
Approximate Nearest Neighbor Graph via Index
Construction

Edgar Chávez, Verónica Ludueña, Nora Reyes, and Fernando Kasián

Departamento de Informática, Universidad Nacional de San Luis,
San Luis, Argentina

{vlud,nreyes,fkasian}@unsl.edu.ar
Centro de Investigación Cientı́fica y de Educación Superior de Ensenada, México

elchavez@cicese.mx

Abstract. Given a collection of objects in a metric space, the Nearest Neighbor
Graph (NNG) associate each node with its closest neighbor under the given met-
ric. It can be obtained trivially by computing the nearest neighbor of every object.
To avoid computing every distance pair an index could be constructed. Unfortu-
nately, due to the curse of dimensionality the indexed and the brute force methods
are almost equally inefficient. This bring the attention to algorithms computing
approximate versions of NNG.
The DiSAT is a proximity searching tree. It is hierarchical. The root computes
the distances to all objects, and each child node of the root computes the dis-
tance to all its subtree recursively. Top levels will have accurate computation of
the nearest neighbor, and as we descend the tree this information would be less
accurate. If we perform a few rebuilds of the index, taking deep nodes in each it-
eration, keeping score of the closest known neighbor, it is possible to compute an
Approximate NNG (ANNG). Accordingly, in this work we propose to obtain de
ANNG by this approach, without performing any search, and we tested this pro-
posal in both synthetic and real world databases with good results both in costs
and response quality.

Keywords: similarity search, databases, metric spaces, approximate search

1 Introduction

Proximity searching consists in finding objects from a collection near a given query. The
literature is vast and there are many specializations of the problem. Similarity search
has become a very important operation in applications that deal with unstructured data
sources. This has applications in a large number of fields. Some examples are non–
traditional databases, text searching, information retrieval, machine learning and clas-
sification, image quantization and compression, computational biology, and function
prediction. All those applications can be formalized with the metric space model [6].
A metric space is composed by a universe of objects U, and a distance function d, the
distance function gives us a dissimilarity criterion to compare objects from U.

Similarity queries, in metrics spaces, are usually of two types, for a given database
S ⊆ U, a query q ∈ U, and r ∈ R

+: range query: retrieves all elements within distance
r to q in S; and k-nearest neighbor: retrieves the k closest elements to q in S-{q}. k-
NN(q) query is a building block for a large number of problems in a wide number of

824824824

application areas. For instance, in pattern classification, the nearest-neighbor rule can
be implemented with 1-NN(q)’s [9].

The Nearest Neighbor Graph (NNG) is a graph with S the vertex set, with an
edge from u to v whenever v is the nearest neighbor of u. It is often called the all-
nearest neighbor problem. It could be generalized to retrieve the k-NN of all elements
of database: the All-k-NN problem. It is a useful operation for batch-based processing
of a large distributed point dataset, this will be our focus.

As the distance is considered expensive to compute, it is customary to use the num-
ber of distance evaluations as the complexity measure. For general metric spaces, there
exist a number of methods to preprocess the database in order to reduce the number of
distance evaluations [6], and then by performing n k-NN queries, avoiding the exhaus-
tive search.

However, when the database is very large or the distance is too costly, building an
index and then performing an exact k-NN query for each database element could be
very expensive. In these cases, an alternative is to settle for the response to approxi-
mate similarity queries, which will save runtime at the price of losing accuracy in the
response. But, it still could be very expensive, even more if we consider that in this way
many calculated distances during the index construction are wasted, because queries do
not take complete advantage of these calculations. Thus, it can be considered that an
even cheaper way to calculate the approximate nearest neighbors could use directly the
distances calculated during the index building, in order to approximate the response, es-
pecially if there is a reasonable chance that during the construction each element would
be compared with very close elements. Such is the case of the (DiSAT).

Therefore, in this work we present a new method to solve the version approximate
of the All-1-NN problem. This is the particular case of approximate All-k-NN problem,
when k = 1 (All-1-NNA), that uses the construction of a DiSAT, without performing
any search. Besides, when the precision obtained with the response is not good enough,
we propose an inexpensive way to continue improving it, even without to carry out any
similarity search.

This paper is organized as follows: Section 2 presents a brief description of some
useful concepts. In Section 3 we give a description of the DiSAT. Section 4 presents
our proposal, and Section 5 contains the empirical evaluation of our proposed solution.
Finally, in Section 6 we conclude and discuss about possible extensions for our work.

