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ABSTRACT

A new high-accuracy and high-precision gravimetric geoid model (ARGOS5) for
Argentina has been computed. It will be used by the entire scientific community and has
been developed using the most current updated databases as well as the most efficient

theory and modern methodologies.

ARGOS5 is a purely gravimetric geoid model. The geoid undulations refer to the
geocentric ellipsoid GRS80 and they were computed on a 5' x 5' grid covering all of
Argentina (both land and ocean regions), ranging from 21°S to about 55°S in latitude

and 53°W (307E°) to about 76°W (284E°) in longitude.

ARGOS5 was computed using the classical remove-compute-restore technique. The Fast
Fourier Transform technique was employed in the computation of the residual geoid

and terrain effects.

Different methods of handling the topography in practical geoid determination have
been studied, and both direct and indirect terrain effects had to be taken into account in
order to generate a precise gravimetric geoid model for Argentina. The treatment of the

topography in ARGOS5 was based on Helmert’s second method of condensation.

ARGOS5 is developed in four components. The first component is determined from the
EGM96 global geopotential model, the second component represents the contribution of
the local gravity data reduced by the global field, the third component was determined
from the contribution of the terrain corrections to the geoid, and the four component is

the primary indirect effect on the geoid.

From comparisons between Global Positioning System (GPS) and Argentinean Height
Datum (GPS/levelling-derived) geoid undulations with ARGOS, it is estimated that the
absolute accuracy of the new geoid, after fit, is around 32 cm in terms of standard
deviation. The relative agreement for the whole Argentina is 1.4 to 0.2 ppm for

baselines between 15 km and 115 km.

Preliminaries studies and results of high-resolution marine geoids solutions by

combining satellite altimetry and shipborne data are also presented.
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RESUMEN

La siguiente tesis presenta un nuevo geoide gravimétrico (ARGOS5) de alta precision y
alta exactitud para la Republica Argentina. En el mismo se discuten la metodologia y
los datos utilizados para su calculo y se plantean los trabajos futuros que se realizaran

con el fin de mejorar su precision y exactitud.

ARGO5 es un geoide gravimétrico puro. Las ondulaciones del geoide ARGOS se
refieren al elipsoide geocéntrico GRS80 y fueron calculadas en una grilla de 5' x §'
cubriendo toda la Argentina (tierra y mar) desde los 20° y 55° de latitud sur y 53° a 76°

de longitud oeste.

El calculo se realiz6 utilizando la técnica clasica remover-restaurar. La componente del
geoide residual asi como los efectos de terreno se calcularon utilizando la Transformada
rapida de Fourier. Para el tratamiento de la topografia se empleo el segundo método de

compensacion de Helmert.

ARGOS5 fue determinado en cuatro componentes. La primera componente fue calculada
a partir del modelo de geopotencial EGM96, la segunda componte representa la
contribucion de los datos de gravedad reducidos por el modelo de geopotencial, la
tercera componente fue determinada a partir de las correcciones topograficas en el

geoide y la cuarta componente representa el efecto indirecto primario en el geoide.

De comparaciones realizadas entre GPS y nivelacion, se estima que la exactitud
absoluta del nuevo geoide es de 32 cm en términos de desviacion Standard. La
concordancia relativa para toda la Argentina es de 1.4 a 0.2 ppm para lineas bases entre

15 y 115 kilometros.

También se presentan estudios preliminares y resultados de geoides marinos

combinando altimetria satelital y datos de gravedad marinos.

En el siguiente trabajo se enumeran los futuros trabajos a realizar haciendo hincapié en
el analisis y evaluacion de nuevos modelos de gravedad globales y modelos digitales de

terreno y sus implicancias en la determinacion practica de geoides gravimétricos.
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1.1 Introduccion

El geoide es una superficie equipotencial particular del campo de gravedad terrestre. La
idea basica a desarrollar, consiste en determinar el geoide a partir de mediciones de

gravedad. Se lo utiliza en varias aplicaciones de Geodesia, Geofisica y Oceanografia.

En Geodesia, el geoide es usado como superficie de referencia para el sistema de alturas
ortométricas. Dichas alturas pueden ser calculadas combinando un modelo de geoide
gravimétrico con alturas elipsoidales obtenidas a través de Sistemas de Posicionamiento
Global (GPS). Esto es una forma econdmica y sencilla de determinacion de alturas

ortométricas en areas montafiosas y en areas sin nivelacion convencional.

En Geofisica, el geoide es usado para obtener informacion acerca de la distribucion de
masas en el interior de la Tierra; en Oceanografia, para estudiar las variaciones del nivel

medio del mar, anomalias en el nivel mar, corrientes y mareas.

Durante los ultimo afios se han desarrollado en varias partes del mundo modelos de
geoide gravimétricos regionales. Estos desarrollos fueron posibles debido a varios
factores. Entre los mas importantes podemos enumerar: las mejoras en los desarrollos
teoricos y métodos practicos para determinacion del geoide, la disponibilidad de
mejores modelos de elevacion y modelos de profundidad digital, el calculo de modelos
geopotenciales globales precisos, la posibilidad de controlar el geoide gravimétrico con
el geoide obtenido a través de puntos GPS/nivelacion y el uso Optimo de datos
heterogéneos. Un geoide gravimétrico preciso sobre areas extensas es posible a través

de la combinacion de modelos geopotenciales, datos de gravedad y altura.

Las ondulaciones del geoide pueden ser determinadas por medio de la integral de
Stokes, por la solucion de Molodensky, por un desarrollo en arménicos esféricos o por
colocacion de minimos cuadrados. El uso de la integral de Stokes requiere que las
masas topograficas exteriores al geoide sean removidas completamente. Por otra parte,
las determinaciones de gravedad en superficie deben ser reducidas también a la

mencionada superficie de referencia mencionada.

La teoria de Molodensky toma a la superficie de la tierra como condicién de borde.

Tedricamente, esto evita el problema de desplazamiento de masas y reducciones de
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gravedad. Las ondulaciones del geoide son reemplazadas por anomalias de altura y el

geoide es reemplazado por el cuasi geoide.

También, las ondulaciones del geoide pueden ser calculadas mediante un desarrollo de
armonicos esféricos a partir de un dado modelo geopotencial. Ellas solo representan la

larga longitud de onda del campo de gravedad.

Finalmente, la ventaja de la colocacién por minimos cuadrados reside en que permite
utilizar como observaciones, diferentes tipos de datos simultdneamente. Sin embargo,
esto puede implicar que se necesite resolver un sistema con un gran numero de
ecuaciones lineales, lo que en la practica conduce a que todos los datos no puedan ser
utilizados al mismo tiempo dificultando el uso de grandes areas de integracion (Moritz,

1980).

El geoide gravimétrico preciso sera determinado empleando la integral de Stokes. Para
el calculo de dicha integral se emplearan las técnicas espectrales basadas en la
Transformada Répida de Fourier (FFT), que son ampliamente usadas en el modelado de

geoides continentales, marinos o sobre areas extensas. (Sideris, 1997).

Se utiliz6 el software desarrollado en el Departamento de Ingenieria Geomatica de la
Universidad de Calgary (Li y Sideris, 1993) y el paquete GRAVSOFT (conjunto de
rutinas para el modelado del campo de gravedad desarrollado por C. C. Tscherning,
perteneciente al Departamento de Geofisica de la Universidad de Copenhague y R.
Foresberg y P. Knudsen del KMS). Software adicional fue desarrollado para solucionar

problemas especificos, (calculos de anomalias de gravedad conversion de datos, etc.)

1.2 Objetivo
.El objetivo de la tesis doctoral se logrd con el cumplimiento de las siguientes tareas

e Recopilar todos los tipos de datos disponibles que seran usados para el calculo de

geoide en Argentina.

e Analizar y revisar estos datos, removiendo valores erroneos y referenciarlos a todos

ellos a un datum unico.



Calcular las anomalias de aire libre incluyendo la correccion atmosférica.

Aplicar diferentes reducciones topograficas para tener en cuenta las masas

topograficas.

Tomar en cuenta los efectos indirectos de la topografia para cada reduccion

topografica utilizada.
Investigar diferentes métodos de grillado.

Probar diferentes modelos geopotenciales para seleccionar el que mejor modela la

larga longitud de onda de la sefial del campo de gravedad en Argentina.

Investigar los nuevos modelos de gravedad globales a partir de las misiones

satelitales dedicadas CHAMP y GRACE.

Investigar el rol del maximo grado de expansion del modelo geopotencial en
relacion con las dimensiones del area de integracion en la formula de Stokes que

contiene datos locales de gravedad.

Calcular el modelo de geoide para toda la Argentina usando la técnica remover-
restaurar y obtener su estimacion de error. Serd calculado usando la técnica de FFT

(Schwarz et al. , 1990).

Comparar los resultados con modelos de geoide obtenidos por soluciones

geopotenciales globales y ondulaciones de geoide obtenidas por GPS/nivelacion.

Investigar los procedimientos apropiados para el ajuste de redes de alturas

combinando GPS/nivelacion/geoide para remover inconsistencias de los datums.

Llevar a cabo un analisis y modelado de los errores del geoide. La precision de las
ondulaciones del geoide gravimétrico serd evaluada mediante la comparacion

externa con ondulaciones del geoide y puntos de control GPS/nivelacion

Determinar el modelo de geoide marino en la region costera de Argentina.
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1.3 Metodologia

El area de investigacion estd situada entre las latitudes 20° y 55° Sur y entre las

longitudes 50° y 76° W. Parte de esta area corresponde al Océano Atlantico.

El geoide marino de alta resolucién y alta precision sera computado en el area

comprendida entre las latitudes 34° y 55° Sur y entre las longitudes 55°y 70° W.

Debido a que los valores de gravedad, son provistas por diferentes fuentes se pone

especial énfasis en homogeneizarlas al sistema IGSN71.
La Base de Datos proviene de:

» Datos de gravedad del Instituto Geografico Militar, el Departamento de Gravimetria,

y otras Universidades e Instituciones.

e (Gravedad marina provista por el Bureau Gravimétrique International (BGI).

e Varios modelos geopotenciales globales y modelos obtenidos a partir de las

misiones satelitales CHAMP y GRACE

e Anomalias de gravedad derivadas altimétricamente (KMSO1, Sandwell y Smith,

GSFC00.1 DG, KMS02)

e Los datos topograficos incluyen los modelos GTOPO30 y GLOBE vy las alturas de

las estaciones gravimétricas.

e Para aplicaciones marinas, se utilizard el Modelo Digital de Profundidad (DDM)

desarrollado por Smith y Sandwell en 1997.

e Datos de puntos GPS/nivelacion.

e Datos de altimetria satelital de las misiones GEOSAT, ERS1 y Topex/Poseidon.

Los datos de gravedad del Departamento de Gravimetria fueron reprocesados y

almacenados en una base de datos digital.

Todos los datos compilados fueron chequeados para eliminar errores sistematicos. La

existencia de desviaciones y corrimientos de datum en datos de gravedad y alturas

vii



terrestres puede producir errores importantes y es un punto a ser resuelto antes que el

modelo de geoide sea calculado.

Las anomalias de aire libre y Bouguer se calcularon utilizando reducciones Standard y
se refirieron al GRS80 (Moritz, 1980). En el célculo de anomalias de aire libre se tiene
en cuenta el término de segundo orden en el gradiente de gravedad normal junto con la
correccion atmosférica (Torge, 1989). El geoide gravimétrico se determind por la
técnica remover—restaurar. El efecto de la larga longitud de onda del campo de gravedad
obtenido de un modelo geopotencial y los efectos topograficos de corta longitud de
onda son removidos de las anomalias de gravedad observada. La integral de Stokes se
calcula utilizando FFT para calcular las ondulaciones residuales. Las ondulaciones del
geoide final fueron obtenidas restaurando las ondulaciones del geoide del modelo

geopotencial y el efecto de la topografia (Schwarz et al. , 1990).

El modelo geopotencial juega un rol importante en este proceso. Los modelos
geopotenciales usados y validados son: JGM-3 (Tapley et al., 1996), OSU81 (Rapp,
1981), OSU91A (Rapp et al., 1991), EGM96 (Lemoine et al., 1998) y GPM98a y
GPM98b (Wenzel, 1999).Ademas se trabajo con el modelo combinado EIGEN CGO1C
calculado con datos de CHAMP y GRACE.

El método de célculo del geoide gravimétrico se basé en el uso de la FFT. Las integrales
de Stokes y de la correccion topografica se reformulan como integrales de convolucion

y se evaluan por FFT.

La FFT requiere que los datos estén grillados. Se evaluaron diferentes métodos de
estimacion para generar una grilla regular: colocacion por cuadrados minimos, basado
en la funcién de covarianza empirica de los datos de gravedad (krigging ordinario),
promedios pesados y el método de curvatura continua en tension. Las ondulaciones del
geoide se calcularon por la formula de Stokes utilizando distintos nucleos, como: ntcleo
riguroso esférico y el nucleo esférico aproximado (Haagmans, et al., 1992 y Strang van

Hees).

El efecto de la topografia es un punto sumamente importante a tener en cuenta,
especialmente, en la zona de los Andes. Por ello, diferentes técnicas de reducciones
gravimétricas fueron investigadas: el segundo método de condensacién de Helmert, el

Modelo Residual de Terreno (RTM), el método de inversion de Rudski y las
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reducciones topo-isostaticas. Cada una de ellas dependié del problema del valor de

contorno en consideracion.

La precision externa del modelo de geoide gravimétrico se evalué comparandola con los

resultados obtenidos en puntos nivelacion/GPS.

Las diferencias sistematicas entre los datums correspondientes al geoide gravimétrico y
el geométrico y los posibles errores de larga longitud de onda del geoide fueron
removidos por una transformacion de 4 pardmetros y un modelo de transformacion de 7

parametros (Kotsakis, 2001).

Se calcularon, las diferencias absolutas y relativas entre los geoides gravimétricos y

geometricos.

.La precision final del geoide gravimétrico residual estimado estuvo sujeta a diferentes
errores generados por las diferentes fuentes empleadas en el calculo (modelos

geopotenciales, anomalias de gravedad local y alturas).

Se seleccionaron, dos areas de prueba para la determinacion del geoide gravimétrico las
cuales, con posterioridad, fueron extendidas al pais completo. La primera incluyo la
Provincia de Buenos Aires y parte del Océano Atlantico. Tiene una buena cobertura de
datos de gravedad y puntos de control GPS/nivelacion. Parte de la misma esta en el mar
por lo que fue necesario combinar anomalias de gravedad terrestre con anomalias de
gravedad derivadas altimétricamente y gravedad marina. Los principales puntos a
investigar fueron la combinacion de datos heterogéneos y la aplicacion de una posible

técnica de suavizacion a lo largo de la costa.

En el area, elegida en segundo término, los Andes, se investigo el efecto directo e

indirecto de las masas topograficas.

La determinacién de un geoide marino de alta precision y alta resolucion en la region
costera de Argentina fue otro de los objetivos a investigar. El mismo se calculé usando
altimetria satelital y gravedad marina. Los datos altimétricos de la mision satelital
ERSI, junto con gravedad marina y anomalias de gravedad derivadas altimétricamente

se usaron para estimar geoides gravimétricos, altimétricos y soluciones combinadas.
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Se tuvo en cuenta el efecto de la topografia casi estacionaria (QSST) para corregir las
alturas de la superficie del mar (SSHs) a ondulaciones del geoide. Se puso mucho
énfasis en reducir el efecto de la variabilidad de la superficie del mar (SSV mediante la
aplicacion de filtros pasabajos para reducirlo. Se combinaron, en el dominio espectral
los geoides altimétricos y gravimétricos para mejorar la exactitud del geoide
gravimétrico puro y las soluciones altimétricas puras en las zonas cercanas a la costa. La
exactitud y validacién de los modelos finales se realiz6 comparandolos con alturas del

nivel de mar de TOPEX/POSEIDON (T/P) SSHs.

El método utilizado para las soluciones combinadas fue la teoria de los sistemas de
entrada-salida (input-output system theory IOST) (Sideris, 1996; Li, 1997, Vergos,
2000).
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Deutsche Forschungsanstalt fiir Luft und Raumfahrt
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UBA University of Buenos Aires

WGS World Geodetic System
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NOTATION

Symbol Description

a Altimetric geoid observations

cn(T,T) Anomalous potential degree variances

Cn (Ag,Ag) Anomaly degree variances

t Anti- root depth

8Latm Atmospheric gravity correction

O0A Attraction change

M Averaging operator

hy Bathymetric depth

Agp Bouguer anomaly

AV Change of the gravitational potential at the geoid
® Circular frequency

c IZ\IGRAV Combined gravimetric geoid

D Compensation depth/Constant flexural rigidity
* Complex conjugate

Txx, Txy and Tyy Constant horizontal forces per unit length
Contribution to the geoid undulation of the gravity anomaly at the

ON . .

computation point
* Convolution operator
X, .Y, .Z Coordinates in X, y, and z directions
(¢op, Ap) Coordinates of the computation point
(9q-2q) Coordinates of the data point
R Correlation function
& Correlation length
C Covariance/total squared curvature
K Curvature
X Curvature parameter
O Cut-off frequency
Ap Density contrast
p' Density of the inverted topography
p Density of the topographical masses
Pm Density of the upper mantle
Pw Density of water
h' Depth of the ocean
hprer Depth reference surface
Agr Direct terrain effect or direct topographical effect on gravity
S Distance kernel
f Ellipsoidal flattening
he Ellipsoidal height

Error anomaly degree variances associated with the coefficients of the
&n (A2, A2) geopotential model
o, Error of the heights
E[] Expectation operator
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Agra

éSST §SST

nm ° ~nm

[@!
N

n,m > “nm

rand r’

N(®)
N
Go

g
Acomp
Acond
Ainv
Ar
Vr
Vcomp
Vcond
Vinv-
VrM
Ag
Acm
A\
A, AA
g

href
h1 and hz
OAg
Nind

m& and m alt

E

F!

V2

dm and dm'

nmax

G
Pm

=<0 X =<

Fourier transform/ Free-air reduction
Free-air gravity anomaly
Fully normalized associated Legendre functions

Fully normalized DOT spherical harmonic coefficients

Fully normalized spherical harmonic coefficients of the disturbing
potential

Geocentric radial distances of points P and Q

Geodetic latitude and longitude

Geoid error variance due to the error of the gravity anomalies
Geoid error variance due to the error of the gravity anomalies

Geoid error variance due to the errors of the height data.

Geoid height from geopotential model

Geoid spectrum

Geoid undulation (geoid height)

Gradient variance

Gravimetric geoid observations

Gravitational attraction due to compensated masses
Gravitational attraction due to condensed masses
Gravitational attraction due to inverted masses
Gravitational attraction due to topography

Gravitational potential due the actual topographical masses
Gravitational potential of compensated masses
Gravitational potential of condensed topography
Gravitational potential of inverted topography
Gravitational potential of the reference masses due a RTM reduction
Gravity anomaly

Gravity anomaly from geopotential model

Gravity potential

Grid spacing in latitude and longitude, respectively

Height anomaly

Height of the smooth reference surface
Impulse responses

Indirect effect on gravity

Indirect effect on the geoid

Input noises

Integration area

Inverse Fourier transform

Laplacian operator

Mass elements

Maximum degree and order of expansion of the geopotential solution
Mean gravity of the Earth/gravitational constant
Mean latitude

Mean normal gravity

Mean radius of the Earth/radius of the sphere considered by Rudzki
Measured gravity value

Normal gravity
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Normal gravity at equator
Normal gravity at poles
Normal gravity constant
Normal height

Normal vertical stress

Number of parallels and meridians in the grid
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CHAPTER ONE

INTRODUCTION AND RESEARCH BACKGROUND

1.1 Introduction

The main objective of this thesis is the determination of a precise gravimetric geoid for
Argentina. Its importance lies on the fact that it will be the official gravimetric geoid for

the country, thus it will be used by the entire scientific community.

The shape of the Earth is often described by the geoid. The geoid is that equipotential
surface of the Earth’s gravity field that most closely approximates the mean sea surface.
At every point, the local plumb line is perpendicular to the geoid surface. It is, therefore,

a natural reference surface for orthometric heights measured along the plumb line.

The geoid is used in geodetic, geophysical and oceanographic applications. In geodesy,
the geoid is used as the reference surface for the orthometric height system. Orthometric
heights can be determined without levelling by combining a gravimetric geoid model
and ellipsoidal heights derived from the Global Positioning System (GPS). This is a cost
effective way for orthometric height determination in mountainous areas and in areas
without conventional levelling. In geophysics, the geoid is used to obtain knowledge
about the distribution of the masses in the interior of the Earth. In oceanography, the

geoid is used to study mean sea level variations, sea level anomalies, tides and currents.

During the last years, the development of regional gravimetric geoids has increased.
Improvements in the theory and practical methods of geoid determination, the
availability of better digital elevation models and digital depth models, the computation
of accurate global geopotential models, the possibility to control the gravimetric geoid
with the GPS/levelling derived geoid and the optimal use of heterogeneous data are the
main factors that made the developments possible. A precise gravimetric geoid over
large areas is possible with a combination of geopotential models, gravity data and

heights.

Geoid undulations can be determined by Stokes’s integration, Molodensky’s solution,

or least squares collocation. The use of Stokes’s integral requires that the topographical



masses outside the geoid be removed completely and thus a gravity reduction is

necessary in order to reduce the measurements from the Earth’s surface to the geoid.

Molodensky’s theory takes the Earth’s surface as the boundary surface. Theoretically, it
avoids the problem of mass shifting and gravity reduction. Geoid undulations are

replaced by height anomalies and the geoid is replaced by the quasigeoid.

The use of spectral techniques, based on the Fast Fourier Transform (FFT), is widely

used for the computation of large regional and continental geoids (Sideris, 1997).

We will use the software developed in the Department of Geomatics Engineering,
University of Calgary (Li and Sideris, 1993) and GRAVSOFT - a set of routines for
gravity field modeling developed by C.C. Tscherning of the Geophysical Department of
the University of Copenhagen and R. Forsberg and P. Knudsen from Kort og
Matrikelstyrelsen (KMS), Denmark (Tscherning et al., 1992). Some modifications,
especially in the TC program written by Forsberg (1984) were made at the Department
of Geomatics Engineering, University of Calgary, in order to compute different gravity

reductions (Bajrachaya et al., 2002).

The GRAVSOFT package contains a complete suite of programs for geoid modeling,
conversion of satellite altimetry data to gravity, prediction of deflections of the vertical,
etc., by a host of methods, such as, least-squares collocation, planar or spherical FFT,
and Stokes's integration, and implements software for covariance function fit and
approximation, computation of terrain effects, handling and manipulation of data sets

and grids, etc.

Additional software will be developed in order to solve specific problems (gravity

anomalies calculation, convert all data to the same format, etc).

1.2 Objectives

The main objectives of this research are the determination of a precise land gravimetric
geoid model for Argentina and the determination of a precise marine geoid for the

Atlantic coastal region of Argentina. They will be achieved through the following tasks:



Collect all the available data types that will be used for the computation of the

geoids models in Argentina.
Remove data blunders and reference all data to a unified datum.

Apply reductions to the measured gravity points. The atmospheric and free air

corrections should be applied to the data to obtain point free-air gravity anomalies.

Apply different topographic reductions to take into account the attraction of the

topographic masses.

Take into account the topographic indirect effect for each topographic reduction

used.

Investigate different gridding procedures. Collocation (krigging), continuous
curvature splines in tension (Smith and Wessel, 1990) and weighted means will be

used in the gridding procedure.

Test different geopotential models in order to select the one that best models the

long wavelength of the gravity field signal in Argentina.

Compute the geoid model for the entire Argentina using the remove-restore
technique and derive its error estimates. The gravimetric geoid model will be
computed using the efficient Fast Fourier Transform (FFT) technique (Schwarz et

al., 1990).

Make comparisons with geoid models derived from global geopotential solutions,

and GPS/levelling derived geoid undulations.

Investigate proper procedures for the adjustment of combined GPS/levelling/geoid

height networks to remove datum inconsistencies.

Carry out an analysis and modeling of the geoid errors. The accuracy of the
gravimetric geoid undulations will be evaluated using an external comparison with

geoid undulations derived from GPS/levelling on benchmarks.

Determine the marine geoid model in the coastal region of Argentina.



1.3 Methodology

A gravimetric geoid model will be computed for Argentina. The area under
investigation is situated between latitudes 21°S to 55°S and between longitudes 53°W to

76°W. Part of this area is in the Atlantic Ocean.

Since the point gravity measurements were provided by different sources, they first
have to be homogenised. They are provided in different systems so they have to be

unified to the International Gravity Standardisation Net 1971 (IGSN71).
The gravimetric data to be used in the geoid computation will include:

= Point surface gravity. Sources of these data will be the Military Geographic
Institute, other Universities and the Gravity Department of the University of La

Plata.
*  Marine gravity provided by the Bureau Gravimétrique International (BGI).
= Global geopotential models.

=  Satellite altimetry derived gravity anomalies. We will use the following global

models:

KMSO01 and KMS02 global marine free-air gravity field models computed from
ERSI1 plus GEOSAT satellite altimetry by Per Knudsen and Ole Andersen at the
Geodetic Division of Kort og Matrikelstyrelsen (KMS), the National Survey and

Cadastre of Denmark.

Global marine gravity field models by processing satellite altimetry data computed

by D. Sandwell and W Smith (Smith and Sandwell, 1997).

GSFC00.1 DG computed from a Mean Sea Surface model in 2'x2' grid size
between latitude +80° (GSFC00.1 _MSS). The data were downloaded from the
Geodynamics, Geophysics, and Space Geodesy Group at Raytheon ITSS.

Free-air gravity anomalies provided by CLS/Space Oceanographic Group

*  The topographic data on land include GTOPO30 and GLOBE Elevation Models
(DEMs) and point gravity station heights.



GTOPO30 is a global Digital Elevation Model (DEM) with a horizontal grid
spacing of 30 arc second (approximately 1 kilometre). GTOPO30, completed in

late 1996, was developed in the US Geological Survey's Earth Resources
Observation Systems (EROS) Data Center (EDC).

GLOBE (Global Land One-kilometre Base Elevation) is a global Digital Elevation
Model (DEM) developed by NOAA National Data Center, NGDC.

*  The bathymetric data for marine application will come from the 2’ Digital Depth
Model (DDM) developed by Smith and Sandwell in 1997.

=  GPS/levelling data.

=  Satellite altimetry data from the European Earth Remote—Sensing Satellite 1
(ERS1) and three year stacked TOPEX/POSEIDON (T/P) Sea Surface Heights
(SSHs).

The gravity data belonging to the Gravity Department of the University of La Plata will
be reprocessed and saved in a digital database. All data that have been collected need to
be checked for systematic errors. The existence of biases and datum shifts in terrestrial
gravity and heights is a very important point and must be resolved before a geoid model
is calculated. Standard reductions must be applied to derive free-air gravity and refined
Bouguer anomalies. The GRS80 normal gravity field will be used (Moritz, 1980). The
second order term in the normal vertical gradient together with the atmospheric

correction (Torge, 1989) will be taken into account in the free-air reduction.

The high precision gravimetric geoid will be determined by the well-known remove-
compute-restore technique. The long wavelength gravity field spectrum derived from a
geopotential model and the short wavelength topographic effects will be removed from
the observed gravity anomalies. A Fourier representation of Stokes’s integral formula
will be used to compute residual undulations. The final geoid undulations will be
obtained by restoring the geoid undulation of the geopotential model and of the effect of

the topography (Schwarz et al., 1990).

The geopotential model plays an important role in this procedure. The following global
geopotential models will be used and validated: JGM-3 (Tapley et al., 1996), OSU81
(Rapp, 1981), OSU91A (Rapp et al., 1991), EGM96 (Lemoine et al., 1998), GPM98a



and GPM98b (Wenzel, 1999) and the new high-resolution global gravity field model
EIGEN-CGO1C derived from combining CHAMP and GRACE satellite missions and
surface gravity data (Reigber et al., 2004). Comparisons between the long wavelength
contributions to the geoid computed by these geopotential models will be made.
Comparisons with the geoid undulations obtained from GPS on benchmarks will allow
us to choose the best geopotential model that will be used as reference field in

Argentina.

The method to compute the gravimetric geoid is based on the use of the Fast Fourier
Transform technique (FFT). Stokes's and terrain correction integrals will be
reformulated as convolution integrals and evaluated efficiently by Fast Fourier

Transform if the data are given on regular grids.

Geoid undulations will be computed via Stokes's formula with the rigorous spherical
kernel by the one-dimensional Fast Fourier Transform algorithm (Haagmans et al.

1993).

FFT needs gridded data. Different methods of prediction will be evaluated to produce a
regular grid: least-squares collocation, which is based on the empirical covariance
function of the gravity anomalies, ordinary Krigging, weighted means and continuous
curvature splines in tension (Smith and Wessel, 1990). In the interpolation procedure,

we need to smooth the data to obtain the most reliable result possible.

Different methods of handling topography will be investigated and they will depend on

boundary value problem under consideration (Bajracharya et al., 2002):

The Helmert condensation method.

Residual Terrain Model (RTM).

Rudzki inversion method.
»  Topographic -isostatic reductions.

The external accuracy of the gravimetric geoid model will be evaluated by comparing it
with results derived from GPS/levelling data. Geometrical geoid undulation can be

determined by combining the ellipsoidal height h. with the orthometric height H on



levelled benchmarks occupied by GPS receivers. The systematic datum differences
between the gravimetric geoid and the GPS/levelling data, and the possible long
wavelength errors of the geoid, will be removed by a four-parameter transformation and
a seven-parameter transformation model (Kotsakis, 2001). The absolute differences

between the gravimetric and the GPS/levelling geoid will be calculated.

The final accuracy of the predicted gravimetric geoid is subject to different errors
coming from the different sources used in the computation (geopotential model, local
gravity anomalies and heights). These errors will be propagated into the geoid results.
Covariance functions, for different gravity surveys, and areas with different

topographies will be analysed.

Argentina is located in Southern South America; with a total area of 2,766,890 km? is
the second-largest country in South America (after Brazil). Argentina is a very huge
country ranging from 20°S to about 55°S in latitude and 53°W (307E°) to about
76°W(284E°) in longitude. Figure 1.1 illustrates the geographical location and
topography of Argentina. Argentina is bounded to the west with the highest mountain
range in America, the Andes, so different topographic reduction methods in practical
gravimetric geoid determination are crucial for taking care of this problem. To the east,
Argentina borders on the Atlantic Ocean so the combination with shipborne gravity data
and satellite altimetry derived free air gravity anomalies constitute other of the problems

that were also taken into account.

Preliminary analysis will be carried out in different test areas for land and for sea. Then
it will be extended to the entire country. The first area will be a flat area in Buenos

Aires province. This area has a good coverage of gravity data and GPS on benchmarks

The second area will be a rough one near the Andes, in order to investigate the direct
effect of the topographic masses and the indirect effect to improve the short wavelength
information of the geoid. Rigorous formulas for the terrain correction have been
proposed (Li and Sideris, 1993). The effect of using mass prism and line prism
topographic models will be investigated. We will use a constant density value through

the entire investigation.
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Figure 1.1: Geographical location and topography of Argentina

The third area is a marine area, where a marine gravimetric geoid for the Atlantic
coastal region of Argentina will be investigated using shipborne gravity data and
altimetric data. The remove-restore technique will be applied again. An appropriate
gravity reduction will be used to remove the high frequency of the bathymetry in the
remove step and the long wavelength contribution of the gravity field will be removed
from a geopotential model. These two contributions will be restored just after applying
Stokes’s integral. The altimetric geoid model will be computed using altimetric data
from the ERSI satellite mission and the marine gravimetric geoid will be computed

using marine gravity provided by the International Gravimetric Bureau (BGI). Both the



gravimetric and the altimetric geoid will be combined to obtain the final marine
solution, using Input Output System Theory (IOST) in order to improve the accuracy of
the marine gravimetric geoid and the altimetric geoid close to the coastlines (Sideris,

1996; Vergos, 2002).

The final gravimetric geoid for Argentina will be computed combining land data,

shipborne data and altimetry data.

1.4 Thesis outline

The thesis consists of nine chapters. The content of the next eight chapters are

summarize as follows:

Chapter 2 describes the theoretical background and the methodology applied for the
determination of the regional gravimetric geoid. Special emphasis will be put on the
terrain effects for the different gravity reductions methods to handle the topography of

western Argentina, which is one of the roughest areas in the world.

Chapter 3 presents the theoretical background for the determination of the marine geoid.
This includes the remove-compute-restore technique for the altimetric and gravimetric
geoid modeling and an introduction to the Multiple Input System Theory employed in

this investigation.

Chapter 4 describes all the different types of data involved in the gravimetric geoid
determination. It also includes the data preparation validation and evaluation
procedures; these steps are crucial because the quality and the availability of the data

will directly affect the quality of the later geoid determination in terms of accuracy.

Chapter 5 describes some basic concepts of covariance, correlation and power spectral
density functions. The statistical behavior of gravity anomalies will be investigated in

different areas with different topographies in Argentina.

Chapter 6 presents some numerical investigations carried out in different land areas with

very different types of topography in order to investigate the best method of handling
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topography in practical geoid determination for the subsequent geoid computation for

the whole Argentina.

In chapter 7, numerical results of altimetric, gravimetric and combined geoid solution
for the Atlantic coastal region of Argentina are presented. The validation of the new
models is carried out through comparisons with T/P Sea Surface Heights, which were

used as control due to their very high accuracy.

Chapter 8 presents the results of the new high precision, high-accuracy and high-
resolution gravimetric geoid for Argentina computed with the most updated database

available for the country together with the most efficient computational methodology.

And finally, chapter 9 outlines the main conclusions and recommendations for future

work.
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CHAPTER TWO

REGIONAL GRAVIMETRIC GEOID DETERMINATION

The gravimetric geoid undulations in Argentina are calculated using the remove-
compute-restore technique. This technique combines a global geopotential model (GM),
local gravity anomalies Ag, and the topography/bathymetry, represented by a Digital
Elevation Model (DEM) and a Digital Depth Model (DDM), respectively.

The global geopotential model, local gravity anomalies and digital terrain/bathymetry
model represent the low, medium and high frequencies of the gravity signal,

respectively.

2.1 Formulas for gravimetric geoid computation via the remove-compute-restore

technique

The long wavelength reference field of a geopotential model and the short wavelength
topographic effects are removed mathematically from the observed gravity anomalies.
Stokes's integration is then used to convert the reduced, or residual, gravity anomalies to
geoid undulations. The final geoid undulation is obtained by restoring the geoid effects
of the geopotential model reference field and of the topography represented by a Digital
Elevation Model.

The residual geoid undulations are estimated using the Stokes formula with gravity
anomalies as input. Before applying Stokes’s formula, the gravity anomalies must be

reduced in the remove step of the remove-restore technique:
Ag=Agp, —Agr — Mgy (2.1)

where Agra is the free-air gravity anomaly, Agwm is the reference gravity anomaly
computed from a geopotential model, and Agr is the direct terrain effect, also called

direct topographical effect on gravity, which depends on the reduction method used.

The gravimetric geoid is obtained, in the restore step by

N=Npg +Nipg + Ngm (2.2)
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where Ngum is the reference geoidal undulation implied by the geopotential model, Niyg
is the indirect effect on the geoid and depends on the reduction method used, and Ny,
represents residual geoid computed with residual gravity anomalies given in equation
(2.1).

The advantage of the terrain remove-restore scheme is that the reduced gravity
anomalies are smaller, have lower variability, are easy to grid, and the geoid errors due

to terrain effects are minimised (Forsberg, 1997).

In the classical solution, the geoidal undulation can be computed, in spherical
approximation, using Stokes’s integral, which is the solution of the third boundary value

problem (Heiskanen and Moritz, 1967)

N= " ([ agS(y)do (23)
47y s

where ¢ denotes the sphere of integration, R is the mean radius of the Earth, y is the
normal gravity, S(y) is the Stokes kernel function defined in equation (2.5), y is the
spherical distance between the data point and the computation point, and Ag is the

residual gravity anomaly on the geoidal surface given by equation (2.1).

