param -0.853 0.680 0.000 0.342 
3rd pol -0.872 0.639 0.000 0.287 

NGPM98B - NGPS 
After fit 

7-param -0.850 0.742 0.000 0.297 
GPM98CR Buenos Aires min max mean σ 

Original (180 pts) Before fit 
After 3 rms (180 pts) Before fit -0.173 1.398 0.742 0.286 

4-param -0.603 0.462 0.000 0.187 
3rd pol -0.513 0.461 0.000 0.167 

NGPM98C - NGPS 
After fit 

7-param -0.490 0.439 0.000 0.171 
 

EGM96 Buenos Aires min max mean σ 
Original (180 pts) Before fit 
After 3 rms (180 pts) Before fit 0.029 1.159 0.713 0.250 

4-param -0.504 0.299 0.000 0.147 
3rd pol -0.333 0.244 0.000 0.115 

NEGM96 - NGPS 
After fit 

7-param -0.337 0.264 0.000 0.122 
 

EIGEN-CG01C Buenos Aires min max mean σ 
Original (180 pts) Before fit 
After 3 rms (180 pts) Before fit 0.181 1.103 0.718 0.150 

4-param -0.493 0.350 0.000 0.145 
3rd pol -0.402 0.329 0.000 0.128 

NEIGEN-CG01C - NGPS 
After fit 

7-param -0.391 0.367 0.000 0.135 
 

OSU91A Buenos Aires min max mean σ 
Original (180 pts) Before fit 
After 3 rms (180 pts) Before fit 0.335 2.086 1.128 0.336 

4-param -0.881 0.718 0.000 0.286 
3rd pol -0.663 0.462 0.000 0.229 

NOSU91A - NGPS 
After fit 

7-param -0.658 0.568 0.000 0.254 
GPM2 Buenos Aires min max mean σ 

Original (180 pts) Before fit 
After 3 rms (180 pts) Before fit -1.149 1.375 0.198 0.410 

4-param -1.093 0.990 0.000 0.354 
3rd pol -0.868 0.565 0.000 0.275 

NGPM2 - NGPS 
After fit 

7-param -0.918 0.634 0.000 0.276 
OSU81 Buenos Aires min max mean σ 

Original (180 pts) Before fit 
After 3 rms (180 pts) Before fit 1.255 3.448 2.353 0.475 

4-param -1.022 1.332 0.000 0.437 
3rd pol -0.904 0.599 0.000 0.310 

NOSU81 - NGPS 
After fit 

7-param -0.839 0.757 0.000 0.339 
JGM3 Buenos Aires min max mean σ 

Original (180 pts) Before fit 
After 3 rms (180 pts) Before fit -1.014 3.684 0.804 0.973 

4-param -1.500 2.445 0.000 0.733 
3rd pol -0.866 1.217 0.000 0.407 

NJGM3 - NGPS 
After fit 

7-param -1.358 1.763 0.000 0.634 
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Appendix 3: Statistics of the differences between geoids derived from global geopotential 
models with GPS/leveling–derived geoid in Chubut.  Unit: [m] 

GPM98A Chubut min max mean σ 
Original (10 pts) Before fit 
After 3 rms (10 pts) Before fit -1.342 1.307 0.043 0.846 

4-param -0.934 0.709 0.000 0.594 NGPM98A - NGPS 
After fit 7-param -0.142 0.138 0.000 0.100 

GPM98B Chubut min max mean σ 
Original (10 pts) Before fit 
After 3 rms (10 pts) Before fit -1.278 1.368 0.097 0.842 

4-param -0.935 0.705 0.000 0.595 NGPM98B - NGPS 
After fit 7-param -0.139 0.130 0.000 0.096 

GPM98CR Chubut min max mean σ 
Original (10 pts) Before fit 
After 3 rms (10 pts) Before fit -1.742 1.687 -0.147 1.169 

4-param -1.222 1.186 0.000 0.798 NGPM98CR - NGPS 
After fit 7-param -0.363 0.372 0.000 0.258 

 

EGM96 Chubut min max mean σ 
Original (10 pts) Before fit 
After 3 rms (10 pts) Before fit -1.810 1.685 -0.101 1.174 

4-param -0.956 1.377 0.000 0.753 NEGM96 - NGPS 
After fit 7-param -0.341 0.456 0.000 0.286 

 

