
Proposal for Optimizing the Design of the National
University of La Plata Service Cloud

José Nahuel Cuesta Luengo1, Miguel Carbone1, Claudia Banchoff Tzancoff2,
Claudia Queiruga2, Christian Rodriguez1

1High Center for Information Processing (CeSPI), UNLP, 50 and 115, La Plata
(1900), Argentina

2Laboratory of Investigation in New Information Technologies (LINTI), Computer Science
School, UNLP, 50 and 120, La Plata (1900), Argentina

{ncuesta, mcarbone, car}@cespi.unlp.edu.ar
{cbanchoff, claudiaq}@info.unlp.edu.ar

Abstract. One of the great difficulties facing the informatic systems
development team of the Department of Development of the CeSPI of the
National University of La Plata (UNLP) is the use and maintenance of the
service cloud. This issue triggered a theoretical-practical analysis of the state of
the art around service oriented architectures and a proposal for a new design for
the service cloud.
A real use case was implemented from this design proposal, as well as a
reduced cloud architecture, which included everything from a Gateway API
routing the incoming requests to services organized according to the guidelines
of the microservices pattern. This approach encourages the decoupling for the
architecture components, simplifying its development, maintenance,
deployment and scalability.
This paper presents the advances achieved in the redesign of the UNLP service
cloud and a case study implemented on it.

Keywords: Cloud, Web Service, API, REST, Microservices, Software
Architecture Design Patterns, ESB, API Gateway, SOA, Loose Coupling.

1 Introduction

CeSPI1 is the computing center of the National University of La Plata (UNLP) and its
mission is to encourage, implement and manage ICT2. The participants in the work
here presented include developers and systems analysts of the Direction of
Development of the CeSPI and teachers of the Computer Science School, who have
been involved in the survey, implementation, maintenance and production of multiple
daily use Web applications in the different academic units (high schools and
university schools belonging to the UNLP) and other administrative dependencies of
the University. In the course of over 7 years of work, multiple architectural paradigms
have been used for the development and integration of these applications.

The implementation of the current UNLP architecture is an application based on a
REST architecture, which we call “Integrador”, and whose main function is to
concentrate the information, making it easier for different applications to unify and
correlate data. Although its implementation was adequate and functional for the needs
of the moment in which it was developed, the change in requirements and
technological advancement have posed the need for a new analysis that led to the
solution proposed in this paper.

1 High Center for Information Processing of the UNLP – http://www.cespi.unlp.edu.ar/
2 Information and Communications Technology

566566566

mailto:mcarbone%7D@cespi.unlp.edu.ar
mailto:mcarbone%7D@cespi.unlp.edu.ar

Section 2 describes the current UNLP service cloud, the “Integrador”, as well as
the difficulties of its use and maintenance that triggered the proposal offered in this
paper. Section 3 enumerates the technologies evaluated to achieve the final redesign
proposal described in section 4. Section 5 describes the case study and finally
conclusions are exposed in section 6.

2 The current UNLP cloud

“Integrador” is the implementation of the UNLP cloud service currently in use. It is a
Web-based system that concentrates information, allowing multiple Web applications
to unify data, combine and correlate the information each of them has. It contains
information such as unique identifiers for different types of documents (e.g., 1 equals
National Identity Number, 2 equals Personal Identity Booklet Number, 3 equals
Passport Number), values identifying the academic units or dependencies of the
University (e.g., 33 is the Computer Science School, 26 is the CeSPI, etc), and data
related to persons linked to the UNLP, among others.

The services provided by “Integrador” can only be consulted, i.e., it is not possible
to modify or destroy them. The applications that consume this information, cloud
clients, access it by means of different Web services.

When analyzing the current state of the cloud service, we find a great amount of
monolithic applications containing strongly coupled components, which makes
changing, testing and deploying them difficult [1, p-29].

The design of “Integrador” does not allow efficient escalation. In order to achieve
that, it is necessary to replicate the virtual instance of “Integrador” and implement a
load balancer that allows redirection of requests to their replicated instances. The
same happens when escalating the APIs that compose the cloud – they escalate
poorly. The strong coupling of the applications and their respective APIs makes it
necessary to replicate each application and its API, as they have an API implemented
in the same virtual instance. The generation of so many applications with their
respective APIs results in a proliferation of point-to-point connections, generating
dependencies between them.

As regards caching, each client implements their cache without server directives,
i.e., there is no centralized caching policy or shared cache, which generates
unnecessary processing in the APIs.

Given the amount of applications that use the services of this cloud for its basic
functioning, it is highly relevant to optimize its performance, minimize maintenance
and achieve a scalable and fault tolerant architecture.