2 Previous Concepts

In this section we briefly state the problem in a more formal way to continue the discus-
sion. A metric space is composed by a universe of objects U, and a distance function
d : U × U → R

+, such that for any x, y, z ∈ U, d(x, y) > 0 (strict positiveness),
d(x, y) = 0 ⇐⇒ x = y (reflexity), d(x, y) = d(y, x) (symmetry), and obeying
the triangle inequality: d(x, z) + d(z, y) ≥ d(x, y). The smaller the distance between
two objects, the more similar they are. We have a finite database S, which is a subset
of U and can be preprocessed. Later, given a new object from U (a query q), we must
retrieve all elements found in S close to q, using as few distance computations as possi-
ble. Similarity queries, in metrics spaces, are usually of two types, for a given database
S with size |S| = n, q ∈ U and r ∈ R

+: (q, r) = {x ∈ S | d(q, x) ≤ r} denote a

825825825

range query; and k-NN(q), denotes the k-nearest neighbors, formally it retrieves the set
R ⊆ S such that |R| = k and ∀u ∈ R, v ∈ S−R, d(q, u) ≤ d(q, v). This primitive is a
fundamental tool in cluster and outlier detection [4, 10], image segmentation [1], query
or document recommendation systems [3], VLSI design, spin glass and other physical
process simulations [5], pattern recognition [9], and so on.

The distance is considered expensive to compute (think, for instance, in comparing
two fingerprints). Thus, the ultimate goal is to build offline an index in order to speed
up online queries. Differents techniques to solve the problem of similarity queries have
arisen, in order to reduce these costs, usually based on data preprocessing. All those
structures work on the basis of discarding elements using the triangle inequality, and
most use the classical divide-and-conquer approach.

A version of the k-NN problem, perhaps less studied, is the All-k-NN problem. That
is, if |S| = n, get the All-k-NN is retrieve, efficiently, the k-NN(ui) for each ui in S,
performing less thanO(n2) distance evaluations. It is a useful operation for batch-based
processing of a large distributed point dataset. Consider, for example, a location-based
service which recommends each user his or her nearby users, who may the candidates of
new friends. Given that locations of users are maintained by the underlying database, we
can generate such recommendation lists by issuing an All-k-NN query on the database.
In a centralized database environment, we can use the existing All-k-NN algorithms.

Some solutions to this problem have been proposed and developed for general met-
ric spaces [14, 15], based on the construction of the k-nearest neighbors graph (kNNG).
The kNNG is a weighted directed graph connecting each object from the metric space
to its k nearest neighbors, that is, G(S, E) such that E = {(u, v), u, v ∈ S ∧ v ∈ k-
NN(u)}. G connects each element through a set of arcs whose weights are computed
according to the distance of the corresponding space. Building the kNNG is a direct
generalization of the all-nearest-neighbor (All-NN) problem, which corresponds to the
1NNG construction problem. The kNNG offers an indexing alternative which requires
a moderately amount of memory, obtaining reasonably good performance in the search
process. In fact, in low-memory scenarios, which only allow small values of k the search
performance of kNNG is better than using classical pivot-based indexing alternative.

The naı̈ve algorithm for All-k-NN calculates the distance function d between each
ui ∈ S and every element of S, so it has quadratic complexity. Even, when we model
similarity as a metric space, we are already approximating the real retrieval need of
users. In fact, given a dataset, we can use several distance functions, each of them
considering some aspects of objects and neglecting others. Likewise, when we design
a model to represent real-life objects, we usually lose some information. Moreover,
even if we find the proper metric and a lossless object representation, there are high-
dimensional metric spaces where solving similarity queries requires reviewing almost
all the dataset no matter what strategy we use. In addition, in many applications, the
efficiency of the query execution is much more important than effectiveness. That is,
users want a fast response to their queries and will even accept approximate results (as
far as the number of drops and false hits is moderate). This has given rise to a new
approach to the similarity search problem: we try to find the objects relevant to a given
query with high probability. An intuitive notion of what this approach aims is that it
attempts not to miss many relevant objects at query time.

826826826

The goal of the approximate search is to significantly reduce search times by al-
lowing some “errors” in the query outcome. This alternative to the “exact” similarity
searching is called approximate similarity searching [8], and it includes approximate
and probabilistic algorithms. The general idea of approximate algorithms is to allow a
relaxation on the precision of the query in order to obtain a speed-up the query time
complexity. In addition to the query, a precision parameter � is specified to control how
far away we want the outcome of the query from the correct result. A reasonable be-
havior for this kind of algorithm is oncoming asymptotically to the correct answer as �
get closer to zero, and complementarily, speed up the algorithm, losing precision, as �
moves in the opposite direction. Therefore, the success of an approximation technique
is based on the compromise quality / time [16].