EIGEN-CG01C Chubut min max mean σ 
Original (10 pts) Before fit 
After 3 rms (10 pts) Before fit -0.184 1.025 0.387 0.377 

4-param -0.688 0.373 0.000 0.325 NEIGEN-CG01C - NGPS 
After fit 7-param -0.416 0.529 0.000 0.264 

 

OSU91A Chubut min max mean σ 
Original (10 pts) Before fit 
After 3 rms (10 pts) Before fit -1.097 1.140 0.200 0.818 

4-param -0.830 0.844 0.000 0.541 NOSU91A - NGPS 
After fit 7-param -0.287 0.388 0.000 0.187 

GPM2 Chubut min max mean σ 
Original (10 pts) Before fit 
After 3 rms (10 pts) Before fit -3.662 4.102 -0.167 2.631 

4-param -2.030 2.538 0.000 1.463 NGPM2 - NGPS 
After fit 7-param -0.591 0.684 0.000 0.396 

OSU81 Chubut min max mean σ 
Original (10 pts) Before fit 
After 3 rms (10 pts) Before fit -3.004 5.654 1.123 2.819 

4-param -4.038 3.153 0.000 2.217 NOSU81 - NGPS 
After fit 7-param -0.593 0.645 0.000 0.437 

JGM3 Chubut min max mean σ 
Original (10 pts) Before fit 
After 3 rms (10 pts) Before fit -1.644 2.083 -0.018 1.237 

4-param -0.872 0.812 0.000 0.599 NJGM3 - NGPS 
After fit 7-param -0.644 0.377 0.000 0.291 
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Appendix 4: Statistics of the differences between geoids derived from global geopotential 
models with GPS/leveling–derived geoid in Mendoza. Unit: [m] 

GPM98A Mendoza min max mean σ 
Original (116 pts) Before fit -4.684 1.142 -0.739 0.955 
After 3 rms (115 pts) Before fit -2.873 1.142 -0.704 0.884 

4-param -0.546 1.424 0.000 0.259 
3rd pol -0.460 1.040 0.000    0.165    

NGPM98A - NGPS 
After fit 

7-param -0.553 1.026 0.015 0.177 
GPM98B Mendoza min max mean σ 

Original (116 pts) Before fit -5.000 1.116 -0.764 0.986 
After 3 rms (115 pts) Before fit -3.269 1.116 -0.727 0.907 

4-param -0.575 1.426 0.000 0.261 
3rd pol -0.483 1.025 0.000 0.171 

NGPM98B - NGPS 
After fit 

7-param -0.650 1.015 0.016 0.186 
GPM98CR Mendoza min max mean σ 

Original (116 pts) Before fit 
After 3 rms (116 pts) Before fit -2.497 2.375 -0.592 1.161 

4-param -1.689 1.648 0.000 0.354 
3rd pol -1.493 1.051 0.000 0.228 

NGPM98CR - NGPS 
After fit 

7-param -1.639 1.056 -0.015 0.248 
 

EGM96 Mendoza min max mean σ 
Original (116 pts) Before fit 
After 3 rms (116 pts) Before fit -2.426 0.977 -1.063 0.584 

4-param -1.363 1.469 0.000 0.310 
3rd pol -1.410 1.082 0.000 0.234 

NEGM96 - NGPS 
After fit 

7-param -1.488 1.123 -0.044 0.247 
 

EIGEN-CG01C Mendoza min max mean σ 
Original (116 pts) Before fit -1.120 2.131 0.402 0.376 
After 3 rms (115 pts) Before fit -1.120 1.190 0.387 0.341 

4-param -1.412 0.624 0.000 0.247 
3rd pol -1.415 0.654 0.000 0.215 

NEIGEN-CG01C - NGPS 
After fit 

7-param -1.510 0.562 -0.002 0.224 
 

OSU91A Mendoza min max mean σ 
Original (116 pts) Before fit 
After 3 rms (116 pts) Before fit -1.351 4.751 1.006 1.524 

4-param -1.588 1.779 0.000 0.381 
3rd pol -1.395 1.112 0.000 0.237 

NOSU91A - NGPS 
After fit 

7-param -1.474 1.085 0.006 0.248 
GPM2 Mendoza min max mean σ 

Original (116 pts) Before fit 
After 3 rms (116 pts) Before fit -0.732 9.285 6.114 2.128 

