
Extract, Transform and Load architecture for
metadata collection

Marisa R. De Giusti
Comisión de Investigaciones Científicas de la Provincia de

Buenos Aires (CICPBA)
Proyecto de Enlace de Bibliotecas (PrEBi)

Servicio de Difusión de la Creación Intelectual (SeDiCI)
Universidad Nacional de La Plata

La Plata, Argentina
marisa.degiusti@sedici.unlp.edu.ar

Nestor F. Oviedo, Ariel J. Lira
Proyecto de Enlace de Bibliotecas (PrEBi)

Servicio de Difusión de la Creación Intelectual (SeDiCI)
Universidad Nacional de La Plata

La Plata, Argentina
{nestor,alira}@sedici.unlp.edu.ar

Abstract—Digital repositories acting as resource aggregators
typically face different challenges, roughly classified in three
main categories: extraction, improvement and storage. The first
category comprises issues related to dealing with different
resource collection protocols: OAI-PMH, web-crawling, web-
services, etc and their representation: XML, HTML, database
tuples, unstructured documents, etc. The second category
comprises information improvements based on controlled
vocabularies, specific date formats, correction of malformed
data, etc. Finally, the third category deals with the destination of
downloaded resources: unification into a common database,
sorting by certain criteria, etc.
This paper proposes an ETL architecture for designing a
software application that provides a comprehensive solution to
challenges posed by a digital repository as resource aggregator.
Design and implementation aspects considered during the
development of this tool are described, focusing especially on
architecture highlights.

Keywords-digital repositories; data integration; data
warehousing; harvesting; aggregation

I. INTRODUCTION

Resource aggregation is one of the activities performed in
the context of digital repositories. Its goal is usually to
increase the amount of resources exposed by the repository.
They may even find digital repositories that are only resource
aggregators – e.g. do not expose their own material.

Aggregation starts with relevant resource collection from
external data sources; currently, there are several
communication and transference protocols, as well as
techniques for collecting available material from data sources
that were not originally intended for this purpose. Some of
these protocols and techniques include:

OAI-PMH [1]: A simple and easy-to-deploy protocol for
metadata exchange. It does not impose restraints upon
resource representation, allowing the service repository to
select metadata format.

Web-Crawling [2]: A robot scans web pages and tries to
detect and extract metadata. This method is useful to capture
the large volume of information distributed throughout the

Web, but the problem is that documents lack homogeneous
structure.

Web-Services: Using SOAP or XML-RPC as
communication protocols in general, resource structure
depends on server implementation.

As briefly seen above, methods and means for resource
collection vary significantly depending on the situation,
context and specific needs of each institutional repository,
both at the level of communication protocol and of data.
Therefore, independent data collection processes and different
analysis methodologies are critical to standardizing aspects
such as controlled vocabularies, standard code use, etc.

Likewise, when it comes to determining the use of the
information collected, there are also different situations that
depend on specific repository needs. The most common
scenario is the unification of collected resources into a central
database. Another usual approach is to logically sort
information -i.e. by topic, source country, language- inserting
the resources in different data stores. Furthermore, it may be
necessary to generate additional information by applying
analysis and special processes to resources: concept extraction,
semantic detection and ontology population, quotation
extraction, etc., and use different databases to store this new
information.

In general, information from different repositories is
typically diverse in structure, character coding, transfer
protocols, etc., requiring different extraction and
transformation approaches. Analogously, specific capabilities
are required to interact with each data store receiving the
transformed resources. This requires a set of organized tools
that provide a possible solution. There are a number of
potential complications: initially, it is necessary to find –or
develop- a series of tools, each tailored to solve one specific
problem, and then install, setup, test and launch each of them.
Subsequently, there is the problem of tool coupling, and the
need to ensure reliable interaction, since it is highly probable
that these tools act upon the same dataset. On the other hand, it
is important to consider the type of synchronization
mechanism used to determine task sequences: order of tasks
that each tool will carry out, which tasks can be executed
simultaneously and which ones sequentially, etc.

From a highly abstracted viewpoint, it is possible to
identify three main issues: Extract, Transform and Load
(ETL).

II. DEVELOPMENT OF A UNIFIED SOLUTION

ETL [3] is a software architectural pattern in the area of
Data Integration, usually related to data warehousing. This
process involves data extraction from different sources,
subsequent transformations by rules and validations, and final
loading into a Data Warehouse [4] or Data Mart [5]. This
architecture is used mainly in enterprise software to unify the
information used for Business Intelligence [6] processes that
lead to decision-making.

Given the challenges presented by resource aggregation
via institutional repositories throughout the different phases in
heterogeneous information management, a comprehensive
ETL solution is highly practicable.

This paper presents the development of a tool intended as a
unified solution for these various issues.