To evaluate the performance of an approximate similarity search it must be consid-
ered: improvement in efficiency and accuracy of approximate results. The good approx-
imation algorithms should offer large improvements in efficiency and high accuracy of
approximate results. But, there must be a trade-off between both. The improvement in
efficiency can be expressed as:

Cost(Q)
CostA(Q)

where Cost(Q) and CostA(Q) are the number of distance evaluations needed to per-
form an exact query and an approximate query Q, respectively. Q can be a range or a
k-NN query.

When performing approximate searches must evaluate the retrieval effectiveness of
a method. In an information-retrieval scenario, two measures are used as performance
measures: Recall and Precision. Recall is defined as the number of relevant objects
retrieved by a search divided by the total number of existing relevant objects. While
precision is defined as the number of relevant objects retrieved by a search divided by
the total number of objects retrieved by that search. If the R represents the result-set of
an exact similarity search query and RA the result-set returned by the approximation
query, these measures can be formally stablished as:

Precision =
|R ∩ RA|
|RA| and Recall =

|R ∩ RA|
|R| .

As we are focused on k-nearest neighbor searches, we can observe that given k the
precise and approximate response sets both have a fixed cardinalities: k. Thus, the recall
and precision measures always return identical values. Therefore, as follows we only
use the precision measure.

Another measure to evaluate is the relative error on distances [2]. Relative error
on distances compares the distances from a query object to the object in the exact and
approximate results:

d(oA, q) − d(oR, q)
d(oR, q)

=
d(oA, q)
d(oR, q)

− 1

where oA is the approximate nearest neighbor and oR is the real nearest neighbor.
By this way, we computed the ratio between the distance to the object reported by

the approximate algorithm and the real nearest neighbor minus 1. In our case, because

827827827

we want to compute the All-1-NN, the resulting quantity of the average over all the
database elements is called the average relative error on distances.

3 The Distal Spatial Approximation Tree

The Spatial Approximation Tree (SAT) is a proposed data structure [12] based on a
concept: approach the query spatially. It has been shown that the SAT gives better space-
time tradeoffs than the other existing structures on metric spaces of high dimension or
queries with low selectivity [12], which is the case in many applications. The Dynamic
Spatial Approximation Tree (DSAT) [13] is an online version of the SAT. It is designed
to allow dynamic insertions and deletions without increasing the construction cost with
respect to the SAT. It is very surprising that DSAT is more efficient for searching than
the SAT. For theDSAT the database is unknown beforehand and the objects arrive to the
index at random as well as the queries. Then, it arises the Distal Spatial Approximation
Trees (DiSAT) that improves regarding search performance over SAT and DSAT. DiSAT
obtains better behavior on searches just by considering a different construction heuristic
from SAT, but it maintains the same principles of searching and construction process.

The SAT is built as follows. An element a is selected as the root, and it is connected
to a set of neighbors N(a), defined as a subset of elements x ∈ S such that x is closer
to a than to any other element in N(a). The other elements (not in N(a) ∪ {a}) are
assigned to their closest element in N(a). Each element in N(a) is recursively the root
of a new subtree containing the elements assigned to it. From the previous definition
of the SAT, the starting set for neighbors of the root a, N(a) is empty. Particularly, SAT
selects the first neighbor between all the elements in S − {a}, as its closest element
and then considers if any other element can become a neighbor by analyzing them in an
ordering from nearest to farthest. However, it could be possible to select any database
element as the first neighbor. Inversely, DiSAT selects the first neighbor as its farthest
elements in S − {a} and uses the reverse ordering of the other elements to analyze if
any of them can become a neighbor. Nevertheless, the same searching algorithm can be
used on both trees because both uses the same condition to be a neighbor [12, 7]. This
heuristic change of DiSAT increases the discarding power of the SAT by selecting distal
nodes instead of the proximal nodes proposed in the original paper. Please note that this
heuristic is the exact opposite of the original ordering in the construction of the SAT.
Besides, DiSAT and SAT have the advantage of not having to tune any parameter.