4-param -0.998 2.196 0.000 0.445 
3rd pol -1.407 1.082 0.000 0.238 

NGPM2 - NGPS 
After fit 

7-param -1.350 1.090 -0.019 0.241 
OSU81 Mendoza min max mean σ 

Original (116 pts) Before fit 
After 3 rms (116 pts) Before fit -0.291 8.567 5.846 1.827 

4-param -0.856 1.507 0.000 0.361 
3rd pol -1.395 1.100 0.000 0.238 

NOSU81 - NGPS 
After fit 

7-param -1.391 1.116 -0.026 0.241 
JGM3 Mendoza min max mean σ 

Original (116 pts) Before fit 
After 3 rms (116 pts) Before fit -3.430 4.591 3.270 1.449 

4-param -1.904 1.899 0.000 0.471 
3rd pol -1.388 1.112 0.000 0.237 

NJGM3 - NGPS 
After fit 

7-param -1.482 1.035 0.071 0.241 
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Appendix 5: Statistics of the differences between geoids derived from global geopotential 
models with GPS/leveling–derived geoid in Neuquén. . Unit: [m] 

GPM98A Neuquén min max mean σ 
Original (45 pts) Before fit 
After 3 rms (45 pts) Before fit -1.687 3.696 1.001 1.205 

4-param -1.320 1.543 0.000 0.511 
3rd pol -1.000 0.771 0.000 0.359 

NGPM98A - NGPS 
After fit 

7-param -0.932 1.003 0.000 0.415 
GPM98B Neuquén min max mean σ 

Original (45 pts) Before fit 
After 3 rms (45 pts) Before fit -1.645 3.784 1.061 1.224 

4-param -2.833 2.736 0.000 0.970 
3rd pol -2.132 2.139 0.000 0.882 

NGPM98B - NGPS 
After fit 

7-param -0.929 1.000 0.000 0.415 
GPM98CR Neuquén min max mean σ 

Original (45 pts) Before fit 
After 3 rms (45 pts) Before fit -0.947 2.020 0.587 0.564 

4-param -1.430 1.432 0.000 0.560 
3rd pol -1.154 1.437 0.000 0.507 

NGPM98CR - NGPS 
After fit 

7-param -1.261 0.760 0.000 0.439 
 

EGM96 Neuquén min max mean σ 
Original (45 pts) Before fit 
After 3 rms (45 pts) Before fit -1.008 1.880 0.501 0.577 

4-param -1.605 1.377 0.000 0.575 
3rd pol -1.179 1.306 0.000 0.486 

NEGM96 - NGPS 
After fit 

7-param -1.019 0.970 0.000 0.429 
 

EIGEN-CG01C Neuquén min max mean σ 
Original (45 pts) Before fit 
After 3 rms (45 pts) Before fit -1.195 1.391 0.351 0.525 

4-param -1.352 0.870 0.000 0.445 
3rd pol -1.072 0.791 0.000 0.396 

Neigen-cg01c - NGPS 
After fit 

7-param -0.965 0.871 0.000 0.419 
 

OSU91A Neuquén min max mean σ 
Original (45 pts) Before fit 
After 3 rms (45 pts) Before fit -2.009 2.494 0.095 0.930 

4-param -1.636 1.994 0.000 0.779 
3rd pol -1.655 1.980 0.000 0.730 

NOSU91A - NGPS 
After fit 

7-param -1.904 1.756 0.000 0.659 
GPM2 Neuquén min max mean σ 

Original (45 pts) Before fit 
After 3 rms (45 pts) Before fit -1.669 2.587 0.129 1.094 

4-param -1.922 2.298 0.000 0.972 
3rd pol -1.956 2.291 0.000 0.924 

NGPM2 - NGPS 
After fit 

7-param -1.539 1.334 0.000 0.710 
OSU81 Neuquén min max mean σ 

Original (45 pts) Before fit 
After 3 rms (45 pts) Before fit -1.372 3.084 0.496 1.206 

4-param -2.133 2.431 0.000 1.065 
3rd pol -2.095 2.581 0.000 1.025 

NOSU81 - NGPS 
After fit 

7-param -1.375 1.311 0.000 0.767 
JGM3 Neuquén min max mean σ 

Original (45 pts) Before fit 
After 3 rms (45 pts) Before fit -2.851 2.625 0.616 1.152 

