
Towards an architecture for real-time

event processing

Juan Mart́ın Pampliega

Jampp
juan@jampp.com

Abstract. The purpose of this paper is to illustrate how and why we
have evolved our data processing systems; from an initial version that
relied on traditional RDBMSs and batch processing towards a system
that processes a constant stream of data.

1 Introduction

Jampp is a mobile app marketing and retargeting company. Our
platform helps mobile app advertisers to acquire and re-engage their
users globally. This enables brands to go beyond simple installs and
re-targeting clicks, as it optimizes for in-app activity and conversions,
thus maximizing lifetime value.

Jampp markets apps by effectively buying programmatic ads.
Our platform processes more than 200,000 Real Time Bidding (RTB)
ad bid requests per second, which amounts to about 300 MB/s or
25 TB of data per day. Additionally, Jampp tracks more than 6
billion in-app events (app installs, actions taken inside the app, and
contextual information used for user segmentation) per month.

The advertising technology (Ad Tech) market is technologically
intensive, with low margins and high volume. Being able to effec-
tively and promptly deal with the constant stream of data our plat-
form receives is imperative for us to thrive in this ecosystem.

As big as the general trend is for Big Data systems of moving to
real-time processing, this is even more important in the market we
are competing in. Real-time processing is often used as a buzzword
with no clear meaning since the notion of what is real-time latency
might vary by milliseconds, seconds or minutes, according to the
rules of each certain market. Therefore, we generally prefer to talk

AGRANDA 2016, 2º Simposio Argentino de Grandes Datos

45 JAIIO - AGRANDA 2016 - ISSN: 2451-7569 - Página 22

about stream processing which refers to the continuous processing
of infinite or unbounded data sets.

In the following sections, we will describe our journey from us-
ing more traditional techniques for processing our data to stream
processing technologies.

2 Relevant business background

RTB allows display inventory to be purchased by the individual im-
pression through a bidding system that unfolds in milliseconds before
a web-page (or app screen) is loaded by a consumer.

Our platform at Jampp is what is referred to as a Demand Side
Platform (or DSP). Basically, a system that automates the purchas-
ing of online advertising on behalf of advertisers. Our bidding sys-
tem is integrated with all of the most important Ad Exchanges in
the world. An Ad Exchange is a system that connects DSPs with
ad publishers (places where the actual ads are displayed) by running
auctions of these ad spaces.

When talking about the RTB process, we have 3 main event types
that appear in the following order:

1. Auction: notification of the possibility of buying an impression.
The Ad Exchange notifies all bidding systems belonging to the
DSPs that have integrated to it, including ours.

2. Bid: offer that our systems make for the impression that is cur-
rently being auctioned. It needs to include how much we are will-
ing to offer and the creative’s (i.e. advertisement) HTML markup.
The bid needs to be sent in less than 80ms right after we have
received the auction.

3. Impression: notification that the ad has been shown to the user.

After the impression, we have conversion events similar to any
other programmatic ads system. Our platform receives some of these
events from a different kind of systems called tracking platforms.
These systems are integrated into each app with an SDK and track
and record every in-app event completed by a user. Our clients, the
owners of the apps, configure these tracking platforms so that we
receive notifications about installs and in-app events.

There are three main types of conversion events:

AGRANDA 2016, 2º Simposio Argentino de Grandes Datos

45 JAIIO - AGRANDA 2016 - ISSN: 2451-7569 - Página 23

Exchange RTB Jampp Bidder (DSP)

Other Bidders (DSP)

Ad request

OpenRTB
(100ms max)

OpenRTB bid ($3)

OpenRTB
bid ($2)

OpenRTB
(100ms max)

Ad (auction won)

Notification ($2.01 paid)

Fig. 1. RTB auction example where 3 opportunities of impressions generate 3 calls to
the Ad Exchange and only one of them produces a winning bid.

AGRANDA 2016, 2º Simposio Argentino de Grandes Datos

45 JAIIO - AGRANDA 2016 - ISSN: 2451-7569 - Página 24

1. Click: it occurs when the user clicks on the ad and is redirected
either to the app store to install the app or to a landing screen
inside the app if it is already installed.

