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Abstract. Binary relational algebra provides semantic foundations for major ar-
eas of computing, such as database design, state-based modeling and functional
programming. Remarkably, static checking support in these areas fails to exploit
the full semantic content of relations. In particular, properties such as the sim-
plicity or injectivity of relations are not statically enforced in operations such as
database queries, state transitions, or composition of functional components.
When data models, their constraints and operations are represented by point-free
binary relational expressions, proof obligations can be expressed as inclusions be-
tween relational expressions. We developed a type-directed, strategic term rewrit-
ing system that can be used to simplify relational proof obligations and ultimately
reduce them to tautologies. Such reductions can be used to provide extended static
checking for design contraints commonly found in software modeling and devel-
opment. .

Keywords: Models verification, Symbolic execution; Abstract model verifica-
tion; Extended static checking; Strategic term rewriting

1 Introduction

Software design is error-prone. The negative impact of programming errors on software
productivity can be limited by catching them early. Static checkers (e.g. syntax and type
checkers) are tools which catch errors at compile-time, i.e. before running the program.
Examples of such errors are unmatched parentheses (wrong syntax) and adding integers
to booleans (wrong typing). Errors such as null dereferencing, division by 0, and array
bound overflow, are not caught by standard static checking; detecting their presence
requires extensive testing, and if their presence can not be excluded with certainty, they
must be handled at run-time via exception mechanisms.

Software formalists will argue that error checking in the coding phase is too late:
first a formal model should be written, queried, reasoned about, and possibly animated
(using e.g. a symbolic interpreter). Formal modeling relies on “rich” datatypes such
as finite mappings, finite sequences, and recursive data structures, which abstract from
much of the complexity found in common imperative programming languages (e.g.
pointers, loop boundaries). However, such rich structures are not able to capture all
properties, meaning that additional constraints need to be added to models such as in-
variants (attached to types) and pre-conditions (attached to operations). Checking such
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constraints is once again a process which falls outside standard static type-checking,
leading to a so-called dynamic type checking process, typical of model animation tools
such as the VDMTools system [8].

Static checking of formal models involving such constraints is a complex process,
relying on generation and discharge of proof obligations [11]. While proof obligations
can be generated mechanically, their discharge is in general above the decidability ceil-
ing in requiring full-fledged formal verification (theorem proving) [16]. Between these
two extremes of standard, cheap, decidable static checking and costly theorem proving,
extended static checking (ESC) [9] aims to catch more errors at compile-time at the rel-
atively moderate cost of adding annotations to the code which record design decisions
which were lost throughout the programming process (if ever explicitly recorded).

Extended static checking tools have been developed for imperative programming
languages such as Java (ESC/Java [9]). At the heart of these tools we find a verifica-
tion condition generator and the Simplify theorem prover [7]. Verification conditions
are predicates in first-order logic which are computed in weakest precondition style.
Theorem proving is performed by a combination of techniques, including SAT solvers,
matching algorithms, and heuristics to guide proof search.

In the current paper we follow the spirit of this approach but intend to apply it much
earlier in the design process: we wish to perform extended static checking at abstract
model level to catch errors higher on the semantic scale.

The main novelty of our approach resides in the chosen method of proof construc-
tion, whereby first-order proof obligations are subject to the PF-transform [18] before
they are reasoned about. (See reference [18] for the theory behind this blending of ESC
with the PF-transform, suggestively referred to as the ESC/PF proof obligation cal-
culus.) Such a transformation eliminates quantifiers and bound variables and reduces
complex formula to algebraic expressions which are more agile to calculate with (see
Fig. 1 for details). As shown in [18], ESC proof obligations can be discarged at PF-level,
leading to the so-called ESC/PF calculus. In the current paper we move from “paper and
pencil” ESC/PF reasoning to mechanical calculation using a Haskell implementation of
strategic term rewriting [20, 15, 14].

¢ l PF ¢ In analogy to the well-known Laplace
(Fa :: bRa A aSc)| bR-S)c transform [12], the PF-transform takes ex-
Va,b:: bRa=bSa) RCS pressions from a mathematical problem
(Va :: aRa) idC R space, in this case first order logic formule,
bRa N cSa (b, c){R, S)a into a mathematical solution space, in this
bRa NbSa b(RNS)a case relational algebra expressions [2].
bRaVvbSa b(RUS)a The PF-transform eliminates quantifiers
b=a bida and bound variables (so-called points), re-
TRUE bTa sulting in a pointfree notation which is more

FALSE bla agile to calculate with.