4-param -3.182 1.925 0.000 1.152 
3rd pol -2.339 1.959 0.000 1.022 

NJGM3 - NGPS 
After fit 

7-param -1.094 0.805 0.000 0.383 
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Appendix 6: Statistics of the differences between geoids derived from global geopotential 
models with GPS/leveling–derived geoid in Santa Fe. Unit: [m] 

GPM98A Santa Fe min max mean σ 
Original (93 pts) Before fit 
After 3 rms (93 pts) Before fit -1.201 2.405 1.711 0.477 

4-param -2.834 0.566 0.000 0.447 
3rd pol -2.021 0.743 0.000 0.403 

NGPM98A - NGPS 
After fit 

7-param -2.413 0.874 0.000 0.418 
GPM98B Santa Fe min max mean σ 

Original (93 pts) Before fit 
After 3 rms (93 pts) Before fit -1.186 2.416 1.727 0.480 

4-param -2.836 0.567 0.000 0.447 
3rd pol -2.022 0.743 0.000 0.403 

NGPM98B - NGPS 
After fit 

7-param -2.413 0.872 0.000 0.419 
GPM98CR Santa Fe min max mean σ 

Original (93 pts) Before fit -2.314 1.027 0.336 0.423 
After 3 rms (92 pts) Before fit -1.379 1.027 0.364 0.320 

4-param -1.742 0.648 0.000 0.319 
3rd pol -1.724 0.553 0.000 0.309 

NGPM98CR - NGPS 
After fit 

7-param -1.726 0.547 0.000 0.310 
 

EGM96 Santa Fe min max mean σ 
Original (93 pts) Before fit -2.440 0.994 0.343 0.430 
After 3 rms (92 pts) Before fit -1.343 0.994 0.374 0.318 

4-param -1.752 0.597 0.000 0.316 
3rd pol -1.762 0.522 0.000 0.304 

NEGM96 - NGPS 
After fit 

7-param -1.741 0.529 0.000 0.308 
 

EIGEN-CG01C Santa Fe min max mean σ 
Original (93 pts) Before fit -2.878 1.236 0.533 0.492 
After 3 rms (92 pts) Before fit -1.270 1.236 0.570 0.339 

4-param -1.827 0.534 0.000 0.316 
3rd pol -1.722 0.452 0.000 0.301 

 NEIGEN-CG01C - NGPS 
After fit 

7-param -1.809 0.448 0.000 0.304 
 

OSU91A Santa Fe min Max mean σ 
Original (93 pts) Before fit -2.717 2.175 0.531 0.650 
After 3 rms (92 pts) Before fit -1.173 2.175 0.566 0.557 

4-param -1.575 1.057 0.000 0.381 
3rd pol -1.600 0.887 0.000 0.324 

NOSU91A - NGPS 
After fit 

7-param -1.589 0.878 0.000 0.325 
GPM2 Santa Fe min max mean σ 

Original (93 pts) Before fit -2.613 0.874 -0.049 0.805 
After 3 rms (92 pts) Before fit -2.310 0.874 -0.022 0.763 

4-param -1.533 0.618 0.000 0.357 
3rd pol -1.566 0.498 0.000 0.342 

NGPM2 - NGPS 
After fit 

7-param -1.522 0.677 0.000 0.351 
OSU81 Santa Fe min max mean σ 

Original (93 pts) Before fit 
After 3 rms (93 pts) Before fit -0.653 3.400 2.542 0.823 

4-param -2.707 0.683 0.000 0.477 
3rd pol -1.719 0.765 0.000 0.404 

NOSU81 - NGPS 
After fit 

7-param -2.201 0.739 0.000 0.442 
JGM3 Santa Fe min max mean σ 

Original (93 pts) Before fit 
After 3 rms (93 pts) Before fit -4.116 3.316 0.780 1.217 

4-param -2.532 1.245 0.000 0.483 
3rd pol -1.642 0.828 0.000 0.384 

NJGM3 - NGPS 
After fit 

7-param -2.454 1.271 0.000 0.481 
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Appendix 7: Statistics of the differences between geoids derived from global geopotential 
models with GPS/leveling–derived geoid in Uruguay. Unit: [m] 

GPM98A Uruguay min max mean σ 
Original (28 pts) Before fit 
After 3 rms (28 pts) Before fit 0.050 2.711 1.033 0.652 

