AADECA 2016 - Semana del Control Automético - 25° Congreso Argentino de Control Automaéatico
1 al 3 de Noviembre de 2016 - Buenos Aires, Argentina.

VEHICLE CLASSIFICATION AND SPEED
ESTIMATION USING COMPUTER VISION
TECHNIQUES

Agustin Yabo, Sebastian Arroyo, Félix Safar,
Damian Oliva

* Universidad Nacional de Quilmes - doliva@ungq.edu.ar

Abstract: In this work, we implement a real-time vehicle classification and speed
estimation system and apply it to videos acquired from traffic cameras installed
in highways. In this approach we: a) Detect moving vehicles through background-
foreground segmentation techniques. b) Compare different supervised classifiers (e.g.
artificial neural networks) for vehicle classification into categories: (car, motorcycle,
van, and bus/truck). ¢) Apply a calibration method to georeference vehicles using
satellite images. d) Estimate vehicles speed per class using feature tracking and nearest

neighbors algorithms.

Keywords: speed estimation, computer vision, traffic camera, feature tracking,

vehicle classification

1. INTRODUCTION

Intelligent Transportation Systems (ITS) have,
amongst its main goals, to avoid traffic delays
and traffic jams, improve road safety, and reduce
power consumption and emissions. Daily users
and transportation agencies benefit from informa-
tion supplied by ITS through improvements on
traffic flow monitoring, management and control.
The objective of the present work is to apply
Computer Vision techniques to estimate vehicles
georeferenced position and speed as part of an
ITS. Some of the advantages of leaning towards
a Computer Vision approach have already been
established in prior work (Oliva et al., 2015), in
which we developed an algorithm for traffic flow
description with no classification capabilities. In
the present paper, we focus on the classification
issue. In section 2, we describe the Computer
Vision techniques and Machine Learning scheme
used for the task. In section 3, we show the
measurement results obtained from applying these
methods to a video obtained from a highway
traffic camera. Finally, in section 4, we discuss
results and potential improvements to develop in
the future.

(c)

Fig. 1. (a) Image acquired by a traffic camera. (b) Moving
object detection by the background subtraction
algorithm. (c) Result after applying morphological
operations.

2. MATERIALS AND METHODS

The analysed videos were acquired at a 1 fps rate,
with a resolution of 450x800 pixels, automatically
obtained from an online IP camera (Autopis-
tas del Sol S.A., 2014). An example of a typical
frame is shown in Figure la. All the processing
algorithms were implemented in Python 2 and
OpenCV 3, both open-source projects.

2.1 Detection of moving objects with background
subtraction

Background subtraction is a widely used approach
for detecting moving objects. The concept behind

AADECA 2016 - Semana del Control Automético - 25° Congreso Argentino de Control Automaéatico
1 al 3 de Noviembre de 2016 - Buenos Aires, Argentina.

this algorithm is roughly described as detecting
moving objects from the difference between cur-
rent frame and a reference image, usually referred
as background image. This background image
should be a representation of the scene without
objects in motion, and needs to be updated
periodically in order to adapt to lighting changes.
In this work, the MOG (Mixture of Gussians)
algorithm is used (Stauffer and Grimson, 1999).
MOG’s main assumption is that the probability
distribution of the intensity value x at time IV is
described as:

K
plen) =Y wpn(zn; k), (1)
k=1

where K is the number of Gaussian distributions
(which, in practice, is dynamically selected in the
range of 3 to 5), wy, a weight parameter of the k*"
Gaussian component and n(xy;60)) the normal
distribution of the k** component, represented by:

n(xn; O) = n(eN; pr, i) =
L benmm) R))
(2m) 2 [Xg|2

where py is the distribution mean and X, =
02I the covariance of the k' distribution. This
implies that R, G and B pixel values are indepen-
dently distributed and share the same variances,
assumption that, although at the expense of a
certain precision loss, reduces processing time
considerably.

When a new image is acquired, the MOG algo-
rithm acts iteratively on every pixel performing
the following steps: 1) The pixel is assigned to the
class with the mean value u closer to the intensity
value of the pixel. 2) Once it has been assigned to
its closest class, the parameters estimation of the
Gaussian distributions are updated according to
the following equations:

Wy T = (1 — a)iy + op(wilrnsr),
it = (1=)@y + prnia, (3)

SN — (1 -)SN +
+p(angr — fip T (N —ap !

p=an(@yii; g, 2p).