2. Install: it occurs when the user installs the app on the device.
Our platform receives this event the first time the user opens the
app, so there might be a considerable delay after the click.

3. In-app event: it occurs when a user uses the app, completing
actions such as viewing a listing, purchasing a product, booking
a taxi, etc.

When referring to installs and in-app events, we can classify them
into two categories. Attributed events are events that were orig-
inated by a click on one of Jampp’s ads. These are the events we
charge our clients for. The second category is organic events. These
are events that are not originated by an ad from Jampp. Usually, the
volume/number of organic events is much higher than the number
of attributed events, and we use them to optimize our retargeting
techniques.

In summary, our clients (the app owners) pay per install or in-
app event. We use our machine learning algorithms to predict which
impressions are most likely to generate a click and install or in-app
event from the user. Our algorithms also try to estimate the price
we need to bid to win that impression. Being able to obtain the
”best impressions” is the fundamental way of making our business
profitable.

3 Initial event processing system

As previously mentioned, we have two systems that receive events.
On one side, a bidding system that generates events like auctions,
bids, wins, loses and impressions. This system is written in a com-
bination of Python and Cython and runs on approximately 200 in-
stances (virtual machines) with 8 cores and 70 GB of memory in
the Amazon Web Services (AWS) Cloud. Initially, since the vol-
ume of these events was orders of magnitude larger than the ones
from the tracking platform, we were only publishing them through
a PUB/SUB channel using ZMQ. The events were being published
by a set of processes called Bid Loggers, which are also in charge of

AGRANDA 2016, 2º Simposio Argentino de Grandes Datos

45 JAIIO - AGRANDA 2016 - ISSN: 2451-7569 - Página 25

filtering, aggregating, and sampling the data to persist it in the Post-
greSQL database. The stream of events from the bidder is designed
as PUB/SUB message stream without persistence. This means only
messages that are actually being published are the ones which be-
long to topics that have actual consumers subscribed. When events
are published, they are partitioned by a transaction id that is main-
tained throughout the whole chain of events: auction, bid, impres-
sion, click, in app event. This enables the consumers to do consistent
sampling by subscribing to a particular partition and receiving all
the associated events for one transaction. This capability is vital
when systems want to analyze the events’ data without being forced
to handle 100% of the volume, avoiding skewed results.

Bidder

ELB

Tornado
Tornado

ElastiCache Cluster

AS
(150-220 instances)

Events Tracking

ELB

NodeJS NodeJS

AS
(6-8 instances)

Bid Logger

ZRPC host

ZRPC host

7 instances

PostgreSQL

master

back-up

read-replica

MySQL

master

read-replica OLAP

read-replica OLTP

Elastic
Map-Reduce

Spark

Python ETL

Retargeting
Service

Fig. 2. Approximate initial architecture of Jampp’s platforms.

AGRANDA 2016, 2º Simposio Argentino de Grandes Datos

45 JAIIO - AGRANDA 2016 - ISSN: 2451-7569 - Página 26

The second system is an application written in Node.js, which
runs on 10 instances. This tracking system receives clicks, installs and
in-app events; both attributed and organic. Since in the beginning
the volume of these events was much smaller and we were receiving
organic events from just a couple of apps, we were able to useMySQL
as the data store to keep all the raw events.

Raw events are copied from MySQL to the PostgreSQL database
by a Python process. As the data is copied, events are aggregated
to form a warehouse according to different dimensions like country,
city, device OS, campaign, app category, advertiser, etc. This sin-
gle Python process publishes into the ZMQ stream all events com-
ing from MySQL after correctly inserting the data in Postgres. This
might mean that, when the Postgres database is under heavy load,
the insertions are delayed and there is a replication lag of events to
the ZMQ stream.

4 Limitations of our initial architecture

Our initial approach was very good for dealing with the volume of
events we received during the early stages of the company, and pro-
viding some analytics capabilities to the company in general. As the
company continued growing, so did the need for data to be avail-
able in a faster, more detailed and scalable way. There were several
factors that fostered these needs:

– Our specialized analytics and data science team needed raw event
data at its most granular level to carry out their tasks.