Fig. 1. The PF-transform.

In Section 2 we will motivate our extended static checking approach with a small
modeling example. In Section 3 we recapitulate binary relation theory which can be
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used to capture the semantics of models with rich data structures and their operations.
In Sections 4 and 5 we will demonstrate how the algebraic laws of the theory can be
harnessed in a strategic term rewriting system, implemented in the functional program-
ming language Haskell. In Section 6 we revisit the model operations of our example to
show how our rewriting system is capable of generating the appropriate proof obliga-
tions and simplify or discharge them. Section 7 discusses related work and Section 8
concludes.

2 Motivating example

The UML class diagram in Fig. 2 depicts a simplified model of a system for trading
non-consumable (uniquely identifiable) items. A user can put an item for sale for a
given price, and other users can express their interest in these items for a price they are
willing to pay. If a match between a seller and a buyer is established, this leads to a deal
with an agreed price.

-price User .
Name x Balance <—— Ulid
USER

. . ForSale ;.
~Name Uid x Price <—— Iid

-Balance
W

1 ! -
) ) = . anted . .
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: .
.

-Uid o
-Description
~li
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+debit(a)

+selliPrice, Dascrip) : int
+wantilid, Price)

Uid x Price <2 Iid

.. Item .
ol Description <—— Iid
-price

Fig. 2. Simplied UML model of a trading system and the corresponding binary relational model.
The relations in this model are finite and simple (explained in Section 3). This is loosely based on
a formal model (written in Haskell) for a real estate exchange market, which has been developed
for a digital city consortium.

The specification of queries, predicates, and transformations on this model may
present some pitfalls. Suppose the following operations are desired:

listWantedItems :: Wanted — Map Iid Price
putBatchForSale :: (Uid, Map Iid Price) — ForSale — ForSale
settleDeal :: (Iid, Uid, Price) — Deal — Deal

The list WantedItems query produces a map of item identifiers together with the price
that has been offered for them. The transformation putBatchForSale adds a batch of
items belonging to a given user to the ForSale relation. The settleDeal transformation
adds an entry to the Deal collection.

When specifying these operations, the designer could benefit from the feedback of
an extended static checker. For example, the checker should tell her/him that query
list WantedItems should only return a map if the Wanted collection contains no two
offers for the same item with different prices. Rather than adding a precondition to that
effect, he will likely decide to change the return type to a general relation Rel Iid Price
or, equivalently, to Set (Iid, Price). In case of the settleDeal operation, to ensure that
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pre-existing deals do not get lost the checker should indicate that a precondition is
needed that either no deal yet exists for the given item, or that it exists with the same
buyer identifier and price.

3 Overview of relation theory

In this section we provide a brief introduction to the theory of binary relations [2].

Relations. Let B<2— A denote a binary relation R on data-types A (source) and B
(target). We write bRa to mean that pair (b, a) is in R. The underlying partial order on
relations is written R C S, with the usual semantics of the subset relation between sets
of pairs. In relational terms, it means that .S is more defined or less deterministic than
R, thatis, R C S = bRa = bSa forall a,b. R U S denotes the union of two relations
and T is the largest relation of its type. Its dual is L, the smallest such relation. The
identity id relates every element to itself. Equality on relations can be established by
C-antisymmetry: R=S=RCS AN SCR.

Three more operators are introduced to combine relations: composition (R - 5),
converse (R°) and meet (RN.S). R° is such that a(R°)b iff bRa holds. Meet corresponds
to set-theoretical intersection and composition is defined in the usual way: b(R - S)c
holds wherever there exists some mediating a such that bRa A aSc.