)T

)

In order to select which Gaussian distributions
describe the background model, the K existing
components are ordered according to the fitness
value wy, /oy, and the first B distributions are used
as the background model, where B is estimated as:

b
B = argminy, ij >T], (4)

j=1
where T is a threshold value that determines the

probability that the analysed pixel belongs to the
background model.

In this way, the algorithm decides whether a
pixel is classified as background or as foreground.
The values used in our implementation were
T = 0.7 and a« = 0.05. Figures la and
1b illustrates an example of a raw acquired
image, and the classification performed by the
algorithm respectively. In the interest of reducing
segmentation errors produced by noise, we used
morphological operations. Specifically, Erosion
using a square 2 x 2 kernel, and Close with a round
16 x 16 kernel were aplied (result in Figure 1c). It
is noteworthy that quadrangular ROIs (Regions
of Interest) were defined initially by an operator
in order to simplify the analysis (as seen in Figure

Fig. 2. Quadrilateral ROI delimited by the operator
(dotted yellow line) and detected moving objects
(red).

Road’s Occupancy We define the road’s occu-
pancy for the specified ROI at time ¢ as:

plty = A8,)
ROI

where Af., and Aror are the number of pixels
classified as foreground and the total amount of
pixels analysed, respectively. This value varies
from 0 to 1. In Oliva et al. (2015) we have shown
that a relation between normalized average speed
and road’s occupancy exists, as it can be seen
in the example of Figure 3. In this case, the
occupancy remains under 0.2 most of the time,
but when it increases over this value (intervals
30-40 and 50-55), average speed decays abruptly.
This situation can be visually matched to a traffic
jam.

1.2 ‘ ‘ — Normalized S‘peed (0-1)
— Road's Occupancy (0-1)
U

IR

0 10 20 30 40 50 60 70 80
Minutes
Fig. 3. Traffic analysis of a sample video. Speed is

normalized in the range 0-1, being 1 the maximum
speed allowed (80km/h).

AADECA 2016 - Semana del Control Automético - 25° Congreso Argentino de Control Automaéatico
1 al 3 de Noviembre de 2016 - Buenos Aires, Argentina.

2.2 Camera calibration and Georeferencing

To be able to accurately measure the vehicles’
speed, their cartesian position should be esti-
mated in the world coordinates systems (X,Y)
(in meters) in terms of their location (x,y) in the
image (in pixels) (Figure 4).

o

image

“_ plane

world plane -

Fig. 4. (z,y) and (X,Y) axes represent the coordinate
systems image and world respectively. Calibration
points used to obtain the perspective transformation
parameters match the quadrilateral vertexes in the
image plane (Criminisi et al., 1999).

Since the cameras we used can be modeled as
Pinhole cameras, a perspective transformation
can be adjusted to match both planes using
quadrilateral ROI vertexes as calibration points:

_ar+by+c _drtey+ f
gr+hy+ 1 gr+hy+1’

where A = (a,b,c,d, e, f,g) is a vector of param-
eters that describes the perspective transforma-
tion, and can be obtained through least squares
using the pseudoinverse method (Criminisi et al.,
1999) on the quadrilateral vertexes. Figure 5
shows the quadrilateral in the world coordinate
system, while Figure 2 shows the same quadrilat-
eral seen from the traffic camera.

ge——<a.l

. n
O =M0Om

Image © 2015 DigitalGlobe

Fig. 5. Cartesian coordinates of the calibration points were
measured using Google Earth software.

2.8 Feature tracking for speed estimation

In Oliva et al. (2015) we used OpenCV im-
plementations of SURF (Bay et al., 2006) and
FLANN (Muja and Lowe, 2009) algorithms.
SURF is applied to detect features and calculate
its descriptors. It is because of SURF descriptors’
robustness when facing scaling, rotations and
light changes that we chose this algorithm in the

first place. Thanks to this, it is possible to find
and track the same feature in successive frames
and study its movement (Figure 6), even in low
frame rate videos, where the same vehicle changes
position significantly from one frame to another.

Fig. 6. Each arrow is obtained by feature tracking
through SURF and FLANN algorithms. The red
arrow indicates a match between features that has
been filtered out by the angle filter.