Stokes formula can be written in explicit form as:
R
NG tp)= [ [A2(00:20)S(0p, 2p,0q,2q) cos pdodn (2.4)
Lo

where S(@p,Ap,0q,1q) is the spherical Stokes kernel function defined by:

1

S(Pp.Ap,Pg.hg) = —4—6sinl§+105in2(\|21)—[3—6sin2(\5)}

sin —

(2.5)
In siny+sin2(3)
2 2
where
- Ap — A
sin? %zsin2 Pr ~%q 4sin2 “P "0 COS Pp COS Py (2.6)

With gridded gravity anomalies, the discrete Stokes integral can be written as
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Niopotp)==_""= >, 2 S(Wpg)Ag(®q,kq)cos0q (2.7)
v 0Q=91 Ao=M

where ¢p and Apare the coordinates of the computation point; ¢g and A, are the

coordinates of the data point; A¢p and AL are the grid spacing in latitude and longitude;
N and M are the number of parallels and meridians in the grid; and Ag is the reduced

gravity anomaly given by equation (2.1)

To account for the singularity of the kernel function (v =0 when ¢ =¢p and L =2%p),

the contribution to the geoid undulation of the gravity anomaly at the computation point

can be evaluated separately as (Schwarz et al., 1990).

| AXAy
ON = Ag (2.8)
ok

The shifting of the topographical masses changes the gravitational field of the Earth,
including the potential of the geoid, so the surface computed by the Stokes formula,
after the displacement of the masses and without considering the indirect effect on the

geoid, is the cogeoid.

The indirect effect on the geoid in equation (2.2) is

(2.9)

where AV is the change of the gravitational potential at the geoid due to the terrain
reduction applied and vy is the normal gravity.

AV =V1 = Veomp

AV =V = Veond

AV =Vt = Vi (2.10)
AV =V = Vptm

where V7 is the gravitational potential due the actual topographical masses; Vcomp 1s the
gravitational potential of the compensates masses for a topographic-isostatic reduction
using an Airy-Heiskanen or Pratt-Hayford model; Vong is the gravitational potential of

the condensed masses using a Helmert reduction; Vi, is the gravitational potential of
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the inverted masses due a Rudzki inversion method and Vgrry represents the

gravitational potential of the reference masses due a RTM reduction.

The indirect effect on gravity, which reduces gravity anomalies from the geoid to the

cogeoid, is expressed by
dAg = 0.3086 Njnq [mGal] (2.11)

This effect should be added to equation (2.1) if, for example, the Helmert second’s

method of condensation is applied.

From the contribution of the geopotential model, a reference gravity anomaly (Agg,, )
and a reference geoidal undulation (N,,) can be calculated. The gravity anomaly

estimated at a position (¢p,Ap ) is expressed in spherical approximation as:

N=Nax n
Aggm =G Z (n-1) Z (Cpm cosmip +8, 1, sinmhp)Py o, (sendp) (2.12)
n=2 m=0

and the reference geoidal undulation as:
N=Nmax n
Ngm =R z z (Cpm cosmip +S;, oy sinmhip )P, o, (sendp) (2.13)
n=2 m=0
where G is the mean gravity of the Earth, R is the mean radius of the Earth, C,, ,, and
Sym are the fully normalized spherical harmonic coefficients of the disturbing

potential, P, ., are the fully normalized associated Legendre functions (Heiskanen and

Moritz, 1967), and np,x denotes the maximum degree and order of expansion of the

geopotential solution.

2.2 Fast Fourier Transform formulas for evaluating Stokes’s integral

The Fast Fourier Transform (FFT) method will be used to evaluate the discrete Stokes
formula. This technique allows for the evaluation of the discrete Stokes integral for all
the points on a regular grid simultaneously. That is why, together with the fast
computation time, it is one of the best approaches for the determination of large-scale

regional geoids, like the Argentinean geoid.
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The FFT is a powerful tool for the spectral evaluation of the Stokes integral in the

frequency domain (Schwartz et al., 1990).

The first time that the discrete Stokes integral was evaluated with the FFT method, the
2D planar FFT, was used (Schwarz and Sideris, 1985; Schwarz et al., 1990). In planar
approximation, the Stokes kernel function in equation (2.5) can be approximated for

small distance y by:

1 .2 2R
" VYPQ VpQ SpQ
2

S((I)P’7\‘13,(st}\'Q)z (214)

S1

where spg is the planar distance between the points P and Q, and in rectangular

coordinates is:

spq =/(xp —x0 )2 +(yp — vo ) (2.15)

The discrete Stokes formula (2.7) can be expressed in planar approximation as:

XM YN
2. 2 —Aexq.Yq) (2.16)
xq=x1 yq=y1 *PQ

AxAy
2my

N(xp,yp)=

This equation is a 2D discrete convolution and N can be evaluated at all gridded points

simultaneously by the 2D FFT (Schwartz et al., 1990)

AXA
N(xp.,yp)=
2ny

Fl {F{SIP}F{Ag(xP,yP}} (2.17)

-1 . . . o
where F and F~ are the two-dimensional Fourier transforms operator and its inverse

It can also be evaluated by the 1D FFT

AXAY 1 M
N(xp,yp)= ZXW-"F s Fi_IFlae(cp.yp}) (2.18)
Xp=X1
YM
NG yp) = S b1 S Rl Riagep, ypl) (2.19)
2y yp=y; °P

Equations (2.18) and (2.19) are used when the grid size is too large to be handled by the

capacity of the available computer memory.
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Throughout this thesis, two methods will be used for the evaluation of the discrete
Stokes integral: the 2D spherical FFT (Strang Van Hess, 1990) and the 1D spherical
FFT (Haagmans et al., 1993).

The Stokes formulas evaluated with FFT are linear convolutions but most of the fast
Fourier algorithms are intended for the computation of circular convolutions. Edge
effects are produced by the circular convolution; the required zero-padding methods to

reduce these effects are described by Li (1993).

2.2.1 Approximated spherical Kernel (ASK)

Equations (2.5) and (2.6) show that the Stokes function is not only a function of latitude
and longitude differences but also it is a function of the latitudes of the computation
point and the data point. The discrete Stokes integral expressed in equation (2.7) is not a

2D discrete convolution so it cannot be evaluated by 2D FFT.

In 1990, Strang van Hess suggested to use cos2(pm instead of cos@p cos @, in equation

(2.6), where @ is the mean latitude of the whole computation area and Forsberg and

Sideris (1993) gave a more accurate approximation given by:

COSPp COS Py ~ cos? Om — sin? M (2.20)
Inserting this in equation (2.6), we obtain:
sinz(y) = sin? P —%q +sin? Mo~ ha COsS P, SinQg = sin? P —%a +sin? ot cos (pﬁ1
(2.21)
sinz(g) ~sin’ Pp ~%0 +sin? *p M (cos2 Om —sin? ((pp_(PQ)]
2 2 2 (2.22)

where ¢m is a constant for all the area and the approximated Stokes function is only

dependent on the latitude and longitude difference. With one of these approximations,
equation (2.7) can be written as a two-dimensional convolution. The geoid undulations
on all gridded points can be computed simultaneously by means of the two-dimensional

Fast Fourier Transform as:
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N(¢p,Ap)= F{F{Ag(@p,Ap)cospp F{S(yp)} (2.23)

RAQAL
4

2.2.2 Rigorous Spherical Kernel (RSK)

Due to approximations of the kernel function, non-exact results can be achieved by the
spherical 2D FFT method. Another approach to evaluate the convolution integrals on
the sphere was presented by Haagmans et al. (1993) where the 1D FFT techniques is
used instead of the traditional 2D FFT technique. Considering the fact that Stokes's
kernel is constant for all computation points on one parallel, but different for
computation points with different latitudes, only an east-west convolution is carried out
by the 1D FFT while the north-south integration can be performed by pointwise
integration. The results are the same as those from the pointwise integration on the
sphere. Stokes’s integral on the sphere using 1D FFT can be expressed as a convolution

in the East-West direction as:

RAQAL

oM
amy 1 L2 (R lAg(0p) cos0p JF, S(vp)] (224)

P=0;

N(pp,Ap)=

where Fj and Fl'1 represent the one-dimensional Fourier transform operator and its

inverse, which are performed in the longitudinal direction, and A¢ and A\ are the grid

spacings in latitude and longitude.

2.3 Methods of handling the topography in practical geoid determination

The effect of the topography is one of the most important aspects in the determination
of precise geoid undulations or height anomalies, especially for mountainous regions

such as Argentina.

The use of Stokes’s formula in gravimetric geoid determination requires that the gravity
anomalies represent boundary values on the geoid; this means that the measured gravity
(usually taken on the surface of the Earth) must be reduced to the geoid and there must
be no masses outside the geoid (Heiskanen and Moritz, 1967). The process of shifting
or removing the masses outside the geoid is called gravity reduction. There are several

gravity reductions used in physical geodesy and the most common methods are: the



18

refined Bouguer reduction, topographic-isostatic reductions, the Rudzki inversion
method and the second method of Helmet’s condensation. The Residual Terrain Model
(RTM) reduction (Forsberg, 1984) is another type of reduction, which takes into
account the high frequencies of the topography and yields the quasigeoid.

Theoretically, all reduction methods should lead us to the same geoid, if the gravity
reductions were rigorously applied (Heiskanen and Moritz, 1967) even though each
reduction treats the topography in a different way (Omang and Forsberg, 2000;
Bajaracharja, 2003; Bajaracharja and Sideris, 2004; Bajaracharja and Sideris, 2005).

As we have mentioned before, the original potential of the Earth is changed due the
removal or shifting the masses outside the geoid in the gravity reduction process. The

geoid is defined as the equipotential surface with potential W . For a point originally on

the geoid, after applying a gravity reduction, the potential changes by an amount W
Thus, after the gravity reduction process, the point originally on the geoid has a
potential W, —8W (by convention) and, by the definition of geoid, it is not on the geoid
anymore. It is on the cogeoid. That is why Stokes’s formula using equation (2.1) yields
the cogeoid. The real geoid and the cogeoid are separated by a distance (Njnq), which is

called the indirect effect of the gravity reduction on geoid undulation, and is given by:

oW
Nig =— (2.25)
Y
Comparing this formula with equation (2.8), we can see that W is the same as the
change of the gravitational potential dV since the centrifugal potential before and after
the gravity reduction is the same. A positive sign of Nj,q means that the geoid is above

the cogeoid. See Figure (2.1).

Since the Stokes procedure with terrain-reduced Ag yields the cogeoid rather than the
geoid, the gravity anomalies used must be boundary values at the surface of the
cogeoid, so gravity anomalies must be moved from the geoid (point Py) to the cogeoid
(point P.) by applying a simple free-air reduction expressed in equation (2.11). The
change of Ag is 0Ag, the secondary indirect effect on gravity due to the gravity

reduction. Considering this indirect effect, equation (2.3) can be rewritten as:

N=R[[(Ag+8Ag)S(y)do (2.26)
4y o
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P
Earth's surface
P, geoid
P, ;
______________ .___________“_“_“cogemd
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Q

o

Figure 2.1: Geoid, cogeoid and ellipsoid

The following gravimetric reduction techniques will be investigated in this thesis.
»  Refined Bouguer reduction

»  Topographic-isostatic reduction

»  Helmert’s second condensation method

»  Rudzki inversion method

» Residual Terrain Model

In principle, every gravity reduction that gives boundary values at the geoid is equally
suitable for geoid determination if the indirect effect is properly taken into account. In
all the reduction methods it is necessary to know the density of the masses between the
geoid and the surface of the topography. During this study, a constant density

p=2.67 g/lem’ is assumed. A second assumption is also made, i.e., the actual free-air

gravity gradient is assumed to be equal to the normal free-air gravity gradient.

2.3.1 Refined Bouguer reduction

The objective of the refined Bouguer reduction is to remove all the topographic masses
outside the geoid but, because the indirect effect is very large in this case, refined
Bouguer anomalies are not used for geoid determination. The complete Bouguer

reduction is used in this thesis to remove the gravimetric effect of the terrain prior the



20

interpolation and gridding in order to avoid aliasing of the short wavelength gravity
features. Complete Bouguer anomalies have very good interpolatory properties

(Heiskanen and Moritz, 1967).

The refined Bouguer reduction takes into account not only the Bouguer plate, which
considers that the area around the gravity station P is flat and the masses between the
geoid and the earth’s surface have constant density p, but also the deviations of the
actual topography from the Bouguer plate at Py This is the terrain correction effect,

which is usually one order of magnitude smaller than the simple Bouguer term.
The procedure to compute refined Bouguer anomalies is:
*  measure gravity (gp) at a point P of the Earth’s surface;

= remove all the masses outside the geoid using the Bouguer plate and terrain
correction. This is computed by subtracting the attraction of an infinite Bouguer

plate from the observed gravity and adding the terrain correction;
» lower the gravity station from P to P, on the geoid using the free-air reduction F;

»  subtract normal gravity y at corresponding point Q, on the reference ellipsoid.

Earth's
surface
P -
Bouguer plate hp
geoid
P,
Figure 2.2: Bouguer plate and terrain correction
Refined Bouguer anomalies (Ag,, )are computed by:
Agg =gp —AgT +F-71q, (2.27)

The direct topographic effect on gravity due to the refined Bouguer reduction Argcan

be expressed as:
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Agt = Arg =2nGphp —cp (2.28)

where cp is the terrain correction, G is the gravitational constant and pis the density of

the topographic masses. If the terrain correction is not considered, complete Bouguer

anomalies are obtained.

The free-air reduction (F) lowers the gravity station from the Earth’s surface point P to

the corresponding point P, on the geoid by use of the free-air gradient:

F=-"%q (2.29)

og . . . . . .
where a—flls the actual vertical component of the gravity gradient, the minus sign

indicates that gravity decreases with increasing elevation, and H is the orthometric

height.

For many practical purposes, it is sufficient to use the normal gradient of gravity,
Fro (2.30)

In the classical geoid determination using Stokes’s solution, the free-air gravity
anomalies are referred to the geoid surface and they can be expressed as:

Agra =gp+F-vq, (2.31)

Normal gravity on the reference ellipsoid will be computed using Somigliana’s closed

formula

_ay, cos? ¢+ byy sin’ [0)

(2.32)
a’ cos? o+ b? sinztp

where v, and vy, represent the normal gravity at equator and the pole, a is the semimajor

axis and b is the semiminor axis of the reference ellipsoid, and ¢is the geodetic latitude.

In this thesis, all the geometrical parameters of the reference ellipsoid will be those for

the Geodetic Reference System 1980 (GRS80); see Moritz (2000).

2.3.1.1 Formulas for terrain corrections

Terrain corrections (TC) are very important quantities in gravity reductions not only for

geodetic purposes but for geophysical applications, as well. In geodesy, terrain
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corrections are used not only for the computation of gravimetric geoid undulations but

also for interpolation and extrapolation of data.

The terrain correction accounts for the deviations between the Bouguer plate and the
topography. Terrain corrections will be computed in this thesis using the program
TC2DFTPL, developed by Yecai Li at the University of Calgary (Li and Sideris, 1993).
TC2DFTPL computes the topographic gravimetric correction by means of the 2D Fast
Fourier Transform so gridded data are used as input data. It uses different topographic
models, like a mass prism (MP) model or mass line (ML) model. The formulas are
expressed by 2D convolutions and the computations can be done up third order terms.
In order to speed up the convergence of the series, optimizations can be made (Li and

Sideris, 1993).

The terrain correction at a point P is

p —
cp =G” I 3 p(x.y.2)hp ~2) dxdydz (2.33)
Eh S (Xp—-X,yp—y,hp —2)

|
where the distance kernel is defined as: s=((xp — x)% + (yp — )% + (hp —h)z)é, Gis

Newton’s gravitational constant, p(x,y,z) is the topographic density at the running

point, h;, is the topographic height at point P and E denotes the integration area.

Using a gridded digital topographic model and taking the density as constant,

we obtain
N-1M-1
+AX/2 pym+Ay/2 ¢h (h, —2)
Cp=— sz ZIXH * jym Y J‘ m 3 P dxdydz (2.34)
ety —Ax 2y Ay /20, (Xi —x,¥j - y:h, _Z)

Performing the integral respect z, we get

NEMEL A2 pyim +Ay/2[ 1 1 jd
cp=Gp ! - xdydz
’ ng()mg() Ixn —Ax/2 -[ym—Ay/Z S(XP —X,yp— y,O) S(XP —X,yp— yahP - hnm) (2 3 5)

cp can then be computed using a mass prism topographic model or a mass line
topographic model. The topographic height is given on a regular grid. The height within

each cell is represented by a prism with the mean height and mean density of the
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topography, which is called a mass prism topographic model (MP). When the mass of
the prism is mathematically concentrated along its vertical symmetry axis, the
topography within the prism is represented by a line, giving a mass line topographic

model (ML).

2.3.1.2 Computation of terrain corrections via 2D FFT
a) Formulas with mass line topographic model

The terrain correction cp is:

Cp =C +C2 +C3 (236)
where
G
) =2p[h12,F HHR,}-2h3F "{H|R J+F I{Hle}] (2.37)
.. 3G _ _
E —8"[((115- ~a?)? - 1{H0R2}—4hij(hfj a2 fHR ) .

. 15G . .
C3(1,_])=p|:((hi2j —a2)3 —oc6jF 1{H0R3}—6hij(hi2j —az)zF HHR5}

(2.39)
where Hk and Rk
Hk =F {hk}, k=0, 1,2,3,4,5,6 (2.40)
B AxAy AxAy B AxAy _
Ro _F{(Xzﬂlz)l/z (X2+y2+a2)1/2} and Ry _F{(X2+y2+a2)2k+l}k 1,23
(2.41)

The optimal value for o is one-half of the variance of the heights; o is an optimal

parameter to improve the convergence of the series (Li, 1993).

(2.42)

>
o =—
2

b) Formulas with a mass prism topographic model

Cp =Cy+Cy +C3 (2.43)
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¢y zzp[h%F HHoF } - 2hpF~ {H Fy |+ F 1{H2F1}]

¢y (i, j) = —G;K(hfj - az)z = oc4jF_1 {H(F,} - 4h;; (hﬁ - ocz)F_l {(H,F,}
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) :G"K(hizj - a2)3 - oc6jF_1 {H(F3} - 6h;; (hﬁ - ocz)zF_l {H,F3}

where Hy is the same given in (2.30) and
Fi =F(f} (x,y,0) + 11 (v, x,0) + £ (x,y,0)
Fy =F(f51(x,y,a) + f51 (v, x,0) + 55 (x,y,0)

F3 =F(f3;1(x,y, o) + f31(y, x, ) + f35 (X, y,a)

o? =
o cAx LAy
f11(x,y, ) - S
X y,a)=
Y +iy. ok y.e)  Ax oy
X —— | _——
n 2 ym 2
X
2, 42 n Ty
1
flo(x,y,a) = );y(zr +02Lz) ——arctanﬁ
x7y"+o7r7)r ar AX
n 5 ’m
Ax Ay
Xp+t—1¥m t =
x(y + 2r) 2 2
f21(x7yaa): 5 3
3(y+n)r Ax Ay
nT o YmT oy
£y (X, y.00) Xy 2(r2+0L2)2 2 a
22X, y,0)= +
3(x2y2+a2r2)r X2y2+(12r2 o’ r?
Ax Ay
Xt ¥Ym* =
1 Xy 2 2
——3arctan—
3a ar AX Ay
X _—— _—

n”,PmT
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(2.44)

(2.45)

(2.46)

(2.47)
(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)
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< 4 A Ay
n m
1 4 2 2 2
f31(x,y,0)=— z 3 L};++ J+3; (2.55)
15(y+r)” [y+ries 1 y+1) ¢ Ax Ay
X —— | _——

2 2 2 2
Xy 3r 6 3a 2(r“ +a”)
f3,(x,y,) = —t—— +
15()(2y2 +OL21‘2)1‘ ot 2 ot X2y2 +a’r?
2(r2 +oc2) 202 r? 4(r2 +oc2)2
I S T R S N s (2.56)
X“y“+a’r r a® Xy +a‘r
Ax Ay
Xnt—¥m+t—
1 Xy 2 2
— ——-arctan—
5a or Ax Ay
=5 Ym ™
2 2

2.3.2 Topographic-isostatic reduction

The objective of an isostatic reduction of gravity is the regularization of the Earth’s
crust, according to some model of isostasy (Heiskanen and Moritz, 1967). Isostatic
anomalies are computed by not only removing the topographical masses but also

restoring the effect of the compensation masses below the geoid.

There are two classical isostatic models, the Airy-Heiskanen model and the Pratt-

Hayford model.

2.3.2.1 Airy-Heiskanen topographic-isostatic reduction

The Airy-Heiskanen (AH) model was developed by G.B. Airy in 1855. Heiskanen gave
a precise formulation for geodetic problems. It is based on the assumption of a constant
crust density and a non constant level of compensation, where the normal column of
height (h=0) has a thickness D. The mountains (h >0) form roots of depth t, and the
higher the mountains are, the deeper the roots are. Below ocean (h'<0) anti-roots with a

thickness t' are found.

According to the Airy model, all crust blocks have the same density but different
thickness, with higher top surfaces (mountains) having deeper roots. The root thickness

below mountains is derived by
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= Jower the gravity station from P to P, on the geoid using the free-air reduction;
=  subtract normal gravity y at corresponding point Q, on the reference ellipsoid.

Airy-Heiskanen topographic-isostatic anomalies are computed by:
Agan =8p —Ar + Acompamy T F—7q, =8p +F—71¢q, - OA y =Agpa —0A,y  (2.59)

where A ., an) 1S the attraction of the compensated masses within the depth of the

root.

The direct topographical effect on gravity due the AH reduction scheme is equal to the

gravity attraction change 0A oy and it is evaluated at the point P on the Earth’s surface.
Agr =8AAH = AT — Acomp(AH) (2.60)

These terms can be expressed (for a point P at the origin of the coordinate system) as:

Ap = GIH POy, 2)hp =2) 4 4vd 2.61)
s?(xp —x,yp — y,hp —2)

Ap(x,y,z)(hp —z
Acomp(AH) = G” I Py, 2)hp =2) 4 vdy (2.62)
E -D-t5 (XP X,yp —¥,hp —2)

Equations (2.61) and (2.62) can be numerically integrated using rectangular prisms with
the computation point coinciding with the origin of the coordinate system as (Nagy,

1966):

Ar = —Gpj”x In(y +r)+yln(x +r)— zarctan |xz |yz |0 (2.63)

A comp(AH) = —GApJ.”x In(y +r) + yIn(x + r) — zarctan — Xy |§12 |§12 | Dot (2.64)

where the coordinates x;, Xz, y1, y2, Z; and z, represent the corner of a prism

The change of potential AV in equation (2.9) is for the AH topo-isostatic reduction

scheme expressed by

AV =Vt - Vcomp(AH) (2.65)
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where Vr represents the gravitational potential of the actual topography and

Veomp(aH) 18 the gravitational potential of the compensated masses due the AH

reduction scheme. They can be given as:

h
1
V=G dxdyd 2.66
T p'L'['([S(XP_X,YP_YahP_Z) e (2.66)
-D
1
Vcomp(AH) = GAPII J. dXdeZ (267)

5 D SXp —X.yp —y.hp —2)

The potential change has to be evaluated at point P, on the geoid.

The secondary indirect effect on gravity due to the AH reduction scheme has to be taken

into account.

Equations (2.66) and ((2.67) can also be numerically integrated using rectangular prisms
with the computation point coinciding with the origin of the coordinate system (Nagy,

1966):

Vr = —Gp”jxy In(z+r1)+xzln(y +z) + yzIn(x +r) —

2 2 2 (2.68)
_ _ _ h

X an (G - Y tan T B~ Ztan T Y P22 )

2 Xr 2 yr 2 zr” X1 Y1
Vcomp(AH) = —GAp”J.xy In(z+r)+xzIn(y + z) + yzIn(x + 1) —

2 2 2 (2.69)

X -1,¥Z y -1,XZ Z -1,Xy X21¥Y2 -D

——tan (~—)—--—tan (—)——tan (—

2 (xr) 2 (yr) 2 (zr)‘xl |Y1 -t

2.3.2.2 Pratt-Hayford topographic-isostatic reduction

The Pratt-Hayford model assumes a crustal layer of constant thickness D and lateral
variations in density in order to obtain isostatic equilibrium in the level of

compensation, generally assumed as 100 km (Heiskanen and Moritz, 1967). If p is the

density of the normal crust for the normal column of height (h=0), continental columns

(h>0) generate densities lower than p, while the densities below oceanic columns (h'<0)

are higher than p.

The equilibrium condition for the continents is

Dp=(D+h)p,; (2.70)
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so below mountains there is a mass deficiency given by:

h
Ap:P—Pl=ﬂp (2.71)

For the oceans, the condition of equal weight is expressed as
Dp=h'p,, +(d-h")p (2.72)

thus below the oceans there is a mass surplus given by

h
Ap'=p'-p= S(P=pPw) (2.73)
D-h

p =2.67gr/cm’ and Pw = 1.030gr/cm’ are usually taken to the normal crust density and

the density for the oceanic crust.

6 km
4 km
3km
2 km
}h
sea level
Pw h
< 5 km
D =100km| p PI P21 Py Ps P P
267 : 262 i 257 § 252 : 259 ¢ 276 : 2.67
gr/cm3 gr/cm3 gr/cm3 gr/cm3 gr/cm3 gr/cm3 gr/cm3
compensation level

7

Figure 2.4: Pratt-Hayford model

The procedure to compute Pratt-Hayford topographic-isostatic anomalies is:
*  measure gravity (gp) at a point P of the Earth’s surface;

= remove all the masses above the geoid;
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= restore compensated masses according to PH reduction;

* lower the gravity station from P to P, on the geoid using the free-air reduction;
= subtract normal gravity y at corresponding point Q, on the reference ellipsoid.
Pratt-Hayford topographic-isostatic anomalies are computed by:

Agan =8p ~Ar + Agomp +F—7q, =8p —8Apy +F—7vq, =Agps —0Apy (2.74)
where A ompcpry 18 the attraction of the compensated masses.

The direct topographical effect on gravity due the PH reduction scheme is equal to the

attraction change A py,
AgT =0A Ay =AT — Acomp(PH) (2.75)

The term A, is represented by equation (2.52) and

3

0

Ap(x,y,z)hp — 2z

Acompety =G| [ POSY. e =2) iy hyds (2.76)
E_pS (xXp—X,yp —y,hp —2)

Usually the refined Bouguer reduction is done using a constant density p so to restore

equality of masses the attraction of the compensated masses according to the PH model

is computed with a density contrast given by:
Ap=—p (2.77)

The change of potential AV in equation (2.8) for the PH topo-isostatic reduction scheme

is expressed by

AV =Vt — Vcomp(PH) (2.78)
where Vrt represents the gravitational potential of the actual topography and it is the
same as equation (2.54) and V.. u) 18 the gravitational potential of the compensated

masses due AH reduction scheme and it can be given as:

0
1

V, =GA dxdyd 2.79

comp(FHD pJ;EI_J;) s(xp —X,yp —¥,hp —2) T 2.79)

The computation point of the potential change is at point P, on the geoid.
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The attraction A omp(py and the potential of the compensating masses Veomp(pi) €an be

evaluated in the same way as in equations (2.64) and (2.69):

_ XY x2,y2,0
A comp(pH) = ~GAp m xIn(y +1) + yln(x + 1) - zaretan > 1272 % (2.80)

Veomp(PH) = ~GAp j j jxy In(z + 1) + xzIn(y + z) + yzIn(x + ) -
(2.81)

2 2 2
X _1.yz _1.Xz. Z 1.X
——tan 1(y— Y tan 1(—)——tan l(l)|X2‘Y2|f)D
2 X1 2 yr 2 zr~ X1 Y1

The secondary indirect effect on gravity due to the PH gravity reduction must be taken

into account.

2.3.3 Second method of Helmert’s condensation

The second method of Helmert’s condensation considers that the topographical masses
between the geoid and the surface of the topography are condensed in a surface layer on
the geoid with surface density x=ph, where h is the height of the topography. The
condensation implies corrections to the gravity anomaly and the introduction of indirect

effect due to the change of potential caused by the condensation.

This method is one of the most common methods used in the classical solution of
geodetic boundary value problems (Sideris and She, 1995; Omang and Forsberg, 2000;
Li, 1993; Bajaracharja, 2003; Bajaracharja and Sideris, 2005).

This reduction can be viewed as a limit case of the Pratt-Hayford isostatic reduction

with depth of condensation zero.
The procedure to compute Helmert anomalies is:
*  measure gravity (gp) at a point P of the Earth’s surface;

= remove all the masses above the geoid. The attraction of the topographic masses
above the geoid is computed at the point P and it is subtracted from the observed

value (gp);
* Jower the gravity station from P to P, on the geoid using the free-air reduction;

= condense all the masses on a layer on the geoid with density x =ph . The attraction

of the condensed masses is computed at the point P, and added to the result

computed in the preceding step;
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»  subtract normal gravity y at corresponding point Q, on the reference ellipsoid:

//\‘P

h P
P, geoid
e
k= f) fl _______ .I_)f ___________ cogeoid
ellipsoid
Q,

Figure 2.5: Helmert’s method of condensation

This procedure gives Helmert anomalies on the geoid computed from the expression
AgHelmert =8p— AT + Acond +F— T, =8p — 8AHelmert +F- Yoy = AgFA - 8AHelrnert (2.82)
where A, 1s the attraction of the condensed masses at P,.

The direct topographical effect on gravity Agr, given in equation (2.1), due this

reduction scheme is the attraction change SA, which is equal to the classical terrain

correction Cp
AgT :8AHelmert :AT _Acond =—Cp (2.83)

Faye anomaly or Helmert’s gravity anomaly differs from the free-air gravity anomalies
at the same point by the terrain correction. They represent boundary values in the

Helmert/Stokes approach.
AgHelmert :AgFaye =gp +F_VQ0 +Cp =Agpp +Cp (2.84)

A small correction dAg, called the indirect effect on gravity, has to be considered

before applying Stokes 's formula to transform gravity anomalies from geoid to cogeoid

8Ag 1s, according to Sideris and She (1995), expressed as:
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21tGph]2,

SAg ~ (2.85)

The indirect effect of Helmert’s reduction on the geoid, considering the first two terms

1s given, in planar approximation, following (Wichiencharoen, 1982) as:

h? —h}

Nipg =~ " 0P hg - P[22 gy +.. (2.86)
¥ 6y % s

where v is the normal gravity and s is the planar distance between computation and

running point.

2.3.3.1 FFT formulas for the indirect effect of Helmert’s reduction on the geoid

The indirect effect due the Helmert’s second condensation method can be computed up
to the second term and in planar approximation with a grid of digital elevation heights

by the following discrete formula:

AXA M 1 AXA
Nindz_nGphIz’ Gp - yh3 > Z _ GpAxdy Z Z (2.87)
¥ XQ=X1YQ= v1 8 i XQ=X1YQ= v1 8

where the second and third terms are 2D discrete convolutions and they can be

evaluated by the 2D FFT given the indirect effect for all grid points simultaneously.
The 2D FFT for evaluating equation (2.87) is:

nGp

hp + {F{ SR -

GpAXAy |, 3.
Nipg =— p h F

OPAXAY bt g Ly g3y (2.88)
6y s>

2.3.4 The RudzKki inversion method

The Rudzki inversion method was not a common gravimetric reduction for geoid
determination, but during the last years studies carried out in the Canadian Rocky
Mountains show that the Rudzki geoid solution performs as well as the Helmert and
RTM geoids solutions in terms of the standard deviations and maximum and minimum
range compared to GPS/levelling derived geoid heights (Bajracharya, 2003; Bajracharya
and Sideris, 2004; Bajracharya and Sideris, 2005). The Rudzki inversion method is a
gravity reduction that shifts all the topographic masses inside the geoid in such a way

that the indirect effect on the geoid is zero. For this gravity reduction, equation (2.9) is:
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AV =V = V;,, =0 (2.89)
SO Vi =V, (2.90)

M. P. Rudzki presented the inversion method in 1911 (Rudzki, 1911). He considered the
geoid as a sphere of radius R as it is shown in Figure (2.6). He also let a mass element
dm at a point Q be replaced by a mass element dm’ at a certain point Q' inside the geoid
and on the same ray from the center of the sphere. The gravitational potential at a point

P, on the geoid due to the mass elements dm and dm' is:

vy =G dm_ Gdm 2.91)
I \/r2+R2—2chos6

Vi, =G 40 = Gdm (2.92)

\/r'2 +R2 —2r'R cos®
dVris equal to dVjyy if
dm'= R dm (2.93)
T

2

and r=" (2.94)

r

This last condition indicates that the point Q and Q' are related by inversion in the

sphere.

If Qx, y, z) and Q'(x', y', Z') are any two points which are inverse in the sphere, at
distances r and 1’ respectively from the origin, the equations for the transformations of

coordinates are according to Kellogg (1929).

X' y=—3 y' z=— z' rr'=R? (2.95)

The last equation is the same as the condition (2.94).

Even though the condition (2.95) expresses that the inverted masses dm' are smaller
than the topographic masses dm, they can be consider equal because the change is of the

order of 1078,

dm'= dm (2.96)
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earth's surface

Figure 2.6: Rudzki inversion method on the sphere

It is usual to apply the Rudzki inversion reduction in planar approximation; the sphere is
replaced by a plane and the point Q' is the ordinary mirror image of Q. The Rudzki

reduction in planar approximation can be seen in Figure (2.7).

earth's surface

P Q
®

h <lp

geoid

P, qo
hy e

o

Ql

Figure 2.7: Rudzki inversion method in planar approximation

The procedure to compute Rudzki anomalies is:

* measure gravity (gp) at a point P of the Earth’s surface;
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= remove all the masses above the geoid;

* lower the gravity station from P to P, on the geoid using the free-air reduction;
= restore the inverted masses;

=  subtract normal gravity y at corresponding point Q, on the reference ellipsoid;

»  This procedure gives Rudzki anomalies on the geoid computed from the expression

AZruani = &p —Ap +A™ +F—vq, =8p T F—7q, —0A;, =Agps —0A,; (2.97)

mv

The direct topographical effect on gravity Ag., given in equation (2.1), due this

reduction scheme is the attraction change 6A;,,

AgT = AT _Ainv = 8Ainv (298)

where Ar is the attraction of the topographic masses above the geoid and A;, is the

attraction of the inverted topographical masses, with the density of the topographic
masses being equal to the density of the inverted masses and the thickness of the

inverted masses equal to the height of the topography.

0
Ay =G[ [ 5 PP 22 4qyay (2.99)
E hS (Xp—X,yp —y,hp —2)

Equations (2.99) can also be numerically integrated using rectangular prisms with the

computation point coinciding with the origin of the coordinate system (Nagy, 1966):

- _ XY x21y2/0
Ay Gp”J.xln(y+r)+ yIn(x +r) — zarctan . |xl |yl h (2.100)

The indirect effect due to the Rudzki inversion method on the geoid is zero.

2.3.5 Residual Terrain Model (RTM)

The RTM reduction method takes into account the high frequencies of the topography,
so a mean elevation surface is chosen and the effect of the topography above this long
wavelength topographic surface is first removed and later restored.

The direct topographical effect on gravity Agr, given in equation (2.1), due to this

reduction scheme is the attraction change 8A g1y
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Agt = A1 —Art™m =3ARTM

href

a p(x,y,z)(hp —2)
| T —
E 0 P > Yp — Y. hp —Z

dxdydz (2.101)

where h is the topographical height, given by a digital elevation model and h;r is the

height of the smooth reference surface.

P

/‘\ /\ Earth's surface

e N~ —

mean reference surface

-

—R——— dliipsoid

Figure 2.8: RTM reduction

When the mean elevation surface is a sufficiently long-wavelength surface, the RTM

gravity terrain effectis given by the approximate expression (Forsberg, 1984)
SARTM = 2TEGp(h—href)—CP (2102)

which is a Bouguer reduction to the reference surface and cp is the classical terrain

correction.

The RTM gravity anomalies are expressed as:
AgrTM =gp —YQ —OARTM (2.103)

Agrtm = Agpa —2nGp(h —hper) +cp (2.104)
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where Agp, 1is the surface free-air anomaly; it refers to the surface of the topography

and it is obtained by subtracting from the surface gravity the normal gravity calculated

with the following equation:

2
oy . 120 2
= +—H +———FH +.. 2.105
1Q =7YQ, oh, 2 2 ( )

where 7y, is the normal gravity at the telluroid point Q and H' is the normal height (see

Figure 2.9).

Earth's surface

Figure 2.9: Quasigeoid, changed quasigeoid and ellipsoid

Agra =8p —Yq (2.106)

The RTM reduction method yields the quasigeoid. Equation (2.2) is replaced by the

following equation
C=Cagery T66M *Cind (2.107)

where C is the height anomaly, the residual height anomalies {,, .~ are computed

using Stokes 's formula with the RTM gravity anomalies as input.
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Cina 1s the RTM indirect quasigeoid effect. It is the distance between the original
telluroid and the changed telluroid after the RTM reduction was performed. It is shown

in Figure 2. 9 and it is expressed in linear approximation as:

h 0

Gp(h—h
Cind =Crrv =22 [ | ! axdydz=SPO=Rrer) 10D g4y 2.108)
Y Ehefs(XP_XayP_Y7hp_Z) Y SO

—00 —00

where s is the planar distance.
The quasigeoid is converted to geoid using the quasigeoid-geoid separation given in

Heiskanen and Moritz (1967) as

N~C+28B g (2.109)
Y

where y represents the mean normal gravity; H is the orthometric height and Aggthe

Bouguer anomaly.