– Several of the new systems we developed relied on Machine Learn-
ing models that needed granular and very enriched data.

– New systems like the ones implemented for fraud detection would
greatly benefit from the data being available for consumption
with the lowest latency possible.

– Several new systems needed access to this data and interfacing
with traditional SQL databases was not an ideal solution for them
in regards to scalable performance or querying capabilities.

– We needed a single and scalable source of truth that contained all
the raw data from which we could derive consistent aggregated
views for different systems.

AGRANDA 2016, 2º Simposio Argentino de Grandes Datos

45 JAIIO - AGRANDA 2016 - ISSN: 2451-7569 - Página 27

– Replication lag between the MySQL database and the warehouse
in the PostgreSQL would sometimes increase until the data was
delayed for hours. We needed some way that could be easily scaled
to reduce this lag just by adding more processing power.

5 First stream processing experience with
organic events

As our first experience with building a stream processing pipeline, we
migrated organic installs and in-app events from MySQL to a com-
bination of Amazon Kinesis, Amazon Lambda, Amazon DynamoDB
and Amazon S3.

The central processing technology here was Lambda, which is
a product from Amazon that executes arbitrary code in Node.js,
Python or Java. This code is executed every time a source event oc-
curs. In our use case, this event consisted of messages being available
for consumption in Kinesis. The good thing about Lambda is that
Amazon completely manages the infrastructure where the code is ex-
ecuted, the user only supplies the code and sets how much memory
it needs.

MySQL was a great tool to start with, but, as we began on-
boarding more and more clients (and bigger clients with significantly
higher volumes of organic events), the growth in the raw data simply
became too much for MySQL to handle efficiently.

Additionally, having MySQL as the only place where this data
was available made it even harder to access it efficiently. As the needs
of the company and other data systems evolved, the data team was
under increasing pressure to make this data available in a scalable
and efficient way.

Thinking about the problem in detail, it was clear that we needed
some kind of scalable event queue (or log). The best two options we
found were Apache Kafka and Amazon Kinesis. Kafka seemed to be
a wonderful, efficient, and very robust technology to fulfill this use
case. The problem is that we are a small team and we are big users of
the Amazon Web Services (AWS) Cloud. When you are a small team
that needs to move fast, nothing beats a product that can decently
fulfill the use case and is also hosted and maintained by your cloud
provider. That’s why we decided to go with Kinesis.

AGRANDA 2016, 2º Simposio Argentino de Grandes Datos

45 JAIIO - AGRANDA 2016 - ISSN: 2451-7569 - Página 28

An Amazon Kinesis stream is an ordered sequence of data records.
Each record in the stream has a sequence number that is assigned by
Kinesis. The data records in the stream are distributed into shards
which determine the read and write throughput the stream sup-
ports. We only needed to set the amount of streams according to
the needed throughput and reshard it (divide the shards) in case we
need to scale and need additional throughput.

Amazon Kinesis

Amazon
DynamoDB

Amazon Lambda
Amazon Kinesis

Amazon Simple
Storage Service

(S3)

Fig. 3. Architecture of the first lambda pipeline.

As the logic needed to process each event was as simple as en-
riching each message separately, we decided to try Amazon Lambda
and DynamoDB to implement it. These tools are all automatically
scalable, and created and managed by Amazon. So we just needed to
implement the logic and deploy the code without worrying about the
infrastructure. Finally, we went about implementing this system and
having the enriched data available for real time applications through
additional Kinesis streams and to batch systems through S3.

6 Options for stream processing

We had a pretty straightforward experience developing our first
stream processing pipeline with AWS Lambda, Kinesis and Dy-

AGRANDA 2016, 2º Simposio Argentino de Grandes Datos

45 JAIIO - AGRANDA 2016 - ISSN: 2451-7569 - Página 29

namoDB. But moving the rest of our event processing infrastructure
to a stream processing pipeline would mean having pipelines with
much larger volumes and more complex logic (including for example:
out of order data and missing data).

It hard to explain all the characteristics needed in a robust stream
processing engine, but fortunately we can reference the Dataflow
paper [4] and Stream Processing 101 [1] and Stream processing 102 [3]
blog posts.