Algorithm 1 gives a formal description of the construction of our data structure. As
it can be seen in line 3, DiSAT uses farthest-to-nearest order from the root. Searching
is done with the standard procedure. When working with hyperplanes to perform data
separation it is advisable to use object pairs far from each other as documented in [6]
for the GNAT and GHT data structures. Using the above observations, it is possible to
ensure a good separation of the implicit hyperplanes by selecting the first neighbor as
the farthest element to the root, and as a secondary effect the covering radii of neighbors
are smaller than in SAT. Thereby, the partition induced by the DiSAT construction on
the space has the nice property of obtaining a good data separation, that is useful for
our approach to All-1-NN.

828828828

Algorithm 1 Algorithm to build a DiSAT for S ∪ {a} with root a.
BuildTree(Node a, Set of nodes S)
1. N(a)← ∅ /* neighbors of a */
2. R(a)← 0 /* covering radius */
3. For v ∈ S in decreasing distance to a Do
4. R(a)← max(R(a), d(v, a))
5. If ∀b ∈ N(a), d(v, a) < d(v, b) Then
6. N(a)← N(a) ∪ {v}
7. For b ∈ N(a) Do S(b)← ∅
8. For v ∈ S −N(a) Do
9. c← argminb∈N(a)d(v, b), S(c)← S(c) ∪ {v}
10. For b ∈ N(a) Do BuildTree(b, S(b))

4 Our proposal

As it is aforementioned,we decided to attack the problem of the approximateAll-1-NN,
i. e. to retrieve in an approximate way the near neighbor of each item in the database
without comparing it against all the others. The idea of this proposal is maintaining for
each item, during construction of the index, the closest element seen until this moment,
obtaining its aproximate near neighbor without any search in the index.

We use, as auxiliar structure, a DiSAT which do not require any parameter and
produces a very good partition on the database. During tree construction we maintain
for each object its closest element seen among all with which it was compared. When
the construction finalizes we can retrieve for each oi ∈ S the approximate nearest
neighbor x and its distance d(oi, x), where 1-NNA(oi)) = {x}.

Then, we consider the outcomes as balls centered in oi with radii r = d(oi, x).
Elements oi whose balls have larger radii, have their 1-NNA(oi) farther away than the
rest. This may be its real closest neighbor or not. If it is not its real closest neighbor
the reason could be that it has not be compared against enough database objects, and
so it is the best it got. We know that tree root compares with each database element,
and its neighbors with most of them, but as we go down into the tree, the elements are
compared with less objects each time. Then, by trying to improve mainly the neighbors
of whose have large balls, we decide ordering all balls, in a decreasing order of its radii,
and to rebuilt the DiSAT taking the elements in that order 1, the object in the first ball
will be the tree root.

In this manner, we assure that by comparing the new root with all the database ele-
ments it will achieve its real neighbor. In this way the elements that follow in the order
can become the neighbors of the root and thus it could obtain better nearest neighbors.
Each time we compare an element oi with another y that could be a better neighbor, we
check if d(oi, y) < d(oi, x), being x its current near neighbor, in wich case we update
its approximate neighbor as y. If we are willing to pay a more distance calculations, we
can repeat this process several times, trying to obtain as good approximate neighbors

1 In fact, we can avoid the ordering of the elements with respect to the tree root for decreasing
the CPU time.

829829829

as we can. Finally, we report the better approximate nearest neighbor achieved for each
database element. As it can be noticed, we never perform any search on the index.

5 Experimental Results

The experiments consisted in obtaining the approximateAll-1-NN of each element, only
building the DiSAT. On the other hand, the exact 1-NN were calculated, building the
DiSAT and performing the 1-NN search of each item in the database. We use DiSAT
because in [7] it shown that is one of the most competive index at searches. It is impor-
tant to notice that there is the cheaper way to obtain the exact 1-NN of all the elements,
avoiding the brute force approach.

As we mention previously, if we are willing to spend some distance calculations
more, we can iterate the process in order to improve the answer. As we provide an
approximate answer, we need to analyze its quality by calculating precision, recall, rel-
ative error of differences and complexity of each option. The total cost to obtain the
All-1-NNA of our proposal is the number of distance evaluations done during all index
constructions. The total cost of the All-1-NN considers all distance evaluations per-
formed for construction and searching. All our results are averaged over 10 executions
of the processes performed on different permutations of the datasets.