2.4 Data error propagation

For regional geoid determination, the accuracy of the gravimetric geoid computed with
the remove-restore technique will depend on the density, accuracy and coverage of the

local gravity anomalies, the height data and the errors of the geopotential model.

Applying the theory of error propagation to the geoid determination, the error variance

of the gravimetric geoid undulations can be expressed by:

2 2 2 2
o =0 +0 +0 2.110
NGRAV NAg Ngm Nt ( )
where O GRAV is the combined gravimetric geoid error variance, T Nag is the geoid

2

error variance due to the error of the gravity anomalies, NG

" is the geoid error

variance due to the errors of the geopotential model and GIZ\IT is the geoid error variance

due to the errors of the height data. Equation (2.101) assumes that the data errors are

uncorrelated.

Each of the expressions in equation (2.101) can be given according to Li (1994) as:
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cos? (p)* (S(w)-Sy)f (2.111)

2
RA@A
o2 —( ? xJ (Gig cosch+csigGM

Nag 4y

With gridded gravity anomalies, this equation can be evaluated by the 2D Fourier

transform as:

) (RA(pAX

2
O j F™ {Flo}g cos” p+ oy, cos” o}F{(S(w) -S(w))'}} (2.12)

2

where o}, are the variances of the residual gravity anomalies, ox

gy ar€ the variances

of the gravity anomalies from the geopotential model and are computed from the
variances of the geopotential model, S(y) is the spherical Stokes kernel and S(y)is the

summation of the Stokes spherical kernel up to degree nmax

— Npax 2n + 1
Sty)= X2
n—2 n—1

P, (cos(y)) (2.113)
The contribution of the random noise of the geopotential model coefficients to the
combined gravimetric geoid undulation error variance can be computed by:

Nmax N

"iIGM =R* ) Z(G%nm +o§nm) (2.114)
n=2 m=o
and
o2 :Gznia:x(n—l)zi(c% +62 ) (2.115)
Agom ) = Com Shm )

where & and c% are the variance of the fully normalized geopotential coefficients
nm nm

The errors of gravity field parameters computed from a geopotential model like Aggy

or Ny used in the remove-restore procedure suffer from two effects.

* The commission error produced by the statistical errors of the coefficients
themselves. An approximate method to estimate the commission errors uses the

error degree variances of the geopotential model (Sideris and She, 1995).

*» The omission error produced by neglecting of the coefficients above np.x. The
estimation of the omission errors or truncation errors requires the knowledge of the

signal degree variances above the maximum degree to which the geopotential
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model are used (nmax) from a signal gravity anomaly degree variance model (e.g.,

the Tscherning and Rapp model (Tscherning and Rapp, 1974).

Signal gravity anomaly degree variance are related to the coefficients of the

geopotential model by:
2 22N 2 . Q2
On (A2, A2)=(n —=1)*y* 3 (Ciiy +Sim) (2.116)
m=0

The expression for clz\fT is:

Gpn 2
Xy =(f{’j ol (2.117)

where o, is the error of the heights

2.5 Summary

The flowchart depicted in Figure 2.10 summarizes the principal steps of the remove-
compute-restore technique applied in this research to compute the combined geoid

solution for Argentina.
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(e.g., Bouguer reduction) to
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Restore the indirect effects N;,4 (depends on
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Figure 2.10: Flowchart gravimetric geoid modeling
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CHAPTER THREE

MARINE GEOID DETERMINATION

3.1 Introduction

As we have seen in Figure 1.1, Argentina is limited with the Atlantic Ocean to the East
so it is also necessary to study the marine gravity field due to its applications in marine
geodesy, geophysics and oceanography. The main objective of this chapter is to present
the theoretical background related to determination of a high-accuracy and high-
resolution marine geoid model by combining satellite altimetry and sea gravimetry. The
theoretical foundations related to the estimation of the gravimetric and altimetric geoid
models (Li and Sideris, 1997; Vergos, 2002) and the combined geoid solution using the
Multiple Input Multiple Output System Theory (MIMOST) (Sideris, 1996; Li, 1996;
Andritsanos et al., 2000; and Andritsanos and Tziavos, 2002) will be outlined. Satellite
altimetry gives observations of sea surface heights that are approximately equal to geoid
heights; they are very useful in mapping the ocean geoid and in studying the marine
gravity field (Li, 1996). Shipborne data will be used to compute the marine gravimetric

geoid.

3.2 Computational methodology
3.2.1 Gravimetric geoid modeling

Marine gravimetric geoid determination is based on shipborne and satellite altimetry-
derived gravity anomalies. The latter are used to augment the ship data and fill in gaps.
It is often that the ship gravity anomalies refer to the sea surface and not the geoid itself,
thus their use will lead to the determination of a mean sea surface and not a geoid
model. These gravity anomalies have to be free-air reduced so as to produce gravity
anomalies on the surface of the geoid. The free-air gravity anomalies are computed

using the well-known reduction formula

Agpa =Ag+F (3.1)
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where F is the free-air reduction. In marine regions the height needed for the reduction
is that of the Quasi-stationary Sea Surface Topography (QSST), which varies between
0.2 and -0.7 m for the EGM96.QSST (Lemoine et al., 1998) in the study area.

Thus, for practical purposes it is sufficient to use the normal gradient of gravity to

compute the free-air reduction as
Fr— h~—03086h (3.2)
dh

where h is the QSST in meters, derived from a global model.

Even though, this effect of about a tenth of a miligal and it can be considered negligible,

it is applied in order not to introduce an additional error.

This pre-processing step is necessary for the data homogenization so that they can be
used for the determination of the gravimetric geoid. The marine gravimetric geoid will
be computed using the remove-compute-restore technique employing Stokes’s formula
for the prediction of residual geoid heights. Before the prediction of the geoid the
gravity anomalies have to be reduced to a geopotential model during the remove step.
Furthermore the effect of the topography, actually that of the bathymetry in marine
areas, has to be taken into account through a topographic reduction. In this study, a
residual terrain model (RTM) reduction was used to account for the bathymetry. The

RTM effect on gravity is given by the approximate expression (Forsberg, 1984)

SARTM ~21GAp(hy, —hp op )—c (3.3)

where hy, is the bathymetric depth given by a global bathymetry model, hy is the depth
of a smooth mean reference surface and Ap is the density contrast between Earth’s crust
and seawater. The reference bathymetric surface is obtained by simple averaging the
fine bathymetry grid and then low-pass filtering it using a moving-average window,
with a resolution around 100 km. fc and tcgrid programs from the GRAVSOFT
software (Tscherning et al., 1992) are used for the RTM reduction and to filter height
data for RTM height reference surfaces.

The residual gravity anomalies (Ages =Agra —21Gpth —hper)+c—Aggym ) are then

gridded (Agres)grid and the contribution of the bathymetry is restored prior to the
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calculation of the geoid height (indirect use of the terrain reduction)

(Agres) ¥ + 27Gp(h — h o )&, yielding a grid of Faye gravity anomalies relative to
the geopotential model. The bathymetry refers to masses below the geoid so its effect
has to be restored before the use Stokes formula for the estimation of geoid heights
(Dahl and Forsberg, 1998). The gridding is performed using program geogrid using
weighted means from the same GRAVSOFT package.

Different approximations to Stokes’s kernel function are investigated to compute
residual geoid undulations, all in the spectral domain, e.g., the 2D-FFT spherical Stokes
convolution to evaluate the kernel function (Strang Van Hess, 1990) and the 1D-FFT

rigorous spherical Stokes convolution (Haagmans et al., 1993).

The final gravimetric geoid is obtained by restoring the contribution of the reference

model.

3.2.2 Altimetric geoid modeling

An altimetric satellite measures the time taken by a radar pulse to travel from the
satellite to the sea surface and then back to the satellite receiver. Combined with precise
satellite location data, altimetry measurements yield Sea Surface Heights (SSHs). The
derived SSHs have to be corrected for several geophysical effects (tides, tidal loading,
ionosphere, wet and dry troposphere, inverse barometer and electromagnetic bias) and
instrumental errors (ultra-stable oscillator, centre of gravity, corrections for instrument
and algorithm effects that can not be modeled and waveforms). After applying the
above corrections, Corrected Sea Surface Heights (CorSSHs) are available for one or

more satellites (e.g., GEOSAT, ERS1).

Sea Surface Heights contain information about both the geoid and the sea surface
topography (SST); the latter consists of a time-dependent and a nearly time-independent
component (quasi-stationary part). Stacking the repeat tracks can eliminate the effect of
the time-dependent component and part of the sea surface variability effects that

influence the data.
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These altimetric measurements refer to the sea surface so they have to be reduced to the
geoid. This is performed by estimating the QSST at each sub-satellite point and
removing the contribution of the QSST from the CorSSH value. The quasi-stationary
component of the SST is modeled by a spherical harmonic series of the Dynamic Ocean

Topography (DOT) as follows:

Nmax N
¢, 1)=R za Z (Cfl?cosm?» + S35 sinmA P, (sing) (3.4)

n=l m=0

where gc((p,k) is the contribution of the model coefficients, nm. denotes the maximum

degree and order of expansion of the DOT model, P, (sin¢) are the fully normalized

associated Legendre functions, and C°", ST are the fully normalized DOT spherical

nm 2 nm

harmonic coefficients.

After the removal of the effect of the QSST the CorSSHs refer to the geoid and can be
used to derive an altimetric geoid model. As in the gravimetric geoid computation, the
contribution of a geopotential model was removed to derive reduced SSHs (SSHsred).
The so-reduced SSHs (SSHsred) may still contain some blunders, so a 3 rms test is used
to identify and remove gross-errors. If the mean value of the reduced SSHs is small
enough (e.g., bellow 10 cm), then the 3 rms test can be applied. That is so because by
using a 3 rms test we assume that all systematic errors have been removed from the data
and only random errors remain. If the mean value of the SSHred is larger, an RTM
reduction is applied first to obtain smoother residual SSHs. The computation of the
RTM effects on residual geoid heights has been based on the same concept as in the
gravimetric geoid. In both cases, the GRAVSOFT software (Tscherning et al., 1992)
has been used to create the reference bathymetric grid and estimate the RTM reduction

on geoid heights.

The residual Sea Surface Heights represent the medium wavelengths of the geoid
heights and can be considered as residual geoid heights (Nres). After all these
processing steps the Nres are ready to be gridded. The gridding of the randomly
distributed data is based on a weighted means method using the inverse of the square of
the distance as the weight for each irregular observation. It was done using the program

geogrid from the GRAVSOFT software (Tscherning et al., 1992).
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If the area under study is located in a closed sea, then the derived Nres constitute the
final estimated residual altimetric geoid height. But, if the area investigated is in an
open ocean area, then the effects of temporal oceanic phenomena like the Sea Surface
Variability (SSV) influence the data and appear as noise in the Nres. Such effects need
to be removed or at least reduced so as to derive reliable predictions. Since the effect of
the SSV appears as high-frequency noise in the altimetric data, it can be reduced by
low-pass filtering the Nres grid. This was performed using Wiener filtering, which is
equivalent to least squares collocation in the frequency domain. Assuming Kaula’s rule

for the geoid kernel spectrum F(w), we have

4

e (3.5)
0 +o,

F(w)=

where o is the radial frequency and the cut-off frequency w, is determined empirically

based on a criterion of maximum noise reduction with minimum signal loss. Program
geofour from the GRAVSOFT software (Tscherning et al., 1992) is used for applying
this type of filter.

Then, the final step to compute the altimetric geoid (Nalt) is to restore the contribution

of the geopotential model and the contribution of the bathymetry.

3.2.3 Combined marine geoid modeling

A combined geoid solution can be determined using Least Square Collocation (LSC) or
the Multiple Input Multiple Output System Theory (MIMOST) (Sideris, 1996; Wu,
1996; Li, 1996; Li, 1996). In this research, the combined geoid will be estimated using
MIMOST for the optimal combination of heterogeneous noisy data in order to
investigate whether the combined use of shipborne gravity and satellite altimetry data
improves the geoid compared to the purely gravimetric case and if the shipborne
information can improve the low accuracy of the altimetric geoid determination in

coastal regions.

The system used in this research corresponds to a double-input single-output system

with noise. The system can be seen in Figure 3.1.
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Mathematically, the system can be expressed by:
n=(n&* + m&*)*h, +(n?t +malt)*h2 +e (3.6)

where n is the combined geoid output (system output), n&®" and ntare the pure

grav alt

gravimetric and the pure altimetric input signals, m and m®" are the input noises,
g=n% 1 m& and a=n+m are the gravimetric and altimetric geoid

observations considered as noise-contaminated input signals, h; and h, are impulse

responses, € is the output system noise and * is the convolution operator.

Equation (3.6) can be written in the frequency domain as:
N(w) = (NF* (@) + ME™ (0)H, (o) + (N*" (@) + M*" (0)H, (@) + E(0) (3.7)
N(0) =G(0)H| () + A(0)H; (0) + E(0) = N(0) + E(o) (3.8)

where o is the circular frequency, N(w) is the spectrum of the output combined geoid,
N (@) and N*" (©) are the spectrum of the input altimetric and gravimetric signals,

M (@) and M™ (@) are the spectra of the gravimetric and altimetric noises, G(w) and
A(w) are the spectrum of the input gravimetric and altimetric observations, H; () and

H; () are the corresponding frequency responses of h; and h,, which are the theoretical
operators connecting the input and output signals, and E(w) is the system noise

expressed in the frequency domain.

grav

grav

T G)E— o

alt T
n a
—( % —> h, —»
alt
m

Figure 3.1: Double-input single output system with noise

(¢]
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Equations (3.7) and (3.8) can be rewritten as:

E(®)=N(0) - N(o) =

(3.9)
:an—kNg“«w+Nﬁme»Hnmy+N”%my+M“%m»Hzm»

E(®) = N(0) - [G(0))H; (0) + A(0))H (0)] (3.10)

Multiplying E(w) by E*((x)) (super script * denotes the complex conjugate) and taking
the mathematical expectation E, the system output noise power spectral density (PSD)

is:

3
% *
P, :E{E(m)E (@)} =Ppn —HiPgy —H Py —H Py + HiH Py + (3.11)

* * * *
+HlHZPag —-H;yPy, +HlHZPga +HyH Py =Py =Py

The optimal transfer functions H;(o )and Hy(w) are the particular H; and H, that are

minimizing the power spectral density of the output noise (P..(®)) at any frequency

over all possible choices of H; (® ) and H, (®) using the next criterion.

Pee (0) = [N(®) ~[(NEY (@) + MEY (0)Hj (0) + (N (0) + M (0))H) (co)]]2
= minimum (3.12)

The optimal frequency response functions H(m ) and Hy(m) are obtained by setting the

following partial derivates equal to zero

Pee(N) _ 1 Pee(N) _
oH oH

0 (3.13)

Assuming that the input noises (m&® and m®") are uncorrelated with known PSDs and
the signals and noises are also uncorrelated, the optimal transfer functions H;(® )and

Hy(w) are:

(Pnaltnalt + Pmaltmalt ) + Pnngrav - Pnaltngrav Pnnalt

A, = 5 (3.14)

P +P P +P - ‘P P
( L8rav, grav m&rav grav X qaltalt maltpalt ) L8rav qalt
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P P

(Pngrav pgrav + ngravmgrav )+ Pnnalt el gravt grav

A, = 5 (3.15)
(P +P

L8rav, grav m&rav,, grav )(Pnaltnalt + Pmaltmalt ) ‘Pngrav Pnalt

We can expressed, the estimated output signal, in the frequency domain as:
K@) = [(NE™ (0) + ME™ (@) (0) + (N (@) + MO (@) (0 (3.16)

and the minimum power spectral density of the system output noise by the following

equation:

Pee (N) =Py, _HIZ(P +P

*
ngrav grav m&av _grav j + I:Il 1’_\I2Pnaltngrav +

i (3.17)
+ 1’_\IZIﬁlll)ngravnalt + ‘HZ‘ (Pnalt nalt + Pmalt malt ) :Pnn _Pﬁﬁ

where Pn grav _grav and P ait_an are the auto-power spectral densities of n®*" and n";

: ier grav alt,
ngravmgrav and Pmaltmalt are the noise power spectral densities of n®" and n™;

grav

P and n;

ngravnalt=P:;naltngraV are the cross-power spectral densities between n
P orav and P a are the cross-power spectral densities between the output n and n®*
and n"" and Pss (N) is the power spectral density of the prediction error.

The input signals in the combined solution are the residual gravimetric and altimetric
geoid heights before restoring the contribution of the geopotential model. That is done
to avoid introducing long-wavelength errors. The two inputs of the system are
grav

contaminated by uncorrelated noise m" and m

(PSDs).

with known Power Spectral Density

The MIMOST solution can be estimated only if the noise PSD (Py,m) is known. When
no information is available about the errors of the input data, simulated noise using a
random number generator can be used as input errors in the prediction and the input
error power spectrum can be computed (Andritsanos and Tziavos, 2002). The
variances used in the generation of the noise fields will be defined from the
comparisons of our geoid models with the T/P SSHs, which will be used as control

points.

The algorithm and the related formulae are given in Sideris (1996) and Andritsanos and

Tziavos, (2002). More details of the input-output system theory (IOST) can be found in
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(Bendat and Piersol, 1986; Li and Sideris, 1997; Andritsanos and Tziavos, 2002 and
Vergos, 2002).

3.3 Summary

The following flowcharts summarize the computational methodologies described in this
chapter for the gravimetric and altimetric geoid developments (Figures 3.3 and 3.4)

respectively.

Shipborne free-air gravity anomalies
Data: refer to sea level =>
shipborne gravity anomalies I reduce to the geoid with a free-
satellite altimetry-derived gravity g air reduction -0.3086zqss
anomalies ¢

[ Remove the contribution of a GM ]

v

Remove the contribution of the ]

bathymetry (e.g., by RTM reduction)
|

v
A AgrTvALGM I #ll 3 rms test for blunders removal ]
I
v
e Grid of Faye
[ Gridding Restore RTM N
anomalies
effect relative to
the GM
v
[ Compute N by FFT spherical Stokes convolution]
1 2
{ Restore the contribution of Ny J
v
[ Gravimetric Geoid Heights ’

Figure 3.2: Gravimetric geoid modeling
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Figure 3.3: Altimetric geoid modeling
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CHAPTER FOUR

GRAVITY, ELEVATION AND BATHYMETRY DATA IN ARGENTINA

4.1 Introduction

This chapter presents all the data available for this research and describes the data
preparation, pre-processing and evaluation for the determination of the gravimetric
geoid model in Argentina and the optimal marine geoid determination in the Atlantic

coastal region of Argentina.

The original database includes:

Land gravity observations

*  Shipborne marine gravity observations

*  Free-air gravity anomalies derived from satellite altimetry

=  Spot Heights, Digital Elevation Models (DEM) and Digital Depth Models (DDM)
=  GPS/levelling observations

*  Global Geopotential Models

=  Gravity models from CHAMP and GRACE gravity missions

=  Corrected Sea Surface Heights from the ERS1 Geodetic Mission
=  Topex/Poseidon altimetry data

*  Quasi Stationary Sea Surface Topography (QSST) models

4.1.1 Land gravity observations

During the past five years many efforts were carried out in order to collect as many
gravity data as possible in order to generate the most homogenized gravity database in

Argentina. A total number of 73373 were collected from different sources. The
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distribution of the land gravity observations can be seen in Figure 4.1 and Table 4.1

shows statistical information about the gravity observations.

Table 4.1: Statistics of the gravity observations.

N°of

Source points Unit min max mean o
latitude [degree] -29.45 -20.06 -24.95 2.30
Freie Universitaet 5648 pts longitude -71.41 -63.86 -67.93 1.82
Berlin, Germany gIGSN71 [mGal] 977310.00 979294.92 978304.65 456.74
height [m] 0.10 6204.00 222333  1383.15
latitude [degree] -42.21 -35.47 -39.38 1.60
Freie Universitaet 3041 pts longitude -71.93 -62.27 -68.31 251
Berlin, Germany gIGSN71 [mGal] 979252.70 980303.15 979917.46 200.96
height [m] 1.00 2281.40  682.02 436.73
National University of latitude [degree] -28.93 -26.80 -27.89 0.50
Tucuman 348 pts longitude -66.53 -64.16 -65.33 0.46
(UNT) gIGSN71 [mGal] 978271.04 979172.10 978990.13 121.18
height [m] 137.00 3290.00  503.34 388.38
latitude [degree] -40.64 -35.00 -37.92 1.09
Argentinean Institute of 2757 pts longitude -64.00 -56.84 -61.25 1.82
Oceanography (IADO) gIGSN71 [mGal] 979690.58 980225.85 979955.52 101.54
height [m] -42.30 516.22 130.31 87.71
Gravity Department, latitude [degree] -54.81 -22.24 -36.63 3.45
University of 2466 pts longitude -71.47 -56.68 -61.32 2.88
La Plata (UNLP) gIGSN71 [mGal] 977645.33 981469.07 979823.51 430.17
height [m] -38.33 4220.29  211.53 660.16
Gravity Department, latitude [degree] -40.85 -37.10 -39.10 0.80
University of 937 pts longitude -66.15 -58.77 -61.68 1.60
La Plata (UNLP g IGSN71 [mGal] -79845.46 980238.66 980070.33 80.84
& (IADO) height [m] -68.10 516.22 47.98 68.59
. . latitude -51.65 -24.12 -35.91 8.25
Eﬁiﬁf g;ﬁgy sics 1234pts |longitude 98] 7330 6176 6787 281
gIGSN71 [mGal] 977645.33 981192.97 979543.54 900.82
height [m] 4.60 4220.29  963.43 977.54
latitude [degree] -52.12 -51.48 -51.86 0.17
Antarctic Institute 207 pts longitude -70.75 -69.07 -69.88 0.48
gIGSN71 [mGal] 981122.64 981212.73 981174.88 21.27
height [m] 13.72 204.20 116.29 45.01
latitude [degree] -47.61 -18.01 -29.45 7.51
Chile 2011 pts longitude -73.84 -68.00 -70.48 1.60
gIGSN71 [mGal] 977236.91 980743.29 978876.68 924.79
height [m] 1.00 4696.00  1543.17  1401.27
latitude [degree] -54.82 -22.17 -35.65 8.65
University of Buenos 474 pts longitude -71.70 -57.65 -65.73 3.23
Aires (UBA) gIGSN71 [mGal] 978483.97 981464.04 979640.79 821.05
height [m] 0.00 3193.53  567.08 717.31
latitude [degree] -54.79 -22.10 -34.66 6.21
Military Geographic 13442 pts longitude -72.86 -53.65 -63.77 3.93
Institute (IGM) gIGSN71 [mGal] 978099.94 981467.92 97962532 539.37
height [m] 1.80 3849.73  335.60 428.38
N latitude -53.36 -21.00 -27.85 6.53
fjsc.‘)la Politecnica da longitude  L19°8%¢) 7497 5300 6270 581
niversidade de Sao 50527 pts
Paulo (ESUSP) g IGSN71 [mGal] 977310.00 981337.79 978910.97 733.53
height [m] 0.00 6204.00  939.35 1269.18
latitude [degree] -39.00 -35.01 -37.31 1.05
Argentinean Institute of 1617 pts longitude -68.41 -63.37 -65.22 1.31
Oceanography (IADO) gIGSN71 [mGal] 979518.87 980050.37 979855.90 109.38
height [m] -20.90 1099.00  245.09 147.51
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Figure 4.1: Distribution of land gravity data Figure 4.2: Distribution of shipborne gravity
data

4.1.2 Shipborne marine gravity database

The shipborne data around Argentina was provided by the International Gravimetric
Bureau (personal communication). The sea data records include: source number, co-
ordinates (latitude and longitude), accuracy of position, system position, type of
observation, elevation of the station, elevation type, accuracy of elevation,
determination of the elevation, supplemental elevation, observed gravity in microgal,
free-air gravity anomalies, Bouguer gravity anomalies, estimate of the standard
deviation of the free-air gravity anomalies and Bouguer gravity anomalies, terrain
corrections, information about terrain corrections, density used for terrain corrections,
accuracy of gravity, correction of observed gravity, date of the observation, velocity of
the ship, E6tvos correction, country code, confidentiality, validity, original number of

the station, sequence number, leg number, reference station and a number. For more
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details in the sea data format record description, BGI (International Gravimetric Bureau)

should be contacted.

The marine gravity database contains a total of 17352 shipborne gravity observations in
an area limited between latitudes 21°S to 55°S and between longitudes 55°W (304°E) to
70°W (290°E). The distribution of the shipborne gravity observation can be seen in
Figure 4.2.

4.1.3 Satellite altimetry derived gravity anomalies

The sparse shipborne gravity distribution around Argentina can deteriorate the geoid
accuracy near the coast. Therefore, gravity anomalies derived from altimetry can be
very useful to improve the poorer marine gravity coverage and thus improve the quality

and accuracy of the geoid.

Different altimetry-derived global gravity anomaly datasets are tested to fill in the
sparse coverage of shipborne gravity measurements offshore Argentina. The evaluation

of these global models in the area under study will be presented in the next section.

During the past twenty years all marine areas have been covered. There are several

techniques to compute gravity anomalies from satellite altimetry

4.1.3.1 Satellite altimetry gravity anomaly grids

The satellite altimetry gravity grids available in the area under study are:
= CLS_SHOM v.99 Free-air gravity anomaly field

Free-Air Gravity anomaly field CLS SHOM99 has been developed by CLS (Collecte,
Localization, Satellites) under a contract from SHOM (Service Hydrographique et
Océanographique de la Marine). The free-air gravity anomalies have been estimated
using a 3-year TOPEX/POSEIDON, a 2-year ERS1, a 2-year GEOSAT and the 2 168-
day non repeat cycle data sets of the ERS1 geodetic phase. All these data sets have been
preprocessed in order to be more homogeneous and referenced to the 3-year T/P and
also to be less contaminated by the ocean topography variable signal. A mean dynamic

topography model has also been subtracted from the altimetric heights. This model is
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based on the Levitus climatology (Levitus, 1994). The free-air gravity surface has been
estimated on a grid of 2-minute by 2-minute resolution using a local inverse method,
which also provides an estimation error field. This global model is computed between
0.0 and 360 degrees in longitude and between 82 and -82 degrees in latitude. The free-
air gravity anomaly is referenced to the TOPEX/POSEIDON Earth ellipsoid on the
TOPEX/POSEIDON frame (a = 6378136.3 m; 1/f= 298.257 and GM= 398600.4415

km?/s?). For more information, please see Hernandez and Schaeffer (2000).
=  KMS01 and KMS02

KMSO01 and KMSO02 are the newest release of the KMS Global marine free air gravity
field, computed from ERS1 and GEOSAT satellite altimetry. Data from the geodetic
missions of ERS and GEOSAT have been used, as well as from the Exact Repeat
Mission (ERM) ERM60-63 of ERS2. The ERS ERM data (repeat 1-85) from the NASA
Pathfinder project have also been used to ensure complete coverage in arctic and
antarctic regions (Andersen et al., 1998; Andersen et al., 2005). KMS grids are 2 arc-
minute by 2-arc minute gravity grids and they have been computed via conversion of

marine geoid heights using the inverse Stokes formula.
=  Sandwell v9.2

It is a grid of gravity anomalies converted from GEOSAT and ERS1 satellite altimetry.
Gravity anomalies are constructed from grids of east and north deflections of the
vertical using Fourier analysis. Gravity anomalies are computed after a grid of east and
north vertical deflections were built from satellite profiles of geoid heights by the
integration of Lap lace's equation using FFT. The version 9.2 is available on 1 or 2 arc-
minute grids; we used the 2 arc-minute by 2 arc-minute grid to have the same grid
spacing of the other available grids. More information can be found in the web page,

http://topex.ucsd.edu/marine_grav/mar_grav.html.
=  GSFC00.1 Marine Gravity Anomaly

The altimetric gravity anomaly GSFC00.1 DG produced by the Goddard Space Flight
Center was computed from GSFC00.1 MSS in 2 arc-minute by 2 arc-minute grid by
numerical evaluation of the inverse Stokes integral. GSFC00.1 MSS is a mean sea

surface model in 2 arc-minute by 2 arc-minute grid size between latitude 80°S to 80°N.
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It was computed by combining satellite altimeter data from many missions. The data
used are: 6-years of T/P data (Cycles 11 to 232), multi-years of ERS1/2 35-day repeat
cycle (ERS1 Phase C: Cycles 1 to 18; Phase G: Cycle 1 to 13; ERS2: Cycle 1 to 29);
GEOSAT ERM (exact repeat mission, Cycle 1 to 41); GEOSAT GM and ERSI1 168-
day data. The reference frame is: a=6378136.3 m; f=1/298.257;
Potential=62636858.702 m?/s* and GM=398600.4415 km’/s>. For more details on the

data used and the methodology of mean sea surface computation, see Wang (2001).

4.1.4 Digital Elevations Models

Digital elevation models (DEMs) are an important source of data for the gravimetric

geoid computation. Two DEMs are available for this research: GTOPO30 and GLOBE.
=  GTOPO30

GTOPO30 is a global digital elevation model (DEM). It was developed by the US.
Geological Survey's Earth Resources Observation Systems (EROS) Data Center (EDC)
and it was completed in 1996. Elevations in GTOPO30 are regularly spaced at 30-arc
seconds (approximately 1 kilometer). GTOPO30 is a global data set covering the full
extent of latitude from 90 degrees South to 90 degrees North, and the full extent of
longitude from 180 degrees West to 180 degrees East. The horizontal coordinate system
is decimal degrees of latitude and longitude referenced to the World Geodetic System

84 (WGS84). The vertical units represent elevation in meters above mean sea level.

A rectangular subgrid was extracted over the study area where the elevation values
range from 1 to 6,725 meters with a mean value of 701 meters and a standard deviation
of 1056.2 meters. There is no data over ocean areas. The GTOPO30 DEM for Argentina

can be seen in Figure 4.3.
*  Global Land One-Kilometer Base Elevation (GLOBE)

The Global Land One-Kilometer Base Elevation (GLOBE) digital elevation model
(DEM) was released by the National Oceanic and Atmospheric Administration,
NOAA's National Geophysical Data Center (NGDC). GLOBE is a global data set
covering 180 degrees West to 180 degrees East longitude and 90 degrees North to 90
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degrees South latitude. The horizontal grid spacing is 30 arc-seconds (about 1 km) in
latitude and longitude. The horizontal coordinate system is seconds of latitude and
longitude is referenced to the World Geodetic System 84 (WGS84). The vertical units
represent elevation in meters above Mean Sea Level (MSL). More information can be

found in the following web page: http://www.ngdc.noaaa.gov/mgg/topo/globe.html.

A rectangular subgrid was extracted over the study area where the elevation values
range from —127 to 6798 meters, with a mean value of 701 meters and a standard
deviation of 1055.79 meters. There is no data over ocean areas. The GLOBE DEM is
illustrated in Figure 4.4.
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Figure 4.3: GTOPO30 DEM in Argentina Figure 4.4: GLOBE DEM in Argentina

4.1.4.1 Evaluation of Digital Elevation Models

Comparisons between the gridded height data from both DEMs and point height of the
gravity stations have been made. Both types of heights are used in the geoid
computation. DEM data are used, for example, for the computation of terrain correction

or indirect effects and the height of the gravity station is used to compute point gravity
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anomalies. One of the roughest areas in Argentina, limited by latitudes 32°S to 42°S and
longitudes 72°W to 68°W, was selected to perform these comparisons. From GTOPO30
and GLOBE DEMs, heights at 1452 gravity stations were interpolated using bilinear
interpolation and the differences of both types of heights as well of the histograms of

these differences were made.
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Figure 4.5: Histogram of the differences between heights at 1452 gravity stations
and heights linearly interpolated from GTOPO30

The histogram shown in Figure 4.5 presents the maximum towards positive values; an
asymmetric distribution; and a large number of negative differences, which can be

reflected, in a negative median (-2.409 meters).

The histogram shown in Figure 4.6 presents, like the GTOPO30 DEM, the maximum
towards positive values; an asymmetric distribution; and a large number of negative

differences, which can be reflected, in a negative median (-4.746 meters).

We can conclude that, in this test, there are no significant differences between the two
DEMSs. GTOPO30 has a standard deviation 79.723 m; a mean value of —18.299 m; and
a median of —2.409 m. GLOBE has a standard deviation 79.835 m; a mean value of —
20.241m; and a median of —4.746 m. From these results, GTOPO30 DEM seem to have
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a slightly better agreement with existing point heights, therefore it will be used

throughout this research.

Histogram of the differences between point height data and
gridded heights of GLOBE
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Figure 4.6: Histogram of the differences between heights at 1452 gravity stations
and heights linearly interpolated from GLOBE

Digital elevation models are very important in geoid determination but they area one of
the most significant limitations of the geoid accuracy due to poor data quality and
computational approximations (Smith and Roman, 2000). Most of the gravity stations
used in this research have been measured on the high precision levelling network. In
rough areas, the influence of the topographic masses near the gravity stations is very

important and a more detailed grid of elevations will be necessary for further

investigations.

4.1.5 Digital Depth Model

The topographic/bathymetric data used, for example, for the RTM reduction in the

marine geoid determination were those of the Smith and Sandwell model (Smith and

Sandwell, 1997), which were derived from altimetry. Sandwell and Smith have
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computed a global marine gravity field by processing satellite altimetry data, and the
topography (bathymetry) of the seafloor has been predicted from the gravity data. The
statistics of the sea floor topography can be seen in Table 4.2 and the map of the
bathymetry in the area under study is depicted in Figure 4.7.

Table 4.2: Seafloor topography in the area under study. Unit: [m].

min max mean o
DDM (Sandwell and Smith, 1997) -8057 588 -1850.99 2025.68
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Figure 4.7: Seafloor topography in the area under Figure 4.8: Distribution of GPS/levelling
study points
(Sandwell and Smith, 1997)

4.1.6 GPS/levelling networks

The accuracy of the gravimetric geoid undulations can be evaluated by two methods:
one is the external comparison with geometrical geoid undulations from GPS and spirit
levelling and the other is the internal propagation of data errors. For the first method,

points with GPS-derived ellipsoidal heights and orthometric heights with respect to a
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local datum constitute an important type of data to be incorporated in the database in

order to determine discrete precise geoid undulations by the geometrical approach.

Geometrical geoid undulation on land can be determined, for the absolute and relative

cases (height differences between two points i and j), by:

NOPS —h, —-H 4.1

P P
N9 - N9 = (g —he) - (H; - H;) = AN = Ah, - AH (4.2)

where h, is the ellipsoidal height from GPS and H is the orthometric height. However,
the use of the relationship (4.1) has some limitations due to systematic and random
errors in the derived heights he and H. There are systematic and gross errors in levelling,
especially at higher altitudes. Levelling points are often difficult to access and they are
sometimes covered by vegetation or destroyed. Other limitations are: datum
inconsistencies (he and H refer to different reference surfaces); assumptions and
theoretical approximations made in the normal/orthometric correction; the effect of not
taking into account the differences between the ellipsoidal normal and the plumb line
(deflection of the vertical) which can cause an error in the geometric geoid
determination (Zhang, 1997). Geometrical geoid cannot be derived at sea, so
interpolation is difficult near the coast. The geometrical geoid can be derived with a
very high relative and absolute accuracy but one of the main disadvantages is its poor

resolution.

The errors that affect the accuracy of the ellipsoidal heights are originated from three
sources: satellite or orbit errors, signal propagation and receiver errors (Fotopoulos,
2003). Some of these errors are: atmospheric effects produced by the ionosphere and
troposphere, the Earth body tides, the ocean tides, the atmospheric loading, orbital
errors of the GPS satellites, the antenna phase centre, set-up effects of the antenna, and

multipath effects.

GPS/benchmark height information on 744 points across Argentina has been collected
from different institutions since 1999. This data includes latitude and longitude,
ellipsoidal heights and levelling heights. The ellipsoidal heights are referred to the
POSGAR 1994 (POSiciones Geodesicas ARgentinas) datum, except for the Chubut

network, and the levelling data correspond to the existing high precision levelling of
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Argentina. POSGAR 94 is Argentina’s official geodetic system and it was established

through GPS measurements to realize the WGS84 reference system in the country.