Keeping this in mind, we turned into investigating different op-
tions, aside from the mix of tools we used for our first pipeline.

6.1 Apache Spark

Spark is the go-to tool for Big Data processing nowadays. It was
created at Berkeley’s AmpLab, spawned as an Apache Foundation
project that generated a company driving it forward, named Databricks.
When looking into Spark we found several aspects we liked about it:

– You can code the pipelines in Scala, Java or Python. We use
mostly Python at Jampp, but also have experience in the other
two main languages.

– It uses the same business logic code with some small tweaks to
do batch or stream processing.

– Great coverage of Machine Learning algorithms and facilities for
running and combining them.

– Interactive console when writing in Scala or Python to quickly
test code or look through data.

– Configured and installed by Amazon in their Hadoop cluster
product (Elastic Map Reduce)

– Compatible with most possible data sources S3, Kinesis and Kafka.
– Big community, which makes the tool evolve faster and provides

lots of examples and support.

In our initial assessment Spark seemed like a great fit, but digging
deeper we found some worrying aspects for our use case:

– Spark’s main way of maintaining state for streaming applications
is keeping maps of key-values in memory which is very inefficient
when dealing with a large volume of data.

AGRANDA 2016, 2º Simposio Argentino de Grandes Datos

45 JAIIO - AGRANDA 2016 - ISSN: 2451-7569 - Página 30

– Spark does not handle the notion of event time processing, so it
can’t efficiently handle out of order data or very long windows of
time.

– Spark does micro-batching, which is not true stream processing.
This introduces unnecessary latency to the pipeline, which might
not be a big deal, but it had to be considered.

– Even though we can use Amazon EMR for installing Spark, there
is still a lot of work in maintaining it and tuning it, which Lambda
mostly obviates.

As these items show, when considering Spark specifically for a
stream processing use case, it lacks many much needed characteris-
tics.

6.2 Apache Flink

Flink was started as a research project between different universities
in Germany in 2010. Afterwards, it moved to the Apache founda-
tion in 2014. Prominent members of the Flink community founded
the company Data Artisans, where they commercialize solutions and
offer consulting. As we looked into Flink we were very pleasantly sur-
prised. As mentioned in this recent post [2], Flink fulfills most of the
features of Google’s Dataflow model, which is a model that describes
all the capabilities needed for robust, modern, stream processing.

Some of Flink’s capabilities really stood out:

– Enables processing of data by event time so as to handle out of
order data.

– Enables early and late firing of event time windows so as to pro-
vide partial results early on or after a timeout.

– Supports local state for data enrichment by using RocksDB for
out of memory data.

– Allows periodic checkpoints of the application state to HDFS, to
enable simple restart of running applications when deploying new
versions of the pipeline.

Keeping these items in mind and comparing them to Spark’s, we
concluded that Flink was a much better solution to fulfill our use
case. However, we also found some issues worth considering:

AGRANDA 2016, 2º Simposio Argentino de Grandes Datos

45 JAIIO - AGRANDA 2016 - ISSN: 2451-7569 - Página 31

– Flink’s state is checkpointed as a whole to HDFS each time, there
are no incremental checkpoints just yet.

– Flink only supports Java and Scala, not Python.
– Flink’s source connector for reading events from Kinesis is still

under development.
– There are no facilities offered by Amazon to automatically install,

configure and update Flink in Amazon EMR.
– Flink is a much younger project than Spark, and there is a lot

less material to use as reference when developing complex appli-
cations.

7 Implementation

In sum, although we had a very good experience implementing a
stream processing pipeline with AWS Lambda, since the newer pipelines
needed much more refined capabilities, we investigated other options.

Both Spark and Flink have aspects where they shine in regards
to Lambda, but neither of them ultimately convinced us as a better
alternative. Spark does not really do event time processing for out-
of-order events. Flink does not integrate well with AWS products
and seemed somewhat immature. Finally, both of them needed much
more infrastructure and maintenance work than Lambda.

Therefore, we decided to continue doing our stream processing
with Lambda, and develop a custom implementation for handling
out-of-order data, and event time windows.