3 Analyzed technologies

The aforementioned issues triggered the research and generation of a proposal for
their solution. The following section describes the evaluated technologies that were
used to base decisions made regarding the optimization of the UNLP service cloud
architecture.

3.1 Service-Oriented Architecture

A Service-Oriented Architecture (SOA) establishes a design framework for
integrating distributed and independent applications, allowing network access to its
features, offered as services. SOA is generally implemented by means of Web
services, a standard based technology and independent from the platform that

567567567

provides the data. Thus, SOA can decompose monolithic applications into a set of
services [2, p. 2].

This architectural model includes practices and processes based on the fact that
distributed systems are not controlled by the owners themselves. Different
equipments, dependencies or even different organizations may manage these
distributed systems. In the past, a great amount of methods has been proposed to solve
the problem of the integration of distributed systems by means of the elimination of
heterogeneity, but experience has shown that these approaches do not work. [3, p. 14].

Distributed systems from medium to large scale usually have different owners,
which are usually heterogeneous. The approach followed by SOA accepts this
heterogeneity based on the principle that it is necessary to deal with the fact that most
legacy systems that are already in production will remain in production [3, p. 15].

3.2 Microservices

One of the ways to implement SOA is by means of the microservices architecture
pattern. Monolithic applications generally consist of strongly coupled components,
which are part of a single deployable unit, which is unpractical and generates
difficulties as regards changing, testing and deploying the application. For this reason,
big IT organizations with applications with these features tend to use monthly cycles
for the deployment of their products.

The microservices pattern deals with these matters, separating the application into
multiple deployable units called service-components3, which may be developed,
tested and deployed independently from another service-components [4, p. 27].

As shown in Fig. 1, all client requests are performed through a layer called user
interface layer, which is in charge of accessing service-components.

Taking into account that the main components of an application are divided into
smaller deployable parts individually, applications built using the microservices
architecture pattern are generally more robust, provide better scalability and can
provide support for continuous delivery, enabling production environment updates by
means of real time deployments, eliminating the need for monthly or weekly updates
[4, p. 33]. All this is possible given that the change is generally reduced to a single
service-component and only the units that change must be updated. As previously
mentioned, this is a noticeable improvement in the face of monolithic application
development, where the strong coupling of its components leads to fragile
applications that tend to fail with each new deployment.

3 A service-component is a service logic grouping basic unit, its granularity may vary from a simple
module to a great part of an application.

568568568

Fig. 1. Basic microservices architecture.

Although there are multiple ways to implement the microservices architecture
pattern, the three main topologies are: REST-based API, REST-based application and
centralized messaging [5, p. 29]. According to the analysis performed, the centralized
messaging topology presented in Fig. 2 is the one that will be implemented, due to its
adequacy to the needs of the project. This topology is similar to the REST-based
application topology, only that instead of using REST to access a service component
remotely, it uses a centralized and light message broker.

Fig. 2. Centralized messaging.

3.3 Enterprise Service Bus

Although UNLP service cloud applications are integrated, this integration generates a
great amount of point-to-point connections, resulting in a high degree of coupling.
One of the main SOA design principles is service loose coupling and a usual way to
implement it is through an Enterprise Service Bus (ESB): a means of communication
that connects and abstracts service providers and consumers.

ESBs themselves do not implement service oriented architectures, but provide the
features by means of which it is possible to implement one, i.e., they provide an

569569569

abstraction layer for the endpoints, thus achieving flexibility and easier service
connection.

There are multiple different opinions regarding the exact role and responsibilities
of an ESB, mainly due to the existence of multiple technical approximations to
implementing an ESB [3, p. 47]. According to the technical and organizational
approaches adopted for the application of the ESB, it may imply one or more of the
following tasks:

● Providing connectivity.

● Information transformation.

● Intelligent routing.

● Management of security aspects

● Dealing with service reliability.

● Service management, activity monitoring and logging.

4. UNLP services design optimization proposal

The previously exposed analysis resulted in the proposal of a service-based
architecture that is more decoupled than the current service cloud, thus minimizing
maintenance and development costs and simplifying its deployment in production
environments. The proposed solution is based on standards that allow the integration
of heterogeneous systems, accepting the fact that most legacy systems that are
currently in production will remain in production, thus making the underlying
infrastructure facilitate the incorporation of changes that may be needed in the CeSPI
and UNLP.

The service model facilitates information access and consumption through the
network. Given that services are independent and autonomous, they can be combined
as many times as needed in a simple manner, generating new applications that
respond to the constantly evolving needs of the UNLP [2, p. 3]. The possibility of
adding and combining services makes this strategy a highly beneficial option, with the
goal of creating complex services and applications that are independent from
underlying technologies. Therefore, the service cloud design optimization has taken
into account features such as redundancy, scalability, decoupling, simplicity and
standard use. The new name for the proposed service cloud is “Cloud”.