The algorithm used consists of the following three
steps:

(1) Detection: the algorithm computes SURF
points of interest, and only those located inside
blobs associated to moving objects are selected.
(2) Description: for each point of interest, a
64-dimensional vector is created representing a
robust description of the point’s neighbourhood
in its characteristic scale (SURF descriptors).

(3) Matching: the problem of matching features
can be simply described as finding those SURF
descriptors’ vectors with the minimum euclidean
distance between them. This process is carried
out by the nearest neighbours search algorithm
FLANN. Moreover, only reliable matches are
taken into account, defined as those matches in
which its second nearest neighbour is 0.6 times
farther than its first neighbour, according to Lowe
(2004). Another criteria applied is a biunivocal
filter through Forward-Backward error (Kalal
et al., 2010). We also encounter false positives
matches (red arrow in Figure 6) that could be
detected by applying a median filter to features’
angles, excluding those with deviation greater
than 5% from the median of all angles in the
current frame.

The result of applying this method is a set of Ny
pairs of features matched between frames at time
N and N + 1. At this point, and after converting
all features positions to world coordinates, we
compute each vehicle’s speed as:

v(t) = NLfCZ\/Ax%—i-Ay%, (6)

where f is the acquisition rate of the videos in
frames per second, (Az,,Ay,) the components
of the displacement vector between features in
the world coordinate system (in meters) and ¢ a
constant for conversion of units (m/s to km/h).

AADECA 2016 - Semana del Control Automético - 25° Congreso Argentino de Control Automaéatico
1 al 3 de Noviembre de 2016 - Buenos Aires, Argentina.

— {3

1

Fig. 7. Left: upper (a) and lower (b) dimensions of the
quadrilateral. Right: relative position f in the range
0-1.

2.4 Vehicle classification

The main goal of this work is to develop an
algorithm capable of classifying foreground blobs
of an image into the following categories: car,
bus/truck, motorcycle, van. After training a su-
pervised classifier using classification information
provided by the operator, the algorithm should be
able to emulate the operator’s choices. A graphical
user interface was developed using wxPython
library, providing the operator a simple way
to classify each one of the vehicles detected.
This allowed us to obtain more than 1000 blob
samples and create a database, where extracted
information from the blob as well as the manual
classification performed by the operator were
stored.

Blob descriptors For the current classification
scheme, 3 different input parameters were chosen:

(1) Normalized area: due to perspective effects,
each blob’s measured area depends on the object’s
distance to the camera. To avoid this effect
we compute a mormalized area, using the area
occupied by a blob and its location on scene:

Ameasured , (7)
A+ f(E—1)
where a and b are upper and lower dimensions
(respectively) of the analysed quadrilateral, and
f the relative position of the vehicle inside it, as
illustrated in Figure 7. The normalized area is a
characteristic size relative to the blob’s position
inside the quadrilateral. The value for a single
object’s Ayorm remains essentially constant for

every frame it is found in as it traverses the ROI.

(2) Circularity: it is defined as feirc = ‘/TZ, where

A corresponds to the blob’s area, and P to its
perimeter (Corke, 2011).

(3) Aspect ratio: an ellipse is fitted to the blob
using the Fitzgibbon algorithm (Fitzgibbon et al.,
1996) (as shown in Figure 8), and then, the ratio
of its minor axis to its major axis is computed
(Corke, 2011).

norm —

As explained before, the algorithm classifies de-
pending on the type of vehicle. Additionally, an

Fig. 8. Examples of ellipses fitted to blobs.

occlusion category was added to detect situations
where the background/foreground algorithm was
unable to separate two or more vehicles, leading
to a single blob containing more than one object
(see Figure 9). This is usually caused by shadow
occlusion, noisy images, unwanted effects of the
morphological operations, or simply visual occlu-
sion. In this first approach we focused only on
detecting the occlusions, since we have noted in
the analysed videos that, most of the time, road’s
occupancy tends to remain under 0.2, condition
in which occlusion rarely occurs (according to our
observations, explained in Section 3).

Fig. 9. Example of vehicle occlusion due to perspective
superposition.

Classification method In the process of selecting
the most suitable classification method for this
scheme, several supervised algorithms were tested
and compared in Python using scikit-learn, a
powerful open-source set of machine learning
libraries that also includes data mining and data
analysis tools. 10-fold cross-validation was used
to obtain more accurate performance results,
measuring in each experiment: 1) Training time.
2) Classification time. 3) Accuracy on train
samples. 4) Accuracy on test samples.