4-param -0.819 -0.963 0.000 0.468 
3rd pol -0.922 0.865 0.000 0.380 

NGPM98A - NGPS 
After fit 

7-param -1.024 0.878 0.000 0.401 
GPM98B Uruguay min max mean σ 

Original (28 pts) Before fit 
After 3 rms (28 pts) Before fit 0.075 2.734 1.058 0.653 

4-param -0.813 0.966 0.000 0.468 
3rd pol -0.922 0.865 0.000 0.330 

NGPM98B - NGPS 
After fit 

7-param -1.019 0.875 0.000 0.401 
GPM98CR Uruguay min max mean σ 

Original (28 pts) Before fit 
After 3 rms (28 pts) Before fit -0.283 1.591 0.391 0.459 

4-param -0.754 1.023 0.000 0.442 
3rd pol -0.961 0.896 0.000 0.390 

NGPM98CR - NGPS 
After fit 

7-param -0.891 0.987 0.000 0.398 
 

EGM96 Uruguay min max mean σ 
Original (28 pts) Before fit 
After 3 rms (28 pts) Before fit -0.420 1.662 0.336 0.526 

4-param -0.919 1.171 0.000 0.497 
3rd pol -1.089 1.055 0.000 0.442 

NEGM96 - NGPS 
After fit 

7-param -1.125 1.059 0.000 0.443 
 

EIGEN-CG01C Uruguay min max mean σ 
Original (28 pts) Before fit 
After 3 rms (28 pts) Before fit -0.625 1.449 0.276 0.498 

4-param -2.188 1.203 0.000 0.475 
3rd pol -1.679 1.059 0.000 0.442 

NEIGEN-CG01C - NGPS 
After fit 

7-param -1.114 1.170 0.000 0.449 
 

OSU91A Uruguay min Max mean σ 
Original (28 pts) Before fit 
After 3 rms (28 pts) Before fit -0.519 1.816 0.960 0.635 

4-param -0.899 0.903 0.000 0.534 
3rd pol -1.063 0.997 0.000 0.427 

NOSU91A - NGPS 
After fit 

7-param -1.154 1.004 0.000 0.441 
GPM2 Uruguay min Max mean σ 

Original (28 pts) Before fit 
After 3 rms (28 pts) Before fit -1.316 1.083 -0.059 0.618 

4-param -1.162 1.379 0.000 0.486 
3rd pol -1.061 1.196 0.000 0.450 

NGPM2 - NGPS 
After fit 

7-param -1.165 1.288 0.000 0.481 
OSU81 Uruguay min max mean σ 

Original (28 pts) Before fit 
After 3 rms (28 pts) Before fit -0.560 2.128 1.255 0.748 

4-param -0.848 1.674 0.000 0.569 
3rd pol -1.025 1.163 0.000 0.443 

NOSU81 - NGPS 
After fit 

7-param -1.040 1.279 0.000 0.535 
JGM3 Uruguay min max mean σ 

Original (28 pts) Before fit 
After 3 rms (28 pts) Before fit -0.860 2.039 0.752 0.677 

4-param -1.413 0.827 0.000 0.593 
3rd pol -0.953 1.027 0.000  

NJGM3 - NGPS 
After fit 

7-param -1.085 1.054 0.000 0.437 
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Appendix 8: Statistics of the differences between geoids derived from global geopotential 
models with GPS/leveling–derived geoid in Tierra del Fuego. Unit: [m] 

GPM98A Tierra del Fuego min max mean σ 
Original (56 pts) Before fit 
After 3 rms (56 pts) Before fit -1.200 0.572 -0.251 0.561 

4-param -0.484 0.473 0.000 0.239 
3rd pol -0.397 0.364 0.000 0.148 

NGPM98A - NGPS 
After fit 

7-param -0.585 0.296 -0.001 0.173 
GPM98B Tierra del Fuego min max mean σ 

Original (56 pts) Before fit 
After 3 rms (56 pts) Before fit -1.151 0.626 -0.199 0.561 

4-param -0.481 0.475 0.000 0.241 
3rd pol -0.392 0.364 0.000 0.147 

NGPM98B - NGPS 
After fit 

7-param -0.578 0.295 -0.001 0.172 
GPM98CR Tierra del Fuego min max mean σ 

Original (56 pts) Before fit 
After 3 rms (56 pts) Before fit -0.510 1.045 0.244 0.476 