Coreflexives. An endo-relation A < A isreferred to as reflexive iff id C R holds,
and as coreflexive iff R C id holds. Coreflexive relations, which we denote by Greek
letters (P, ¥, etc.), are fragments of the identity relation that model predicates or sets.
A predicate p is modeled by the coreflexive [p] such that b[pJa = (b = a) A (p a)
holds, that is, the relation that maps every a which satisfies p onto itself. Negation
is modeled by -® = id — @. A set S C A is modeled by [Aa.a € 5], that is
b[Sla=(b=a) N a€S.

relation
injective entire simple surjective
representation function abstraction
injection surjection
Reflexive | Coreflexive
bijection ‘.kerR er'ltlr? R m:]ectlve R
(isomorphism) ‘Ing surjective R| simple R

Filig‘urc 1: Binary relation taxonomy
ig. 3. Binary relation taxonomy

Taxonomy. To establish a fundamental taxonomy of relations (illustrated in Fig. 3), let
us first define the kernel of a relation, ker R = R°- R and its dual, img R = ker (R°) =
R - R°, called the image of R. A relation R is said to be entire (or total) iff its kernel
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Table 1. Some laws of the binary relational algebra.

comp_assoc (R-S)-T=R-(5-T) inv_comp (R-S5)°=5°-R°
comp_id R-id=R; id-R=R inv_inv (R°)° = R
compempty R-1 =1; 1 -R=1 inv_union (RUS)° = R°U S°
union_fusion (RUS)- T =(R-T)U(S-T) corefl_symm &° = &
T-(RUS)=(T-R)U(T-S) corefl_trans & - & = P
dom_elim R-6§ R=R const_fusion k- R=k-6 R

neg_.co.comp - ®-b=1;d.--Pd=_1 not-dom_cancel R-— (6 R) = L

incl_empty L C R & True incl_refl R C R < True

monotonicity R-&-SCT<«<R-SCT
union-univ RUSC TS (RCTASCT)
shunt_fun f-RCS< RCf°-S
shunt_fun_inv R-f°CS< RCS-f
shunt_map_inv R-M°C S R-OMCS-M
shunt_-map M-RCS<dM-RC M°-S
img_def iImgR =R - R° ker_def kerR = R° - R

is reflexive; and simple (or functional) iff its image is coreflexive. Simple relations are
denoted with capital letters M, N, etc. Dually, R is surjective iff img R is reflexive,
and R is injective iff ker R is coreflexive. This terminology is recorded in the summary
table in Fig. 3. The coreflexive fragments of kernel and image are named domain (§)
and range (p).

Functions. As the taxonomy indicates, a relation is a function iff it is both simple and
entire. Functions will be denoted by lowercase letters (f, g, etc.) and are such that bfa
means b = f a. The constant function which maps every value of its domain to the
value k is denoted by k.

Algebraic properties. A rich set of algebraic properties is a-vailable for the various
operators of relational algebra [2], of which a small sample is listed in Table 1. Of
particular interest for the current paper are the various shunting laws. They allow the
‘shunting’ of relations (functions and simple relations in the listed cases) from one side
of the inclusion to the other, similar to the shunting rules we learned in high school,
suchas z — y < 2z & z < z + y. The utility of such laws will become evident below.

4 Rewriting relational expressions and propositions

We developed a type-safe, type-directed rewriting system for normalization of relational
expressions that harnessed the various algebraic laws of binary relations presented in
Table 1 in the functional programming language Haskell. In this section and the next,
we will provide a high-level description independent of the programming language.

Terms. The terms to be rewriten by our term rewriting system will be the expression of
binary relational calculus with some additional annotations. The following outlines the
grammar:

P:=RCrR|True| PAP

R:=id|R-rR|R°|VL|Ap]..
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T:=1|Int| Bool| String | [T]| T xT]..

L :=entire | simple | injective | surjective | reflexive | coreflexive
V := variable names

A = values

Thus, some of the relation operators are annotated with type information (shown as
subscript). Relation variables are annotated with properties as they appear in the leafs
of the taxonomy of Figure 3. For example, a function f is an entire and simple relation
and is therefore annotated as fientire simple]- Als0, endo-relations can be annotated to be
(co-)reflexive.

Predicates on relations. The first ingredient into our rewriting system are predicates for
testing the various properties that relations may have, such as simplicity, surjectivity,
etc. The various properties declared on relational variables propagate through relational
operators. For example, the composition of two surjective relations is surjective, and
the inverse of an injective relation is simple. This gives rise to predicates on relations
that inductively check their properties. For example:

isSimple(id) = True

isSimple(r;) = simple € |

isSimple(r° = isInjective(r)

isSimple(s -, ) = isSimple(r) A isSimple(s)

isSimple(r) = Fulse
Similar predicates are supplied for the remaining properties. These predicates test for
properties by induction over the structure of relational expressions, but do not attempt
to derive proofs for the properties. In this sense, they are approximations and may fail
to discover that a certain relational expression enjoys particular properties.
Type-directed and property-aware rewriting rules. The predicates above are used in the
definition of rewrite rules. Each rewrite rule encodes particular laws of the relational
calculus. Since our rewrite system is type-directed, rewrite rules are annotated with
types. Here is an encoding of the inv_comp law, applied in the left-to-right direction:

inv_comp : (14 8)° —>(ca) 8° 5 1°
Pattern matching is performed on a relational expression and, on successful match, a
resulting expression is returned.