Nine GPS/levelling networks will be used for the external evaluation of the gravimetric
geoid accuracy. The nine networks are located in the provinces of Mendoza (Lenzano,
2001), Santa Fe (Rodriguez et al., 1999), Neuquén (Querejeta, 2001), Buenos Aires
(Perdomo and Del Cogliano, 1999), Santiago del Estero (Goldar, 2001), Tierra del
Fuego (Perdomo and Hormaechea, 1999) and Chubut (Orellano, 2002), one is in
Uruguay (Subiza, 1999) and another one is the PosgAR network. These GPS networks
are located in different topographies. The distribution of GPS/levelling points in
Argentina is shown in Figure 4.8. Information about the GPS networks is summarized

in Table 4.3.

Table 4.3: Statistics of the ten GPS networks in Argentina.

N°of . .
) Latitude Longitude
Area points Reference
range range
PosgAR94 27 | 22.1538S°  43.9094S° | 58.0092°W  70.0816°W IGM
Buenos Aires 180 | 33.4196S°  40.7799 S° | 56.6775°W  63.4417°W (I;Trdfgné‘;)et
(Lenzano et
116 | 32.5888'S°  33.9481S° | 68.6833°W  69.3586°W al.,
Mendoza 2001)
139 | 32.5906S°  35.4794S° | 67.5097°W  69.5891°W
Neuquén 48 | 34.9635S°  41.0514S° | 68.0541°W  71.9435°W (Qgggeffta’
Santa Fe 93 | 27450s°  343195° | 58.987°W  62.7310w | (Rodriguezet
al., 1999)
Santiago del Estero | 47 | 25.8041S°  29.7635S° | 61.8179°W  65.1606°W | (Goldar, 2001)
Tierra del Fuego | 56 | 52.6591S°  54.8076 S° | 67.1903°W  68.6064°W (1; Trdloégg)et
Chubut 10 | 422745S° 458938 S° | 64.2636°W  70.4439°W (ozrggg;lo,
Uruguay 28 | 30.5982S° 34.8883S° | 53.5808°W  58.5140°W | Subiza 1999
All of Argentina | 744 | 22.1538S°  54.8076 S° | 53.5808°W  71.9435°W

Before all these GPS/levelling points are used for comparisons, it was necessary to
clean the data (identify outliers and blunders). A 2D contour map of the geometric geoid
was plotted and after a visual inspection test, a total of 192 points were identified as

blunders and were eliminated from the original database. The 2D contour maps, before
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and after blunders removal, can be seen in Figures 4.9 and 4.10, respectively. The
biggest discrepancy was found at a point of the PosgAR network where the difference
between the GPS/leveling derived geoid and the geoid computed from EGM96 was
77.74 m; two points were eliminated from the Neuquén network where the differences
were of the order of 23 and 26 meters; in Santa Fe, only one point with 16 meters
difference was eliminated; the complete set of points of Mendoza and the complete
Santiago del Estero network where the differences were very doubtful were eliminated.
The final GPS/levelling data in Argentina after the suspicious observations were

removed consist of 552 GPS/levelling points.
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Figure 4.9: GPS/levelling-derived geoid (before blunders removal)
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Figure 4.10: GPS/levelling-derived geoid (after blunders removal)

4.1.7 Global Geopotential Models

The gravimetric geoid of Argentina will be determined using the remove-compute-
restore technique where the use of a global geopotential model (GGM) plays an

important role. Global geopotential models provide the long-wavelength structure of the

gravity field. They are based on spherical harmonics expansions and they are given as a
set of coefficients. The analysis of satellite orbits can determine the low degree
coefficients of the geopotential model while higher degrees can be obtained mainly

from terrestrial gravity anomalies and satellite altimetry.
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The resolution of the gravity field parameters (e.g., gravity anomalies) computed from a

geopotential model is related to its maximum degree and order n__ and it can be

max

calculated from the following formula:

o

reSGGM = in degrees (4.3)
max
or by:
reSGaM = 2(110001(111 in km (4.4)
max

The global geopotential models that are derived from only satellite observations are
called satellite-only solutions. The first high degree geopotential model was developed
to degree 180 for the first time in 1978 (Rapp, 1978). Since then, other models have
been computed in 1981 (OSUS81) (Rapp, 1981); in 1985 (GPM2) (Wenzel, 1985); in
1986 (OSU86) (Rapp and Cruz, 1986) completed to degree and order 360; in 1990
OSU89 (Rapp and Pavlis, 1990); in 1991 OSU91 (Rapp et al., 1991). In 1996, the Earth
Gravity Model (EGM96), complete to degree and order 360 was computed as a
National Aeronautics and Space Administration (NASA)/US National Imagery and
Mapping Agency (NIMA), and OSU (Ohio State University) effort (Lemoine et al.,
1998).

The ultra-high degree geopotential models (GPM98A and GPM98B) were developed to
degree and order 1800, which corresponds to nearly 11 km spatial resolution by Wenzel

in 1998 (Wenzel, 1999).

EGMO6 is a spherical harmonic model of the Earth's gravitational potential to degree
360 which incorporates improved surface gravity data, altimeter-derived anomalies
from ERS1 and from the GEOSAT Geodetic Mission (GM), extensive satellite tracking
data - including new data from Satellite Laser Ranging (SLR), the Global Positioning
System (GPS), NASA's Tracking and Data Relay Satellite System (TDRSS), the French
Doppler Orbitography and Radiolocation Integrated by Satellite (DORIS) system, and
the US Navy TRANET Doppler tracking system - as well as direct altimeter ranges
from TOPEX/POSEIDON (T/P), ERS1, and GEOSAT. The final solution blends a low-
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degree combination model to degree 70, a block-diagonal solution from degree 71 to
359, and a quadrature solution at degree 360. The model is used to compute geoid
undulations globally accurate to better than one meter and realize WGS84 as a true

three-dimensional reference system (Lemoine, 1998).

Several global geopotential models listed in Table 4.4 are available for this research.

Table 4.4: Global Geopotential Models available in this research.

Geopotential model Ponax resgou(km) resgeu(deg) year Reference
GPM98A 1800 ~11 0.1 1998 Wenzel (1998)
GPM98B 1800 ~11 0.1 1998 Wenzel (1998)

GPM98CR 720 ~28 0.3 1998 Wenzel (1998)
EGM96 360 ~55 0.5 1996 Lemoine et al.(1996)
OSU91A 360 ~55 0.5 1991 Rapp et al. (1991)
GPM2 200 ~100 0.9 1984 Wenzel (1985)
OSU81 180 ~111 1.0 1981 Rapp (1981)
JGM3 70 ~286 2.57 1996 Tapley et.al. (1996)

From Table 4.4, we can see that the maximum degree of the geopotential models ranges
from 70 to 1800. It corresponds to a resolution of any gravity quantity computed from a
spherical harmonic model of the Earth's gravitational potential between ~11 km and

~286 km.

The high-resolution global gravity field model EIGEN-CGO1C, complete to degree and
order 360, was generated using CHAMP (860 days) and GRACE satellite gravity data
combined with 0.5 x 0.5 degree surface data (gravimetry and altimetry). It was released

to the public in October 29, 2004.

EIGEN-CGOI1C is a combination of 200 days of GRACE mission, 860 days of CHAMP
data, and gravimetry and altimetry surface data. The 200 days of GRACE mission were
during the months of April, May, August and November 2002 and April, May, August,
October and November 2003. The 860 days of CHAMP data were from October 2000
to June 2003. The surface data used to develop the model are described in Reigber et al.,

(2005).

CHAMP (CHAllenging Minisatellite Payload) is a Gravity And Magnetic Field
German satellite Mission. The CHAMP satellite was launched on July 15, 2000 into an
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almost circular, near polar (i = 87°) orbit with an initial altitude of 454 km. The design
lifetime of the satellite system is 5 years. The Earth's gravity field recovery is the most
important scientific objective of CHAMP for this thesis.

The GRACE (Gravity Recover and Climate Experiment) mission was launched in
March of 2002. Since then, the GRACE mission is making detailed measurements of
the Earth's gravity field. It has a 5-year lifetime. The GRACE mission has two identical
spacecrafts flying about 220 kilometers apart in a polar orbit 500 kilometers above the
Earth. GRACE is a joint partnership between the National Aeronautics and Space
Administration (NASA) in the United States and Deutsche Forschungsanstalt fiir Luft
und Raumfahrt (DLR) in Germany.

4.1.8 Altimetric data
= ERSI1 data

The satellite altimetry data were 70510 CORSSHs measurements from the geodetic
mission (GM) of the European Remote-Sensing Satellite 1 (ERS1), which are generated
by the CLS Space Oceanography Division and provided by AVISO (Archiving,
Validation and Interpretation of Satellite Oceanographic data). The ERS1 satellite's
main mission is to observe the Earth, in particular its atmosphere and ocean. It was built
by the European Space Agency (ESA) and it carried several instruments, including a
radar altimeter. ERS1 was launched on July 1991, switched off in June 1996 and it was
retired in March 2000. The cross-track spacing of ERS1-GM is about 8 km. The
distribution of the ERSI1 tracks in the area under study is depicted in Figure 4.11.

=  TOPEX/POSEIDON data

To assess the accuracy of all the marine geoid models computed through this thesis, we

will compare them with stacked 3™ year T/P SSHs.

The TOPEX/POSEIDON satellite was launched on 10 August 1992 with the objective
of observing and understanding the ocean circulation. It was a joint project between
NASA, the US space agency, and Centrale Nationale d' Etudes Speciales (CNES), the
French space agency. It carries two radar altimeters and precise orbit determination

systems, including the DORIS system.
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The TOPEX/POSEIDON Corrected Sea Surface Heights (CORSSH) are generated by
the CLS Space Oceanography Division and distributed by AVISO. The 3 ™ year of the
mission was extracted from the AVISO CORSSH GDRs and provided to us by George

Vergos after the stacking of the T/P data was performed. The 3" year was selected for
the comparisons in order to have a common observation period with the ERS1 data.The
cross-track spacing of TOPEX/POSEIDON is about 330 km. The stacked T/P tracks can

be seen in Figure 4.12.

ERS1 and T/P CORSSHs are generated by AVISO as Geophysical Data Records
(GDRs) after quality control, validation of altimetric data and geophysical corrections

have been applied.

35°'S

40°S

45°'S

50°'S

55§

Figure 4.11: Distribution of ERS1-GM SSH Figure 4.12: TOPEX/POSEIDON tracks

4.1.9 Quasi Stationary Sea Surface Topography (QSST) models

The EGM96 DOT model, which is a spherical harmonic expansion of the sea surface
topography (SST), complete to degree and order 20 was used. It should be considered as
a representation of the mean SST field for the time period that corresponds to TOPEX
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cycles 11 through 84 (December 31, 1992 to January 4, 1995). This estimate was
derived from altimeter data from the aforementioned cycles of TOPEX, and altimeter
data from ERS1 35-day repeat cycles 6, 8, 11, 14 and 17 (Lemoine et al., 1998). The
model was derived during the simultaneous adjustment for the development of the

EGM96 geopotential model.

4.2 Data pre-processing, evaluation and validation

Surface gravity measurements data have been collected from different universities and
organizations. Major part of the gravimetric data in Argentina comes from the database

of the Military Geographic Institute (IGM).

Since the point gravity measurements were provided by different sources, they first
have to be homogenized. They were provided in different systems so they were unified
to the International Gravity Standardization Net 1971 (IGSN71). IGSN71 was
introduced by a resolution of the International Union of Geodesy and Geophysics

(IUGG) in 1974.

The information given for each data point includes: latitude (degree), longitude

(degree), height above sea level (m) and observed gravity (mGal).

Most of the gravity data were generally given in the Potsdam Gravity System

established in 1909. The transformation of these values into IGSN71 is
g (IGSN71) = g (Potsdam) — 14.93 mGal 4.5)

The horizontal geodetic coordinates were converted from the classic Geodetic System
Campo Inchauspe 69 (CAI69), used in Argentina for many years, to the Geodetic
Reference System 1980 (GRS80). The Geodetic Reference System 1980 has been
adopted at the XVII General Assembly of the IUGG in Canberra, December 1979
(Moritz, 2000).

4.2.1 Gravity reduction and gravity anomaly

The gravity anomaly Ag is defined as:
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Agp =gp —Y (4.6)

where P is on the geoid (Stokes’s approach) or on the topography (Molodensky’s
approach) and y is the normal gravity on the ellipsoid (yQO) or on the telluroid (yQ ),

respectively.

The point free-air gravity anomalies used in the classical boundary value problem are
computed with equation (2.30), where the gravity on the geoid is computed from the
measured gravity (usually measured at the topographic surface) using the actual
gradient of gravity and the orthometric height of the point above the geoid. We will
refer to these anomalies as the classical free-air anomalies. If P is on the topographic
surface (Molodensky boundary value problem) the free-air gravity anomalies are
computed using equation (2.97) where the normal gravity evaluated by equation (2.96)
using the normal height H* is subtracted from the surface gravity. The resulting

anomalies are the surface free-air gravity anomalies.

For numerical computations, the classical free-air anomalies can be computed

(Featherstone and Denith, 1998) from:
Agpa =g—0.3086h+0.7210 °h? —yq_ (4.7)

The 0.3086 mGal/m is the numerical value adopted for the free-air gradient, assuming

an spherical Earth with radius R.

The normal gravity on the GRS80 reference ellipsoid (yq,) is evaluated through

Somigliana’s closed formula, see also equation (2.32).

1+ksin?
TQp =Ya e (4.8)
l—e“sin” ¢

where ¢ is the GRS80 geodetic latitude of the observation point, k is the normal gravity

constant, y, is the normal gravity on the equator, and e?is the square of the first

eccentricity. For GRS80, these constants are:

Ya = 978032.67715 mGal (4.9)



73

k= brp -1 =0.001931851353 (4.10)
AYe
) a? —b?
ef=—0 = 0.0066943800229 (4.11)
a

The normal gravity calculated with this equation on GRS80 contains the gravitation of
the atmospheric mass but the gravity measured on or near the Earth’s surface does not.
If this normal gravity is used for the computation of gravity anomalies, an atmospheric
gravity correction 0g,m has to be added to the observed gravity. The following

empirical formula for its calculation is given by Torge, (1989).
_ _ -4 -8, 2
8gatm =0.874-0.9910"*h[ry] +0.35610hf 4 [mGal] (4.12)

where the height h is in meters.

The atmospherically corrected classical free-air gravity anomaly can be computed using

equation (4.13) or equation (4.14), if the second-order free-air reduction is applied

AgFA =g+ 88atm —0.3086h +0.7210°h? —yq (4.13)
2
Agpx =8+ 0L —L(lﬁLerrn—f/lfsin2 (p)h—SY—th)—yQ (4.14)
a a °

where f is the ellipsoidal flattening (for GRS80, 0.0033528106818), a is the semi-major
axis (for GRS80, 6378137m) and

?a’b

m= =0.00344978600308 for GRS80 (4.15)

The point complete Bouguer anomalies are computed through the following equations

Agp =Agpp —2nGph  for h>0land (4.16)

Agp =Aggp +21G(p—py)h  forh<Osea (4.17)

where Agp, is the free-air anomaly, p and p,, are the densities of the rock and water

respectively, h is the height or the depth of the gravity station.
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During this study, we assume a constant density for the mean crust of 2.67 gr/cm’ and

for the seawater 1.03 gr/cm’, so the Bouguer gravity anomalies can be calculated as

follows:
Agg =Agpp —0.1119h  forh>0land [mGal] (4.18)
Agp =Agpa +0.0699h  for h <0sea [mGal] (4.19)

The point refined Bouguer anomalies can be computed after applying the terrain

correction to the Bouguer anomaly.

4.2.2 Terrain corrections

Terrain corrections were computed using program 7c2DFTPL developed at the
Department of Geomatics Engineering at the University of Calgary by Yecai Li in 1993.
This program computes terrain corrections via 2D FFT with either a mass prism or a
mass line topographic model. First, terrain corrections were computed from the Digital
Elevation Model GTOPO30 which has an original grid spacing of 30 arc seconds
corresponding to an approximate spacing of 1 kilometre in North-South and East-West
directions. But due to the convergence of the meridians, this spacing varies according to
latitude. Due to some numerical instabilities, terrain corrections were computed again
but this time with the Digital Elevation Model with a grid spacing of 2 arc-minutes by 2
arc-minutes. The maximum, minimum, mean and standard deviation of the heights and

terrain corrections for the entire Argentina can be seen in Table 4.5.

Terrain corrections were computed using formulas (2.36) and (2.43), which correspond
to the mass line (ML) and the mass prism (MP) topographic models. The computations
were done over the whole area without any integration cap size. Figure 4.13 shows a
map of terrain corrections for Argentina computed with a mass prism topographic

model.

The highest area of Argentina was selected to study terrain corrections computed with
different mass representations and their effect on the geoid. This area corresponds to a

grid which is bounded between latitudes 29°S to 36°S and longitudes 73°W to 63°W.



Table 4.5: Terrain corrections in Argentina in mGal.

75

min

max mean o
Height [m] 6402.69 0.00  407.11 885.54
¢ (MP) 74.30 0.00 2.89 2.70
crtey (MP) 73.47 0.00 1.02 2.90
c1+C):C3 (MP) 73.48 0.00 1.02 2.90
Latitude | (e toytes)-(crtes) (MP) 0.79 -0.25 0.00 0.01
225§St0 (cr+er)-c (MP) 0.29 3.02 0.03 0.03
Ci (ML) 71.51 0.00 0.96 2.53
L;;;‘iilmtie crte; (ML) 70.68 0.00 0.97 2.54
sy |ertertes (ML) 70.71 0.00 0.97 2.54
(crteates)-(eitey) (ML) 0.22 -0.09 0.00 0.00
(crter)-c (ML) 0.14 -1.79 0.00 0.02
(crteate;)MP - (crteste;)ML 5.45 -0.07 0.06 0.21
(c1t¢2)MP - (citc)ML 4.87 -0.02 0.06 0.20
(c1)MP - (c;)ML 6.36 0.00 0.05 0.19
75w 70°W 65°W 60°W 55°W
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Figure 4.13: Terrain Corrections
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Table 4.6 shows the statistics of topographic heights and terrain corrections computed

for the whole computation area and with an integration cap size of approximately 100

kilometres and for all the three terms (c;+co+c3). MP3 are terrain corrections computed

for all three terms using a mass prism representation, ML3 are terrain corrections
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computed for all three terms using a mass line model, w means that the integration was
done over the whole area and c indicates that terrain corrections were computed using a

cap size of 100 km by 100 km.

Table 4.6 indicates that the standard deviation of the differences between computed
terrain corrections with a mass line model and a mass prism model is 0.40 mGal and the
maximum value is 5.30 mGal. Plotting these differences we can see that they are
correlated with the topography. The effect of the terrain correction computed with both
topographic representations on the geoid can also be seen in Table 4.6. The effect of the
terrain correction differences on the geoid has a standard deviation of 4 cm and a

maximum of approximate 20 cm.

Table 4.6: Effect of different models and cap size on terrain corrections and geoid.

Height [m]
min max mean (e
0.00 5947.63 914.72 1092.47
Terrain corrections [mGal] Effect on the geoid [m]
min max mean c min max mean o
MP3 (w) 0.03 61.44 258 424 | 0509 2702 1281  0.523
ML3 (w) 0.03 56.74 240 388 | 0474 2507 1.192 0484
MP3 (w) - ML3 (w) 0.03 5.30 0.18 040 | 0035 0202 0089  0.039
MP3 (c) 0.00 53.67 205 3.76 | 0401  2.191  1.022 0431
ML3 (¢) 0.00 49.00 1.87 339 [ 0366 1995 0933  0.392
MP3 (¢c) - ML3 (¢) 0.01 5.30 0.18 040 | 0035 0202 008  0.039
MP3 (w) - MP3 (c) 0.03 7.78 052  0.64 | 0.108 0511 0259  0.097
ML3 (w) - ML3 (¢) 0.03 7.74 052  0.64 | 0.108 0511 0289  0.094

Table 4.6 also shows that the limitation of the integration of the cap size to 100 km by
100 km produces an effect on the geoid of about 9 cm in terms of the standard deviation

both mass representations.

Table 4.6 shows that the effect on the geoid when terrain corrections were computed
with a limited cap size and using a mass line topographic model instead of a mass prism
topographic model is 4 cm in terms of the standard deviation; this result is the same as

when the computation was done over the whole area.

For geoid determination in rough areas, the mass prism topographic model has to be

used instead of the mass line topographic model for the computation of terrain
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corrections. The computation of the terrain corrections should be done up to the second
term of the terrain correction series for either the mass line or the mass prism
topographic model. The effect of the third term is negligible. The integration cap size
should be large enough for the computation of terrain corrections. There is a 9 cm (o)
geoid undulation error when the integration cap size is limited to 100 km by 100 km

instead of using the whole computation area.

We conclude, that for the whole Argentina, we will compute terrain corrections with a

mass prism model, without a limited integration radius, and include the second term c;.

4.2.3 Pre-processing of land gravity data

The land data described in section 4.1.1 was collected from different data sources, so
special care was taken in order to detect and remove data blunders, duplicate points, and
all data points that were considered as suspicious observations. Special software was
developed to remove repeated points from the database in order to generate the most

homogenized gravity database for Argentina.

Point free-air gravity anomalies and point Bouguer gravity anomalies were computed
for each observation with equations (4.13) and (4.18), respectively. Table 4.7 shows the

statistics after the database was cleaned.

Table 4.7: Statistics of the gravity points of the Argentinean database after data
removal.

Unit min max mean o
66717 points
latitude [degree] -54.82 -20.01 -29.93 7.47
longitude [degree] -74.83 -53.00 -63.23 5.53
Height [m] -68.10 6204.00 842.61 1186.16
g IGSN71 [mGal] | 977310.00 981469.07 979107.27 798.95
Free-air gravity anomaly [mGal] -145.32 280.00 7.71 38.40
Bouguer gravity anomalies [mGal] -489.95 126.87 -86.56 117.98

The gravity anomalies computed from the geopotential model EGM96 were removed
from the point free-air gravity anomalies. With this reduced gravity anomalies, a
contour map was made and some points with gross errors were detected and removed

from the original database. A contour map of Bouguer gravity anomalies was also
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generated and deep holes and steep spikes were considered as suspicious observations.
The total area was divided in small areas where 2D contour maps of the Bouguer
anomalies were done and a careful visual inspection was performed in order to detect

outliers.

4.2.4 Pre-processing of shipborne data

The shipborne gravity data described in section 4.1.2 are referred to the Geodetic
Reference System 1967 (GRS67), thus they have to be transformed to GRS80. This was
done using the following basic formula (Moritz, 2000):

AgGRs80 = AZGRS67 T YGRS67 — Y GRSS0 (4.20)

where Aggrsso denotes gravity anomaly in GRS80, Aggrse7 gravity anomaly in GRS67
and ygrse7 and Ygrsso are the magnitudes of the normal gravity in GRS67 and GRS80,

respectively. Normal gravity can be computed for the GRS80 using formula (4.8). For
GRS67 (ibid):

YGRse7 = 978031.8459(1+0.0052789660sin ¢ +0.0000232725sin *¢) mGal (4.21)

The statistics of the original shipborne free-air gravity anomalies and the statistics of the
shipborne free-air gravity anomalies after they have been transformed to GRSS80 is

shown in Table 4.8.

Table 4.8: Statistics of shipborne free-air gravity anomalies referred to MSS. Unit

[mGal].

Free-air gravity anomalies min max mean o
Agpa (17352 values) GRS67 -132.35 532.80 24.98 97.05
Agra (17352 values) GRS80 -133.16 531.92 24.14 97.05

Three ship tracks corresponding to a total of 4529 points were removed from the
original database as they were considered as blunders; hence the final marine database

will consist of 12823 free-air shipborne gravity anomalies is shown in Table 4.9.
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Table 4.9: Statistics of shipborne free-air gravity anomalies referred to MSS. Unit
[mGal].

min max mean o

Agra (12823 values) GRS80 -133.16 142.38 3.96 28.64

It is often that the ship gravity anomalies refer to the sea surface and not the geoid itself,
thus their use will lead to the determination of a mean sea surface and not a geoid
model. These gravity anomalies have to be free-air reduced so as to produce gravity
anomalies on the surface of the geoid. The free-air gravity anomalies are computed

using the well-known reduction formula

Agpa =Ag-F (4.22)

where F is the free-air reduction. In marine regions, the height needed for the reduction
is that of the QSST, which varies between 0 and -0.30 m in the study area. Thus, for
practical purposes it is sufficient to use the normal gradient of gravity to compute the

free-air reduction as

dy
F=~ —67thSST ~ _0'3086hQSST (423)

where 4 is the QSST in meters, derived from a global model.

The statistics of the shipborne gravity anomalies after reducing them to the surface of

the geoid can be seen in Table 4.10.

Table 4.10: Statistics of shipborne free-air gravity anomalies referred to the geoid. Unit
[mGal].

min max mean o

Agra (12823 values) GRS80 -133.03 142.57 4.01 28.64

These two pre-processing steps are necessary for the data homogenization so that they

can be used for the determination of the gravimetric geoid.
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4.2.5 Validation of altimetry-derived free-air gravity anomalies

Altimetry-derived gravity anomaly grids offshore Argentina were compared with one
another and with shipborne gravity anomalies computed from the shipborne gravity

database.

Sub-grids were extracted from the available global marine gravity field grids over the
study area bounded by 21° to 55° in latitude and 76° to 53° in longitude. Some of these
grids, like the KMS grids, have been filled in with EGM96 gravity anomalies in the land
areas. The statistics of the gravity anomalies for each grid, after land gravity anomalies
were removed using the grdlandmask option in GMT (Wessel, 1995) can be seen in
Table 4.11 together with the statistics of the gravity anomalies computed from EGM96
computed in the same marine grid.

Table 4.11: Statistics of the gravity anomalies derived from satellite altimetry and
EGM96 gravity anomalies.

Grid min max mean o

CLS_SHOM99 (2°x2’) -270.86 226.19 -3.34 41.14
CLS_SHOM99 (1°x1”) -272.39 223.53 -3.31 41.02
GSFC (2’x2”) -256.20 164.30 -3.69 40.76
GSFC (1’x1°) -254.48 137.53 -3.74 40.56
KMSO01 (2°x2”) -252.23 182.43 -3.71 40.34
KMSO01 (1°x17) -252.84 182.44 -3.71 40.34
Sandwell (2°x2”) -260.36 150.63 -4.05 40.95
Sandwell (1°x1”) -260.31 140.85 -3.64 40.86
KMSO02 (2°x2”) -252.57 178.16 -3.69 40.56
KMS02 (1°x17) -252.57 183.88 -3.69 40.56
EGM96 (2°x2°) -214.78 163.19 -3.55 38.86

It can be seen that the altimetrically derived marine gravity anomalies have similar

statistics.

In order to make comparisons among the different grids, the data has to be re-gridded
onto one arc-minute by one arc-minute grid using the surface option in GMT (Wessel,
1995) because the Sandwell and CLS SHOM grids nodes are offset by one minute with
respect to the KMS and GSFC grids. The statistics of the differences of the grids around

Argentina can be seen in Table 4.12 and their images are shown in Figures 4.14 to 4.23.
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The locations of the shipborne data were bilinear interpolated from the different grids of
altimeter-derived gravity anomalies grids. Table 4.13 shows the statistics of the
differences between the altimeter data and the shipborne free-air gravity anomalies that

can be seen in Figures 4.24 to 4.28.

Table 4.12: Statistics of the differences between different altimetric gravity anomalies
grids around Argentina. Unit [mGal].

Grid at sea min max mean o

KMS02-KMSO01 -47.68 64.58 0.01 4.65
KMS02-Sandwell -66.02 119.7 -0.05 4.19
KMS02-GSFC -111.09 97.16 0.05 4.88
KMS02-CLS -234.96 253.43 -0.38 6.80
KMSO01-Sandwell -71.70 68.22 -0.06 5.44
KMS01-GSFC -115.62 83.77 0.03 6.11
KMSO01-CLS -236.98 256.97 -0.38 7.53
Sandwell-GSFC -154.93 73.72 0.09 543
Sandwell-cls 229.77 261.07 -0.33 6.78
GSFC-CLS -245.98 249.99 -0.42 7.35

Table 4.13: Statistics of the differences between different altimetric gravity anomalies
grids and marine gravity anomalies grids around Argentina. Unit [mGal].

min max mean o
KMSO01-shipborne -61.47 67.74 0.99 10.31
KMSO02-shipborne -63.67 66.31 1.25 9.99
CLS-SHOM?99 — shipborne -154.04 162.27 0.74 11.68
GSFC-shipborne -57.66 77.23 1.41 10.41
Sandwell-shipborne -61.21 67.92 1.13 10.11

There are differences between the marine free-air gravity anomalies due to the different
computation methods employed. The smaller differences are between the KMS02 and
Sandwell grids and the smaller differences in terms of standard deviations between both
grids and the shipborne data is achieved with the KMS02. The KMS02 grid will be
used, even though some numerical results presented in this research used the KMSO01

grid as the KMS02 was delivered for public use after this thesis has started.
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Figure 4.27: Differences between Sandwell
and shipborne gravity data
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4.3 Determination of the best fitting Global Geopotential Model in Argentina

In order to determine the Argentinean gravimetric geoid it is first necessary to choose

the best fitting global geopotential model (GGM) for Argentina.

The best GGM will be the one that best fits the gravity anomalies and the geoid in

Argentina, and it will be determined through the following statistical tests:

*  Comparisons between geoid undulations computed from different geopotential

models and geometrical geoid undulations at GPS/levelling points.

= Comparisons between gravity anomalies computed from different global
geopotential models and land, marine and free-air gravity anomalies derived from

satellite altimetry.

4.3.1 Comparisons between geoid undulations computed from different

geopotential models and geoid undulations derived from GPS/levelling points

Geoid undulation values (Ngy) are computed from a set of normalized coefficients in

spherical harmonic approximation using formula (2.13).

The quality of the geopotential model geoid can be evaluated by comparing the geoid
undulations values computed from a geopotential model (Ngm) to those from

GPS/levelling (N°*®):
NEPS _ NG, =0=hej —H; -N; (4.24)

In practice, there are a lot factors that affect equation (4.24); these factors have been
described by Fotopoulos et al. (1999) and Kotsakis and Sideris (1999). Some of these

factors are:
= random errors in the values of he, H and N

» datum inconsistencies; each data type (h., H and N) refers to a different reference
surface and the result is a datum shift between the gravimetric geoid and the

GPS/levelling derived geoid
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= gystematic effects and distortions, like long wavelength errors in Ngy, poorly
modeled GPS errors, and distortions in the vertical datum due to over constraining

the levelling network

» geodynamics effects (post glacial rebound, land subsidence, monuments

instabilities, mean sea level rise)

= theoretical approximations in the computation of either the gravimetric geoid N or
the orthometric height H (improper terrain modeling in the gravimetric geoid,
neglecting the Sea Surface Topography (SST) at the tide gauges, errors in the

orthometric correction

Datum inconsistencies and systematic effects are the most important effects that cause
discrepancies in equation (4.24). Most of the geoid studies that use GPS/levelling
derived geoid as an external evaluation are based in the following corrector surface

model:
hei _Hi _Ni =aiTx +Vy =NGPS _NGM =aiTx +Vi (425)

where x is an n x 1 vector of unknown parameters, a; is an n x 1 vector of known

coefficients and v, is the residual random noise term (Fotopoulos, 1999).

The model of equation (4.25) is applied to all reliable GPS network points and the least-
squares adjusted values for the residuals v, give a realistic picture of the level of

absolute agreement between the GGM geoid or the gravimetric geoid and the
GPS/levelling data, and they are taken as the final external indication of the geoid

accuracy (Fotopoulos, 1999).

The parametric part a;'x can describe all possible datum inconsistencies and systematic

distortions of the data.

One of the most common models is the four-parameter transformation model given by

T . .
a; X =X] +XC08P; COSA; + X3 COS@; SIn A + X4 sin @; (4.26)
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where @, and A, are the latitude and longitude of the GPS/levelling points, x; is the
shift parameter between the vertical datum implied by the GPS/levelling data and the
datum of the GGM, x, x3 and x4 are the translation parameters implied by the

GPS/levelling data and the geopotential model.

Other classes of models are polynomials referred to as the multiple regression formula

(MRE) in Fotopoulos (1999):

N
D (@i—90)" (L —2g)"xq (4.27)
n=0

T, _
a; x=

1z

where ¢(,L( are the mean values of the latitude and longitude of the GPS/levelling

points and x4 contains the q unknown coefficients; q varies according to the number of

terms up to a maximum of q = (N+1)(M+1).

Another model is the seven-parameters similarity transformation model given by

Kotsakis (2001):

sin @; cos @; sinA;
W

)+

T .

a; X =X| COSQ; COSA; + X COSP; COSA; + X3 SIn@P; +X4(
3 (4.28)
sin” @;

Sin @ COS @; COSA; l—fzsenz(pi

W

X5( )+X6( )+X7( )

where W =./1-¢?sin? ¢; , e? is the eccentricity and f is the flattening of the reference

ellipsoid. The parametric model corresponds to a parallel datum shift plus two small
rotations around the x- and y-axes, plus one change in the semi-major axis of the

reference ellipsoid, plus one change in the flattening of the reference ellipsoid.

During the numerical result carried out through this thesis, these three types of models

were used.

National Analysis

The statistics of the absolute differences between the geoid model derived from
different geopotential models and GPS/levelling-derived undulations for the entire

Argentinean region can be seen in Appendix 1. Appendix 1 also shows the statistics of
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the discrepancies between the geoid from different geopotential models and
GPS/levelling after the fit of a 3 order polynomial model, the least-square fitting of a
four-parameter transformation model and a differential similarity transformation model,

with 7 parameters.

Before the least squares fitting was applied, a 3 root-mean-square value (rms) test was
employed to remove some remaining outliers that could not be removed by the simple
visualization method. The number of points depends on the geopotential model used

(for example, 4 points for the EIGEN CGOI1C and only 1 point for EGM96).

3.000

2.500 +

2.000 +

1.500 ~

1.000 ~

Standard deviation [m]

0.500 ~

0.000

EGM96
GPM2
OSuU8l
JGM3

OSU91A

GPM98A
GPM98B
GPM98CR
EIGEN_CGO01C

Global Geopotential Models

‘ —&— Before 4-paramter fit —#— After 4-paramter fit ‘

Figure 4.29: Standard deviation of the absolute differences between the different geoid
undulations computed from geopotential models with GPS/levelling-derived geoid (before and
after fit)

To summarize the results presented in the Appendix 1, the standard deviations of the
differences between the geoid undulations computed from the different geopotential
models with the GPS/levelling derived geoids before and after fir are plotted in Figure
4.29.

From the statistics shown in Appendix 1, it can be seen that EIGEN CGO1C and
EGM96 are the best global geopotential models that represent the long wavelength
gravity field in Argentina.
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For the EIGEN CGOI1C, it can be seen from Appendix 1 that there is 5 cm, 7 cm and 6
cm improvement in the standard deviation of the differences after using a four-
parameter, a third polynomial and a seven-parameters similarity transformation model,

respectively.

Regional Analysis

The absolute differences between the geoid undulations computed from different geoid
models with GPS/levelling derived geoid undulations at each network are presented in
Appendices 2 to 9. From these tables, we can see that the EIGEN _CGO1C global
gravity model best fits the long-wavelength structure of the gravity field in almost all
the GPS/levelling networks, with the exception of the Tierra del Fuego network where
the OSU91A (o = 21 cm) model is superior in terms of the standard deviation to the
EIGEN CGO1C (6 =~ 27 cm), before and after fitting a four parameter, a seven
parameter and third order polynomial model. But in terms of mean values, the results is

reverse; 57 cm for OSU91A and 7 cm for EIGEN CGO1C.

The differences, after a four-parameter transformation model has been applied to the
differences between the geoid computed from the different geopotential models with the

geoid derived from GPS/levelling, are depicted in Appendix 10.

After applying the model given in (4.25), the remaining, mostly random errors were not
considered. In other studies, these errors are usually modeled by least-squares

collocation and added to the corrector surface.