4.1 Redundancy and Scalability

The application scalability model called scale cube [6] classifies the different ways of
scaling applications in 3 axes: X-axis scaling, Y-axis scaling y Z-axis scaling. The
“Integrador” and the APIs integrating the cloud do not scale efficiently (X-axis
scaling), which is the reason for the proposal of a new UNLP service cloud
architecture that must be replicable and scalable.

In order to achieve this, each API must be executed in an independent virtual
instance, so it can be replicated as many times as necessary (X-axis scaling). The
abstraction layer of these replicated instances will be a load balancer, implemented
with NGINX, that will serve both for load balancing and for failover, giving
continuity to services in case that one of the replicated instances fails. The load
balancer will be able to distribute incoming requests to a group of servers (backends)
according to a decision and weighing algorithm called scheduler. This structure that is
transparent to the client avoids direct accesses between service providers and
consumers.

570570570

A shared cache was implemented in front of the load balancer using Varnish 4,
which avoids unnecessary access by keeping an in-memory copy of the replies
generated by one of the replicated instances, achieving better response times.

4.2 Decoupling

As previously mentioned, one of the principles of SOA design is loose coupling,
frequently implemented by means of an ESB, in charge of providing interoperability
among different platforms.

The integration achieved in the current service cloud results in the proliferation of
point-to-point connection between systems, which is often known as a “spaghetti
architecture” (as exemplified in Fig. 3), generating dependencies between the
applications. Although the problem of interoperability between applications is solved,
it is difficult to maintain [7, p. 4].

Fig. 3. Scheme of point-to-point connections.

In an architecture implementing ESB, applications communicate through this central
bus acting as a message broker among them. This architectural system is called
“mediation”. The number of point-to-point connections necessary to allow
communications between applications is minimized, simplifying the maintenance and
deployment of a system while decreasing the degree of direct dependency that may
exist between the instances. As shown in Fig. 4, consumers still use the same endpoint
where the task is delegated, when messages arrive, the mediator distributes them to
the instances that provide this service [3, p. 52].

The new architecture will use Tyk5 as an ESB in front of Varnish, adding
mechanisms for authentication, rate limiting, monitoring and a single access point to
all the cloud. Moreover, including the ESB avoids the need to develop extra
functionalities in the APIs.

In the interest of working on the decoupling of the platforms, the proposal is to
develop an API dedicated to serving reference data in which to implement the
necessary services that will allow access to this information from different
applications. This API will comprise the endpoints of the Integrador that will be in
use.

4 Varnish is an HTTP reverse proxy, sometimes refered as an HTTP accelerator or Web accelerator, that
stores files and file fragments in memory which reduces response times and bandwidth for the same
requests [4, p. 20].

5 API Gateway Open Source - https://tyk.io/about-tyk

571571571

Fig. 4. Scheme of connections with mediator ESB.

Additionally, it is necessary to decouple the APIs from their respective applications
and rewrite those that are currently in production using Ruby on Rails as a
development framework. Version 5.0 of Ruby on Rails incorporates a new Web
application creation mode: api mode. This mode launches applications configured
with a reduced subset of components obtained from the elimination of those
unnecessary for Web API development, and prepared to serve content in JSON format
by default, seizing the main caching techniques for this type of applications.

Applying the microservices pattern will result in different service-components that
used to be implemented in each application and coupled to them, and will now be
implemented in a new independent and dedicated application. Thus, the logic of the
application is decoupled from the data generated by it, allowing it to scale
horizontally in a simple manner. This solution will allow independence from the
language used for the application development: application can be developed in Ruby,
PHP, JavaScript, Java or any other language different from that used to develop the
APIs, generating an independent service layer where applications will delegate to the
APIs the access, management and persistence of data that they themselves generate.

4.3 Simplicity

Monolithic applications consist of strongly coupled components that are part of one
single deployable unit, which makes it difficult to apply changes, test and deploy
without service failures. The microservices pattern deals with these matters,
separating the application into multiple deployable units, which can be developed,
tested and deployed independently from one another [1].

Dividing the application into smaller, deployable components that are independent
facilitates development, testing and production due to the change being isolated from
a service-component, enabling better control.

4.4 Standard use

Standardization is the process by means of which commonly accepted norms are
established that allow communication between different applications 6. Therefore, for
each application that requires so, an API must be implemented to give access to the

6 Dictionary of the Royal Spanish Academy

572572572

data it generates, based on the JSON API 7 specification. This standardization
facilitates the development of clients that consume information from different
services of the APIs, since they define rules that specify how the data can be accessed,
what will be their reply structure and even assist in achieving independence from the
language in which these clients are written, which must only respect the specifications
to implement access to services.