The const_fusion rule provides an example of rewriting directed by properties:

const_fusion : (8 -y T) = (ce—a) (8.)

if isConstant(s) A = (isCoreflexive(r)) A isEntire(r)
constfusion : (5 -5 7) —(cc_a) ((5,) -a (357))
if isConstant(s) A (= (isCoreflexive(r))

The rule works on a composition and, if the first argument s constant as required by the
guarding predicate, then it replaces the second argument r by its domain. If the second
argument 7 is entire,  r = id then the rule return just the first (constant) argument.
When r is coreflexive, the rule does not trigger, because the domain of a coreflexive is
that relation itself.

An example of a rewrite rule on the level of relational propositions is offered by the
shunting rule for functions:
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shunt_fun_inv : ((z -4 f°) Ceema) ¥) = (ca) (T Sty (¥ af))
if isEntire(f) A isSimple(f)
Note the use of a guarding predicate that tests whether the relation f is indeed a function
(entire and simple).

Combinators for strategic rewriting. To compose rewriting systems out of individual
rewrite rules, we employ the following set of rule combinators known from strategic
term rewriting *:

nop :: Rule -- identity rule

(>) :: Rule — Rule — Rule -- sequential comp.

(@) :: Rule — Rule — Rule -- choice (based on mplus)

(@) :: Rule — Rule — Rule -- choice (bas. on mcatch)

all :: Rule — Rule -- map on all children

one :: Rule — Rule -- map on one child

run :: Rule — R r — (R r, Derivation) -- top-level app.

The implementation of each of these combinators is straightforward, and omitted here
for brevity. The top-level application function run takes the result of rewriting and
the derivation (proof trace) out of the Rewrite monad; in case of failure it returns the
original term and an empty derivation.

Using the basic rule combinators, more sophisticated ones can be defined:

many r (r> (many r)) @ nop  -- repeat until failure
once = r @ one (once r) -- apply once, at any depth
innermost r = all (innermost r) > ((r > innermost r) @ nop)

The derived combinator innermost performs exhaustive rewrite rule application ac-
cording to the leftmost innermost rewriting strategy.

5 Rewriting strategies

Having defined individual rules and rule combinators, we can proceed to the composi-
tion of rewrite systems for various purposes.

Normalization of relational expressions. The following definitions express that a rela-
tional expression can be normalized by exhaustive application of individual association,
desugaring, and normalization rules:

simplify = innermost simplifyl

simplifyl = comp_assocl @ desugarl @ applylawl

desugarl = ker_def @ img_def @ ...

applylawl = inv_comp @ inv_inv @ comp_id @ comp_empty @ dom_elim @

corefl_symm @ const_fusion @ not_dom_cancel @ ...

We use the convention of postfixing the names of single-step rule combinations with
1 in order to distinguish them from rule combinations that rewrite repetitively until
a fixpoint is reached. Note that the comp_assoc rule is employed to bring relational
compositions into left-associative form. Since the normalization rules together form a

* These rules and our representation technique are inspired on the 2LT system [6].
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confluent and terminating rewrite system, the left-catching combinator © is sufficient
to combine them — no need for backtracking.
For example, the following derivation is constructed when applying the simplify
strategy to (N - (= (6 N))° - M°)°, where N and M are simple relations:
(N (= (6 N))° - M°)°
= { corefl_symm }
(N-(=(0N))-M°)°
= {not_dom_cancel }
(L-M°)°
= { comp_empty }
LO
= { corefl_symm }
uE
This normalization proof trace demonstrates that the original expression is equal to L.
(Recall that proof traces are generated by our Rewrite monad.)