4.3.2 Comparisons between gravity anomalies computed from different global
geopotential models and marine, land and free-air gravity anomalies derived from

satellite altimetry

Gravity anomalies from the geopotential models OSU91A, EGM96, GPM98A and
GPM98B and EIGEN-CGO1C were computed using formula (2.12) and they were

compared with land, sea and altimetry free-air gravity anomalies in Argentina.
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Table 4.14: Statistical comparisons between gravity anomalies computed from GGMs and
marine gravity anomalies. Unit: [mGal].

min max mean o
Marine Ag -133.03 142.57 4.01 28.64
Ag OSU91A -98.21 104.85 2.68 24.51
Ag EGM96 -109.98 116.19 3.18 27.05
Ag GPM9SA -132.83 114.74 3.09 27.19
Ag GPM9SB -133.85 116.27 3.38 27.21
Ag EIGEN-CGO01C -118.97 119.71 2.95 27.51
Marine Ag - Ag OSU91A -75.87 63.89 1.33 12.79
Marine Ag - Ag EGM96 -80.51 62.15 0.83 12.54
Marine Ag - Ag GPM98A -46.78 68.64 0.92 8.79
Marine Ag - Ag GPM98B -46.31 68.40 0.63 9.00
Marine Ag - Ag EIGEN-CGO01C -81.00 71.77 1.06 13.40

Table 4.15: Statistical comparisons between gravity anomalies computed from GGMs and

KMSO02 satellite derived free-air gravity anomalies. Unit: [mGal].

16961 KMS02 points min max mean o

KMSO02 Ag -98.37 131.47 3.46 16.96
Ag OSU91A -87.18 105.60 1.34 14.61
Ag EGM96 -95.00 108.22 2.92 15.76
Ag GPM98A -100.88 128.94 1.90 16.71
Ag GPM9SB -100.91 127.74 1.48 16.71
Ag EIGEN-CGO01C -106.71 100.14 1.70 15.16
KMSO02 Ag - Ag OSU91A -31.49 47.67 2.11 7.90
KMSO02 Ag - Ag EGM96 -25.88 48.33 0.54 6.79
KMSO02 Ag - Ag GPM98A -140.83 103.73 1.56 6.31

KMSO02 Ag - Ag GPM98B -139.89 102.25 1.98 6.37
KMSO02 Ag - Ag EIGEN-CGO1C -27.46 61.51 1.76 6.79

Table 4.16: Statistical comparisons between gravity anomalies computed from GGMs and land
gravity anomalies. Unit:[mGal].

min max mean o
Land Ag -145.32 280.00 7.71 38.40
Ag OSU91A -142.27 237.91 19.26 41.73
Ag EGM96 -112.66 247.60 13.65 41.49
Ag GPM98A -92.59 319.21 23.61 41.47
Ag GPM98B -92.71 378.56 23.87 41.76
Ag EIGEN-CGO1C -100.27 248.96 14.59 40.57
Land Ag - Ag OSU91A -298.85 231.12 -11.56 34.62
Land Ag - Ag EGM96 -321.92 216.73 -5.95 28.26
Land Ag - Ag GPM98A -313.47 245.73 -15.97 28.46
Land Ag - Ag GPM98B -352.46 262.40 -16.09 28.26
Land Ag - Ag EIGEN-CGO1C -300.82 225.15 -6.88 28.33
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The smallest standard deviation in the differences between the gravity anomalies from
the database and the gravity anomalies derived from the geopotential model can be

taken as an indication of the best geopotential model.

The free-air gravity anomalies were selected from the gravity database. Their statistics
can be seen in Tables 4.14, 4.15 and 4.16 for shipborne, KMS02 and land gravity

anomalies, respectively.

From the above tables, the GPM98A and GPM98B show better standard deviation in
the marine and altimetry comparisons but in the comparisons with land data all models
show similar statistics. Considering these results in conjunction with the comparisons
made with the GPS/levelling-derived geoid, the EIGEN CGO1C gave better results
overall and it is the GGM that best fits the long wavelength structure of the gravity field
in Argentina, followed by EGM96. Some of the numerical tests carried out during this
research were done before the public distribution of the EIGEN CGO01C global gravity

model to the scientific community.

4.4 Summary

The following data and models were selected after the evaluations described in this

chapter and will be used in the numerical results presented in the following chapters.

Gravimetric geoid Altimetric geoid
Gravity data
* 66717 land free-air gravity anomalies |70510 Corrected Sea Surface Heights from
= 66717 Bouguer gravity anomalies the ERS1 Geodetic Mission
= 12823 shipborne free-air gravity

anomalies
= KMS01 & KMSO02 global altimetry-
derived marine free-air gravity anomalies

EGM96 & EIGEN _CGO01C EGM96 & CHAMP/GRACE-type EGMs
Global Gravity Models (Vergos et al., 2004)
EGM96.DOT
GTOPO30 DEM
552 GPS/levelling data T/P SSHs

Sandwell and Smith v9.2 Digital Bathymetry Model (DDM)
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CHAPTER FIVE

PREDICTION AND STATISTICAL BEHAVIOR OF GRAVITY ANOMALIES

The gravimetric geoid model for Argentina will be computed by the Fast Fourier
Transform. The use of FFT requires that random gravity data points be interpolated on a

grid.

The gridding methods of weighted means, continuous curvature in tension and least-
squares collocation will be described. This chapter also presents the basic concepts of
covariance, correlation and power spectral density (PSD) functions. The results of a
covariance analysis for areas with different topographic schemes in Argentina are also

presented in this chapter.

5.1 Three predictions methods for gravity anomalies
5.1.1 Weighted means

The inverse distance weighting is a deterministic interpolation method where the values

at grid points are estimated by values located at arbitrary points.

The original inverse distance weighted interpolation method was given in Shepard,
(1968). The basic formula for the prediction of a function f(x,y) was given in Morrison

and Douglas (1984), and it can be expressed as:

N
> f(x g, yiOW (X X, v, i)

flxy) =" (5.1)

ZW(Xan,YzYk)
k=1

with wisoxivoyi ) =[x 2+ -y P 22 52)
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where w is the weighting function and p is the power of the prediction, p>0. The user
specifies the value of p. The most common choice is p= 2. xi and y are the coordinates

of the N sampling points.

For the prediction of gravity anomalies at a point (X,y), (5.1) becomes::

N
ZAg(Xk,Yk w(x, X1, Y, i)
Aglx,y) =" (5.3)
ZW(X’Xkﬁ ya Yk)
k=1

The estimated value Ag is based on the weighted sum of N close observations

Ag(x1,yi ).

5.1.2 Continuous curvature splines in tension

The minimum curvature method interpolates the data to be gridded with a surface
having continuous second derivates and minimum total squared curvature (Smith and
Wessel, 1990). Minimum curvature surfaces may have large and suspicious inflections
points, which are not suitable for gridding, and they can be eliminated adding a tension

parameter.

The total squared curvature C is:

C=”(sz)2dxdy (5.4)
supposing z=f(x,y)=Ag

Minimizing equation (5.4) leads to the following differential equation:

Vz(VzAg)=Zfi5(X—xi,y—Yi) (5.5)

where V? is the Laplacian operator and (x;,y;,Ag;) are constraining data. The f; must
be chosen such that Ag — Ag; as(x,y) > (x;,y;) and the boundary conditions along the

edges are:
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2
aanAzg 0 (5.6)
aan(vzz):o (5.7)

0 . .
where n is the derivate normal to an edge, and at the corners
n

0%z

ooy " (5.8).

Equations (5.6), (5.7) and (5.8) are the free edge conditions and with these conditions,

equation (5.5) has a unique solution with continuous second derivates.

Smith and Wessel (1990) expressed equation (5.5) in a general form as follows:

2 2 2
0 Ag+2T 0 Ag+T 07 Ag

22
DVS(V Ag) — | Tyx ——=— .
a2 Y ooxay VY dy

=q (5.9)

where D is the constant flexural rigidity; q is the normal vertical stress; and Ty, Ty, and

T,y are the constant horizontal forces per unit length.

When T,,=Ty, =T and T, =0 (5.10)
equation (5.9) becomes:

DV2(V2Ag)-TV?Ag=q (5.11)
or according to Smith and Wessel (1990):

(1—T)Vz(VzAg)—Tvag=Zf16(x—xi,y—yi) (5.12)

1
where T is the tension parameter between 0 and 1.

T=0 gives the minimum curvature spline surface solution. (5.13)
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The adjustable tension continuous curvature surface gridding algorithm is also used in
this research. This algorithm is implemented in the surface routine of the Generic

Mapping Tools (GMT).

Smith and Wessel recommend, according to their experience, that T~0.25 usually
works well for potential field data and a T larger than T~0.35 for steep topography

data. T = 1 gives a harmonic surface.

5.1.3 Least-square collocation

The method of least-squares collocation can be used for the prediction of gravity
anomalies; it uses the statistical information inherent in the covariance function and

takes into account the errors of the observations (Torge, 2001).

The interpolated gravity anomaly at a point P (Heiskanen and Moritz, 1967; Torge,
2001) is:

Agp =Cp" (C+ D) Ag; (5.14)

where Ag; (1=1....n) is the vector of gravity anomalies at n observations points, and

Cll CIZ Cln

T Cy . . Con
Cp Z(Cpl Cp2 Cp3 ..... Cpn) and C= (515)

Cnl Cn2 Cnn

Cp' is the covariance vector between Agpand Ag; (measured and predicted gravity
anomalies) and C is the covariance matrix of the measurements Ag;. All the covariance
elements Cp; and Cj are obtained from the same covariance function C(s) or C (v),

which is assumed to depend only on the horizontal distance s or the spherical distance y

of the points under consideration.

Cpi =C(spi) or C(yp;) and C;; = C(s;;) or C(y3) (5.16)
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where sp; or yp; is the horizontal distance or the spherical distance between P and P; and

sij or y; 1s the horizontal distance or the spherical distance between P; and P;.

Dll D12 Dln
D21 . . D2n

D= (5.17)
Dnl Dn2 Dnn

is the covariance matrix of the observation errors.

The prediction error is ¢=Ag—Ag. The error covariance matrix for the estimate is

computed from:
Epp =Copp —CPT(C+D)_1CP (518)

. . T . .
The covariance matricesCp , C and D are determined from models for covariance

functions.

5.2 Covariance functions

The knowledge of the covariance function of the gravity anomalies is essential for the
gravity anomaly prediction by least-square collocation and it is the basic descriptor of
the statistical properties of the variations of the gravity field (Forsberg, 1984). The basic
concept of the covariance function will be presented first and then the gravity anomaly

covariance function will be discussed.

The covariance function Cg, (x,y) of two functions g(x;,y;)and h(x,,y, ) is defined as:

Cen (A%, Ay)=E[(g(x1,y1) - g)h(x2.,y2) - h)] (5.19)

where Ax=x, —x;, Ay=y, -y, E is the mathematical expectation operator, and g

and h are the mean values of the functions g(x;,y;) and h(x,,y, ), respectively.
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When the two functions are equal, g(x;,y;)=h(x,,y,), equation (5.10) gives the auto-
covariance function and when g(x;,y;)# h(x,,y,) the covariance is known as the cross-

covariance function.

If ¢ =h=0, g(x,,y;) and h(x,,y,)are called centered functions.

5.3 Gravity anomaly covariance function

The average product of the gravity anomalies Ag; Ag; at each pair of points P; and P;

that are distance s apart is called the covariance of the gravity anomalies and is defined

as:

C(s) =Clag;, Ag;.s{=M{Ag;Ag j}s (5.20)

where M is the averaging operator on the sphere and it is extended over all pair of

points Pi and P; for which the distance between P;P; iss = constant.

The covariance function represents the statistical behavior of the gravity anomalies It

can be can be expressed in spherical coordinates (¢,)) by:
1
C (v) =Clag;.ag; vi=Magirg ), = [[Agiag;do (5.21)
(¢

where v is the spherical distance on the unit sphere.

Fors=0or y=0, Ag; =Ag; =Ag and equation (5.21) yields the variance:
2 2 1 2
o (Ag)=M{Ag"} = —”Ag do (5.22)
4m -

The covariance function shows the correlation of gravity anomalies with distance. The

correlation coefficient r is:

Clagi, Agj. v

(5.23)
o%(Ag)

r(Agi,Agj,y) =
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Usually, the correlation decreases as the spherical distance increases.

5.4 Computation of empirical covariance functions

There are two methods to compute the empirical covariance function; one is the direct
method, which computes the empirical covariance function directly from the data and
the other is the indirect method, which computes the empirical covariance function from

the power spectral density (PSD) function.
5.4.1 Direct method

The empirical covariance function estimated directly from the local data in the space

domain can be expressed (Esan, 2000) as:

2 AgiAg; 2 AgiAg;
C(Sk)ZkT or C(\vk)sz (5.24)
k k

where n, are the number of products between all pairs of gravity anomalies according

to the class distance s, or v, .

5.4.2 Indirect method

The second method estimates the covariance function using the FFT technique. The

covariance function can also be defined (Schwarz et al., 1990) as.

Cgh (AXaAy) = Rgh (AXaAy) _éﬁ} (525)
where R, (x,y) is the correlation function of g(x,,y1)and h(x,,y>) defined as:

R 4 (Ax, Ay) = E[g(x,, yh(x5, ¥,)] (5.26)

If g =h =0, the correlation function is the same as the covariance function.

The power spectral density function is the frequency domain equivalent of the

correlation function:
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Pgh (u,v) = F{R gn (x,y)} (5.27)
where u and v are the spatial frequencies corresponding to x and y, respectively. Thus,
Ry (x,y) = F 7 Py, (0,v)] (5.28)

For centered data, the inverse Fourier transform of the PSD function provides the

covariance function:

Chg (Xa Y) :F_l {Phg (ua V)} (529)

5.5 Local and global covariance functions

The covariance functions can be either local or global. A local covariance function
represents the gravity field structure for a certain area after trend removal (Schwartz et

al., 1990).

The essential parameters used to describe the characteristics of the local covariance
function of the gravity anomalies are: the variance C,, the correlation length & and the
curvature parameter y or the gradient variance G,. The variance C, is the value of the

covariance value at distance zero.

The correlation length & is defined as the distance at which the covariance is half of the

variance value:

cle)=-c, (5.30)
The variance and correlation length are depicted in Figure 5.1.

The curvature parameter 7 is related to the curvature of the covariance curve at yw =0 by
Y =&/ C, (5.31)

The gradient variance G, is the variance of the horizontal gradient of Ag or half of the

variance of the vertical gradient of Ag, and it is related to the curvature parameter by:
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G, = xCO/?;z:Var(&Ag]:var ong zlvar(aAgj (5.32)
ox oy | 2\ oz
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Figure 5.1: Empirical covariance function and essential parameters

Covariance functions with the same essential parameters show a similar interpolation

behavior independent of the model.

5.6 Modeling the empirical covariance function

Modeling the empirical gravity anomaly covariance function implies the determination
of an analytical covariance function that fits the empirical values. The adjustment of the
local covariance is done by estimating the values of the three essentials parameters. The

information provided by the analytical function is used for the prediction method.

There are various planar covariance models for gravity field modeling used for
prediction; several examples of planar covariance functions are described in Moritz
(1980). Some of these models are the Gaussian, Hirvonen, and first-order, second order

and third order Markov model.

As an example, the second-order Markov model is expressed as

C(s)=c0[1+;je‘5“3 (5.33)
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where s is the distance, C, is the variance and D is a constant parameter.

For spherical Earth, the Tscherning/Rapp model (Tscherning and Rapp, 1974) is a

degree variance model and it will be used in this research for covariance modeling.

The gravity anomaly covariance function C(P,Q) on the can also be derived by

covariance propagation from the basic covariance function K (P, Q) of the disturbing

potential T, which can be expressed in terms of Legendre polynomials (Moritz, 1980)

as:
Nax R n+l

K(P,Q)=K(y) = ZGH(T,T)(?J P, (cosy) (5.34)
n=2 T

where o, (T,T)are the anomalous potential degree variances, Rp is the radius of the

Bjerhammar sphere, r and r’ represent the geocentric radial distances of points P and Q

separated by a spherical distance v .

The numerical examples carried out in the sequel used residual gravity anomalies
observations to compute the empirical covariance function. The empirical covariance
function is computed by first removing the gravity anomalies computed from a

geopotential model and the direct effect of the terrain.

Ag=Agops —Agam — AL (5.35)

Ag= Agobs -R :zr:nax (n—-1) i (Cn,m cos mx‘P + Sn,m sin me )Pn,m (Send)P ) - AgT (536)
n=2

m=0

The covariance function of the residual local gravity anomalies can be expresses as:

Nmax 0
Cagag(P.Q) =2 Y £,(Ag,Ag)S™ 2P, cos(y)+ Do, (Ag,Ag)S" P, cos(y)  (5.37)
n=2 N=Np .y +1

s=[R}2?J (5.38)
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where the &,(Ag,Ag) are the error anomaly degree variances associated with the

coefficients of the geopotential model; a is a scale factor; and o,(Ag,Ag) are signal

gravity anomaly degree variances estimated using the Tscherning/Rapp model as

follows:
N2
&n (Ag,Ag) = u 2) en(T,T) (5.39)
GM ) &
Sn(TsT):(Rj Z(e%nm +e§nm) (540)
m=0

where eénm and eénm are the variances of the fully normalized geopotential coefficients.

The degree variances of the disturbing potential o, (T,T) can be estimated from the

Tscherning/Rapp model as:

~ A
(n-1)(n-2)n+B)

on(T,T) (5.41)
where A is a free parameter to be determined, B was first set at 24 in the original work
of Tscherning and Rapp, but in this study we will set it equal to 4 following the

recommendations of Tscherning (1997).

The degree variances of the gravity anomalies are related with the degree variances of

the disturbing potential by the following relationship:

2
on(ag.Ag) =" o, (1.T) (5.42)
R

The covariance function given in equation (5.28) is global and it must be adjusted to fit
the local characteristics of the field in local gravity field computation. The adjustment of
the global model requires the estimation of the parameters: A, the scaling factor a, and
the radius of the Bjerhammar sphere. The estimation of these parameters is done by
fitting the global model to the empirical covariance values for the local area by least

squares in an iterative procedure.
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The empirical covariance function will be computed in different areas of Argentina with

different topographic structures and statistical behavior of free-air anomalies, reduced

free-air gravity anomalies by the geopotential model EGM96 complete to degree and

order 360, and residual free-air gravity anomalies after removal of the EGM96 and

terrain effects. The Residual Terrain Model (RTM) gravity reduction was used to

compute the terrain effects of the topography.

Three selected areas were chosen as test areas within the Argentinean territory and their

location can be seen in Figure 5.2.

25'S

30°S

35°S

40°S

45°S

50°S

55°S

Figure 5.2: Location of test areas and distribution of gravity data
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5.7.1 Andes Area. Block 1

The first area is a rough area and we will refer to this area as Block 1. Block 1 is located
in the Andes, which are the highest mountain range of the country. Its dimensions are
10° by 4° in the latitude and longitude, respectively. The coordinates of the lower-left
corner of the area are 42°S and 72°W. The area has 1428 gravity points with a mean

elevation height of about 960 meters. The statistical information of this area can be seen

in Table 5.1.

Table 5.1: Statistical information for Block 1.

Rough area min max mean o
Latitude -42.00 -32.02 -36.90 2.70
Longitude -72.00 -68.00 -69.76 1.15
Observed gravity [mGal] 978584.68 980206.92 979607.476 317.85
Height [m] 3.90 3362.00 959.66 551.28

The average inter-point distance (IPD) is calculated from

1PD = (5.43)

JA
where NP is the number of gravity points and A is the area size. NP is equal to 1428

gravity points so an IPD of 3.8 minutes represents the actual data resolution.

The statistics of the free-air anomalies for the Block 1 test area can be seen in Table 5.2.
This table also shows the statistics of residual gravity anomalies after the contribution of
EGMO96 geopotential model has been removed and the statistics of the residual gravity

anomalies after the RTM effects have been also removed.

Table 5.2: Statistics for the gravity anomalies for Block 1. Unit:[mGal].

Rough area min max mean o

Agpn -127.45 147.53 3.79 39.08
Agep — AZou -209.59 138.08 -19.69 33.09
Agra —AgGM —dARTM -106.50 100.68 10.54 31.14

5.7.2 Flat area. Block 2

The second area is a flat area located in the eastern part of the country; we will refer to

it as Block 2. Its dimensions are 4.5° by 5.5° in latitude and longitude, respectively. The
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coordinates of the lower-left corner of the area are 38.5°S and 59°W. The area has 4276
gravity points with a mean elevation height of about 126 meters. The statistical

information of this area can be seen in Table 5.3.

Table 5.3: Statistical information for Block 2.

Flat Area min Max mean o
Latitude -38.50 -34.00 -36.25 1.34
Longitude -64.50 -59.00 -61.66 1.61
Observed gravity [mGal] 979594 .81 980033.47 979812.78 105.22
Height [m] -12.50 474.70 126.17 66.07

The average inter-point distance (IPD) is equal to 14.3 minutes and it represents the

actual data resolution.

The statistics of the free-air anomalies for the Block 2 test area can be seen in Table 5.4.
This table also shows the statistics of residual gravity anomalies after the contribution of
the EGM96 geopotential model has been removed and the statistics of the residual

gravity anomalies after the RTM effects have also been removed.

Table 5.4: Statistics for the gravity anomalies for Block 2. Unit:[mGal].

Flat area min max mean 1o

Agpa -23.18 52.01 9.89 11.47
AZrx — Agoy -22.93 22.76 1.69 6.80
Agra —AgGM —SARTM 2042 30.12 1.83 7.11

5.7.3 Marine area. Block 3

The third area is a marine area located in the Atlantic Ocean near Argentina. We will
refer to this area as Block 3. Its dimensions are 5° by 5° in latitude and longitude,
respectively. The coordinates of the lower-left corner of the area are 45°S and 61°W.
The area has 4017 free-air shipborne and KMS02 gravity anomalies. The statistics of
the free-air anomalies for the Block 3 test area can be seen in Table 5.5. This table also
shows the statistics of residual gravity anomalies after the contribution of EGM96
geopotential model has been removed and the residual anomalies after the RTM effects

were also removed.

The average inter-point distance (IPD) is 13.4 minutes.
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Table 5.5: Statistics for the gravity anomalies for Block 3. Unit:[mGal].

Marine area min max mean o

Agpa -62.46 76.01 4.68 24.16
Agrpn =AM -32.80 38.27 1.82 9.36
Agra —AgoMm —SARTM -28.51 32.87 2.08 8.88

5.8 Estimation and modeling of empirical local covariance functions

The empirical gravity anomaly covariance functions for actual data were computed in
the space domain using the program empcov of the GRAVSOFT software (Tscherning
et al., 1992) for the three test areas. The empirical covariance functions were computed
for free-air gravity anomalies, for free-air gravity anomalies minus the gravity
anomalies computed from EGM96 and for the anomalies from which the RTM-effects

have also been subtracted.

Figure 5.3, Figure 5.4 and Figure 5.5 show the empirical local covariances functions of
residual gravity anomaly field after the removal of the long component of the gravity
data with the EGM96 geopotential model, complete to degree and order 360 and also
after removing the RTM effects. The empirical covariance function is estimated in the
space domain with 5 arc-minute spherical distance interval for Block 1, Block 2 and
Block 3, respectively. The essential parameters are listed in Table 5.6 for the three

arcas.

Table 5.6: Essential parameters for the GM and RTM-reduced gravity anomaly empirical
covariance function.

Test Areas Co: [mGal**2] &: [degrees] &: [km] Co/E: [mGal**2/km]
Block 1 Rough area 1078 0.40 45 12.1
Block 2 Flat area 49 0.17 19 0.8
Block 3 Marine area 68 0.17 19 0.8

The modeling of the empirically covariance function is done using program covfit from
the GRAVSOFT software (Tscherning et al., 1992). The space domain empirical
covariance functions are fitted to the Tscherning/Rapp degree-variance model. The
factors A, o and the radius of the Bjerhammar sphere must be fixed and gravity error

degree variances for the EGM96 coefficients were used.
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The analytical covariance function is also displayed in Figures 5.3 to 5.5. The results

presented in Figures 5.3 to 5.5 show that the covariance function varies in the three

areas with different topography. The variance is higher in the rough area than the

variances in the

marine and flat area
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Figure 5.3: The empirical and model covariance function for free-air gravity anomalies reduced

from EGM96 and RTM effects (Block 1-rough area)
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Figure 5.4: The empirical and model covariance function for free-air gravity anomalies reduced

from EGM96 and RTM effects (Block 2-flat area)
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Figure 5.5: The empirical and model covariance function for free-air gravity anomalies reduced
from EGM96 and RTM effects (Block 3-marine area)
5.9 Geoid spectrum

The geoid spectrum from different gravity field signals can be investigated in order to

estimate the best combination of GM and local gravity data.

The power spectrum of the geoid can be represented by the undulation degree variances

o, (N, N) that are estimated for the different geoid components.

For T, the degree variances are given by:

2 n
(GM) D C2m +82m) (5.44)

on(T,T)= "0 3
R m=0

The geoid degree variances can then be obtained from:

oy (T,T)

2
Y

o, (N,N) = (5.45)

The anomalous potential degree variances o, (T,T)will be estimated in the following

manner:
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1) The 2D power spectral density (PSD) function of the gravity anomalies is

computed directly from the actual gravity anomaly data grid by Fourier Transform:
Pagag (u,V) = F{Ag(x, y)}F{ag(x, y)} (5.46)

In general, the estimated 2D PSD is non-isotropic, so the next step is to obtain an

1sotropic estimate of the PSD.

2) The isotropic estimate of the PSD can be obtained using a circular averaging

process (Schwarz et al., 1990):

2n
' 1 .
Pagag (=" — [ Pagag (qcos.qsin 0)d0 (5.47)
0

For the isotropic case,

, /2
PAgAg (u,v) = PAgAg @; q= (u2 + V2)] (548)

3) The anomaly degree variances are related to the isotropic PSD by the relationship

given by Forsberg, (1984):

1 1
o, (Ag,Ag) = R 2 (n+ E)PAgAg (an) (5.49)
1
n +5
= 5.50
=72 (5.50)

4) The covariance function of the gravity anomalies and the corresponding anomaly
degree variances are related by a Legendre transform (Heiskanen and Moritz, 1967,

Schwartz et al., 1990).

e 0]

Cag,ag(W) = D 0on(Ag,Ag)P;, (cosy) (5.51)
n=2
2n+17 .

On (Ag,Ag) === " [ Cagag (w)Pn (cosy)sin ydy (5.52)

0
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The anomaly degree variances describe the global spectral behavior of the gravity field.

The potential degree variances are related to the gravity anomalies degrees variances by

the expression:

RZ
On (T:T):izcn(AgaAg) (553)

(n-1)
The undulation degree variances o) can be obtained from the anomaly degree

variance by the expression:

R2
op(N) = ~—— 5 7 Cn (Ag,Ag) (5.54)
(n—1)~y
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CHAPTER SIX

DIFFERENT TOPOGRAPHIC REDUCTION METHODS IN PRACTICAL
GRAVIMETRIC GEOID DETERMINATION

6.1 Introduction

As a preliminary analysis for the development and evaluation of a precise gravimetric
geoid for Argentina, different gravimetric geoid solutions were computed using
different gravity reduction techniques in three test areas. One area was covering part of
Mendoza and Neuquén provinces. This test area was bounded by latitudes 32°S to 42°S
and longitudes 68°W and 72°W, and it was selected due to the presence of
GPS/levelling data, sparse gravity coverage coming from different sources and rough
topography (Block 1). Another test area was an extension of the pervious one and it was
bounded by latitude 20° S to 42° S and longitude 72° W to 67° W (Block 2). The other
test area was a flat area, with more dense gravity data ranging from 34°S to 38.5°S in
latitude and 59°W to 64.5°W in longitude (Flat Area). Figure 6.1 shows the location of

the three tests areas in rectangular blocks.
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Figure 6.1: Distribution of test areas blocks in Argentina
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These three areas were selected to study gravimetric geoids using different gravity
reductions, in planar approximation. The following terrain reductions techniques were
used: Helmert’s second condensation method, the Airy-Heiskanen topographic-isostatic
reduction (AH), the residual terrain model (RTM) method and the Rudzki inversion
method.

6.2 Gravimetric geoid determination in a flat area

A total of 4276 gravity points, with a spacing of approximately 8 km were selected in

the flat area. The distribution of the gravity points is shown in Figure 6.2.

|3
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Figure 6.2: Distribution of gravity stations on elevation map

The maximum and minimum values of the observed gravity were 980033.47 mGal and

979594.81 mGal, respectively.

Free-air gravity anomalies were calculated using the parameters of the Geodetic
Reference System 1980 (GRS80) and the normal gradient of 0.3086 mGal/m. The
atmospheric correction was applied to the observed gravity according to formula (4.12)
(Torge, 1989). The statistics of the free-air anomalies can be seen in Table 6.1 and

Figure 6.3 shows the free-air anomalies computed with formula (4.14).
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Figure 6.3: Free-air gravity anomalies

The global digital elevation model GTOPO30 with a horizontal grid spacing of 30 arc
seconds (approximately 0.758 kilometre in the North-South direction at the mean
latitude of the area and 0.920 kilometre in the East-West direction) was used to
represent the topography in this test area. The maximum, minimum, mean and standard

deviation height is 1617 m, 1 m, 136.109 m and 115.393 m, respectively.

Terrain corrections (cp) were calculated by FFT from the GTOPO30 DEM using the
TC2DFTPL program (Li, 1993; Li and Sideris, 1994). They were computed at all points

of a grid of 720 rows by 900 columns with different topographic representations and
they were then interpolated from the grids at the gravity stations using the bilinear
interpolation of program geoip from GRAVSOFT software (Tscherning et al., 1992).
The statistics of terrain corrections in gravity stations up to second order term of a mass

line model have a maximum of 0.96 mGal, a minimum of 0.00 mGal, a mean value of

0.02 mGal and a standard deviation of 0.03 mGal.
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The refined Bouguer anomalies were computed using formula (4.18), their statistics are

also presented in Table 6.1 and they are shown in Figure 6.4.

The Helmert or Faye gravity anomalies were computed according equation (2.82), their

statistics are also presented in Table 6.1 and they are depicted in Figure 6.5.

B4'W B83'W 82'W B1° BO'W 59'W

40
20
36'S 36'S 19
& 0
: -10
37's g7 37'S
; -20
-30
64'W B63'W 62'W B1'W 60'W 59
Figure 6.4: Refined Bouguer gravity anomalies
Table 6.1: The statistics of gravity anomalies. Unit: [mGal].
min max mean o
Free-air anomalies -23.18 52.01 9.89 11.47
Refined Bouguer anomalies -48.22 41.55 -4.21 13.78
Ag"oM° -25.61 42.27 8.20 10.34
Helmert (Faye anomalies) -23.14 52.15 9.90 11.46
AH anomalies -30.89 45.74 8.51 11.52
RTM anomalies -26.15 45.62 10.03 11.20
Rudzki anomalies -23.33 49.95 9.89 11.47
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Figure 6.5: Faye gravity anomalies

The tc program from GRAVSOFT software (Tscherning et al., 1992) was used to
compute the RTM effects and also the geoid RTM effects for use in the restore step
(Forsberg, 1984) and it was also used to compute the direct topographical effect on
gravity using the Airy-Heiskanen (AH) model (constant density). This program was
also used to compute the indirect topographical effect on geoid using the (AH)
reduction scheme (constant density assuming the normal thickness of the crust equal to

32 km and the density of mantle equal to 3.27 g/cm’).

The tcgrid program from GRAVSOFT software (Tscherning et al., 1992) was used to

prepare the reference height grid, with a resolution around 100 kilometres.

Airy-Heiskanen and RTM gravity anomalies were computed using formulas (2.59) and
(2.103), they are shown in Figures 6.6 and 6.7, respectively and their statistics are in

Table 6.1.
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Figure 6.6: Airy-Heiskanen gravity anomalies
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Figure 6.7: RTM gravity anomalies
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Tc was modified to compute the direct topographical effects on gravity using the Rudzki
inversion gravimetric reduction scheme using constant density (Bajracharya et al.,
2001). Figure 6.8 shows the Rudzki gravity anomalies computed with formula (2.89).

Their statistics are also presented in Table 6.1.

B4'W B83'W B82'W B81'W BOW 59'W
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Figure 6.8: Rudzki gravity anomalies

After applying different terrain reductions, the long-wavelength contribution of the
geopotential model was removed from the reduced terrain gravity anomalies. The
reference gravity field was computed from the EGM96 geopotential model (Lemoine et
al., 1998) complete to degree and order 360. In spherical approximation, the reference
gravity anomaly estimated at position ¢p,Ap is expressed by (2.12); these are depicted in
Figure 6.9. The statistics of the gravity anomalies computed from EGM96 are also
shown in Table 6.1 and the statistics of the residual gravity anomalies can be seen in

Table 6.2.
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Figure 6.9: EGM96 gravity anomalies

Table 6.2: The statistics of the residual gravity anomalies. Unit: [mGal].

119

min max mean o
Frec-air anomalies - Ag"™*° 22.77 -22.99 1.69 6.81
Bouguer anomalies - Ag"™? 15.86 -42.82 -12.41 9.41
Helmert (Faye anomalies) - Ag"™* 22.78 22.98 1.70 6.81
RTM anomalies - Ag"™*° 30.12 -22.42 1.83 7.11
AH anomalies - Ag"™* 27.00 -25.71 0.18 7.20
Rudzki anomalies - Ag"™*° 2277 -22.99 1.69 6.81

The residual geoid undulations were computed using the program ffigeoid developed by

Yecai Li at the University of Calgary. This program takes the residual gravity anomaly

grid as input and computes the residual geoid undulations on the same grid

simultaneously using the Stokes integral by means the Fast Fourier Transform. The

rigorous spherical kernel (RSK) and the approximated spherical kernel (ASK) were

investigated.
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During these numerical tests, the gridding was performed using a weighted means
algorithm implemented in the program geogrid from GRAVSOFT software (Tscherning
etal., 1992).

Finally, the gravimetric geoid undulations were computed by restoring the geoid
undulations computed from the EGM96 geopotential model and the indirect effect on

the geoid due to each reduction scheme.

The indirect effects on gravity were neglected before applying Stokes’s formula since
the area was very flat. The topographic indirect effect on the geoid due to Helmert’s
second method of condensation was computed using program ind developed by Yecai
Li at the University of Calgary. This program computes the topographic indirect effect
on the geoid undulation due to the second method of Helmert's condensation of the
topography with the formula given in (2.86). The topographic indirect effect on the
geoid did not add any significant contribution to the gravimetric geoid undulations. The
computation was done only considering the first term in equation (2.86) and it has a
maximum of 0.004 m a minimum of -0.001 m, and a standard deviation of 0.001 m. For
the Rudzki geoid the indirect effect on the geoid is zero. The indirect effect on geoid

undulations for the AH isostatic reduction changes the geoid by as much as 1 m.

A total of 125 GPS/levelling points in three different networks were used for
comparison with the different gravimetric geoid solutions computed with different
terrain reductions. The distributions of the GPS points can be seen in Figure 6.10. There

were no GPS/levelling points above the elevation of 308 m.
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Figure 6.10: Distribution of GPS/levelling benchmarks on elevation map
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In order to get a good agreement of the gravimetric geoid with respect to the
GPS/levelling-derived geoid, the systematic datum differences between the gravimetric
geoid and the GPS/levelling data and the long wavelengths errors of the geoid were
removed by the four-parameter transformation model expressed in equation (4.26),
(Heiskanen and Moritz, 1967) and a differential similarity transformation model with

seven parameters; see equation (4.28) (Kotsakis, 2001).

The statistics of the absolute differences between the GPS/levelling derived-geoid and
the gravimetric geoids computed using different methods of handling the topography
are summarized in Table 6.3, where N** means geoid heights computed with the
rigorous spherical kernel and N* are geoid undulations computed with the

approximately spherical kernel.

Table 6.3: Statistics of the differences between gravimetric geoids with GPS/levelling—derived
geoid in the flat area. Unit: [m].

Flat Area min max mean o
Original (125 pts) Before fit -0.431 1.159 0.589 0.299
NEGM6_ \GPs 4-param -0.962 0318  0.000  0.198
After fit
7-param -0.868 0.280 0.000 0.189
Geoid Model: Rudzki min max mean o
Original (125 pts) Before fit 0.089 1.270 0.962 0.208
NRSK_NEPS 4-param -0.873 0206  0.000  0.179
After fit
7-param -0.824 0.241 0.000  0.157
Original (125 pts) Before fit 0.084 1.271 0.962  0.208
NASK_NGPS 4-param -0.535  0.717  0.000  0.151
After fit
7-param -0.823 0.242 0.000 0.157
Geoid Model: Helmert min max mean o
Original (125 pts) Before fit 0.118 1.360 1.024  0.222
NRSK_NOPS 4-param -0.895 0240 0.000 0.186
After fit
7-param -0.830 0.247 0.000 0.167
Original (125 pts) Before fit 0.113 1.362 1.023 0.223
ASK _ 7\jGPS
N*™*-N After fit 4-param -0.895 1.362 0.000 0.186
7-param 0.118 1.360 1.024 0.222
Geoid Model: AH min max mean o
Original (125 pts) Before fit 0.127 0289 1.044  0.186
NRSK_NOPS 4-param -0.924 0251  0.000  0.175
After fit
7-param -0.850 0.227  0.000 0.163
Original (125 pts) Before fit 0.131 1.289 1.045  0.186
ASK _ \jGPS
N™*-N After fit 4-param -0.924 0.251 0.00 0.175
7-param -0.849 0.228 0.000 0.163
Geoid Model: RTM min max mean o
Original (125 pts) Before fit 0.160 1.353 1.026 0.212
NRSK_NEPS 4-param -0.895  0.254  0.000  0.181
After fit
7-param -0.836 0.235 0.000 0.164
Original (125 pts) Before fit 0.159 1.356 1.026  0.212
NASK_NGPS 4-param -0.895 0256 0000  0.182
After fit
7-param -0.836 0.239 0.000 0.164
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Four different gravity reduction methods have been presented. They treat the
topography in a very different way. Helmert’s second method of condensation and the
RTM method are the most used reduction techniques for the determination of a
gravimetric geoid. The Airy-Heiskanen topographic-isostatic reduction and the Rudzki
inversion method were applied as well; the latter is not very often used, even though it

has the advantage of no indirect effect.