The design is based on the following premises:

(a) Allow the use of different data sources and data stores,
encapsulating their particular logic in connectable
components.

(b) Allow tool extension with new data source and data
store components developed by third parties.

(c) Allow selection and configuration of the analysis and
transformation filters supplied by the tool,
encapsulating the particular logic in connectable
components.

(d) Allow tool extension by adding new analysis and
transformation filter components developed by third
parties.

(e) Present an abstract resource representation for uniform
resource transformation.

(f) Provide a simple and intuitive user interface for tool
management.

(g) Provide an interface for collection and storage
management.

(h) Achieve fault tolerance and resume interrupted
processes after external problems.

(i) Provide statistic information about process status and
collected information.

The software tool was developed along these premises,
trying to keep components as separated/uncoupled as possible.
Fig. 1 shows an architecture diagram for the tool.

III. DATA MODEL OVERVIEW

This data model is primarily based in three elements, from
which the whole model is developed. These elements are
Repositories, Harvest Definitions and Collections.

“Repositories” represent external digital repositories with
relevant resources, thus being the object of data collection. A
repository is an abstract entity that does not determine how to
obtain resources and only registers general information such as
the name of the source institution, contact e-mail, Web site,
etc. In order to harvest resources from a specific repository,
connection drivers –components with the required logic to
establish connections- must be first associated, determining
the relevant parameters.

A “Harvest Definition” element comprises all the
specifications required to carry out a harvest instance (or
particular harvest). That is, harvesting processes are performed
according to the harvest definitions in the adequate status -i.e.
still have jobs to carry out-. A harvest definition is created

Figure 1. Architecture diagram

from a connector associated to a repository, thus specifying
the protocol or harvest method used. This allows the creation
of multiple harvests on a single repository, using different
communication approaches.

“Collections” are the third important element. They
represent the various end targets for the information generated
after applying transformation and analysis processes to
harvested resources. As is the case with repositories,
collections are an abstract element within the system, and this
means that each collection has an associated connector that
determines the storage method and its corresponding
parameters. The main goal is to allow the use of the different
storage options, not only based on the storage type, but also
the type of information to be stored. For example, let us
consider a collection that specifies storage into the file system
as backup, another collection that specifies insertion into an
Apache Solr [7] core for resources identified as Thesis, and a
third collection that specifies insertion into another Apache
Solr core for resources written in Spanish.

The data model is completed from the three main elements
described above, adding elements associated to connectors and
to harvest definitions, supplementary information about
repositories and additional elements for controlling and
tracking harvesting methods.

IV. EXTRACT

Extract is the first phase in resource harvesting, carried out
in different stages. The first is the determination of harvest
definitions that must be loaded to be run. For this purpose,
each definition has scheduling information that specifies date
and time of the next execution. Since harvest definitions are
the actual extraction jobs, they contain a reference to the
interacting connector to establish the connection and
download the information. Likewise, harvest definitions are
narrowed down, adding supplementary information -usually
parameters- about the associated connector protocol.
Specifically, the connector is the component that carries the
logic required to establish the connection, and the harvest
definition specialization contains the particular harvesting
parameters.

In some cases, harvesting jobs must be carried out in
stages, due to a number of reasons: data volume is too large
and thus must be partitioned, organizative issues, etc. An
actual case is OAI-PMH protocol, which allows incremental
harvesting by date range. This is shown in the data model,
when definitions are decomposed from harvests into Actual
Harvests. For example, an OAI harvest can be created
specifying a date range of a year and then split this job into
one-month separate harvests, which will generate twelve
harvests that must be completed to meet the requirements of
the initial definition. This also reduces losses due to system
crashes, since only the job associated to a part of the harvest
would be lost, and not the whole harvest itself.

This fault-tolerance is achieved using “Harvest Attempts”.
That is, for each connection a new attempt is registered, and it
will remain valid until the harvest is completed or an
interruption occurs: either a manual interruption by the

administrator, a lack of response from the target server, or
errors in the target server responses, system crashes, etc. There
is a configurable limit that determines the number of attempts
to try before disabling the harvest.

Figure 2. Extraction phase data model abstraction

Downloaded information is handled by a general handler
common to all connectors which stores harvested data locally
and retrieves them when needed. For example, a particular
handler can store data as files on disk.

V. TRANSFORM

This phase initially transforms the harvested resources to a
simple abstract representation that allows to uniformly process
all resources. This transformation is done by connectors, since
they have information about the original representation and the
rules that must be applied to take it to an abstract level. Each
resource, already in their abstract representation, goes through
a filter chain to analyze particularities and modify data, if
necessary. The system comprises a predetermined set of
independent filters, which are simple and reusable components
that act according to parameters specified in filter
configuration file.