For the experiments, we consider a set of real-life metric spaces with widely differ-
ent histograms of distances available from www.sisap.org [11]:
Strings: a dictionary of 69,069 English words. The distance is the edit distance, that
is, the minimum number of character insertions, deletions and substitutions needed to
make two strings equal.
NASA images: a set of 40,700 20-dimensional feature vectors, generated from images
downloaded from NASA 2. The Euclidean distance is used.
Color histograms: a set of 112,682 8-D color histograms (112-dimensional vectors)
from an image database 3. Any quadratic form can be used as a distance, so we chose
Euclidean distance.

Besides, in order to analyze how the intrinsic dimensionality affects the behavior of
our approach, we experimentally evaluated the different solutions over synthetic met-
ric spaces where we can control the intrinsic dimensionality. We used collections of
100,000 vectors of dimensions 4, 8, and 12, uniformly distributed in the unit hyper-
cube. We did not use explicitly the information of the coordinates of each vector. In
these spaces we also use Euclidian distance.

The Figure 1 illustrates the costs of the exact solution against our approximate pro-
posal. We show the cost measured in distance evaluations for each rebuilding of the
index. Thus, the first construction is indicated by 0 rebuilding, 1 rebuilding means that
we have construct firstly a DiSAT and secondly a DiSAT from the balls obtained with
the first construction, and so on. As can be noticed, the cost of the exact solutions is
shown as constant, because it do not depend of any rebuilding. Figure 1(a) shows the
costs for the three real metric spaces. For example, in the plots we name STRINGS-
exact the cost of All-1-NN and STRINGS-approx the cost of our All-1-NNA solution,
2 At http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html
3 At http://www.dbs.informatik.uni-muenchen.de/˜seidl/DATA/histo112.112682.gz

830830830

for the space of Strings. Besides, as it can be seen, we use the same color for both costs
on the same metric space. Alike, Figure 1(b) depicts the same experiments on the three
synthetic spaces, designiting the spaces of coordinate vectors in dimensions 4, 8, and
12 as C4, C8, and C12, respectively.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1 2 3 4 5 6 7 8 9 10

D
is

ta
n
c
e
s
 x

 1
0
0
,0

0
0

Number of Rebuilding

Costs of All-1-NN search

ENG-approx
COLORS-approx

NASA-approx
ENG-exact

COLORS-exact
NASA-exact

(a) Real spaces.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5 6 7 8 9 10

D
is

ta
n
c
e
s
 x

 1
0
0
,0

0
0

Number of Rebuilding

Costs of All-1-NN search

C4-approx
C8-approx

C12-approx
C4-exact
C8-exact

C12-exact

(b) Synthetic spaces.

Fig. 1. Comparison of costs of exact and approximate All-1-NN for all metric spaces considered.

As it can be noticed, our proposal is significantly less expensive to perform in al-
most all the metric spaces used than the exact solution. Only, in the space of vectors
in dimension 4, the exact alternative surpasses, although not significantly, our solution
from the second rebuilding onwards. In order to show more clearly the improvement of
costs, Figure 2 illustrates the improvements in efficiency obtained with our approximate
solutions as we made more rebuildings of the index. Figure 2(a) shows that in all real
the approximate method obtains a very significant efficiency. On the other hand, Fig-
ure 2(b) depicts the efficiency achieved over the three synthetic metric spaces. In this
case we can observe that the improvement in efficiency is higher as dimension grows,
and on dimensions 8 and 12 is always important, but on dimension 4 is inconsiderable.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3 4 5 6 7 8 9 10

E
ff
ic

ie
n
c
y

Number of Rebuilding

Improvement in efficiency of approximate All-1-NN search

ENG
COLORS

NASA

(a) Real spaces.

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9 10

E
ff
ic

ie
n
c
y

Number of Rebuilding

Improvement in efficiency of approximate All-1-NN search

C4
C8

C12

(b) Synthetic spaces.

Fig. 2. Improvement in efficiency of All-1-NNA, for all metric spaces considered.

831831831

In Figure 3 we show the precision of the response obtained with each reconstruc-
tion. After fourth reconstruction, it can observe that the answer exceeds 80% hits in the
three real metric spaces (Figure 3(a)). However, in the synthetic spaces it needs more
reconstructions to achieve a reasonable answer precision, but as it can be seen at Fig-
ure 1 we could spend many more reconstructions and even so to obtain much lower
costs to response adequatly to All-1-NNA; that is to achieve a high quality solution at a
low cost in distance evaluations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10

P
e
rc

e
n
ta

g
e

Number of Rebuilding

Precision

STRINGS
COLORS

NASA

(a) Real spaces.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10

P
e
rc

e
n
ta

g
e

Number of Rebuilding

Precision

C4
C8

C12

(b) Synthetic spaces.