The main conclusion of these results was that the four reduction methods gave almost

identical results, as expected for a flat area.

Table 6.3 shows that the agreement between the gravimetric geoid and the
GPS/levelling geoid is around 15 to 20 cm in terms of the standard deviation after fit,

and there is no significant difference between the geoid undulations computed with the

RSK: ASK)

rigorous spherical kernel (N"°") and with the approximated spherical kernel (

6.3 Gravimetric geoid determination in a rough area

A total of 1452 gravity points, with a spacing of approximately 20 km were selected in
the rough area (Block 1). The distribution of the gravity points is shown in Figure 6.11.

The maximum and minimum values of the observed gravity were 980206.92 mGal and

978584.68 mGal, respectively.

Free-air gravity anomalies were calculated using the parameters of the Geodetic
Reference System 1980 (GRS80) and the second order free-air reduction. The
atmospheric correction was applied to the observed gravity according equation (4.12).
The statistics of the Free-air gravity anomalies can be seen in Table 6.4, Figure 6.13

shows the free-air anomalies computed with formula (4.7).

The global digital elevation model GTOPO30 with a horizontal grid spacing of 30 arc
seconds (approximately 0.758 kilometre in the North-South direction at the mean
latitude of the area and 0.920 in the East-West direction) was used to represent the
topography in this test area. The maximum, minimum, mean and standard deviation

height was 6795 m, 0 m, 1125.236 m and 896.927 m, respectively.
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Table 6.4: The statistics of gravity anomalies. Unit: [mGall].

min max mean o
Free-air anomalies -127.45 147.53 3.79 39.08
Bouguer anomalies -302.68 64.01 -103.57 57.94
Refined Bouguer anomalies -279.54 65.27 -100.92 56.13
Helmert (Faye anomalies) -124.76 173.59 6.44 39.23
RTM anomalies -73.26 154.67 34.01 28.30
AH anomalies -101.67 121.56 7.22 29.53
Rudzki anomalies -122.73 127.09 10.55 37.80
Ag M -112.66 182.71 23.26 4321
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Terrain corrections (cp) were calculated by FFT from the GTOPO30 DEM using the
TC2DFTPL program (Li, 1993); they were computed at all points of a grid of 1440

rows by 600 columns with different topographic representations. Terrain corrections
were then interpolated from the grids in the gravity stations using the bilinear
interpolation of program geoip from GRAVSOFT software (Tscherning et al., 1992).
The statistics of terrain corrections in gravity stations up to third order term of a mass
prism model had a maximum of 35.39 mGal, a minimum of 0.07 mGal, a mean value of

2.65 mQGal and a standard deviation of 3.78 mGal.

Table 6.4 also shows the statistics of the gravity anomalies computed from EGM96 and
the statistics of the Helmert, RTM, Airy-Heiskanen and Rudzki gravity anomalies.

Figures 6.14 to 6.18 show EGM96, Bouguer, Faye, AH, RTM and Rudzki gravity

anomalies respectively. The standard constant density of 2.67 g/cm® was assumed.

72’°W 71'W 70°W B9'W B8'W
32'S 32

72W TUW 70W 69'W BE'W
™Y J 8 S [ 3 —32'S
' ’ mGal 1|\ mGal

33'Sy o : 33'S 33's = 33'S
150 150

34’8 34'S 34's 34's
100 100

35°S 35'S 35°'S 4y 35'S
50 50

36'S f36's 36°s Ji% i se's
0 : 0

37's 37's a7'sfif) a7's
-50 -50

38'S flas's 38'S 38's
+-100 1100

39'S 39'S 39's 39's
-150 150

40°S 40°S 40°S 40°8
-200 -200

4°s M°s M8 41'8
-250 -250

72°W 71'W 70°W 69'W 68'W 8'W

Figure 6.13: Free-air gravity anomalies Figure 6.14: EGM96 gravity anomalies
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Figure 6.16: Faye gravity anomalies
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Figure 6.18: RTM gravity anomalies
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Table 6.4 also shows the statistics of the gravity anomalies computed from EGM96 and

the statistics of the Helmert, RTM, Airy-Heiskanen and Rudzki gravity anomalies.

Table 6.4: The statistics of gravity anomalies. Unit: [mGal].

min max mean c
Free-air anomalies -127.45 147.53 3.79 39.08
Bouguer anomalies -302.68 64.01 -103.57 57.94
Refined Bouguer anomalies -279.54 65.27 -100.92 56.13
Helmert (Faye anomalies) -124.76 173.59 6.44 39.23
RTM anomalies -73.26 154.67 34.01 28.30
AH anomalies -101.67 121.56 7.22 29.53
Rudzki anomalies -122.73 127.09 10.55 37.80
AgFM* -112.66 182.71 23.26 43.21

From Table 6.4, we can see that the RTM gravity anomalies are the smoothest gravity

anomalies in terms of the standard deviations and also they had the smallest range.
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RTM statistics are similar to those of the AH gravity anomalies. Free-air and Helmert

anomalies show similar statistics to each other, as well.

The reference gravity field was computed from the EGM96 geopotential model
(Lemoine et al., 1996) complete to degree and order 360. The statistics of the residual
gravity anomalies can be seen in Table 6.5. A 3 rms test was performed in order to

detect some blunders.

Table 6.5: The statistics of the residual gravity anomalies. Unit: [mGal].

min max mean o
Free-air anomalies - Ag"“* 21975 14046  -19.47 33.96
Bouguer anomalies - Ag"™*° -485.39 2154 -126.83  70.15
Helmert (Faye anomalies) - Ag "% -187.47 149.65 -16.82 32.75
RTM anomalies - Ag"“™* -106.50  100.68 10.54 31.14
AH anomalies - Ag"™* -229.63 66.98 -16.04 40.10
Rudzki anomalies - Ag"*™*° 94.23 9477  -12.71 26.20

The gridding, interpolation, reduction and computational procedures were the same as

the ones used in the previous test area.

The indirect effect on gravity due to Helmert’s second method of condensation was
considered before applying Stokes’s formula. The statistics of this effect, together with
the indirect effect on the geoid in the rough area, can be seen in Table 6.6. The values of
the first, the second and the third term of the indirect effect caused by the second
method of Helmert’s topographic condensation at 163 GPS/levelling points can be seen
in Figure 6.20. In the mountainous area, the computation of the indirect effect on the
geoid should be done up to the third order term. The third order term contributes an
indirect effect with maximum values of about 20 cm. The maximum indirect effects are

correlated with the topography.

Table 6.6: Statistics of indirect effects due to the Helmert’s condensation method.

min max mean o
On gravity [mGal] 0.199 0.000 0.022 0.025
On geoid [m]1% +2 nd 131 terms -1.171 0.000 -0.111 0.225
On geoid [m] 1* term -1.192 0.000 -0.109 0.226
On geoid [m] 2™ term -0.023 0.025 0.000 0.006
On geoid [m] 3™ term -0.174 0.147 -0.002 0.026
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Figure 6.20: Indirect effect on the geoid undulation

For the Rudzki geoid the indirect effect is zero.

A total of 163 GPS/levelling points in three different networks were used for
comparison with the different gravimetric geoid solutions computed with different
terrain reductions. The distributions of the GPS points can be seen in Figure 6.12. There

are no GPS/levelling points above the elevation of 1890 m.

A four-parameter transformation model (Heiskanen and Moritz, 1967) and a differential
similarity transformation model with seven parameters (Kotsakis, 2001) were applied to

fit the geoid solutions to the GPS/levelling-derived geoid.

The statistics of the absolute differences between the GPS/levelling derived-geoid and
the gravimetric geoids computed using different methods of handling the topography

are summarized in Table 6.7.

Figure 6.21 shows the graph of the standard deviation of the differences between the
different geoid solutions computed with different gravity reduction schemes and with
different approximations of the spherical Stokes formula with GPS/levelling-derived

geoid.
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Table 6.7: Statistics of the differences between gravimetric geoids with GPS/levelling—derived
geoid in the rough Block 1. Unit: [m].

Block 1 min max mean o
Original (163 pts) Before 243 1.88 0.62 0.91
NEGM96 _ \[GPS fit
After fit 4-param -1.87 1.72 0.00 0.47
erh 7-param  -1.52 1.30 0.00 0.40
Geoid Model: Rudzki min max mean o
Original (163 pts) Before fit 2.60 6.47 4.19 0.60
NRSK_NEPS 4-param -1.82 1.84 0.00 0.41
After fit 7-param 163 188 000 039
Original (163 pts) Before fit 2.65 6.45 421 0.60
NASK _ NGPS 4-param -1.82 1.85 0.00 0.41
After fit 7-param 163 189 000 039
Geoid Model: Helmert min max mean o
Original (163 pts) Before fit 3.12 8.00 5.46 0.81
NRSK_NEPS 4-param 2251 2.81 0.00 0.46
After fit 7-param 223 246 000 042
Original (163 pts) Before fit 3.18 7.98 5.50 0.82
NASK_ NGPS 4-param 2251 2.79 0.00 0.46
After fit 7-param 224 245 000 022
Geoid Model: RTM min max mean o
Original (163 pts) Before fit -4.10 5.72 -0.69  0.89
NRSK_NGPS 4-param -2.44 4.42 0.00 0.68
After fit 7-param 269 439 000 064
Original (163 pts) Before fit -4.05 5.80 -0.67  0.89
NASK_ NGPS 4-param 241 4.42 0.00 0.67
After fit 7-param 269 441 000  0.63
Geoid Model: AH min max mean o
Original (163 pts) Before fit -4.10 3.73 -2.07 1.54
NRSK_NOPS 4-param -1.97 5.20 0.00 1.40
After fit 7-param 219 432 000 1.0
Original (163 pts) Before fit -4.10 3.81 -2.00 1.54
NASK_NOPS 4-param -2.22 5.15 0.00 1.39
After fit 7-param 244 428 000 101

The gravimetric geoid determination based on the Rudzki inversion topographic reduction
shows the smallest differences from GPS-levelling before and after fit. The standard deviation
of the difference between the gravimetric solution based on AH or the RTM reduction and GPS-

levelling is much higher compared to those of Rudzki and Helmert methods.
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Figure 6.21: Standard deviation of the differences between the geoid undulations from different
solutions and the GPS/levelling-derived geoid.(Before fit and after fit with four-parameter
transformation model (4P) and with differential similarity transformation model with 7

parameters (7P))

6.4 Gravimetric geoid determination in the Andes

A rugged area bounded by latitude 20° S to 42° S and longitude 72° W to 67° W was
chosen to compute the geoids using the same terrain reductions methods as in the test

areas mentioned before.

The interpolation, gridding and computation employed in this area were the same

applied in Block 1 and Block 2.

The external accuracy of the gravimetric geoid models was evaluated by comparing
them with 166 GPS/levelling points in three different networks. A four-parameter
transformation was used again to remove the systematic datum differences between the
gravimetric geoid and the GPS/levelling undulations, and the possible long wavelength

errors of the geoid.

The point gravity measurements, provided by different sources, were referenced to the

International Gravity Standardization Net 1971 (IGSN71).
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A total of 11132 measured gravity points, with a mean data spacing of approximately 12

km are used in the mountainous area. The distribution of the gravity points is shown in

Figure 6.22. Gravity anomalies are computed using the parameters of GRS80 according

to the formulas given in Torge (1989).
The reference gravity field is computed from the EGM96 geopotential model (Lemoine

et al., 1998) complete to degree and order 360.

The global digital elevation model GTOPO30 with a horizontal grid spacing of 30 arc
seconds (approximately 1 kilometre) is used to represent the topography in this test

area.

points can be seen in Figure 6.23.
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Terrain corrections (cp) were calculated by FFT for each gravity point from the

GTOPO30 DEM using the TC2DFTPL program (Li, 1993). A third order term of a

mass prism model was used.

The indirect effect on gravity due to Helmert’s second method of condensation was
considered before applying Stokes’s formula. The computation of the indirect effect on
the geoid should be considered to, at least, second order term. The maximum indirect
effects are correlated with the topography. The statistics of the topographic and data

terrain corrections on gravity stations can be seen in Table 6.8.

Table 6.8: Statistics of the GTOPO30. Unit:[m] and cp. Unit:[mGal].

min max mean o
GTOPO30 0 6795 1399 1465
Cp 0.20 42.13 2.55 2.70

The statistics of the gravity anomalies calculated with the four topographic gravity

reductions are presented in Table 6.9.

Table 6.9: Statistics of the gravity anomalies calculated with the four topographic reductions.
Unit [mGal].

Gravity anomalies min max mean o

Agin+ o -139.09 25863 3053  54.95
Faye (Helmert

aye (Helmert) Agia + Cp - AZrros -180.00 15562 -20.62 3638
Rudaki Agra - Agry -121.55 25570 4177 50.87
Agra - Agru - AZrcos -113.09 11228 938 2722
RTM Agra - Agrrv 71,12 28545 6479  38.66
Agra - Agrrm - Agiamse -128.37 166.00  14.04  37.58
N Agra - Agan 7458 185.01 4274  51.65
Airy-Heiskanen (AH) Agea - Agau - Agrauios -179.59 14475 841 5757

The statistics of the absolute differences between the GPS/levelling derived-geoid and
the gravimetric geoids computed using different methods of handling the topography
are summarized in Table 6.10. The numbers in parentheses refer to the results after the
least squares fitting of the four-parameter transformation model has been applied to the
original differences. Before applying the four-parameter transformation model, two
GPS on benchmark points having large gross error in either the GPS or the levelling

data were removed.
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The gravimetric geoid computed with the Rudzki inversion method gave better results
compared with the GPS/levelling-derived geoid before and after fit and was the only
method that improved the gravimetric geoid compared to the EGM96 results.

The gravimetric data needs to be improved in the area of the Andes in order to see

further improvements in the geoid.

Table 6.10: Statistics of different gravimetric geoid solutions (Values in the parentheses are
after fit) Unit: [m].

min max mean o

. 1.64 2.86 0.44 0.68
Rudzki (-1.64) (1.92) (0.00) (0.44)
Helmert -1.49 3.37 0.71 0.77
(-1.63) @.11) (0.00) (0.54)

-1.66 2.32 1.17 1.10
RTM (-1.95) (1.09) (0.00) (0.51)
Airv-Heiskanen -8.83 -0.81 -5.99 1.84
Y (3.43) (-1.75) (0.00) (0.61)

6.5Summary

The flowchart shown in Figure 6.24 describes the computational methodology used in
this chapter to compute gravimetric geoid solution with different gravity reduction mass
schemes. All solutions were computed with the remove-compute-restore technique, and

they only differ in the way they handle the topography.

Three different areas with very different topographies were selected to compute
different gravimetric geoid solutions with AH isostatic reduction, the Rudzki inversion

method, Helmert’s second method of condensation and the RTM.

In the rough areas, the Rudzki geoid is the best solution compared to other reductions
schemes. The major advantage of the Rudzki inversion method is that the indirect
effects on the geoid have not to be computed. In the flat area, all the reductions methods

gave identical results as expected

A detailed analysis using a remove-restore technique for gravity gridding will be
investigated in chapter 8 using digital terrain data in order to diminish aliasing in
gravity anomalies, smooth the residual gravity anomalies, and reduce interpolation

CITOT1S.
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CHAPTER SEVEN

OPTIMAL MARINE GEOID DETERMINATION IN THE ATLANTIC
COASTAL REGION OF ARGENTINA

7.1 Introduction

The main objective of this chapter is the determination of a high-accuracy and high-
resolution marine geoid model in the Atlantic coastal region of Argentina. The
theoretical background related to the estimation of the gravimetric and altimetric geoid
models (Vergos, 2002) and the combined one using the Multiple Input Multiple Output
System Theory (MIMOST) method (Sideris, 1996; Andritsanos and Tziavos, 2002),
was outlined in chapter three. In this chapter, some numerical studies that were carried
out will be presented, together with the description of the data available in the area

under study.

The area under study is located in the Atlantic coastal region of Argentina, bounded by
34°S to 55°S in latitude and 56°W (304°E) to 70°W (290° E) in longitude. The data
available have been described in chapter four and consist of 17352 marine gravity
anomalies coming from shipborne campaigns provided by the International Gravimetric
Bureau (BGI, 2001) and 2 arc-minute by 2 arc-minute altimetry derived gravity
anomalies from the KMSO01 and KMS02 global marine free-air gravity fields, computed
from ERS1 and GEOSAT satellite altimetry (Andersen and Knudsen, 2005). KMSO02 is
the newest compilation of a global altimetry-derived marine free-air gravity field by the

KMS group at the Danish Surveying and Cadastre.

Gaps in the sparse shipborne data distribution were filled out using 2' x 2' KMS01 and
KMS02 multi-satellite altimetry-derived gravity fields; see Figure 7.1.

The QSST was computed from the EGM96.DOT model and it is shown in Figure 7.2.

The bathymetric data come from the 2' Digital Depth Model (DDM) developed by
Smith and Sandwell in 1997.
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Figure 7.1: Shipborne data (red) filled with Figure 7.2: The EGM96 QSST in the area under
KMS in gaps (in blue) study

The reference gravity field is computed from the EGM96 geopotential model (Lemoine
et al., 1998) complete to degree and order 360 and from a “combined” EGM derived
from the latest CHAMP and GRACE type of Earth Gravity Models (EGMs) (Vergos et
al., 2004). It should be mentioned that this so-called combined EGM is not a new model
determined from raw CHAMP and GRACE data, but it is a combination of the
harmonic coefficients of a number of new EGMs estimated from CHAMP and GRACE
data. Therefore, by inspecting the CHAMP and GRACE degree and error-degree
variances, we defined which one was more accurate for different harmonic degrees, and
then a “combined” EGM was developed, using the GFZ EIGEN2 for n=2-5, the CSR
GGMOIC for n=6-116 and EGM96 for n=117-360 (Vergos et al., 2004).

From the contribution of the EGM96 geopotential model and the so-called “combined”

EGM, a reference gravity anomaly (Agg,,) and a reference geoidal undulation (Ng),)

can be calculated using equations 2.1 and 2.2, respectively.
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The next paragraphs will present the first numerical investigations for marine geoid
modeling determination using satellite altimetry and shipborne data ever carried out in

the Atlantic coastal region of Argentina.
The optimal marine geoid modeling process can be summarizes as follows:
= compute gravimetric and ERS1 altimetric geoid solutions;

= use EGM96 geopotential model and the "combined EGM” to model the low-
frequency part of the gravity field spectrum;

= apply RTM reduction to take into account the high frequency part of the gravity
field spectrum due to the bathymetry;

= take into account the high Sea Surface Variability;
* estimate combined solutions using MIMOST; and

=  compare the results with T/P SSHs known for to their high accuracy and estimate

the accuracy of the final gravimetric, altimetric and combined solution.

The altimetric geoid solutions will be first presented, then the gravimetric ones, and

finally the combined solutions using the Input-Output System Theory.

7.2 Geoid model development
7.2.1 Altimetric geoid model with ERS1-GM data

The ERSI satellite altimetry CORSSHs were provided in the usual Geophysical Data
Records (GDRs) format and were corrected for all geophysical and instrumental errors

as well as orbit errors in a pre-processing step according to the models and methods

described in the AVISO handbook (AVISO, 1998).

As the ERSI-GM CORSSHs refer to sea surface, they were reduced to the geoid by
removing the effect of the QSST. That was performed using equation (3.4) to predict
QSST values on the irregular ERS1 points. Then, the corrected ERS1-GM Sea Surface

Heights referred to the geoid were ready to be used for the estimation of a purely
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altimetric geoid. The contribution of the EGM96 geopotential model was then removed
to derive reduced SSHs (SSHsred). These reduced SSHs may still contain some
blunders, which should be removed. A three root mean square (3 rms) test was used for
blunder detection. When the 3 rms test is applied, all the points whose absolute value is
greater than three times the rms value of the entire dataset is removed as a blunder. To
apply the 3 rms test, all biases in the dataset are supposed to be removed so only
random errors are remaining. The reduced SSHs were checked for their mean value and
after examining the mean value of the reduced field it was not found to be small enough
for a 3 rms test to be performed. Thus, the bathymetry was first taken into account with
an RTM reduction and after that, a 3 rms test for blunder detection has been applied.
After the 3 rms test, 678 points were removed and the resulting point data (Nres) were

gridded using the weighted means method on a 3 arc-minute by 3 arc-minute grid.

To reduce the high-frequency Sea Surface Variability effects the data were low-pass
filtered using Wiener filtering. The cut-off frequency was determined empirically based
on a criterion of maximum noise reduction with minimum signal loss. A number of cut-
off frequencies were tested (14 km, 16 km, 18 km, 20 km, 28 km) and finally a cut-off
frequency corresponding to a wavelength of 20 km was chosen. That selection gave the
best results as far as both the noise reduction and the minimization of the differences

with T/P SSHs are concerned.

Thus the first altimetric geoid solution was obtained by restoring the contribution of the
EGMO96 geopotential model and that of the RTM effects of the bathymetry. We will

refer to this solution as "Altimetric Geoid one" (AGI).

In order to determine a high-accuracy and high-resolution geoid model for the Atlantic
coastal region of Argentina, the study was focused on the improvement of our previous
results using the “combined EGM”. This second solution will be referred as "Altimetric

Geoid two"(AG2).

Table 7.1 presents the statistics of the ERS1-GM altimetric geoid processing for the
area under study using EGM96 and the so-called "combined EGM”, respectively, which
is depicted in Figure 7.3.

Due to the very high SSV also present in the residual field of this second solution, the
data were low-pass filtered with a Wiener type of filter. A cut-off frequency
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corresponding to 22 km was selected for AG2, after different cut-off frequencies were
empirically tested, for the low-pass filtering procedures using a collocation type of filter
assuming Kaula’s rule for the geoid spectrum. Figures 7.3 and 7.4 illustrate the
altimetric geoid solutions after and before the gridded Nres have been low-pass filtered at

22 km

Table 7.1: Statistics of the ERS1-GM altimetric geoid models. Unit: [m].

min max mean o
Nalt with EGM96. (AG1). Unit: [m]. 0447 19665 11406  43.006
Nalt with the "combined EGM”. (AG2). Unit: [m]. 0794 19.384 11368  +3.018

TOW 85'W BO'W

55°S Himaias
70°

55'S Hiselii
70°

Figure 7.3: Altimetric geoid with Nres after ~ Figure 7.4: Altimetric geoid with Nres without
filtering at 22 km low-pass filtering

The differences between the altimetric geoid computed with the "combined" EGM
(AG2) and the solution computed with EGM96 (AG1) have a maximum, a minimum
mean and a standard deviation of 1.624 m, -0.609 m, -0.038 m and 0.071 m,

respectively.
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From the results shown in Tables 7.1, we cannot conclude about which solution is better
but later, we will show that from comparisons made with the solution computed with
the EGM96 geopotential model and T/P SSHs and the comparisons between the
altimetric solution with the “combined EGM” and T/P SSHs, the use of the “combined
EGM” improves the results by 1 cm in terms of the standard deviation, which is not

really significant.

7.2.2 Gravimetric geoid model

Three gravimetric geoid models were determined using the computational procedure
described in section 3.2.1. One solution was computed with EGM96 and KMSO01; we
will refer to this solution as "Gravimetric Geoid one" (GG1). The other two solutions
were estimated with the "combined EGM” and KMSO01; this solution will be referred as
"Gravimetric Geoid two" (GG2). The third solution was calculated with the "combined

EGM” and KMSO02; this will be referred as “Gravimetric Geoid three” (GG3).

Tables 7.2 presents the statistics of the gravimetric geoid processing computed with the
"combined EGM” and gaps of shipborne data filled in with KMSO01 (GG2) and the
statistics for the “Gravimetric Geoid three” (GG3).

The main difference in the processing flow with the altimetric geoid modeling is that
the RTM reduction is restored before the prediction of the gravimetric residual geoid
heights.. After the pre-processing of the shipborne gravity anomalies (transformation
from GRS67 to GRS80, remove data blunders, reduce gravity anomalies from sea
surface to geoid with EGM96.DOT and fill gaps with sparse distribution with KMS
free-air gravity anomalies derived altimetrically), marine gravity was ready for geoid

determination.

The RTM-reduced gravity anomalies, using the Sandwell and Smith bathymetry model
to account for bathymetry, were ready for gridding using the same algorithm that was
used for the altimetric geoid. After gridding, the contribution of the bathymetry was
restored prior to the geoid prediction. The residual geoid prediction was carried out by

applying the 2D FFT approximated Stokes convolution on the 3 arc-minute by 3 arc-
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minute grid using program fftgeoid (Li and Sideris, 1993) The final gravimetric geoid

solutions were computed by restoring the contribution of the geopotential model.

The statistics of the gravimetric geoid computed with EGM96 as reference field with
KMSO01 (GGl) for the area under study have a maximum, a minimum, a mean and a

standard deviation of 19.333 m, 0.628 m, 11.309 m and 2.984 m, respectively.

The gravimetric geoid solution with the “combined EGM” can be seen in Figure 7.5. This

solution was computed with the "combined" EGM and KMS02 data (GG3).

Gravimetric Geoid
min=1.079 max=19.079 mean=11.243 std = 3.069
(Contour interval = 1m)

TowW B65W 60W
i T |
355 | 7 358

455 18

1558

Figure 7.5: Gravimetric geoid in the Atlantic coastal region of Argentina

Table 7.2: Statistics of gravimetric geoid models. Unit:[m]

min max mean o
Ngrav GG2 (with “combined EGM” and
KMSO01) 1.079 19.079 11.249 1+2.869
Ngrav GG3 (with “combined EGM” and
KMS02) 1.079 19.096 11.245 +2.869




142

From the statistics shown in Tables 7.2, we can conclude that there is no differences
between the "Gravimetric Geoid two" (GG2) and the Gravimetric Geoid three” (GG3).
There are no differences in the gravimetric geoid solutions computed using either

KMSO01 or KMSO02 altimetry-derived free-air gravity anomalies.

We can also conclude that there is no significant improvement in the gravimetric geoid
solutions computed with the“combined EGM” (solutions GG2 and GG3) compared to
the one computed with the EGM96 (solution GG1).

7.2.2.1 Validation of KMS01 and KMSO02 altimetry-derived free-air gravity

anomalies

KMSO01 and KMSO02 altimeter-derived gravity anomaly grids offshore Argentina were
compared with one another and with ship-track gravity anomalies computed from the

BGI gravity database.

Sub-grids were extracted from the global grids over the study area. The statistics of the
gravity anomalies for each grid, after land gravity anomalies were removed using the

grdlandmask option in GMT (Wessel and Smith, 1998) can be seen in Table 7.3.

Table 7.3: Statistics of KMS01 and KMSO02 grids, their differences and shipborne gravity
anomalies offshore Argentina Unit: [mGal].

min max mean o2
KMSO01 -137.57 130.77 441 +25.59
KMS02 -134.26 131.47 4.39 +25.90
Shipborne data -133.03 142.57 4.01 +28.64
KMS02-KMS01 -41.37 64.17 -0.02 +4.15

From Table 7.3 we can see that both KMS models have similar statistics and the

shipborne gravity anomalies data have a comparable range.

The statistics of the differences between KMS02 and KMSO01 can also be seen in Table
7.3; these differences are depicted in Figure 7.6. From Figure 7.6, the larger differences
occur over the South American-Scotia plate boundary and at the edge of the continental

shelf of Argentina.
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The KMS gravity anomalies were bilinearly interpolated to the locations of the

shipborne data. Table 7.4 presents the statistics of the differences between both grids

and the 12823 shipborne gravity points using program geoip from the GRAVSOFT

software (Tscherning et al., 1992). Plotting the differences between the two different

KMS grids and the shipborne marine gravity anomalies, we conclude that the large

differences correspond to specific ship-tracks, which were removed.. Figure 7.7 shows

the differences between shipborne data and KMS02. Due to the uncertain quality of the

shipborne data, they should be used with caution to provide any reliable indication of

the quality of the altimeter grids.

Table 7.4: Statistics of the differences between KMS grids and the shipborne marine gravity

anomalies. Unit: [mGal].

min Max mean o
KMSO01-shipborne -61.47 67.74 0.99 +10.31
KMSO02-shipborne -63.67 66.31 1.25 +9.99
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Figure 7.6: KMS02-KMSO01 in Argentina

Figure 7.7: Differences between shipborne

data and KMS02
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7.2.3 MIMOST Combined solution

The combined geoid solutions were estimated using the MIMOST method in a smaller
area between 40°S to 50°S in latitude and 56°W (304°E) to 66°W (294° E) in longitude.
The final solution from the combined method was estimated using the formulas

described in chapter 3 for two inputs and one output.

Table 7.5 shows the statistics of three gravimetric geoid solutions, one estimated with
EGM96 and KMSO01 (GG1), other with “combined EGM” and KMS01 (GG2) and the
third with “combined EGM” and KMS02 (GG3). The same table also shows the statistics
of two ERS1-GM geoid solutions, one with EGM96 (AG1) and the other with the
“combined EGM” (AG2), and the statistics of the three combined MIMOST solutions,
one (CGI1) with AG1 and GGI; the second (CG2) with AG2 and GG2; and the third
(CG3) with AG2 and the gravimetric one with KMS02 (GG3). All the geoid solutions

can be seen in Figures 7.8 through 7.15.

The inputs of MIMOST were residual gravimetric geoid heights and residual altimetric
geoid heights with the contribution of the geopotential model removed in order to avoid

long wavelength errors.

The input noises for each dataset were generated using the standard deviation of the
differences between T/P SSHs and the gravimetric geoid (25 cm) and between T/P
SSHs and the altimetric geoid (20 cm) geoid models for the combined solution 1 (CG1)
and using the standard deviation of 19 cm for the altimetric geoid heights and the 21 cm
standard deviation for the gravimetric solutions for the combined solution 2 and 3 (CG2

and CG3).

Table 7.5: Statistics of the geoid models in the smaller area. Unit: [m].

Min max mean o
Nalt (AG1) 0.505 14.722 10.285 +3.287
Ngrav (GG1) 0.642 14.954 10.244 +3.268
Ncomb (CG1) 0.574 14912 10.257 +3.275
Nalt (AG2) 0.794 14.663 10.246 +3.279
Ngrav (GG2) 1.079 14.715 10.201 +3.088
Ngrav (GG3) 1.076 14.722 10.202 +3.087
Ncomb (CG2) 0.788 14.618 10.247 +3.278
Ncomb (CG3) 0.785 14.618 10.247 +3.278
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7.3 Validation of the estimated geoid models

The accuracy of the models was assessed through comparisons with stacked T/P SSHs.
The computed differences between T/P and each geoid solution were minimized using a
3rd order polynomial model and a four-parameter similarity transformation model.
From the results tabulated in Table 7.6, we conclude that the use of a third order
polynomial model is preferable compared to the use of the four-parameter

transformation.

The statistics of the differences before and after the bias and tilt fit between the T/P
SSHs and the estimated geoid solutions are also given in Table 7.6. From that table it
can be seen that the overall best agreement is achieved for the altimetric geoid solutions

while the data combination improves the gravimetric geoid by about 2 cm.

Table 7.6: Statistics of geoid height differences between the estimated models and T/P SSHs in

the test area. Unit: [m]. (before and after bias and tilt fit).

min max mean o
Nalt (AG1) - T/P SSHs 121 1.01 0.11 +0.21
After 3P -1.07 111 0.00 +0.20
After 4P -1.20 1.00 0.00 +0.20
Nalt (AG2) - T/P SSHs -1.15 1.15 0.15 +0.20
After 3P -1.06 1.2 0.00 +0.19
After 4P 121 1.09 0.00 +0.20
Ngrav (GG1)-T/P SSHs -0.85 1.76 0.15 +0.26
After 3P -1.00 1.35 0.00 +0.23
After 4P 1.66 -0.93 0.00 +0.25
Ngrav (GG2)-T/P SSHs -0.66 1.05 0.20 +0.28
After 3P -0.80 0.85 0.00 +0.21
After 4P -1.18 0.57 0.00 +0.23
Ngrav (GG3)-T/P SSHs -0.67 1.05 0.20 +0.28
After 3P -0.80 0.84 0.00 +0.21
After 4P -1.19 0.57 0.00 +0.23
Ncomb (CG1)-T/P SSHs -0.94 1.53 0.14 +0.24
After 3P -0.80 1.39 0.00 +0.22
After 4P -0.93 1.49 0.00 +0.23
Ncomb (CG2)-T/P SSHs -1.16 1.11 0.15 +0.20
After 3P -1.04 1.18 0.00 +0.19
After 4P -1.20 1.05 0.00 +0.20
Ncomb (CG3)-T/P SSHs -1.16 111 0.15 +0.20
After 3P -1.04 1.18 0.00 +0.19
After 4P -1.20 1.05 0.00 +0.20
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From these results we conclude that there is no differences in the gravimetric geoid
solutions computed using either KMSO01 (GG2) or KMS02 (GG3) gravity anomalies
and this fact is also reflected in the results of the combined solutions using the

MIMOST method (CG2 and CG3).

From Table 7.6, we also conclude from comparisons made with the solutions computed
with EGM96 geopotential model and T/P SSHs for the same area, that the use of the
“combined EGM” improves the results by 1 cm in terms of the standard deviation for
the pure altimetric solutions, 2 cm in terms of the standard deviation for the pure
gravimetric solutions and 3 cm in terms of the standard deviation for the combined

solutions.

We also notice that the combined solution computed with EGM96 geopotential model is
worse than, e.g., the altimetric one, this will be an indication of improper weighting of
the gravimetric and altimetric data. When the “combined EGM” is used, the combined
solution improves the gravimetric ones n in terms of standard deviation and mean

values but it does not improve the altimetric solution.

Figures 7.16 depict the differences between T/P SSHs and the ERS1 altimetric geoid
computed with the new EGM. The combined geoid and the gravimetric geoid solution

can be seen in Figure 7.17.

It is worth mentioning, though, that the o of the differences for the comparisons with
the altimetric models is quite high, at the 20 cm level, while a value close to 9 cm would
be expected based on previous studies (Li and Sideris 1997; Vergos 2002). Plotting the
differences it was noticed that their largest and smallest values are located close to the
coastline and more specifically between -45° < ¢ < -44° and 294° < A < 296° where the
effects of SSV and other oceanic phenomena are very strong. In the rest of the region,
the differences are within their expected values, ranging between -60 and 60 cm. In our
opinion, this is an indication that the accuracy of the altimetric geoid models is much
better than the comparisons with T/P imply. Neglecting a few T/P points that refer to
the aforementioned regions the standard devition of the differences reduces to about 5 to
8 cm for the altimetric geoid models. The same improvement of more than 9 cm holds
for the gravimetric and combined models, too. So it can be concluded that by only

stacking the T/P data, part of the oceanic effects, which clearly influence the SSHs used
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for the comparisons, cannot be removed. Probably, the T/P data had to be low-pass
filtered as well in their along-track direction, to further reduce the effect of the SSV and
make the comparisons more representative or more simply by rejecting all T/P points

close to the coasts.
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7.4 Summary

An altimetric, gravimetric and a combined final geoid height solution have been
determined in the Atlantic coastal region of Argentina. The MIMOST theory for the
optimal combination of heterogeneous data has been applied to improve the gravimetric

geoid solution close to the coastline.

From the results and validation procedures carried out, it is evident that when altimetry
and shipborne gravity data are handled properly (i.e., correcting them for all error
sources, removing blunders, using accurate geopotential and DOT models, removing the
the QSST signal, accounting for the bathymetry using an accurate model, low-pass
filtering the altimetry data, etc.), then, altimetric geoid modeling accurate to about 7 cm
is feasible, while the combined solution improves the gravimetric one, by about 2 cm, in
terms of the o of the differences with T/P SSHs. These differences refer to purely
oceanic areas (not close to the coastline) and regions where the effect of the variability

of the oceans is not very strong.