Deriving proofs and proof obligations. We define a more sophisticated strategy to sim-
plify or dispatch proof obligations:

derive = simplify > all_and process_conjunct > innermost and_true

where
process_conjunct = (shunt_conjunct & strengthen_conjunct) @ nop
shunt_conjunct = shunt > derive

strengthen_conjunct = strengthen > derive > ged

shunt = (shunt_fun_inv @ shunt_map_inv) & (shunt_fun @ shunt_map)
strengthen = corefl_cancel

all_and :: Rule — Rule -- apply arg. rule on all conjs
qged :: Rule -- test whether the current exp. is True

The initial application of simplify brings a given proposition into conjunctive normal
form, where each conjunct is a normalized relational inclusion. The all_and combi-
nator applies process_conjunct to all conjuncts. After processing each conjunct sep-
arately, and_true (p A True < True A p < p) is applied to absorb the proposi-
tions that have been rewritten to True. The processing of each conjunct makes a non-
deterministic choice (using the backtracking operator @) between starting with a shunt-
ing step (shunt_conjunct) or starting with a strengthening step (strengthen_conjunct);
the conjunct is left unchanged if neither is possible (nop). When starting with shunt-
ing, the choice between shunting a left-composed relation or shunting a right-composed
converse of a relation is again made non-deterministically (shunt). After the shunting
step, a recursive call is made to the overal derive strategy. When starting with strength-
ening, the subsequent recursive call to derive is required to lead to a full proof (ged),
since we are interested in strengthened propositions only for the purpose of discharging
proof obligations.

The use of backtracking entails that several results may be obtained or the same
result through different derivations. In the implementation, lazy evaluation is employed
to ensure that only a single derivation is actually constructed.
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6 Application scenarios

We now explain how our rewriting system can be used in concrete scenarios, such as
the ones in our motivation example (Section 2). The overall operation of the developed
tool is based on transforming and rewriting PF-relational expressions using the ESC/PF
calculus described in [18].

List wanted items. The operation list WantedItems can be specified in binary relational
terms as list WantedItems = Wanted - w7, where 7 is the first projection on pairs,
i.e. m (a,b) = a. Note that we leave the argument Wanted implicit in the definition
of the operation. Regarding Wanted as a set of pairs, the definition converts to the
pointwise { (p,?) | (p, (i,u)) € Wanted }, where p, i, u range over Price, Iid and
Uid, respectively. Clearly, this won’t be a simple relation in general, even if Wanted
is so, because dropping v from the input may lead to the same  related to different
p. Since this operation is specified to produce a finite map (thus simple), it gives rise
to the proof obligation img ( Wanted - n{) C id, which in turn leads to the following
derivation when applying our derive strategy:
img (Wanted - n9) C id
< {img_def }
Wanted - 7§ - (Wanted - 79)° C id
< {inv_comp}
Wanted - 7§ - (77)° - Wanted® C id
< {inv_inv}
Wanted - 7§ - w1 - Wanted® C id
< { shunt_map_inv }
Wanted - n7 - w1 - 6 Wanted C id - Wanted
< {comp_id}
Wanted - w§ - w1 - 0 Wanted C Wanted
< {shunt_map }
§ Wanted - 7§ - w1 - 6 Wanted C Wanted® - Wanted

What does the last line above mean? We simply have to apply the rules of the PF-
transform the other way round and find the corresponding, more descriptive logic ex-
pression:

Vz,y .z € dom (Wanted) ANy € dom (Wanted) A m (x) =m (y)
= Wanted (z) = Wanted (y)

This formula expresses that query list WantedItems only returns a finite map if the
Wanted collection contains no two offers for the same item with different prices. This
feedback should lead the designer to broaden the output type of the operation to general
binary relations.

Settle deal. Using singleton relation notation as decribed in Section 3, we can define
settleDeal (i,u,p) = Deal U (u,p) - i °. (Again we leave the old value of Deal im-
plicit in the definition.) Checking the simplicity of its output gives rise to the following
derivation (condensed):

img (Deal U (u,p) -1 °) C id

< {img_def , various union laws }
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Deal - Deal® C id A Deal -3 - (u,p) ° C 4
(uvp) 1% Deal® Cid A (U,p) T (U,p
< {wvarious shunting laws, dom_elim }

§ Deal - i C Deal® - (u, p) A

i°-8 Deal C (u,p) °- Deal
Thus, the simplification of this proof obligation leads to an intermediate conjunction
of four proof obligations, of which two are subsequently discharged. The remaining
two obligations actually express the same property (they can be converted into each
other by taking their inverse). Conversion back to pointwise notation gives the following
precondition:

i € dom (Deal) = (u,p) = Deal (i)

Note that the proof obligation we derived is weaker than the over-defensive precondition
that is typically added to an operation such as settleDeal, namely that i ¢ dom(Deal).