The main logic that this processing entailed was enriching the
data of each event with all the data from the previous events of
the same transaction chain. For example, if we received a click, we
needed to enrich the content of this click with the data from the
corresponding impression and bid. Fortunately, each event already
contains a transaction identifier field which uniquely identifies the
transaction it belongs to.

Since each event was enriched with all this data, it could grow up
to 8-10 KB in size; when adding up the millions of events we receive
each minute, this translated to a very large volume of information.
This meant that using DynamoDB as a single database to store all
the events would be very costly, since the pipeline involved a very
large throughput.

AGRANDA 2016, 2º Simposio Argentino de Grandes Datos

45 JAIIO - AGRANDA 2016 - ISSN: 2451-7569 - Página 32

Auto scaling GroupAuto scaling Group

Event Tracking Bidding System

Clicks Installs In-App Events Bids Impressions

Amazon Kinesis

Amazon
DynamoDB

Amazon Lambda
Amazon Kinesis

Amazon Simple
Storage Service

(S3)
Redis ElastiCache

Streaming Application

Fig. 4. Final architecture for event stream processing.

AGRANDA 2016, 2º Simposio Argentino de Grandes Datos

45 JAIIO - AGRANDA 2016 - ISSN: 2451-7569 - Página 33

Looking at the problem closely, we decided to separate the stor-
age according to the event type. Bids and impressions are much big-
ger in numbers and size, but have a much shorter life span. We usu-
ally just need about 10 minutes of bids and 4-5 hours of impressions.
We decided to store them in a Redis cache that we provisioned using
AWS Elastic Cache product. Aside from a lower fixed cost, Redis
lets us set expiration for keys, which was ideal for dealing efficiently
with bids and impressions. As clicks, installs and in-app events have
a much longer lifetime we decided to continue using DynamoDB for
them.

The final piece of the puzzle was how to handle out-of-order and
missing events. We implemented an index of transactions in Redis
which contained the events they were missing in the chain. There
is an additional Lambda function that periodically scans this index
and emits transactions that are expired. When events arrive out of
order, this index helps us keep track of which later events in the
chain are waiting for the previous ones, and fire an enrichment and
emission process of them.

Since at the moment we are prioritizing having complete data
over having data as early as possible, this logic was all we needed to
implement.

8 Future Improvements

Even though we finally chose Lambda to implement our stream pro-
cessing pipelines, we see Flink as a very promising technology. Most
the reasons that made us choose another technology are set to be
fixed this year with the inclusion of a Kinesis connector, incremental
snapshots and some much needed maturing of the tool. Using Flink
would give us the capabilities to do some early emission of a window’s
data so as to better serve applications that prefer low latency over
correctness. Moving to Flink would mean more work maintaining
and tuning the infrastructure but, since we already have a working
pipeline and have the data available for other use cases, we can spare
time doing it.

AGRANDA 2016, 2º Simposio Argentino de Grandes Datos

45 JAIIO - AGRANDA 2016 - ISSN: 2451-7569 - Página 34

9 Conclusion

The evolution of the Big Data landscape has brought about the pro-
liferation of data sources that produce unbounded data sets. Being
able to process these streams continuously rather than with batch
methods, has introduced numerous benefits that are invaluable to
our business. Much progress has been done in the last couple of
years, but there is still need for further development before having
a mature tool that fulfills all the aforementioned needs. From our
point of view, Flink seems to have a head start since it brings to the
table a very complete feature set.

We think that this overview of our journey implementing these
stream processing pipelines can help shed some light on best prac-
tices and important things to consider when building this type of
data processing systems.

References

1. Tyler Akidau. The world beyond batch: Streaming 101, August 2015. [Online;
posted 5-August-2015].

2. Tyler Akidau. Why apache beam? a google perspective, May 2016. [Online; posted
03-May-2016].

3. Tyler Akidau. The world beyond batch: Streaming 102, January 2016. [Online;
posted 20-January-2016].

4. Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. The dataflow model: A practical approach to bal-
ancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data
processing. Proceedings of the VLDB Endowment, 8:1792–1803, 2015.

AGRANDA 2016, 2º Simposio Argentino de Grandes Datos

45 JAIIO - AGRANDA 2016 - ISSN: 2451-7569 - Página 35