The effect of oceanic phenomena in the densely spaced GM datasets, especially in areas
with high ocean dynamics, is profound and should be reduced by low-pass filtering the
altimetric datasets. If this step is neglected, then the resulting geoid solutions can be less
accurate by about 2-5 cm. A point that needs further research is the use of crossover
adjustment for the reduction of such noisy signals. Finally, the altimetry data should be
corrected for the QSST signal to refer to the geoid and not the sea surface; the question
that arises is not on the necessity of such a correction, but on the selection and the

development of accurate DOT models.

From the numerical results presented in this chapter, we conclude that the best pure
gravimetric and altimetric geoid solutions are those computed using the “combined
EGM” derived from the latest CHAMP and GRACE type of EGMs (Vergos et al.,
2004). We also conclude that from comparisons made with the solutions computed with
EGMO96 geopotential model and T/P SSHs, the use of the “combined EGM” improves
the results by 1 cm in terms of the standard deviation for the pure altimetric solutions, 2
cm in terms of the standard deviation for the pure gravimetric solutions and 3 cm in
terms of the standard deviation for the combined solutions. From such comparisons, we

can also conclude that the use of the “combined EGM” improves the results by 4 cm in
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terms of the mean differences for the pure altimetric solutions, 5 cm in terms of the
mean differences for the pure gravimetric solutions but for the combined solutions the

mean differences increase in 1 cm.
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CHAPTER EIGHT

A HIGH-PRECISION GRAVIMETRIC GEOID MODEL FOR ARGENTINA

8.1 Introduction

This chapter describes the process selected, based on the tests conducted in the previous
chapters, for the determination of a new gravimetric geoid model for Argentina. During
the past years, many efforts were carried out to compute a high precision and high
accuracy gravimetric geoid model for the whole country. The methodology finally
applied for its computation as well as the most recent evaluated data are discussed.
Argentina is located in Southern South America; with a total area of 2,766,890 km? is
the second-largest country in South America (after Brazil). It is bounded to the west by
the highest mountain range in America, the Andes, so different topographic reduction
methods are crucial in practical gravimetric geoid determination. To the east, Argentina
borders on the Atlantic Ocean so the combination of shipborne gravity data and

altimetry derived free air gravity anomalies was also taken into account.

The remove-compute restore technique was adopted for the geoid determination and the
contribution of the local data to the geoid was computed by FFT (Sideris, 1994; Sideris
and Li, 1993; Featherstone et al., 1996; Sideris and She, 1995; Li and Sideris 1994;
Mainville et al., 1992).

As an external evaluation, the gravimetric geoid was compared with geoid undulations

of 539 GPS/levelling points available for the country.

The importance of this new gravimetric geoid lies in the fact that it will be the official
gravimetric geoid for the country, and thus it will be of interest to the entire scientific
community utilizing geospatial data, like, e.g., GPS users in topographic and cadastral
mapping, construction and infrastructure works, vehicle navigation, military operations

and floods control.
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8.2 Area under study and data availability

The gravimetric geoid model was computed for the whole country, covering both
landmasses and the Atlantic Ocean, ranging from 20°S to 55°S in latitude and 53°W
(307°E) to 76°W (284° E) in longitude. Part of this area is offshore, so the KMS02 2'x2’
altimetry derived free-air gravity anomaly field (Andersen et al., 2005) has been used to
fill in information in the Atlantic and Pacific Oceans with the purpose to improve the

quality and accuracy of the geoid.

The distribution of the land gravity data is depicted in Figure 8.1. The input gravity data
consisted of: terrestrial, shipborne and altimetry derived gravity measurements. The
gravity data were referred to GRS80 (Moritz, 2000). The gravity values were based on
the International Gravity Standardization Net 1971 (IGSN71).

To derive the long-wavelength information of the gravity field we used and compared

the results of two gravity field models: EGM96 and EIGEN CGO1C.

Two gravimetric geoid solutions will be presented in this chapter; one solution was
referenced to the EGM96 global geopotential model (Lemoine et al., 1998) complete to
degree and order 360 and the other solution was referenced to the combined global

gravity model EIGEN CGOI1C (Reigber et al., 2005).

The high-resolution global gravity field model EIGEN-CGO1C, complete to degree and
order 360, was generated using CHAMP and GRACE satellite gravity data combined
with 0.5 x 0.5 degree surface data (gravimetry and altimetry). The geopotential model
EGM96 and the global gravity model EIGEN-CGO1C complete to degree and order 360

were used as reference fields.

The topographic data used to compute terrain corrections (the direct topographical
effect on gravity, and indirect effects on the geoid) were those of the GTOPO30 DEM
model, with an original grid spacing of approximately 1 km by 1 km; however, these
quantities were computed from the GTOPO30 with a grid spacing 4 km by 4 km due to
the numerical instabilities encountered as the inclination of the topography increased.
These numerical instabilities occur when dense height grids are used in rough

topographies (Tziavos, 1992). Table 8.1 shows statistics of the topography and the
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terrain corrections for the area under study. The GTOPO30 DEM has no values at sea,

so zeros were used to replace the NaN numbers in order to compute terrain corrections.

Table 8.1: Statistics of the heights and terrain corrections in Argentina.

min max mean o
Topographic heights Unit: [m] 0.00 6402.69 407.11 885.54
Terrain corrections Unit: [mGal] 0.00 73.48 1.02 2.72

A total of 539 GPS/levelling points as well stacked T/P SSHs in the Atlantic Ocean

were used for the evaluation and validation of the gravimetric geoid heights.

All these data have been described in chapter four.
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Figure 8.1: Distribution of gravity data in the area under study
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8.3 Computational methodology
8.3.1 Gravimetric geoid modeling

As it was mentioned before, the gravimetric geoid was computed using the remove-
compute-restore technique employing Stokes’s formula for the prediction of residual
geoid heights. Before the prediction of the residual geoid, the free-air gravity anomalies
had to be reduced to a geopotential model during the remove step. Furthermore, the
effect of the topography had to be taken into account through a topographic reduction.
Several gravity terrain reductions have been analyzed during the development of this

research for the computation of the gravimetric geoid.

According to the results obtained in chapter 6, the Rudzki inversion method and
Helmert's second method of condensation method were the most promising gravity
reduction techniques so both will be utilized in this chapter to find the best gravimetric

geoid solution for the whole of Argentina.

We will show in this chapter that, even though the best gravimetric geoids solutions
were achieved by the Rudzki inversion gravity reduction in the test areas presented in
chapter 6, Helmert's second method of condensation will be finally used because it gave

the best results in the final gravimetric solution for all of Argentina.

Stokes’s integral formula with the rigorous spherical kernel function evaluated by the
one-dimensional spherical Fast Fourier Transform (1D FFT) was used to compute the

gravimetric geoid for Argentina (Haagmans et al., 1993).

The indirect effect of Helmert’s reduction on the geoid, up the second order was
computed, in planar approximation, by equation (2.78) (Wichiencharoen, 1982), which

was evaluated by FFT (Li, 1993).

The direct topographical effect on gravity using the Rudzki inversion gravimetric
reduction scheme with constant density was computed using program Rudzki
(Bajracharya, 2003), which it is a modified version of the program #c from GRAVSOFT
software (Tscherning et al., 1992).
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8.3.2 Gravity gridding

During the past years, many studies were carried out in order to reduce the effect of
aliasing in gravity and geoid heights, using digital terrain data (Sideris and Forsberg,
1991, Featherstone and Kirby, 2000; Li et al., 1995; Bajracharya, 2003; Bajracharya and
Sideris, 2005). Terrain reductions were used to generate a grid of free-air gravity
anomalies in rough areas like the West part of Argentina in order to avoid aliasing
problems due to the high-correlation between the free-air gravity anomalies with the
gravity station heights. Three different procedures were used to grid free-air gravity

anomalies on land.
Procedure 1
The free-air gravity anomalies on land were gridded in the following way:

1) Simple Bouguer anomalies (Agg) were computed at each of the gravity

observations by Agp = Agp, —2nGph .

2) The simple Bouguer anomalies were interpolated at the grid nodes that define the
DEM, in this study, 2 arc-minute by 2 arc-minute, yielding a grid of simple Bouguer
anomalies denoted by (Agp )grid.

3) Free-air anomalies were reconstructed at each point of the grid where the simple
Bouguer anomalies were interpolated by adding the Bouguer plate term. The Bouguer
plate was computed using the height of the DEM in each cell and the same topographic
density used to compute the simple Bouguer anomalies. The reconstructed free-air

anomalies were on a grid of 2 arc-minute by 2 arc-minute and they were computed

by (Ag FA )grid = (Ag B )grid + (2nGph DEM )grid .

The (Agp, )*™ values at sea were eliminated and filled in with KMS02 free-air gravity

anomalies. No smoothing conditions were applied to remove inconsistencies along the

coastline.
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The area was bounded between latitudes 20° S to 55° S (1051 rows) and longitudes
284°E to 307°E (691 columns). The grid has 706241 points, from which 407313 were
computed as described above and 318928 were KMS02 gravity anomalies.

4) The free-air anomalies were still not ready for the geoid computation and they had
to be terrain-corrected. Following Featherstone and Kirby, (2000) we called these
anomalies reconstructed terrain-corrected free-air (TCFA) anomalies. They were

calculated by:

Agrcpa (hppy ) = Agpa (hppy ) + TC(hpgy ) (8.1)

where TC(hpg,,) were the gravimetric terrain corrections computed from the DEM
heights, Agp, (hpgy)were the reconstructed free-air anomalies on land and

Agpa (KMS02) at sea.

5) The reconstructed TCFA anomalies in each cell were averaged into a coarser grid of
5 arc-minute by 5 arc-minute. This was done in order to diminish the errors present in

the DEM that could propagate into the reconstructed TCFA grid.

At this point, a grid of mean TCFA of 5 arc-minute by 5 arc-minute (grid 1) was
constructed and it could be used to compute the gravimetric geoid. Table 8.2 shows the

statistics of the reconstructed terrain-corrected free-air gravity anomalies.

Table 8.2: Statistics of the Terrain Corrected reconstructed Free-Air gravity anomalies (TCFA)
(5’ x 57). Unit:{mGal].

Grid 1 min max mean o

Agrcpa (land & KMS02) 249.46 454.56 10.16  47.08

Procedure 2
The free-air gravity anomalies on land were gridded in the following way:

The three first stages were similar than in the procedure 1; but in this procedure stage 4

was not applied.
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The free-air gravity anomalies in each cell were averaged into a coarser grid of 5 arc-
minute by 5 arc-minute. At this point, a mean free-air gravity anomaly grid of 5 arc-
minute by 5 arc-minute (grid 2) was obtained to be used in the computation of the

geoid. Table 8.3 shows the statistics of the reconstructed free-air gravity anomalies.

Table 8.3: Statistics of the free-air gravity anomalies (5’ x 5°). Unit: [mGal]

Grid 2 min max mean o

Agp, (land & KMS02) -250.50 400.75 9.13 45.65

Terrain corrections were computed using program 7c2DFTPL developed at the
Department of Geomatics Engineering at the University of Calgary by Yecai Li in 1993.
Terrain corrections were computed with the GTOPO30 Digital Elevation Model with a
grid spacing of 2 arc-minutes by 2 arc-minutes. The topographic indirect effect on the
geoid due to Helmert’s second method of condensation was computed using program

ind developed by Yecai Li at the University of Calgary using the same GTOPO30 grid.

Procedure 3

In order to quantify the effect of the aliasing on the gravity anomalies, terrain
corrections were interpolated at each gravity station and added to the free-air gravity
anomalies. Then the free-air gravity anomalies plus the terrain correction were
arithmetically averaged to form a grid of 2 arc-minutes by 2 arc-minutes. The resultant
gravity anomalies grid had values on both land and sea, so the values at sea had to be

eliminated and filled in with KMSO02 free-air gravity anomalies.

The free-air gravity anomalies terrain corrected on land and KMS02 at sea were

averaged into a coarser grid of 5 arc-minute by 5 arc-minute.

At this point, we had a 5'x 5" grid of mean free-air gravity anomalies terrain corrected
on land and KMSO02 at sea (grid 3). Table 8.4 shows the statistics of the reconstructed

free-air gravity anomalies.

Table 8.4: Statistics of the Terrain Corrected free-air gravity anomalies (5’ x 5”). Unit: [mGal].

Grid 3 Min max mean o

Agga + ¢ (land & KMS02) -250.50  275.69 3.50 36.82




158

These three procedures were investigated in order to explore the effect of gravity
reduction on gravity gridding and how the gridding affects the geoid prediction

accuracy.
8.4 Analysis of the geoid power spectrum

All the residual geoid undulations presented in this chapter were computed with the
one-dimensional FFT implemented in the computer software ffitgeoid developed at the
University of Calgary (Li and Sideris, 1993). As ffigeoid can evaluate the contribution
of residual gravity anomalies for the whole integration area or within a specified cap
size, several computations using different cap sizes were computed in order to select the
one that best fits the differences between the gravimetric geoid and the GPS/levelling-
derived geoid. Finally, the geoid computation was performed using the modified kernel

over a two-degree integration spherical cap size.

The geoid power spectrum was computed for Argentina, in order to choose the best way
to combine global data from the geopotential model (GM data) and local data (Essan,
2000).

The geoid power spectrum derived from the EGM96 geopotential model
(NDV_EGM96) using formula (5.8) is shown in Figure 8.2, together with the power
spectrum of the geoid represented by the geoid degree variances from the local gravity
data (NDV_grav) and the geoid spectrum of the terrain correction (NDV_TC) and of the
geoid indirect effect (NDV _ind); see formula (5.39).

The GM geoid degree variances were computed up to degree and order 360. The local
gravity anomalies consisted of a grid of residual gravity anomalies and a grid of terrain

corrections.

In Figure 8.3, the cap sizes in degrees are represented by the vertical lines. The geoid
power spectrum from local gravity data was higher than the geoid power spectrum from

the EGM96 for frequencies corresponding to a cap size of 1.2° x1.2°.

For frequencies below the cap size of 1.2°, the geoid power spectrum was dominated by

the contribution of the EGM96.
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The residual geoid heights were computed with cap sizes of 1° and 2°, with the latter

yielding slightly better results than the former one.
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8.5 Gravimetric geoid model development

Different gravimetric geoid solutions were determined using the computational
procedure described in section 2.1, introducing some modifications when grid 1 or grid

3 was used. Grid 1 and grid 3 were grids of Faye gravity anomalies.

Six gravimetric geoid solutions were computed, by a combination of the three different
grids of free-air gravity anomalies explained in the former section with the two global
gravity models, namely the EGM96 (complete to degree and order 360) and the
EIGEN _CGO1C (complete to degree and order 360) which were used to model the long
wavelength part of the geoid.

Two more geoid solutions were also computed using a Rudzki inversion method.

The geoid heights were referred to the Geodetic Reference System 1980 (GRS80)

ellipsoid and were computed on a 5' by 5' grid.

Table 8.5: Names of the different geoid solutions presented in this chapter.

Geoid name Solution GM
ARGO5 procedure 1 egm96 solution 1 Procedure 1 EGM96
ARGO5 procedure 2_egm96 solution 2 Procedure 2 EGM96
ARGO5 procedure 3_egm96 solution 3 Procedure 3 EGM96
ARGOS5 procedure 1_eigen cg0lc solution 4 Procedure 1 EIGEN_CGO01C
ARGOS5_procedure 2_eigen_cg0lc solution 5 Procedure 2 EIGEN _CGO1C
ARGO5 procedure 3_eigen_cg0Olc solution 6 Procedure 3 EIGEN _CGO1C
ARGO5 Rudzki egm96 solution 7 EGM96
ARGO5 Rudzki eigen cg0lc solution 8 EIGEN CGO1C

8.6 Validation of the estimated geoid models
8.6.1 Comparisons at GPS benchmarks

The accuracy of the computed models was assessed through comparisons with

GRAV

interpolated values of the gravimetric geoid (N ) at a network of GPS/levelling

points (NF*

). The computed differences between GPS/levelling and each geoid solution
were minimized using the four-parameter transformation model given in equation
(4.26). This model absorbs all the systematic differences between the gravimetric geoid
and the GPS/levelling data as well as all possible long wavelength errors and biases of

the geoid (Sideris et al., 1992).
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A total of 539 GPS/levelling points with the outliers removed were used as an external
control for the quality of the gravimetric geoid solutions. These GPS/levelling points
belong to eight GPS/levelling networks, which are located in different topographies.
The distribution of GPS/levelling points in Argentina is shown in Figure 8.4.
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Figure 8.4: Distribution of GPS/levelling points (land) and T/P SSHs (ocean)

8.6.1.1 Absolute differences between gravimetric geoid models and GPS/levelling

The statistics of the absolute differences before and after the bias and tilt fit between the
GPS/levelling derived-geoid and the estimated gravimetric geoid solutions for the entire
Argentina are given in Table 8.6. The values in parentheses are the results after the four-

parameter transformation model has been fitted.

Table 8.6 shows that solution 3 and solution 6 gave the worst results before and after fit, while
the overall best agreement is achieved in the solutions 2 and 5. In both solutions, the
gravimetrically derived geoid with support of the EGM96 and the one derived with the
EIGEN_CGO1C present nearly the same external accuracy, which is at the 0.41-0.42 m level
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before fit and at the 0.32-0.33 m level after fit. This result suggests that the accuracy and

resolution of the gravity data have to still be improved in Argentina.

Table 8.6: Geoid height difference between various geoid models and GPS/levelling-derived
geoid model (All of Argentina). Unit: [m].

Geoid model min max mean o
All of Argentina

EGMO96 - N°* -2.434 (-2.180) 1.888 (2.000) 0.155 (0.000) 0.805 (0.537)
EIGEN-CGO1C - NS -1.370 (-1.738) 1.605 (1.209) 0.485 (0.000) 0.401 (0.359)
Solution 1 - NS -1.746 (-1.870) 1.742 (1.260) 0.491 (0.000) 0.437 (0.360)
Solution 2 - NOFS -0.663 (1.740) 2.693 (0.990) 1.381 (0.000) 0.412 (0.317)
Solution 3 - NS -17.165 (-6.820) 1.373 (6.180)  -2.786 (0.000)  5.134 (2.404)
Solution 4 - NS -1.940 (2.060) 1.859 (1.070) 0.507 (0.000) 0.472 (0.395)
Solution 5 - NS -0.830 (-1.930) 3.017 (1.150) 1.426 (0.000) 0.419 (0.334)
Solution 6 - N -17.493 (-7.190) 1.475 (6.290) -2.775 (0.000) 5.091(2.347)
Solution 7 - N -0.574(-1.640) 5.699(2.390) 1.246(0.000) 1.323(0.493)
Solution 8 - NS -1.932(-2.340) 3.458(1.810) 0.994(0.000) 0.946(0.580

Table 8.6 also shows that the global gravity field EIGEN_ CGO01C describes better than EGM96
the long-wavelength structure of the gravity field in Argentina. After fit, EGM96 alone fits the
GPS/levelling derived geoid with a standard deviation (c) of near 54 c¢cm while the
EIGEN_CGOI1C alone fits with a standard deviation of 36 cm. Before the fit, EIGEN_CG01C

alone reduces to half the standard deviation of the differences compared to EGM96 alone.

From the statistics shown in Table 8.6, it can be seen that solutions 2 and 5 are the best
gravimetric geoid solutions in a national scale in Argentina. From this point on, only
these solutions are considered for analysis. Both gravimetric geoid solutions are

depicted in Figures 8.5 and 8.6, respectively.

A regional analysis of the differences between both solutions (2 and 5) was carried out
for each of the GPS/levelling networks. The standard deviations of the absolute
differences before and after fit) between the gravimetrically geoids and the
GPS/levelling-derived geoid at each GPS/levelling network can be seen in Figure 8.7

and Figure 8.8, respectively.

Buenos Aires, Santa Fe and Uruguay networks are located in flat areas. Both global
models (EGM96 and EIGEN_CGO01C) have similar representation of the gravity field in
each of these areas, but the agreement level is different for the three different flat areas.
In Buenos Aires, the agreement level is approximately 15 cm in terms of the standard
deviation for both EGM96 and EIGEN CGOIC; in Santa Fe, is around 32 ¢cm and in
Uruguay, is of the order of 50 cm. Both gravimetric geoids (solution 2 and solution 5)

show an improvement of about 8 cm in Buenos Aires; in Santa Fe the best agreement



was achieved with solution 5 (20 cm) rather than solution 2 (30 cm); in Uruguay, the
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differences in the standard deviation between solution 5 and solution 2 is around 4 cm.
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Figure 8.5: Gravimetric geoid. Solution 2 Figure 8.6: Gravimetric geoid. Solution 5

Mendoza and Neuquén are GPS/levelling networks located in the rough areas in
Western Argentina. In the Neuquén area, both global models have similar standard
deviation agreement with the GPS/levelling data (44 cm), but in Mendoza, the global
gravity field EIGEN_CGO1C is superior by 7 cm compared to EGM96. This result is
reflected in the corresponding gravimetric geoids: solution 2 was computed using
EGMO96 as reference field in contrast to solution 5 that was calculated with
EIGEN_CGOIC. In Neuquén, even though both global model present similar behavior,

solution 2 is better than solution 5 by 2 cm.

The Chubut GPS/levelling network shows a very different behavior with respect to the
global models. This network will not be used from this point on because the ellipsoid

heights were not referred to the same datum as the other GPS points.
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Tierra del Fuego network is located in the Southern part of Argentina; both

gravimetric geoid solutions have the same level of agreement (15 cm) but these results

are slightly worst than the ones obtain with the global models alone.

Standard deviation [m]
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All of Buenos Chubut Mendoza  Neuquén POSGAR  SantaFé  Tierradel  Uruguay
Argentina Aires Fuego
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Figure 8.7: standard deviation of the absolute differences (before fit) between the

gravimetrically geoids and the GPS/levelling-derived geoid
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Figure 8.8: standard deviation of the absolute differences (after fit) between the gravimetrically

geoids and the GPS/levelling-derived geoid
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8.6.1.2 Relative agreement of geoid models with respect to GPS/levelling

To evaluate the relative accuracy of the best four geoid models with respect to the

GPS/levelling-derived geoid, relative geoid heights differences (ANSRAY — ANCPS) were

formed for all the baselines and plotted as a function of the baseline length (spherical
distance in km) in parts per million (ppm). The relative differences in ppm were formed

after all outliers were removed. Figure 8.9 and Figure 8.10 show the relative differences

across the entire Argentina before and after fit, respectively.
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Figure 8.9: Relative accuracy between geoid models and GPS/levelling-derived geoid across

Argentina (before fit)

The two global gravity field models have the same relative accuracies up to baseline
lengths of 15 km, ranging from 8.5 ppm to 1.6 ppm. For larger baseline lengths ranging
from 15 to 125 km, we can see an improvement in the long wavelength structure of the
EIGEN CGO1C global model compared to the EGM96. For baseline lengths larger than
125 km to near 500 km, both models show similar relative accuracies. For 500 km to

1200 km, we can observe again an improvement of the EIGEN CGO1C global model
compared to the EGM96, tending to 0 ppm for lengths over 1800 km.

The two new geoid models (solution 2 and solution 5) present for the entire country,

similar behavior for all baseline lengths, except for baselines between 15 to 115 km
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where EIGEN_CGOI1C is slightly better than EGM96 and for baselines 115 km to 700
km where EGM96 performs slightly better than EIGEN CGO1C.

Comparing Figure 8.9 and Figure 8.10, we can appreciate that there is a significant
improvement in the relative agreement after the fit, especially for distances greater than
225 km where both gravimetric geoid models perform better than the global

geopotential models. This demonstrated the importance of using local gravity data to

improve the relative accuracy.
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Figure 8.10: Relative accuracy between geoid models and GPS/levelling-derived geoid across

Argentina (after fit)

8.6.2 Comparison of geoid height solutions with T/P SSHs.

The four-geoid solutions considered in the previous section were compared with stacked
T/P SSHs from the third year of the satellite mission, considered as geoid heights when
the dynamic ocean topography was accounted for, and known for their high accuracy.
Figure 8.4 shows the geographical distribution of the T/P SSHs used as control points in
the area under study, in the Atlantic ocean region of Argentina. Table 8.7 shows the
statistics of the differences between the different geoid solutions with T/P SSHs. As

with the GPS/levelling benchmarks, a four-parameter transformation model was used to
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minimize the differences. The values in parentheses correspond to values after bias and

tilt fit.

Table 8.7: Geoid height difference between various geoid models and T/P SSHs. Unit: [m].

Geoid model min max mean o

EGM96 - T/P SSHs -1.680 (-1.521) 0.888 (1.053) -0.199 (0.000) 0.257 (0.256)
EIGEN-CGOIC - T/P SSHs -1.503 (-1.096) 1.051 (1.350) -0.226 (0.000) 0.315 (0.286)
Solution 2 - T/P SSHs -0.332 (-0.714) 1.959 (1.327) 0.324 (0.000) 0.242 (0.197)
Solution 5 - T/P SSHs -0.541 (-0.844) 1.788 (1.028) 0.327 (0.000) 0.294 (0.214)

Comparing the use of the two reference gravity models, it can be concluded that the
gravimetric geoid solution 2 that was computed using EGM96 gives 5 cm (before fit)
and 1 cm (after fit) better agreement that the gravimetric geoid solution 5 computed

using EIGEN_CGO1C.

The differences between both gravimetric geoid solutions (solution 2 and solution 5) are

plotted in Figures 8.11 and 8.12, respectively.
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The standard deviation between the gravimetric solution 2 and the stacked T/P SSHs,
improves the gravimetric geoid solutions presented in that chapter 7 by 5 cm after

applying the four-parameter transformation model.

One of the main differences between the gravimetric geoids computed in this chapter
with the ones obtained in chapter 7 was the way that the topography/bathymetry was
handled. Again, it is worth to mention the importance of the treatment of the gravity

reductions in geoid computations.

8.6.3 Comparisons between geoid models

Comparisons between the models EGM96 and EIGEN CGO1C, as well as solution 2
and solution 5 were also performed in order to investigate the accuracy of the two new
gravimetric geoid models. Table 8.8 presents the statistics of the four gravimetric geoid

solutions and their differences for the area under study.

Table 8.8: Statistics for various geoid models and their differences. Unit: [m].

Geoid model min max mean o

EGM96 -4.737 47.673 16.681 8.820
EIGEN_CGO01C -4.430 46.281 16.696 8.747
EGMO96 - EIGEN_CGO01C -5.845 6.636 -0.793 1.110
Solution 2 -4.125 48.533 17.470 8.938
Solution 5 -3.361 48.569 17.474 8.952
Solution 2 - Solution 5 -1.534 1.007 -0.005 0.246

A comparison between the two gravimetric geoid models shows that the main
differences are located along the Andes, especially in the south part of the country
called Patagonia. These differences are correlated with the differences between the
geoid undulations from EIGEN CGO1C and EGM96. Figure 8.1 shows the sparse
gravity measurements located in southern Argentina, where the largest discrepancies

between the models are located.

8.7 Summary

Eight new gravimetric geoid models for Argentina were developed during my stay at

the Department of Geomatics Engineering at the University of Calgary. The area
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covered by these solutions is from 20°S to 55°S in latitude and 53°W (307°E) to 76°W
(284° E) in longitude with a grid spacing of 5.

The gravimetric geoid models have been computed for Argentina using global
geopotential models and terrestrial gravity and satellite derived marine gravity
anomalies and heights. The differences between the eight models were in the use of two
geopotential models, namely, EGM96 and EIGEN CGOIC, in the treatment of the
gravity data, and also in the way how the topography was handled. Three procedures
were investigated. Two of these procedures used mean free-air gravity anomalies
reconstructed using a digital elevation model but differed in the way that terrain
corrections were taken into account, and the last procedure used point free-air gravity

anomalies.

From these eight solutions, we selected only solutions 2 and 5 because they were the

ones that show the best agreement with GPS/levelling-derived geoid.

The two new gravimetric Argentinean geoids model were renamed as ARGO05 egm96

(solution 2) and ARGO5 eigen cg0Olc (solution 5).

They were based on the classical remove-compute-restore technique using the most
accurate current gravity database for Argentina, which includes land; marine and
satellite derived marine gravity anomalies from KMS02. Marine data was finally

excluded for the final solutions because they did not yield any geoid improvement.

The gravity data in Argentina is not homogeneous. There are some areas such as
Buenos Aires where the gravity distribution is very dense but areas like Patagonia,
located in the south part of the country, has sparse gravity observations. Due to the very
high topography in the west part of the country, it is usual that gravity stations were
observed in lowlands and valleys. That is why the reconstruction method of free-air
gravity anomalies from Bouguer anomalies and the use of the DEM minimize aliasing

effects.

The comparison of both geoid solutions with the GPS/levelling data show that the

absolute agreement with respect to the GPS/levelling-derived undulations (after the
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systematic datum differences were removed) is 32 cm in terms of standard deviation for

ARGO05 egm96 and 33 cm for ARGOS5 eigen cgOlc.

A regional analysis was carried out and the statistics shows that the absolute agreement
level of the differences between the gravimetric solutions and the GPS/levelling-derived
undulations for each network is different for areas of flat terrain like the Buenos Aires
province than mountainous areas located in the Andes. The lack of gravity data and the
roughness of the topography are similar in the areas where these GPS networks are
located so it is necessary to investigate the accuracy of the GPS/leveling-derived geoid
heights especially in rough areas where the accuracy of the leveling heights is much

poorer.

The overall best absolute agreement for the whole Argentina is achieved by the
ARGO5 egm96 gravimetric geoid, with a standard deviation of 0.32 m. It will be named
ARGOS.
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CHAPTER NINE

CONCLUSIONS AND RECOMMENDATIONS

This chapter summarizes the most important investigations carried out in this research:
(1) compilation, generation, editing and evaluation of a new gravity anomaly database
and all other data necessary for the estimation of a regional marine and land geoid
model; (ii) a covariance analysis for different areas across Argentina; (iii) the
investigation of different gravity reduction methods to handle topography in practical
geoid computation; (iv) the computation of a marine geoid model; and (v) the

computation of a regional gravimetric model for Argentina.

A new database of gravity anomalies has been created from land, marine and satellite
derived free-air gravity anomalies towards the determination of a high-accuracy and

high-resolution gravimetric geoid model in Argentina.

Local empirical covariance functions were estimated, in the space domain, for selected
areas with different topographies of Argentina. The numerical results carried out in a
mountainous, flat and marine areas showed a non uniform signal covariance function

and the existence of correlation with the topography.

Different topographic terrain reductions were used in the determination of the
gravimetric geoid in different areas, with very different topographies, across Argentina.
These methods were the usual Helmert second method of condensation, the RTM, the
AH and the PH topographic-isostatic gravity reductions, and the Rudzki inversion
method. The Rudzki inversion is not a traditional method used for the determination of
geoid, even though it has the main advantage that the indirect effect on the geoid is zero

thus it does not need to be computed.

Although the Rudzki inversion method performed better than other methods in some
rough test areas presented in chapter 6, for the whole Argentina, the best agreement with
the GPS/levelling derived geoid was achieved with the Helmert’s second method of

condensation.

ARGOS5 is a new gravimetric geoid model for the whole of Argentina that was
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developed at the Department of Gravity of the University of La Plata in Argentina and
at the Department of Geomatics Engineering of the University of Calgary. The area
covered by the gravimetric geoid solution is from 20°S to 55°S in latitude and 53°W

(307°E) to 76°W (284° E) in longitude.

The ARGOS geoid undulations refer to the geocentric GRS80 ellipsoid. ARGO5 was

computed on a 5 arc-minute x 5 arc-minute grid, covering all of Argentina.

The computation of the new gravimetric Argentinean geoid model was based on the
classical Remove-Compute-Restore (RCR) technique using the most accurate current
gravity database for Argentina. The fast Fourier transform technique was applied to
compute residual geoid heights and terrain effects. The classical Helmert condensation

method was used to handle the topography in the geoid determination.

The long, medium and short wavelengths components of the ARGO05 geoid were
determined from EGM96 global geopotential model, 5' x 5' residual gravity anomalies
and 2' x 2' digital elevations heights from GTOPO30 global DEM. The residual gravity
anomalies consisted of a combination with land free-air gravity anomalies and KMS02

free-air gravity anomalies derived from satellite altimetry.

The Global Gravity Model EIGEN CGOIC was the model that best fits the long
wavelength data in Argentina but when it was combined with residual gravity
anomalies and digital elevation heights, EGM96 gave a slightly better gravimetric
geoid.

For absolute geoid determination, the original rigorous spherical kernel function should
be used instead of the approximate ones, with best (in Argentina) integration cap size

of 2 degrees.

The topographic indirect effect adds significant contribution to the gravimetric geoid
undulations, especially in mountainous areas. The first order term is the dominant term.
On the 163 benchmarks in the Andes, the maximum contribution of the first term is 22

cm.

As Helmert's condensation method is not a very good smoothing method, other terrain

reductions methods have to be used in a remove-restore fashion in order to obtain
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smooth data easy to grid. Free-air gravity anomalies were reconstructed from a grid of
simple Bouguer anomalies using the digital elevation model. Their effect on the geoid
together with the effect computed from the grid of terrain corrections yielded the best
improvements on geoid computation. This “reconstruction” technique was employed for
gravity gridding in order to minimize the aliasing effect, especially when most gravity

observations are made in valleys.

The main advantage of FFT-spectral methods like the ones used in this research is that
they can efficiently handle large files of gridded data and give results on all grid points
simultaneously. FFT spectral methods were used to compute residual geoid heights,
terrain corrections, and indirect effects on the geoid due to the second method of
Helmert’s condensation. Even though FFT methods present some problems like phase
shifting, edge effects or circular convolution and planar approximation (Li, 1994), they
can all be corrected or eliminated. To avoid planar approximation, FFT can be evaluated
on the sphere (Strang van Hess, 1990; Forsberg and Sideris, 1993; Haagmans et al.,
1992). The phase shifting can be corrected using the shifting property of the Fourier
transform and the effect of circular convolution was corrected using zero padding. FFT
is the most efficient technique to compute large regional gravimetric geoid models, like

the Argentinean geoid.

The overall agreement of ARGOS5 and the GPS/levelling-derived geoid is approximately
32 cm, after datum inconsistencies and bias as have been removed using a four-
parameter transformation model and outliers have been removed from the GPS/levelling

data.

The comparison of the gravimetric geoid solution referenced to EIGEN CGO1C with
the GPS/levelling data showed that the absolute agreement with respect to the
GPS/levelling-derived undulations (after the systematic datum differences were

removed) is near 33 cm in terms of standard deviation.

It is possible to determine absolute gravimetric geoid undulations in flat areas with an
accuracy of 8 cm with respect to geoid undulations derived from GPS/levelling after
removing the systematic biases. In mountainous areas, the standard deviation
discrepancies between the two geoid representations on 115 benchmarks in Mendoza is

about 26 cm, and on 45 benchmarks in Neuquén is about 31 cm.
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The relative agreement for the whole Argentina is 1.4 to 0.2 ppm for baselines between

15 km and 115 km.

Marine geoid solutions were computed by combining altimetric data and shipborne
gravity (Tocho et al., 2005). Pure altimetric and pure gravimetric geoid solutions were
computed in the Atlantic coastal region of Argentina. Marine geoid modeling in the
Atlantic coastal region of Argentina is problematic. Firstly, because of the insufficient
amount of available shipborne gravity data, which renders a purely gravimetric solution
not feasible. Secondly, because of the very strong ocean currents, which affect the
quality of satellite altimetry data, so that a purely altimetric model is too noisy even
after low-pass filtering the Sea Surface Heights (SSHs) to remove (part of) the influence
of the oceanographic signals. Thus, the recommended solution is to employ a
combination method and use all the available gravity and altimetry data together. This is
a suitable solution since (i) combination methods such as least-squares collocation and
Input Output System Theory (IOST) inherently low-pass filter and weigh the data, and
(i1) will make use of the altimetric heights to fill the gaps of the shipborne gravity data.
Following this idea, purely altimetric, gravimetric and combined (using the IOST
method) marine geoid models have been estimated for Argentina employing all
available shipborne gravity data, satellite altimetry SSHs, EGM96 and the latest Earth
Gravity Models (EGMs) developed from the missions of CHAMP and GRACE. The
MIMOST theory used for the combination of heterogeneous data was applied for the
first times in Argentina with the aim of determining a final marine geoid model. From
the comparison of the estimated geoid models to stacked TOPEX/POSEIDON SSHs,
we found that the altimetric model provides the best agreement while the combined use
of satellite altimetry and shipborne gravity data improved the accuracy of the results by
2 cm in terms of the standard deviation compared to the purely gravimetric solution
with the use a new “combined EGM”. From comparisons made with the older solutions
computed with the EGM96 geopotential model and T/P SSHs for the same area, the use
of the new “combined EGM” improves the results by 1 cm in terms of the o for the pure
altimetric solutions, 2 cm in terms of the o for the pure gravimetric solutions and 3 cm

in terms of the o for the combined solutions.