U

A
°Cid

~

Batch addition of items to sell. Once PF-transformed, our last function is defined by
putBatchForSale (u, m) = ForSale T ,
where © = withUser uw m and withUser u m = (u, m). This model illustrates the use
of two other useful binary operators on relations, override (- 1 -) and split ({-,-)) [19].
The latter pairs the outputs of two relations (recall Fig. 1) and the former overrides one
relation by another. Checking the simplicity of the output of putBatchForSale leads
to a 32-step derivation of which we show only the starting and closing steps, the latter
condensed for space economy:

img (ntz) Cid

< {override_def }

img(nUz--(dz)) Cid

< {img_def }

(U (2= (@ (M) - (nU (2= (3 (n)))° € id

((True A True) A (True A z-— (6 (n)) C z))

< { and_true, monotonicity }

(True A z-id C 1))

< {and_true, comp_id }

rzCzx

< {incl_refl}

True

Thus the proof obligation is discharged completely. In this case extended static checking
validates the user model and no changes are needed. The 32-step derivation took 0.14
seconds to run with version 6.8.2 of the Haskell interpreter (GHCi) on a MacBook Pro
(1.83 GHz Intel Core Duo processor).

7 Related work

Extended static checking. Extensive progress has been achieved on extended static
checking (for review see [16]), resulting in practical tools for imperative languages [9].

656



These tools rely on theorem provers to find counter examples of verification condi-
tions [7], using a combination of techniques such as backtracking search, matching
algorithms for universally quantified formule, and heuristics. As alternative or supple-
mental technique, we have explored proof construction through rewriting of pointfree
relational expressions. The absence of quantifiers and variables in these expressions
promises to allow a more effective proof search and to enlarge the scope of properties
that can be practically checked for, such as those arising in software modeling using
rich data structures.

Relational programming (symbolic). MacLennan pioneered relational programming
and proposed it as a more general substitute for functional programming [17]. He keeps
a separation between finite relations representing data structures, and infinite relations
representing operations. Cattrall and Runciman built on his work to develop compila-
tion support for relational programming, where finite and infinite relations are mixed,
and where relational expressions are made compilable by rewriting them according to
algebraic properties [3].

Relation-algebraic analysis (finite). Modeling and analysis of systems based on finite
relational representations is supported by systems such as Grok [10] and RelView [1]
which are, however, very different from our approach: Grok is a calculator for finite
relational algebra expressions and RelView uses BDDs to implement relations in an
efficient way.

Typed strategic rewriting. Strategic programming [14] was first supported in the non-
typed setting of the Stratego language [20]. A strongly-typed combinator suite was
introduced as a Haskell library by the Strafunski system [15] and later generalized
into the so-called ‘scrap-your-boilerplate’ generic programming library [13]. We de-
veloped GADT-based strategic combinator suites, similar to the one presented here,
for two-level data transformation [5] and transformation of pointfree and structure-shy
functions [4].

8 Concluding remarks

We have implemented a type-directed strategic rewrite system for normalization of
pointfree relational expressions and simplification or discharge of relational proposi-
tions. We have demonstrated the utility of the system in the context of extended static
checking of common model and program properties.

So far, we have limited ourselves to rewriting of pointfree expressions, relying on
manual transformation of logic formula into relational algebra expressions and back.
We intend to also automate this pointfree transform.

The suite of operators and laws implemented in the system is currently under study
with respect to minimality, confluence and termination.

The strategy for proof search is likely to further evolve as well, for instance to in-
clude short cut derivations for special common cases or to eliminate duplication of proof
obligations due to converse inclusions. A thorough analysis of the formal properties of
the rewriting system we are building is one of our current concerns.
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When achieving a good degree of maturity, an assessment will be needed as to
whether this approach can indeed be an alternative or supplement to existing ESC ap-
proaches based on theorem proving. A good test will be to try and discharge complex
ESC/PF proof obligations such as those arising from the Verified File System project
[18]. Besides ESC, we envision to apply our relational algebra rewriting system to areas
such as program optimization, program verification, relational programming, and more.
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