Feed-forward neural networks — This classification
method consists of an input layer that receives
a vector p of size R x 1. For the present case,
R = 3 since it is the number of parameters chosen
to describe a single blob. The " layer of the
neural network is comprised of S* neurons with
a at output state given by:

az’ — fz(Wz % ai—l +bl), (8)

where W is the synaptic weight matrix of size
S%x 81 bl the bias vector and f? the activation
function, as illustrated in Figure 10.

We implemented the neural network through
Neurolab, a simple open-source library for Python,
using the RPROP (Riedmiller and Braun, 1993)
training algorithm, which, in our experience, has
produced the best results (both in accuracy as in
training time).

AADECA 2016 - Semana del Control Automético - 25° Congreso Argentino de Control Automaéatico
1 al 3 de Noviembre de 2016 - Buenos Aires, Argentina.

Input Layer 1 Layer 2

Stx1

ai = f1AWuip +b1) a2 = f2(LW21 a1 +b2)

Fig. 10. Feed-forward multilayer Neural Network diagram.
3. RESULTS

3.1 Comparison of machine learning algorithms

Table 1 shows the results of the classifiers compar-
ison. As it can be seen, Artificial Neural Networks
turned out to be the most accurate classifier
for this case, followed by Forest of randomized
trees, which, although it showed nearly the same
performance in test samples, it performed in a
significantly higher time of execution for each
classification.

Each one of the tested methods was manually
optimized for a sensible comparison. With regard
to the ANN, the 10-fold cross-validation scheme
mentioned in the previous section was also ap-
plied here to evaluate different neural networks
geometries. We started from the simplest possible
architecture, and began to subsequently increase
its complexity (both in hidden layers as in amount
of neurons) until a minimum error was reached.
The parameter values specific for each method
are:

ANN Hidden Layers: 2, Neurons: (15, 15, 5),
Transfer functions: (LogSig, LogSig, SoftMax)
NNeighbours Neighbours number: 20, Weight
function: uniform, Leaf size: 40

NCentroid Distance metric: mean

SGD Loss function: hinge, Penalty: standard 12,
Alpha: 0.0001

SVM Penalty C: 1, Kernel: rbf

Decision Tree Criteria: gini, Splitter strategy:
best

GBClassifier Loss function: deviance, Learning
rate: 0.1, Stages: 100; Maximum depth: 3
Random Forest Estimators: 15, Criteria: gini
GaussianNB -

3.2 Classification stage

Figure 11 shows the classification results of one
of the 10-fold cross-validation cases of the ANN,
for train (11a) and test (11b) samples. It should
be pointed out that the amount of samples
showed in Figure 11 doesn’t reflect the probability
distributions for each class. We took special care
to gather approximately the same amount of
samples for each type of vehicle, so that the
classifiers would train on each class in a balanced
way.

True label
True label

C BT V M] C BT V M o
Predicted label Predicted label

(a) Train samples (b) Test samples

Fig. 11. Confusion matrices obtained from the artificial
neural network approach.

Fig. 12. The final implementation performing online color-
coded classification and speed estimation.

3.8 Speed measuring per vehicle class

It was possible to measure an average speed
for each type of vehicle classified by tracking
features between frames and assigning each one of
the measured distances to the vehicle’s predicted
category. A graphical example of this process is
shown in Figure 12.

Using the classification routine we confirmed that,
when road’s occupancy is below 20%, occlusions
are rare cases: after applying the developed
algorithm to different online videos for more
than 40 hours (with different light conditions and
p < 0.2) we verified that only 6.28% of the
blobs were classified as occlusions. It was also
possible to obtain statistics on traffic flow speed
per vehicle class. Figure 13 is an example of a
traffic speed analysis performed with this method
on a 1 hour long capture from a traffic camera.
In practice, a median filter with a window size of
50 frames is applied to each curve, and in frames
where samples for a particular class aren’t found,
previous speed values are kept. This explains
why Bus/Truck class (the least frequent type of
vehicle) fluctuates much less than the rest of the
classes.

4. DISCUSSION

This work proposed an approach to estimating
vehicles’ speed over time by locating and tracking
relevant features inside moving vehicles, and
georeferencing them using satellite images. The
use of features for vehicle tracking proved a

AADECA 2016 - Semana del Control Automético - 25° Congreso Argentino de Control Automaéatico
1 al 3 de Noviembre de 2016 - Buenos Aires, Argentina.