5. Case Study

In order to test the proposed architecture, the process of registering a new Single
Sign-on (SSO) user for the UNLP service cloud was used as a case study. All the
agents that are part of the UNLP staff have a single user to access the SSO integrated
applications, among them, to consult their pay stub, use an application as part of their
daily tasks, present extension projects or access any application that may be
developed as a UNLP service in the future.

In the process of self-management of a new user, the agent must complete the
requested data in a series of previously-established steps leading to access to the
applications using the SSO scheme. We can summarize the registration process in the
following steps:

1. The agent enters the self-managed application and indicates they wish to register
a new user. For this, they must enter their institutional email account in order to
receive an access link to effectively begin the process of registration of a new user.

2. Upon accessing the link received by email, the application will ask the agent to
identify with the type and number of Identification Document, asking to confirm that
they are still among the University agents without a single access user.

3. Once the agent is identified, they are suggested a username following the
username policy, which can be modified as part of the process of entering
information. This username is confirmed as vacant and as abiding by the policy.

4. Once the username is selected, the agent is asked to enter an alternative email
account for a second means of contact.

5. To finish entering personal data, the agent is asked to indicate the dependency of
the UNLP where they are employed. This is asked with a captcha to avoid bots
attempting mass registration of new users and to keep ill-intentioned users from
registering users in the name of real agents.

Decomposing the services of the self-managed process, we identified the following
dependencies as services of “Cloud”:
● Reference services: to visualize and mark dependencies (or academic units)
and lists of identification document types.
● Staff information services: to identify the person and later consult the
academic units in which they are employed.
● User services: to consult the existence of a username for the selected person,
suggest usernames that abide by the defined name policy and the creation of the
new name.
● Notification service: to send emails.
Developing the functional prototype implied:
● Implementing the aforementioned services (reference, staff information, user
and notification), in which we only included the endpoints necessary for the logic
of the case study.
● Implementing a new version of the registration client application, respecting
the aforementioned steps, that will consume all the information of the services of
“Cloud”.

7 Specifications to build APIs in JSON - http://jsonapi.org

573573573

● Developing a gem8 that encapsulates the service access logic (client) from
authentication to query and abstraction of objects from the response of their APIs,
based on the JSON API standard.
For a more detailed explanation, it is advisable to consult the thesis “Proposal for

the Redesign of the UNLP Service Cloud (Propuesta de rediseño de la nube de
servicios de la UNLP)” [8].

6. Conclusions

The proposed architecture is scalable and more robust, with high availability,
organized in layers (Gateway, Caching L1, Balancing, Services, Caching L0 and
Persistency), all this independent from the technologies used in each layer. The
technology of any of the layers can be changed transparently without it affecting
service providers or consumers.

 With the concept test we obtained a notion of the cost entailed in implementing
services following the microservices pattern and taking these changes to our
applications, which allowed for an estimation of the time and resources necessary for
the implementation of this change in existing and future developments.

The key point and benefit of the proposal is the decomposition of application into
microservices that simplifies development, testing and deployment, similarly
achieving looser coupling and easier extension of the service cloud.

Using an ESB allows for the replacement of a point-to-point connection topology
by a star topology, simplifying maintenance and error detection. At the same time, the
functionality is deleted from the APIs (authentication) and new functionalities are
achieved (rate-limit, monitoring, and logging, among others), centralized and
delegated to another layer.

7. References

1. Richards Mark. Software Architecture Patterns - Understanding Common Architecture
Patterns and When to Use Them. O’Reilly, Febrero 2015.

2. Microsoft Corporation. La arquitectura orientada a servicios (soa) de microsoft aplicada al
mundo real, Diciembre 2006.

3. Josuttis Nicolai M. SOA in Practice: The Art of Distributing System Design. O’Reilly,
paperback edition, 2007.

4. Francisco Velázquez; Kristian Lyngstøl; Tollef Fog Heen; Jérôme Renard. The Varnish Book.
Manning, 2016.

5. Richards Mark. Software Architecture Patterns - Understanding Common Architecture
Patterns and When to Use Them. O’Reilly, Febrero 2015.

6. akfpartners.com. Splitting applications or services for scale, Mayo 2008.
7. D’Emic David, Dossot; John. Mule in Action. Manning, Febrero 2010.
8. Cuesta Luengo, José Nahuel; Carbone, Miguel. Propuesta de rediseño de la nube de servicios

de la UNLP. Junio 2016.

8 Name given to reusable libraries in Ruby

574574574

	Proposal for Optimizing