As seen above, each harvest definition refers to a target
collection set. Each collection specifies a set of filters that
must be applied before inserting a resource in that collection,
where selection order determines their application.

Filter execution may lead to modification, adding or
erasing specific resource data (metadata values), depending on
specific filter functions and configuration.

Available filters on this application include:

• CopyField: copies content from field to field. If the target
field is nonexistent, the filter creates one.

• DefaultValue: determines if there’s a nonexistent or
valueless field. If this is the case, it creates a new one
with a predetermined value.

• FieldRemover: takes a field list and removes them from
the resource.

• Tokenizer: takes field values and tokenizes them from a
specific character series, generating multiple additional
values.

• Stack: aggregates filters; defines a filter list (with
configuration and order) to ensure the order of
application.

• ISOLanguage: applied to a field that specifies the
resource language, searches for the field value in a
language list and replaces the original value with the
ISO-639 language code found.

• YearExtractor: applied to a field that contains a date,
extracts the year and saves it on a new field.

• Vocabulary: takes field values and contrasts them against
a dictionary, unifying word variations and synonyms into
a single word.

VI. LOAD

This is the third part, when transformed resources are sent
to data stores, completing the scope of this tool. For this
purpose, each collection refers to a target connector that
contains the data store logic required to interact with this
latter.

After going through the transformation stage, resources in
their abstract representation are sent to the connector
associated to the target collection, where they undergo further
transformations to produce an adequate representation that
matches data store requirements.

VII. MANAGEMENT

Loading of repositories, collection, harvest definitions,
filter selection and so forth is managed through a web
application. This web application is included in the software
and allows management capabilities to handle all aspects that
make up the tool. More precisely, it allows management of
collections, repositories, harvest definitions, connectors –
source and target-, languages, publication types, users, roles,
system parameters, collection assignments in a harvest
definition, filter selection from a collection, among others.
Besides, it has a special section to control the execution of
collection and storing, from which these processes can be
independently initiated and interrupted, creating a real time
report of the jobs that are being run.

Finally, simple reports associated with repositories are
created to show the status of completed harvests -number of
failed harvests, number of harvests with no register return, etc.
- average daily resource downloads, total volume of document
downloads, and more. Analogously, resource distribution by
source target is shown for each collection, specifying amount
and proportion represented by each one in the whole
collection.

VIII. FUTURE RESEARCH

This tool has a number of features that allow for further
improvements or extensions. Key aspects include:

Transformations: the most important extension point is
transformation, since it allows application of interesting
processes to collected information.

Semantic extraction: detect relations among resources
based on the information they contain.

Fulltext download: identify fields with the URL to the
fulltext and attempt download it to apply further filters to its
content.

Author standardization: analyze author’s name to generate
standardized metadata.

Duplicate detection: provide techniques to avoid insertion
of two resources –probably from different sources- when they
represent the same resource.

IX. CONCLUSION

This document discusses a recurring challenge faced by
digital repositories that arises from resource collection from
diverse sources, and it was shown how an architecture used
mainly in the business area can provide a solution for these
issues. The three main ETL architecture phases cover each one
of the activities performed during the resource collection work
in the context of digital repositories, making it an adequate
approach in this area, allowing for further improvements and
extensions, as seen above.

REFERENCES

[1] The Open Archives Initiative Protocol for Metadata Harvesting,
http://www.openarchives.org/OAI/openarchivesprotocol.html

[2] A. Maedche, M. Ehrig, S. Handschuh, R. Volz, L. Stojanovic,
"Ontology-Focused Crawling of Documents and Relational Metadata",
Proceedings of the Eleventh International World Wide Web Conference
WWW2002, 2002.

[3] P. Minton, D. Steffen, “The Conformed ETL Architecture”, DM
Review, 2004, http://amberleaf.net/content/pdfs/ConformedETL.pdf.

[4] Data Warehouse, http://en.wikipedia.org/wiki/Data_warehouse.

[5] Data Mart, http://en.wikipedia.org/wiki/Data_mart.

[6] Bussiness Intelligence,
http://en.wikipedia.org/wiki/Business_intelligence.

[7] Apache Solr, http://lucene.apache.org/solr.

[8] M. L. Nelson, J. A. Smith, I. Garcia del Campo, H. Van de Sompel, X.
Liu, “Efficient, Automatic Web Resource Harvesting”, WIDM '06
Proceedings of the 8th annual ACM international workshop on Web
information and data management, 2006.

[9] C. B. Baruque, R. N. Melo. “Using data warehousing and data mining
techniques for the development of digital libraries for LMS”, IADIS
International Conference WWW/Internet, 2004.

	I. Introduction
	II. Development of a unified solution
	III. Data Model Overview
	IV. Extract
	V. Transform
	VI. Load
	VII. Management
	VIII. Future research
	IX. Conclusion
	References