Table 1. Comparison of classifiers used.

Algorithm

Computation time [ms]

Average accuracy [%)]

train sample train test
Artificial Neural Networks 9851.1 0.289 92.51 84.66
Forest of randomized trees 86.040 1.867 99.47 84.35
Grading Boosting Classifier 883.54 0.681 92.11 84.06
Support Vector Machines 51.455 0.246 84.09 84.04
Gaussian Naive Bayes 2.891 0.519 85.41 83.74
Nearest Neighbours 2.660 1.909 86.33 82.82
Decision Tree learning 7.395 0.168 99.86 80.67
Nearest Centroid 1.723 0.389 79.50 78.83
Stochastic Gradient Descent 6.166 0.149 75.82 73.92

10 20 30 40 50 60 70
Minutes

Fig. 13. Result obtained from analysing 60 minutes of a
traffic camera. The graph shows 4 different speed
curves, one per vehicle class.

robust method when facing light changes and
image noise. Aiming for a segmented traffic flow
description, different classifiers were tested in
order to achieve the fastest and most accurate
implementation. The results positioned ANN as
the most effective algorithm for the current
scheme. Altogether, feature tracking and ANN
combined showed an efficient way to measure
average speed per vehicle class, when analysing
traffic videos with road’s occupancy lower than
0.2. Since the overall system was designed taking
into account the time cost of each algorithm,
the resulting method was able to perform with
a frequency of 10 to 15 fps, depending on the
scene’s occupancy, which allowed not only offline
implementations applied to video files, but also
online analysis of IP cameras. In the latter case,
the speed bottleneck was mostly due to the
network connection.

In future versions, we would like to develop an al-
gorithm capable of dealing with occluded vehicles,
so that crowded scenarios can be analysed in more
depth. Another possible improvement could be to
use multiple frames to classify each vehicle. Cross-
matching each blob’s classification with previous
frames predictions could accomplish more accu-
rate results, but this would require tracking blobs
in addition to features, which, although feasible,
is a completely different approach to the problem.

REFERENCES

Autopistas del Sol S.A., S.A. (2014). Au-
topistas del sol. https://www.ausol.com.ar/
transito.asp.

Bay, Herbert, Tinne Tuytelaars and Luc Van Gool
(2006). Surf: Speeded up robust features. In:

Computer vision-ECCV 2006. pp. 404-417.
Springer.

Corke, Peter (2011). Robotics, vision and control:
fundamental algorithms in MATLAB. Vol. 73.
Springer.

Criminisi, Antonio, lan Reid and Andrew Zisser-
man (1999). A plane measuring device. Image
and Vision Computing 17(8), 625-634.

Fitzgibbon, Andrew W, Robert B Fisher et al.
(1996). A buyer’s guide to conic fitting. DAT
Research paper.

Kalal, Zdenek, Krystian Mikolajczyk and Jiri
Matas (2010). Forward-backward error: Auto-
matic detection of tracking failures. In: Pattern
recognition (ICPR), 2010 20th international
conference on. IEEE. pp. 2756-2759.

Lowe, David G (2004). Distinctive image features
from scale-invariant keypoints. International
Journal of computer vision 60(2), 91-110.

Muja, Marius and David G Lowe (2009). Fast
approximate nearest neighbors with automatic
algorithm configuration.. VISAPP (1).

Oliva, Damiin, Agustin Yabo, Lilidn Garcia,
Sebastian I Arroyo and Félix G Safar (2015).
Implementacién de un sistema para la medicién
del flujo de transito y deteccion de em-
botellamientos en autopistas. In: Argentine
Symposium on Artificial Intelligence (ASAI
2015)-JAIIO 44 (Rosario, 2015).

Riedmiller, Martin and Heinrich Braun (1993).
A direct adaptive method for faster back-
propagation learning: The rprop algorithm. In:
Neural Networks, 1993., IEEE International
Conference on. IEEE. pp. 586-591.

Stauffer, Chris and W Eric L Grimson (1999).
Adaptive background mixture models for real-
time tracking. In: Computer Vision and Pattern
Recognition, 1999. IEEE Computer Society
Conference on.. Vol. 2. IEEE.