4-param -0.515 0.532 0.000 0.258 
3rd pol -0.398 0.395 0.000 0.156 

NGPM98CR - NGPS 
After fit 

7-param -0.635 0.320 0.000 0.189 
 

EGM96 Tierra del Fuego min max mean σ 
Original (56 pts) Before fit 
After 3 rms (56 pts) Before fit -0.367 0.724 0.239 0.301 

4-param -0.350 0.382 0.000 0.162 
3rd pol -0.210 0.334 0.000 0.103 

NEGM96 - NGPS 
After fit 

7-param -0.398 0.257 -0.001 0.142 
 

EIGEN-CG01C Tierra del Fuego min max mean σ 
Original (56 pts) Before fit 
After 3 rms (56 pts) Before fit -0.339 0.493 0.076 0.266 

4-param -0.395 0.395 0.000 0.171 
3rd pol 0.214 0.334 0.000 0.109 

NEIGEN-CG01C - NGPS 
After fit 

7-param -0.410 0.255 0.000 0.147 
 

OSU91A Tierra del Fuego min Max mean σ 
Original (56 pts) Before fit 
After 3 rms (56 pts) Before fit -0.175 0.872 0.546 0.209 

4-param -0.311 0.261 0.000 0.135 
3rd pol -0.230 0.321 0.000 0.091 

NOSU91A - NGPS 
After fit 

7-param -0.287 0.229 -0.001 0.119 
GPM2 Tierra del Fuego min Max mean σ 

Original (56 pts) Before fit 
After 3 rms (56 pts) Before fit -1.089 0.347 -0.510 0.305 

4-param -0.482 0.514 0.000 0.190 
3rd pol -0.251 0.342 0.000 0.118 

NGPM2 - NGPS 
After fit 

7-param -0.346 0.365 0.000 0.159 
OSU81 Tierra del Fuego min max mean σ 

Original (56 pts) Before fit 
After 3 rms (56 pts) Before fit -0.744 1.478 0.219 0.502 

4-param -0.581 0.714 0.000 0.207 
3rd pol -0.247 0.350 0.000 0.120 

NOSU81 - NGPS 
After fit 

7-param -0.350 0.251 0.000 0.144 
JGM3 Tierra del Fuego min max mean σ 

Original (56 pts) Before fit 
After 3 rms (56 pts) Before fit -1.196 0.838 0.054 0.544 

4-param -0.518 0.540 0.000 0.288 
3rd pol -0.307 0.353 0.000 0.140 

NJGM3 - NGPS 
After fit 

7-param -0.427 0.271 0.000 0.170 



 196

Appendix 9: Statistics of the differences between geoids derived from global geopotential 
models with GPS/leveling–derived geoid in Points of the POSGAR94 network. Unit: [m] 

GPM98A Red Posgar min max mean σ 
Original (24 pts) Before fit 
After 3 rms (24 pts) Before fit -4.528 2.566 -0.043 1.762 

4-param -2.190 2.051 0.000 1.144 
3rd pol -1.729 1.028 0.000 0.754 

NGPM98A - NGPS 
After fit 

7-param -1.846 1.029 0.000 0.801 
GPM98B Red Posgar min max mean σ 

Original (24 pts) Before fit 
After 3 rms (24 pts) Before fit -4.640 2.569 -0.034 1.795 

4-param -1.752 1.034 0.000 0.755 
3rd pol -1.845 1.020 0.000 0.802 

NGPM98B - NGPS 
After fit 

7-param -2.211 2.060 0.000 1.153 
GPM98CR Red Posgar  max mean σ 

Original (24 pts) Before fit 
After 3 rms (24 pts) Before fit -2.799 1.526 -0.294 1.065 

4-param -2.570 1.366 0.000 0.893 
3rd pol -1.868 1.525 0.000 0.755 

NGPM98CR - NGPS 
After fit 

7-param -2.029 1.449 0.000 0.806 
 

EGM96 Red Posgar min max mean σ 
Original (24 pts) Before fit 
After 3 rms (24 pts) Before fit -2.598 1.608 -0.275 1.022 

4-param -2.496 1.435 0.000 0.819 
3rd pol -1.807 1.361 0.000 0.701 

NEGM96 - NGPS 
After fit 

7-param -1.910 1.321 0.000 0.726 
 

EIGEN-CG01C Red Posgar min max mean σ 
Original (24 pts) Before fit 
After 3 rms (24 pts) Before fit -2.191 1.604 -0.144 0.941 