Fig. 3. Precision of the answer of All-1-NNA, for all metric spaces considered.

We also evaluate the quality of the approximate solution by measuring the average
relative error on distances. Figure 4 exhibits the error obtained versus the number of
rebuilding, for the two kinds of metric spaces used. Over the real metric spaces, Fig-
ure 4(a) depicts that the error decreases fast, and as soon we rebuild the tree four times
the error is almost zero, but for the Dictionary possibly because it uses a discrete dis-
tance. On the other hand, Figure 4(b) exposes the error for the three synthetic spaces
used. As it can be seen, as dimension grows the average error decreases more slowly
with the reconstructions. For instance, in the space of vectors in dimension 4 (C4) the
percentage of error begins lower than 0.3 and achieves close to zero values with the
fourth reconstruction.

6 Conclusions

In this paper we tested an alternate approach to computing an approximation to the
All-1-NN using a simple heuristic. We have designed an algorithm able to retrieves the
All-1-NNA with a low cost, a very good accuracy, and low error. Our algorithm is based
on the construction of the DiSAT, an index that was originally proposed only for the
common similarity queries. Therefore, in addition to obtaining a good method for solve
the All-1-NNA, we have expanded the range of applications of the DiSAT.

The novelty of our proposal is that no searches are performed, but only the distances
calculated during the construction of the DiSAT are used. Our results are preliminary
and encouraging. We obtained good performance with low and medium dimensionality
databases, we are aiming at improving the results to tackle higher dimensionalities.

832832832

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7 8 9 10

E
rr

o
r

Number of Rebuilding

Average relative error on distances

ENG
COLORS

NASA

(a) Real spaces.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1 2 3 4 5 6 7 8 9 10

E
rr

o
r

Number of Rebuilding

Average relative error on distances

C4
C8

C12

(b) Synthetic spaces.

Fig. 4. Average relative error on distances of the answer of All-1-NNA, for all metric spaces
considered.

References
1. N. Archip, R. Rohling, P. Cooperberg, H. Tahmasebpour, and S. K. Warfield. Spectral clus-
tering algorithms for ultrasound image segmentation. volume 3750, pages 862–869, 2005.

2. Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu. An
optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM,
45(6):891–923, November 1998.

3. R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query clustering for boosting web page
ranking. pages 164–175, 2004.

4. M. Brito, E. Chávez, A. Quiroz, and J. Yukich. Connectivity of the mutual k-nearest neighbor
graph in clustering and outlier detection. Statistics & Probability Letters, 35(4):33–42, 1996.

5. P. Callahan and R. Kosaraju. A decomposition of multidimensional point sets with applica-
tions to k nearest neighbors and n body potential fields. JACM, 42(1):67–90, 1995.

6. E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marroquı́n. Searching in metric spaces. ACM
Computing Surveys, 33(3):273–321, September 2001.

7. Edgar Chávez, Verónica Ludeña, Nora Reyes, and Patricia Roggero. Faster proximity search-
ing with the distal sat. Information Systems, 59:15–47, 2016.

8. P. Ciaccia and M. Patella. Approximate and probabilistic methods. SIGSPATIAL Special,
2(2):16–19, 2010.

9. R. Duda and P. Hart. Pattern classification and scene analysis. John Wiley & Sons, 1973.
10. D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal poly-topes.

volume 11, pages 321–350, 1994.
11. Karina Figueroa, Gonzalo Navarro, and Edgar Chávez. Metric spaces library, 2007. Avail-

able at http://www.sisap.org/Metric Space Library.html.
12. G. Navarro. Searching in metric spaces by spatial approximation. The Very Large Databases

Journal (VLDBJ), 11(1):28–46, 2002.
13. G. Navarro and N. Reyes. Dynamic spatial approximation trees. Journal of Experimental

Algorithmics, 12:1–68, 2008.
14. R. Paredes. Graphs for Metric Space Searching. PhD thesis, University of Chile, Chile, July

2008.
15. R. Paredes, E. Chávez, K. Figueroa, and G. Navarro. Practical construction of k-nearest

neighbor graphs in metric spaces. In Proc. 5th Workshop on Efficient and Experimental
Algorithms (WEA), LNCS 4007, pages 85–97, 2006.

16. M. Patella and P. Ciaccia. Approximate similarity search: A multifaceted problem. J. Dis-
crete Algorithms, 7(1):36–48, 2009.

833833833

	Approximate Nearest Neighbor