The Generic Mapping Tools (GMT) was a potent tool used for the manipulation of large

grids of data. It was used, not only for obtaining final illustrations but also for the
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processing and treatment of the data across the land/sea boundary (select data on sea or
on land; create "wet-dry" mask grid files from shoreline data base; resample a grid file

onto a new grid, etc).

Two geopotential models were used to compute geoid undulations, and comparisons
between interpolated GM geoid undulations on GPS benchmarks and GPS/leveling
undulations were made The computed differences reflected datum inconsistencies
between the different types of heights data, long-wavelength geoid errors, GPS and
levelling errors. In order to minimize these deviations, a four-parameter model, a seven-

parameter similarity transformation model, and a third order polynomial were used

We used these three types of models in order to assess possible improvements between
them. From the statistics of the computed differences for all of Argentina, the best
agreement, at the 0.41 m level, before the bias and tilt fit, was offered by the
EIGEN_CGO01C model while for the EGM96 model it was 0.81 m. After the bias and
tilt fit the improvement was at the 4 cm for the EIGEN _CGO1C and 27 cm for the

EGM96, using a four-parameter model.

The effects of gravity reduction procedures play an important role not only in gravity

gridding but as well in geoid modelling.

To predict accurate values in a regular grid from randomly distributed observations, an
optimal procedure needs to be chosen. This procedure includes two aspects: the best
gridding method based on efficiency and accuracy, and a reduction of aliasing in gravity

anomalies and geoid heights using digital terrain data.

Three procedures were used to grid the free-air gravity anomalies on land. The best one

used to develop the ARGO5 was the procedure 2 that was described in chapter 8.

Several methods of handling topography in geoid determination were investigated.
Gravity is usually measured at the surface of the Earth and in order to compute geoid
undulations using Stokes formula gravity anomalies should be boundary values at the
geoid with no masses external to the geoid. The gravity must be reduced to the geoid
and this was done using the following methods: the Helmert condensation method,
residual Terrain Model (RTM), Rudzki inversion method, and topographic-isostatic

reductions. These methods treat the topography in a different way and all methods gave
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comparable results at the 15 to 20 cm level in the flat area. The Rudzki inversion
method gave good results in some tests areas located in rough areas, while for the whole

country the Helmert second method of condensation presented the best results.
Recommendations and future work

Gravity data coverage, density and quality have to be improved in Argentina, especially
in rough areas like the Andes. The densification of gravity data in the Andes can be
carried out with modern measurement techniques like airborne gravimetry. This will
make possible to improve the accuracy of the geoid in order to meet the requirements

needed nowadays for modern geodetic, oceanographic and geophysical applications.

As digital elevation models play an important role in the remove-compute-restore
technique and they represent an essential type of data used in gravity field modeling,
principally in mountain areas like the ones located in the west part of Argentina, it is
necessary to evaluate the use of global DEM models like the SRTM3 (JPL, 2004)
model, which has been released to the public for evaluation by the research and
applications user community. The SRTM3 data from the Shuttle Topography Mission,
has a resolution of 3" (90 meters) and covers the 80% of the land masses between

latitudes 60° N to 54° S.

A numerical solution for the altimetry-gravimetry boundary value problem (AGBVP)
should be evaluated in order to combine different types of gravity data along the
coastline. Also, the effect on geoid modeling of applying smoothing conditions along
the coastline to remove data discontinuities has to be investigated (Grebenitcharsky,

2004).

More work has to be done in order to estimate an accurate and precise marine geoid
model in the Atlantic coastal region of Argentina. The use of heterogeneous data, new
results using more recent altimetry data and the use of combined methods like the
traditional least-squares collocation for the optimal combination of heterogeneous data

need to be investigated.

Different Earth Gravitational Models, such as the upcoming EGMO05 (Pavlis, 2004)
need to be evaluated in future work. EGMOS, complete to degree and order 2160 is
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expected to be a composite model like the EGM96, and it will combine information of

the GRACE satellite mission with terrestrial gravity and satellite altimetry.
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Appendix 1: Statistics of the differences between geoids derived from global geopotential

models with GPS/leveling—derived geoid. (All of Argentina). Unit: [m]

GPM98A4 All of Argentina min max mean o
Original (552pts) Before fit -4.528  3.696  0.691 1.223
After 3 rms (550 pts) Before fit -3.132 3.696  0.701 1.204
INOPMOBA _ \GPS 4-param 2961 3451  0.000 0.922
After fit 3 pol -3.021  4.074  0.000 0.638
7-param -3.107 2991 0.000 0.671

GPMY98B All of Argentina min max mean o
Original (552 pts) Before fit -5.000 3784  0.702 1.264
After 3 rms (550 pts) Before fit -3.269  3.784  0.722  1.221
NOPMEB _ \GPS 4-param 2960  3.507  0.000 0.938
After fit 3" pol -3.027  4.169  0.000  0.646
7-param -3.117  3.074  0.000  0.679

GPMY98CR All of Argentina min max mean o
Original (552 pts) Before fit -2.7799 2375 0.251  0.849
After 3 rms (551 pts) Before fit -2.497 2375  0.256  0.840
NCPMOBCR _\GPS 4-param 2.648 2772 0.000  0.700
After fit 3 pol -2.836  2.876  0.000  0.648
7-param -2.806 2.878 0.000 0.684

EGMY6 All of Argentina min max mean o
Original (552 pts) Before fit -2.598  1.880 0.135 0.823
After 3 rms (551 pts) Before fit -2.440  1.880 0.140 0.816
NEGMI6_ NGPS 4-param 2714 1978 0.000 0.554
After fit 3 pol -2.955 1936  0.000 0.454
7-param -2.953 1910 0.000 0.504

EIGEN-CGOIC All of Argentina min max mean o
Original (552 pts) Before fit -2.878  2.131 0459 0.463
After 3 rms (548 pts) Before fit -1.362  1.604 -0.472 0.407
NEIGEN-CGOIC _ \jGPS 4-param -1.729 1220  0.000  0.358
After fit 3" pol -1.822  1.283  0.000  0.341
7-param -1.791 1.211  0.000 0.350

OSU914 All of Argentina min max mean o
Original (552 pts) Before fit -7.817 4751  0.755  1.058
After 3 rms (548 pts) Before fit -2.776  3.792  0.770  0.928
NOSUIIA_\GPS 4-param -3.518  3.209  0.000  0.909
After fit 3" pol -3.438 2972  0.000 0.852
7-param -3.583 2999  0.000 0.866

GPM?2 All of Argentina min max mean o
Original (552 pts) Before fit -7.582 9.285 1.225  2.838
After 3 rms (551 pts) Before fit -7.582 9.226 1.211  2.819
NOPM2_NOPS 4-param -10.975 5373 0.000 2.121
After fit 3 pol -9.833 5.602  0.000 1.563
7-param -9.975 5.858 0.000 1.623

OSU81 All of Argentina min max mean o
Original (552 pts) Before fit -3.483 8.567 2596  2.196
After 3 rms (552 pts) Before fit -3.483 8.567 2596 2.196
NOSUBL NGPS 4-param -7.747 4386 0.000 1.784
After fit 3" pol -8.761 6.248  0.000 1.450
7-param -8.923 6.049 0.000 1462

JGM3 All of Argentina min max mean o
Original (552 pts) Before fit -9.583 4.591 1.161 1.661
After 3 rms (551 pts) Before fit -4.301 4.591 1.180  1.598
NYOM3 _NEPS 4-param -6.522 3201 0.000 1.329
After fit 3" pol -6.733 2965 0.000 1.116
7-param -6.662 3.141  0.000 1.181
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Appendix 2: Statistics of the differences between geoids derived from global geopotential

models with GPS/leveling—derived geoid in Buenos Aires province. Unit: [m]

GPM984

Buenos Aires

min max mean o
Original (180 pts) Before fit )
After 3 rms (180 pts) Before fit 0130 2312 1354 0613
INOPMOBA _ \GPS 4-param -0.850  0.690  0.000  0.342
After fit 3" pol -0.883  0.633  0.000 0.287
7-param -0.854  0.744  0.000  0.298
GPM98B Buenos Aires min max mean o
Original (180 pts) Before fit )
After 3 rms (180 pts) Before fit 0115 2340 1386 0.621
NOPMEB _ \GPS 4-param -0.853  0.680  0.000  0.342
After fit 3" pol -0.872  0.639  0.000  0.287
7-param -0.850  0.742  0.000  0.297
GPMI9S8CR Buenos Aires min max mean o
Original (180 pts) Before fit i
After 3 rms (180 pts) Before fit 0.173 1398 0.742 0.286
NCPMOBC_\GPS 4-param -0.603 0462 0.000 0.187
After fit 3" pol -0.513 0461 0.000 0.167
7-param -0.490  0.439 0.000 0.171
EGMY6 Buenos Aires min max mean o
Original (180 pts) Before fit
After 3 rms (180 pts) Before fit 0.029 LIS9 07130250
NEGMI6_ \GPS 4-param -0.504  0.299  0.000 0.147
After fit 3" pol -0.333  0.244  0.000 0.115
7-param -0.337 0264 0.000 0.122
EIGEN-CGOIC Buenos Aires min max mean o
Original (180 pts) Before fit
After 3 rms (180 pts) Before fit 0.181 1103 0.718 = 0.150
NEIGEN-CGOIC _ \jGPS 4-param -0.493  0.350 0.000 0.145
After fit 3 pol -0.402  0.329 0.000 0.128
7-param -0.391  0.367 0.000 0.135
OSU914 Buenos Aires min max mean o
Original (180 pts) Before fit
After 3 rms (180 pts) Before fit 0.335 2086 1128 0.336
NOSUIA | NGPS 4-param -0.881  0.718  0.000 0.286
After fit 3" pol -0.663  0.462  0.000 0.229
7-param -0.658  0.568 0.000 0.254
GPM2 Buenos Aires min max mean o
Original (180 pts) Before fit i
After 3 rms (180 pts) Before fit 1149 1375 0.198 0410
NEPM2_NGPS 4-param -1.093 0990 0.000 0.354
After fit 3 pol -0.868  0.565 0.000 0.275
7-param -0.918  0.634  0.000 0.276
OSU81 Buenos Aires min max mean o
Original (180 pts) Before fit
After 3 rms (180 pts) Before fit 1255 3448 2353 0475
NOSUBL_NGPS 4-param -1.022  1.332  0.000 0.437
After fit 3 pol -0.904  0.599 0.000 0.310
7-param -0.839  0.757  0.000  0.339
JGM3 Buenos Aires min max mean o
Original (180 pts) Before fit )
After 3 rms (180 pts) Before fit 1014 3.684  0.804 0973
NYOM3 _ NGPs 4-param -1.500 2445 0.000 0.733
After fit 3 pol -0.866  1.217  0.000  0.407
7-param -1.358 1.763  0.000 0.634
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Appendix 3: Statistics of the differences between geoids derived from global geopotential

models with GPS/leveling—derived geoid in Chubut. Unit: [m]

GPM984

Chubut

min

max mean o
Original (10 pts) Before fit )
NOPMIBA _ \(GPS After 3 rms (10 pts) Before fit 1.342 13070043 0.846
Afier fit 4-param -0.934  0.709 0.000 0.594
7-param -0.142  0.138  0.000 0.100
GPM98B Chubut min max mean o
Original (10 pts) Before fit )
- After 3 rms (10 pts) Before fit 1.278 1.368  0.097 0.842
After fit 4-param -0.935 0.705 0.000 0.595
7-param -0.139  0.130  0.000 0.096
GPMY98CR Chubut min max mean o
Original (10 pts) Before fit ) )
——— After 3 rms (10 pts) Before fit 1.742 1.687 0.147 1.169
After fit 4-param -1.222 1.186  0.000 0.798
7-param -0.363  0.372  0.000 0.258
EGMY96 Chubut min max mean o
Original (10 pts) Before fit ) )
NEGHSS_ G After 3 rms (10 pts) Before fit 1.810 1.685 0.101 1.174
After fit 4-param -0.956 1.377  0.000 0.753
7-param -0.341  0.456  0.000 0.286
EIGEN-CGOIC Chubut min max mean o
Original (10 pts) Before fit )
FIGEN-COOIC _ S A 8 e (10 5(5) Before fit 0.184 1.025 0387 0.377
After fit 4-param -0.688  0.373  0.000 0.325
7-param -0416  0.529 0.000 0.264
OSU914 Chubut min max mean o
Original (10 pts) Before fit )
OSUSIA_ GRS After 3 rms (10 pts) Before fit 1.097 1.140  0.200 0.818
After fit 4-param -0.830  0.844 0.000 0.541
7-param -0.287  0.388  0.000 0.187
GPM2 Chubut min max mean o
Original (10 pts) Before fit ) )
G2 S After 3 rms (10 pts) Before fit 3.662  4.102 0.167 2.631
After fit 4-param -2.030  2.538 0.000 1.463
7-param -0.591  0.684  0.000 0.396
OSUS1 Chubut min max mean o
Original (10 pts) Before fit )
NOSUBL_ GFS After 3 rms (10 pts) Before fit 3.004 5654 1.123 2.819
After fit 4-param -4.038  3.153 0.000 2.217
7-param -0.593  0.645 0.000 0.437
JGM3 Chubut min max mean o
Original (10 pts) Before fit ) )
NG _ aFS After 3 rms (10 pts) Before fit 1.644  2.083 0.018  1.237
After fit 4-param -0.872  0.812  0.000  0.599
7-param -0.644  0.377 0.000 0.291
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Appendix 4: Statistics of the differences between geoids derived from global geopotential
models with GPS/leveling—derived geoid in Mendoza. Unit: [m]

GPM984

Mendoza

min max mean o
Original (116 pts) Before fit -4.684 1.142  -0.739  0.955
After 3 rms (115 pts) Before fit -2.873 1.142  -0.704 0.884
INOPMOBA _ \GPS 4-param -0.546 1424  0.000 0.259
After fit 3" pol -0.460  1.040  0.000 0.165
7-param -0.553 1.026  0.015 0.177
GPM98B Mendoza min max mean o
Original (116 pts) Before fit -5.000 1.116  -0.764  0.986
After 3 rms (115 pts) Before fit -3.269  1.116  -0.727  0.907
NOPMEB _ \GPS 4-param -0.575 1426  0.000 0.261
After fit 3" pol -0.483 1.025  0.000 0.171
7-param -0.650  1.015 0.016  0.186
GPM98CR Mendoza min max mean o
Original (116 pts) Before fit
After 3 rms (116 pts) Before fit 2497 2375 <0592 116l
NEPMOBER _ \GPS 4-param -1.689  1.648  0.000 0.354
After fit 3" pol -1.493 1.051  0.000 0.228
7-param -1.639  1.056 -0.015 0.248
EGMY6 Mendoza min max mean o
Original (116 pts) Before fit
After 3 rms (116 pts) Before fit 24260977 -1.063 0584
NEGMI6_ NGPS 4-param -1363 1469  0.000 0.310
After fit 3" pol -1.410  1.082  0.000 0.234
7-param -1.488  1.123  -0.044 0.247
EIGEN-CGOIC Mendoza min max mean o
Original (116 pts) Before fit -1.120  2.131 0.402 0.376
After 3 rms (115 pts) Before fit -1.120  1.190  0.387  0.341
NEIGEN-CGOIC _ \jGPS 4-param -1.412  0.624  0.000  0.247
After fit 3 pol -1.415  0.654 0.000 0.215
7-param -1.510  0.562 -0.002 0.224
OSU914 Mendoza min max mean o
Original (116 pts) Before fit
After 3 rms (116 pts) Before fit S1351 4751 1006 1.524
NOSUIA | NGPS 4-param -1.588  1.779  0.000  0.381
After fit 3" pol -1.395 1.112  0.000  0.237
7-param -1.474  1.085 0.006 0.248
GPM?2 Mendoza min max mean o
Original (116 pts) Before fit
After 3 rms (116 pts) Before fit 0732 9285 6114 2.128
NEPM2_NGPS 4-param -0.998 2196  0.000 0.445
After fit 3 pol -1.407  1.082  0.000 0.238
7-param -1.350  1.090 -0.019 0.241
OSUS1 Mendoza min max mean o
Original (116 pts) Before fit
After 3 rms (116 pts) Before fit -0.291 8.567 5846 1.827
NOSUBL_NGPS 4-param -0.856  1.507  0.000 0.361
After fit 3 pol -1.395 1.100  0.000  0.238
7-param -1.391 1.116  -0.026  0.241
JGM3 Mendoza min max mean o
Original (116 pts) Before fit
After 3 rms (116 pts) Before fit 3430 4391 3.270  1.449
NYOM3 _ NGPs 4-param -1.904  1.899  0.000 0.471
After fit 3 pol -1.388  1.112  0.000  0.237
7-param -1.482  1.035 0.071 0.241
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Appendix 5: Statistics of the differences between geoids derived from global geopotential

models with GPS/leveling—derived geoid in Neuquén. . Unit: [m]

GPM984

Neuquén min max mean o
Original (45 pts) Before fit
After 3 rms (45 pts) Before fit -1.687  3.696 1.001  1.205
INOPMOBA _ \GPS 4-param -1.320  1.543  0.000 0.511
After fit 3 pol -1.000  0.771  0.000  0.359
7-param -0.932  1.003  0.000 0.415
GPM98B Neuquén min max mean o
Original (45 pts) Before fit
After 3 rms (45 pts) Before fit -1.645  3.784  1.061 1.224
NOPMEB _ \GPS 4-param -2.833 2736 0.000 0.970
After fit 3" pol -2.132 2.139  0.000  0.882
7-param -0.929  1.000  0.000 0.415
GPMI9S8CR Neuquén min max mean o
Original (45 pts) Before fit
After 3 rms (45 pts) Before fit -0.947  2.020 0.587 0.564
NCPMOBCR _\GPS 4-param 21430 1432 0.000  0.560
After fit 3 pol -1.154  1.437  0.000 0.507
7-param -1.261  0.760  0.000  0.439
EGMY6 Neuquén min max mean o
Original (45 pts) Before fit
After 3 rms (45 pts) Before fit -1.008 1.880 0.501  0.577
NEGMI6_ NGPS 4-param -1.605  1.377  0.000  0.575
After fit 3 pol -1.179  1.306  0.000  0.486
7-param -1.019 0970 0.000 0.429
EIGEN-CGOIC Neuquén min max mean o
Original (45 pts) Before fit
After 3 rms (45 pts) Before fit -1.195  1.391 0.351  0.525
Neigen-cgOle _ NGPS 4-param -1.352  0.870  0.000  0.445
After fit 3" pol -1.072  0.791  0.000  0.396
7-param -0.965  0.871 0.000 0.419
OSU914 Neuquén min max mean o
Original (45 pts) Before fit
After 3 rms (45 pts) Before fit -2.009 2494  0.095 0.930
NOSUIA | NGPS 4-param -1.636  1.994  0.000 0.779
After fit 3 pol -1.655  1.980  0.000  0.730
7-param -1.904 1.756  0.000  0.659
GPM2 Neuquén min max mean o
Original (45 pts) Before fit
After 3 rms (45 pts) Before fit -1.669  2.587  0.129  1.094
NEPM2_NGPS 4-param -1.922 2298  0.000 0972
After fit 3 pol -1.956  2.291  0.000 0.924
7-param -1.539  1.334 0.000 0.710
OSUS1 Neuquén min max mean o
Original (45 pts) Before fit
After 3 rms (45 pts) Before fit -1.372 3.084 0496 1.206
NOSUBL_NGPS 4-param 2,133 2431  0.000 1.065
After fit 3 pol -2.095  2.581 0.000 1.025
7-param -1.375 1.311  0.000 0.767
JGM3 Neuquén min max mean o
Original (45 pts) Before fit
After 3 rms (45 pts) Before fit -2.851  2.625 0.616 1.152
NYOM3 _ NGPs 4-param 23,182 1.925  0.000  1.152
After fit 3 pol -2.339 1959 0.000 1.022
7-param -1.094  0.805 0.000 0.383
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Appendix 6: Statistics of the differences between geoids derived from global geopotential
models with GPS/leveling—derived geoid in Santa Fe. Unit: [m]

GPM984

Santa Fe

min max mean o
Original (93 pts) Before fit
After 3 rms (93 pts) Before fit -1.201 2405 1.711 0477
INOPMOBA _ \GPS 4-param -2.834  0.566  0.000  0.447
After fit 3" pol -2.021  0.743  0.000  0.403
7-param -2.413  0.874 0.000 0.418
GPMYSB Santa Fe min max mean o
Original (93 pts) Before fit
After 3 rms (93 pts) Before fit -1.186 2416 1.727  0.480
NCPMOBB _ \GPS 4-param -2.836  0.567  0.000  0.447
After fit 3" pol -2.022  0.743  0.000  0.403
7-param -2.413  0.872 0.000 0.419
GPM98CR Santa Fe min max mean o
Original (93 pts) Before fit -2314  1.027 0336 0423
After 3 rms (92 pts) Before fit -1.379 1.027  0.364  0.320
NOPMIBCR _ \JGPS 4-param -1.742  0.648  0.000 0.319
After fit 3 pol -1.724  0.553  0.000 0.309
7-param -1.726  0.547 0.000 0.310
EGM96 Santa Fe min max mean o
Original (93 pts) Before fit -2.440 0994 0343  0.430
After 3 rms (92 pts) Before fit -1.343 0994 0374 0.318
NEOMI6_ \GPS 4-param -1.752 0.597  0.000  0.316
After fit 3 pol -1.762  0.522  0.000 0.304
7-param -1.741  0.529  0.000 0.308
EIGEN-CGOIC Santa Fe min max mean o
Original (93 pts) Before fit -2.878  1.236  0.533  0.492
After 3 rms (92 pts) Before fit -1.270  1.236  0.570  0.339
INFIGEN-COOIC_\GPS 4-param -1.827  0.534  0.000 0316
After fit 3 pol -1.722 0452 0.000 0.301
7-param -1.809  0.448 0.000 0.304
OSU914 Santa Fe min Max mean o
Original (93 pts) Before fit 2717 2175 0.531  0.650
After 3 rms (92 pts) Before fit -1.173 2,175  0.566  0.557
NOSUIIA _NGPS 4-param -1.575  1.057  0.000 0.381
After fit 3" pol -1.600  0.887  0.000 0.324
7-param -1.589  0.878 0.000 0.325
GPM2 Santa Fe min max mean o
Original (93 pts) Before fit -2.613  0.874 -0.049 0.805
After 3 rms (92 pts) Before fit -2.310 0.874 -0.022 0.763
NOPMZ_ N GPS 4-param -1.533  0.618  0.000 0.357
After fit 3 pol -1.566  0.498  0.000 0.342
7-param -1.522  0.677 0.000 0.351
OSUS1 Santa Fe min max mean o
Original (93 pts) Before fit
After 3 rms (93 pts) Before fit -0.653 3400 2.542  0.823
NOSUBL_ NGPS 4-param 2707 0.683  0.000  0.477
After fit 3" pol -1.719  0.765  0.000  0.404
7-param -2.201  0.739  0.000 0.442
JGM3 Santa Fe min max mean o
Original (93 pts) Before fit
After 3 rms (93 pts) Before fit -4116 3316 0.780 1.217
NIOM3_ N EPS 4-param 2,532 1.245  0.000 0.483
After fit 3 pol -1.642  0.828 0.000 0.384
7-param -2.454 1271  0.000 0.481
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Appendix 7: Statistics of the differences between geoids derived from global geopotential
models with GPS/leveling—derived geoid in Uruguay. Unit: [m]

GPM984

Uruguay min max mean o
Original (28 pts) Before fit
After 3 rms (28 pts) Before fit 0.050 2711 1.033  0.652
INOPMOBA _ \GPS 4-param -0.819  -0.963 0.000  0.468
After fit 3 pol -0.922  0.865 0.000 0.380
7-param -1.024  0.878 0.000 0.401
GPM98B Uruguay min max mean o
Original (28 pts) Before fit
After 3 rms (28 pts) Before fit 0.075 2.734  1.058  0.653
NOPMEB _ \GPS 4-param -0.813 0966  0.000 0.468
After fit 3" pol -0.922  0.865 0.000 0.330
7-param -1.019  0.875 0.000 0.401
GPMI9S8CR Uruguay min max mean o
Original (28 pts) Before fit i
After 3 rms (28 pts) Before fit 0.283 1.591  0.391 0.459
NEPMOBER _ \GPS 4-param -0.754  1.023  0.000 0.442
After fit 3 pol -0.961  0.896  0.000 0.390
7-param -0.891  0.987 0.000 0.398
EGM96 Uruguay min max mean o
Original (28 pts) Before fit i
After 3 rms (28 pts) Before fit 0420 1.662 0336 0.526
NEGMI6_ NGPS 4-param 0919 1.171  0.000 0.497
After fit 3 pol -1.089  1.055 0.000 0.442
7-param -1.125  1.059 0.000 0.443
EIGEN-CGOIC Uruguay min max mean o
Original (28 pts) Before fit )
After 3 rms (28 pts) Before fit 0.625 1.449 0276  0.498
NFEIGEN-CGOIC_yGPS 4-param -2.188  1.203  0.000 0.475
After fit 3" pol -1.679  1.059  0.000 0.442
7-param -1.114  1.170  0.000  0.449
oSU914 Uruguay min Max mean o
Original (28 pts) Before fit )
After 3 rms (28 pts) Before fit 0.519 1816 0960 0.635
NOSUIIA _\GPS 4-param -0.899  0.903  0.000 0.534
After fit 3 pol -1.063  0.997 0.000 0.427
7-param -1.154  1.004 0.000 0.441
GPM?2 Uruguay min Max mean o
Original (28 pts) Before fit ) )
After 3 rms (28 pts) Before fit 1.316  1.083 0.059 0.618
NOPM2_\OPS 4-param -1.162 1.379  0.000  0.486
After fit 3 pol -1.061 1.196  0.000  0.450
7-param -1.165  1.288  0.000  0.481
OSUS1 Uruguay min max mean o
Original (28 pts) Before fit i
After 3 rms (28 pts) Before fit 0.560  2.128 1.255 0.748
NOSUSL_ NGPS 4-param -0.848  1.674  0.000 0.569
After fit 3 pol -1.025  1.163  0.000  0.443
7-param -1.040  1.279 0.000 0.535
JGM3 Uruguay min max mean o
Original (28 pts) Before fit i
After 3 rms (28 pts) Before fit 0.860 2.039 0.752  0.677
NYOM3_ N EPS 4-param -1.413  0.827 0.000  0.593
After fit 3 pol -0.953 1.027  0.000
7-param -1.085 1.054 0.000 0.437
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Appendix 8: Statistics of the differences between geoids derived from global geopotential

models with GPS/leveling—derived geoid in Tierra del Fuego. Unit: [m]

GPM98A Tierra del Fuego min max mean o
Original (56 pts) Before fit ) )
After 3 rms (56 pts) Before fit 1.200  0.572  -0.251 0.561
INOPMOBA _ \GPS 4-param -0.484 0473  0.000 0.239
After fit 3 pol -0.397 0364 0.000 0.148
7-param -0.585  0.296 -0.001 0.173
GPMY98B Tierra del Fuego min max mean o
Original (56 pts) Before fit ) )
After 3 rms (56 pts) Before fit 1.151  0.626 -0.199 0.561
NOPMEB _ \GPS 4-param -0.481 0475 0.000 0.241
After fit 3" pol -0.392  0.364 0.000 0.147
7-param -0.578  0.295 -0.001 0.172
GPMY98CR Tierra del Fuego min max mean o
Original (56 pts) Before fit i
After 3 rms (56 pts) Before fit 0.510 1.045 0.244 0476
NCPMOBCR _\GPS 4-param -0.515  0.532  0.000 0.258
After fit 3 pol -0.398  0.395 0.000 0.156
7-param -0.635  0.320 0.000 0.189
EGMY96 Tierra del Fuego min max mean o
Original (56 pts) Before fit i
After 3 rms (56 pts) Before fit 0367 0.724 0.239  0.301
NEGMI6_ NGPS 4-param -0.350  0.382 0.000 0.162
After fit 3 pol -0.210  0.334  0.000 0.103
7-param -0.398  0.257 -0.001 0.142
EIGEN-CGO0IC Tierra del Fuego min max mean o
Original (56 pts) Before fit i
After 3 rms (56 pts) Before fit 0339 0493 0.076  0.266
NFIGEN-CGOIC_\jGPS 4-param -0.395 0395 0.000 0.171
After fit 3 pol 0.214  0.334  0.000 0.109
7-param -0.410  0.255 0.000 0.147
OSU91A4 Tierra del Fuego min Max mean o
Original (56 pts) Before fit )
After 3 rms (56 pts) Before fit 0.175 0.872 0.546  0.209
NOSUIIA _NGPS 4-param 0311 0261  0.000 0.135
After fit 3" pol -0.230  0.321  0.000 0.091
7-param -0.287  0.229 -0.001 0.119
GPM2 Tierra del Fuego min Max mean o
Original (56 pts) Before fit i )
After 3 rms (56 pts) Before fit 1.089 0347 -0.510 0.305
NEPM2_NGPS 4-param -0.482 0514  0.000 0.190
After fit 3 pol -0.251  0.342  0.000 0.118
7-param -0.346  0.365 0.000 0.159
OSUS1 Tierra del Fuego min max mean o
Original (56 pts) Before fit )
After 3 rms (56 pts) Before fit 0.744 1478 0219 0.502
NOSUBL_NGPS 4-param -0.581  0.714  0.000  0.207
After fit 3 pol -0.247  0.350 0.000 0.120
7-param -0.350  0.251  0.000 0.144
JGM3 Tierra del Fuego min max mean o
Original (56 pts) Before fit )
After 3 rms (56 pts) Before fit 1.196  0.838 0.054 0.544
NYGM3_NOPS 4-param -0.518  0.540 0.000 0.288
After fit 3 pol -0.307  0.353  0.000 0.140
7-param -0.427  0.271  0.000 0.170
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Appendix 9: Statistics of the differences between geoids derived from global geopotential

models with GPS/leveling—derived geoid in Points of the POSGAR94 network. Unit: [m]

GPM984 Red Posgar min max mean o
Original (24 pts) Before fit
After 3 rms (24 pts) Before fit -4.528  2.566 -0.043 1.762
INOPMOBA _ \GPS 4-param 22,190 2.051  0.000 1.144
After fit 3 pol -1.729  1.028 0.000 0.754
7-param -1.846  1.029  0.000  0.801
GPMY98B Red Posgar min max mean o
Original (24 pts) Before fit
After 3 rms (24 pts) Before fit -4.640  2.569 -0.034 1.795
NOPMEB _ \GPS 4-param -1.752 1.034  0.000  0.755
After fit 3" pol -1.845  1.020 0.000  0.802
7-param -2.211  2.060 0.000 1.153
GPMI9S8CR Red Posgar max mean o
Original (24 pts) Before fit
After 3 rms (24 pts) Before fit -2.799  1.526 -0.294 1.065
NCPMOBCR _\GPS 4-param 22,570 1.366  0.000  0.893
After fit 3 pol -1.868  1.525  0.000  0.755
7-param -2.029 1449 0.000 0.806
EGM96 Red Posgar min max mean o
Original (24 pts) Before fit
After 3 rms (24 pts) Before fit -2.598  1.608 -0.275 1.022
NEGMI6_ \GPS 4-param 2496 1435  0.000 0.819
After fit 3 pol -1.807  1.361  0.000 0.701
7-param -1.910 1.321  0.000 0.726
EIGEN-CGOIC Red Posgar min max mean o
Original (24 pts) Before fit
After 3 rms (24 pts) Before fit -2.191 1.604 -0.144 0.941
NEIGEN-CGOIC _ \jGPS 4-param -2.188  1.512  0.000 0.809
After fit 3" pol -1.679  1.435 0.000 0.726
7-param -1.674  0.998 0.000 0.729
OSU914 Red Posgar min max mean o
Original (24 pts) Before fit -7.817 1497 -0.647 2.310
After 3 rms (23 pts) Before fit -5.961 1497 -0.335 1.773
NOSUIIA_\GPS 4-param -2.868  1.700  0.000 1.223
After fit 3" pol -1.564  1.515 0.000 0.719
7-param -1.967 1442  0.000 0.904
GPM2 Red Posgar min max mean o
Original (24 pts) Before fit
After 3 rms (24 pts) Before fit -7.582  0.767 -1.564  2.149
NOPM2_NOPS 4-param -2.565  2.783  0.000  1.348
After fit 3 pol -2.860  2.894 0.000 1.194
7-param -2.700  3.023  0.000 1.212
OSU81 Red Posgar min max mean o
Original (24 pts) Before fit
After 3 rms (24 pts) Before fit -3483  3.154  0.599 1937
NOSUBL_NGPS 4-param 2353 1.836  0.000 1.186
After fit 3 pol -2.094  1.868 0.000 1.023
7-param -2.480  2.013 0.000 1.112
JGM3 Red Posgar min max mean o
Original (24 pts) Before fit -9.583  2.757  -0.302 2.696
After 3 rms (23 pts) Before fit -4.301 2,757  0.101 1.874
NYOM3 _ \NEPs 4-param -4359 2972  0.000 1.755
After fit 3 pol -3.242  3.125 0.000 1.319
7-param -4.327 1961 0.000 1.504




Appendix 10: Differences between EGM96 and EIGEN CGO01C geoid undulations with
GPS/levelling-derived geoid. (after fit).
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Figure 1: Differences between EGM96 and
geometrical geoid heights in GPS-leveling
points over Argentina

Figure 2: Differences between EIGEN-
CGO01C and geometrical geoid heights in
GPS-leveling points over Argentina
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Figure 3: Differences between EGM96 and
geometrical geoid heights in GPS-leveling
points over Buenos Aires province

Figure 4: Differences between EIGEN-
CGO1C and geometrical geoid heights in
GPS-leveling points over Buenos Aires
province
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Figure 7: Differences between EGM96 and
geometrical geoid heights in GPS-leveling

points over Mendoza province

58"W 56"W 54'W
R =
}\“‘-. /"\t)
S
& AN
)~ N B
. A ._‘x,u_ﬂal L .\?\
s2's) | f N
’J? T a'/ 33?”’97"'/}
e
,I{:@"‘ bl PR
L P s M
i N A {
C TN e e S
A ¢ 7
asph Y S A
TN fedbt [
N xR,
A
GE'W 86"W B4"W

32'Ss

Mg 34°S

Figure 9: Differences between EGM96 and
geometrical geoid heights in GPS-leveling

points over Uruguay
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Figure 6: Differences between EIGEN-CG

and geometrical geoid heights

in GPS-

leveling points over Chubut province
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Figure 8: Differences

between EIGEN-
CGO1C and geometrical geoid heights in
GPS-leveling points over Mendoza province
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Figure 10: Differences between EIGEN-
CGO1C and geometrical geoid heights in
GPS-leveling points over Uruguay
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Figure 11: Differences between EGM96 and  Figure 12: Differences between EIGEN-
geometrical geoid heights in GPS-leveling CGOIC and geometrical geoid heights in
points over Neuquen province GPS-leveling points over Neuquen province
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Figure 13: Differences between EGM96 and  Figure 14: Differences between and EIGEN-
geometrical geoid heights in GPS-leveling  CGO1C geometrical geoid heights in GPS-
points over POSGAR network leveling points over POSGAR network
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Figure 15: Differences between EGM96 and  Figure 16: Differences between and EIGEN-
geometrical geoid heights in GPS-leveling CGO1C geometrical geoid heights in GPS-

points over Santa Fe province leveling points over Santa Fe province
69'W 68°'W 67'W 69°W 68°'W 67°W
m
' 04
53'S 53'S §3'S 53'S -
r 0.3
02
- 0.0
- 0.1
54°S 54°S 54'S 54's| 00
_02 "0.1
-0.2
-0.3
-0.4
-0.4
55'S i 55°S §5°S mit| 55°S
89'W 88°'W B7'W 69°'W 88°'W 87°W

Figure 17: Differences between EGM96 and  Figure 18: Differences between and EIGEN-

geometrical geoid heights in GPS-leveling CGOIC geometrical geoid heights in GPS-

points over Tierra del Fuego province leveling points over Tierra del Fuego
province