4-param -2.188 1.512 0.000 0.809 
3rd pol -1.679 1.435 0.000 0.726 

NEIGEN-CG01C - NGPS 
After fit 

7-param -1.674 0.998 0.000 0.729 
 

OSU91A Red Posgar min max mean σ 
Original (24 pts) Before fit -7.817 1.497 -0.647 2.310 
After 3 rms (23 pts) Before fit -5.961 1.497 -0.335 1.773 

4-param -2.868 1.700 0.000 1.223 
3rd pol -1.564 1.515 0.000 0.719 

NOSU91A - NGPS 
After fit 

7-param -1.967 1.442 0.000 0.904 
GPM2 Red Posgar min max mean σ 

Original (24 pts) Before fit 
After 3 rms (24 pts) Before fit -7.582 0.767 -1.564 2.149 

4-param -2.565 2.783 0.000 1.348 
3rd pol -2.860 2.894 0.000 1.194 

NGPM2 - NGPS 
After fit 

7-param -2.700 3.023 0.000 1.212 
OSU81 Red Posgar min max mean σ 

Original (24 pts) Before fit 
After 3 rms (24 pts) Before fit -3.483 3.154 0.599 1.937 

4-param -2.353 1.836 0.000 1.186 
3rd pol -2.094 1.868 0.000 1.023 

NOSU81 - NGPS 
After fit 

7-param -2.480 2.013 0.000 1.112 
JGM3 Red Posgar min max mean σ 

Original (24 pts) Before fit -9.583 2.757 -0.302 2.696 
After 3 rms (23 pts) Before fit -4.301 2.757 0.101 1.874 

4-param -4.359 2.972 0.000 1.755 
3rd pol -3.242 3.125 0.000 1.319 

NJGM3 - NGPS 
After fit 

7-param -4.327 1.961 0.000 1.504 
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Appendix 10: Differences between EGM96 and EIGEN_CG01C geoid undulations with 
GPS/levelling-derived geoid. (after fit). 
 

 
Figure 1: Differences between EGM96 and 
geometrical geoid heights in GPS-leveling 
points over Argentina 
 
 
 
 

 

 
 
Figure 3: Differences between EGM96 and 
geometrical geoid heights in GPS-leveling 
points over Buenos Aires province 
 
 

 

 
Figure 2: Differences between EIGEN-
CG01C and geometrical geoid heights in 
GPS-leveling points over Argentina 
 
 
 
 
 

 
 
Figure 4: Differences between EIGEN-
CG01C and geometrical geoid heights in 
GPS-leveling points over Buenos Aires 
province 
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Figure 5: Differences between EGM96 and 
geometrical geoid heights in GPS-leveling 
points over Chubut province  
 

Figure 7: Differences between EGM96 and 
geometrical geoid heights in GPS-leveling 
points over Mendoza province 
 

 
Figure 9: Differences between EGM96 and 
geometrical geoid heights in GPS-leveling 
points over Uruguay  

 
Figure 6: Differences between EIGEN-CG 
and geometrical geoid heights in GPS-
leveling points over Chubut province 
 

 
Figure 8: Differences between EIGEN-
CG01C and geometrical geoid heights in 
GPS-leveling points over Mendoza province 
 

 
Figure 10: Differences between EIGEN-
CG01C and geometrical geoid heights in 
GPS-leveling points over Uruguay  
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Figure 11: Differences between EGM96 and 
geometrical geoid heights in GPS-leveling 
points over Neuquen province 
 

 
Figure 13: Differences between EGM96 and 
geometrical geoid heights in GPS-leveling 
points over POSGAR network 

 
Figure 12: Differences between EIGEN-
CG01C and geometrical geoid heights in 
GPS-leveling points over Neuquen province 
 

 
Figure 14: Differences between and EIGEN-
CG01C geometrical geoid heights in GPS-
leveling points over POSGAR network 
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Figure 15: Differences between EGM96 and 
geometrical geoid heights in GPS-leveling 
points over Santa Fe province 
 
 

 
Figure 17: Differences between EGM96 and 
geometrical geoid heights in GPS-leveling 
points over Tierra del Fuego province 
 

 
Figure 16: Differences between and EIGEN-
CG01C geometrical geoid heights in GPS-
leveling points over Santa Fe province 
 
 

Figure 18: Differences between and EIGEN-
CG01C geometrical geoid heights in GPS-
leveling points over Tierra del Fuego 
province 
 


