
Assured and Correct Dynamic Update of
Controllers ?

L. Nahabedian?, V. Braberman?, N. D’Ippolito?, S. Honiden+, J. Kramer†, K.
Tei+ and S. Uchitel†?

† Department of Computing, Imperial College London, UK
? Departamento de Computación, FCEN, Universidad de Buenos Aires, Argentina

+ National Institute of Informatics, Japan

In many application domains, continuous operation is a desirable attribute for
software-intensive systems. As the environment or system requirements change,
so the system should change and adapt without stopping or unduly disturbing
its operation. There is, therefore, a need for sound engineering techniques that
can cope with dynamic change. We address the problem of dynamic update of
controllers in reactive systems when the specification (environment assumptions,
requirements and interface) of the current system changes as in [5].

When is it safe to change a running system? One conservative answer to this
question is “when components are not involved in any interactions”; this was
formalised through notions of quiescence [5] and later tranquility [7].

Zhang et al. show that different domains and scenarios require distinct
update conditions. Sometimes update may be allowed to occur cleanly at any
point in time (usually as soon as possible), and in others obligations of the
current specification must be honoured before switching to the new specification.
Requirements to guide the system from one specification to another (as in [2])
or to ensure graceful update (as in [3]) may be appropriate in certain settings.
These update strategies generally use manual verification to ensure correctness.

Automatic synthesis of controller update strategies for reactive systems has
been proposed in [4,6,1] amongst others. However, in all cases it is assumed that
the system being executed eventually reaches (what each technique considers)
a safe state. This liveness assumption of eventually reach a safe state is very
strong. Zhang et al. [8] recognize that a system may need to be guided to a safe
updatable state; however the user have to produce the strategy to do so.

We present a general approach to specifying correctness criteria for dynamic
update and a technique for automatically computing a controller that handles
the transition from the old to the new specification, assuring that the system
will reach a state in which such a transition can correctly occur. Indeed,
using controller synthesis we show how to automatically build a controller that
guarantees both progress towards update and safe update.

The purpose of our validation is to show applicability of the approach by
resolving seven case studies taken from literature and also the generality of the
approach with respect to existing work.

Keywords: Controller Synthesis, Dynamic Update, Adaptive Systems
? This work was accepted at International Symposium on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS’16), Austin TX, 2016

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 1



References

1. S. An, X. Ma, C. Cao, P. Yu, and C. Xu. An event-based formal framework for
dynamic software update. In Software Quality, Reliability and Security (QRS), 2015
IEEE International Conference on, pages 173–182, 2015.

2. J. Appavoo, K. Hui, C. A. N. Soules, R. W. Wisniewski, D. M. Da Silva, O. Krieger,
M. A. Auslander, D. J. Edelsohn, B. Gamsa, G. R. Ganger, P. McKenney,
M. Ostrowski, B. Rosenburg, M. Stumm, and J. Xenidis. Enabling autonomic
behavior in systems software with hot swapping. IBM Syst. J., 42(1):60–76, Jan.
2003.

3. W.-K. Chen, M. Hiltunen, and R. Schlichting. Constructing adaptive software in
distributed systems. In Distributed Computing Systems, 2001. 21st International
Conference on., pages 635–643, Apr 2001.

4. C. Ghezzi, J. Greenyer, and V. Manna. Synthesizing dynamically updating
controllers from changes in scenario-based specifications. In Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), 2012 ICSE Workshop on, pages
145–154, June 2012.

5. J. Kramer and J. Magee. The evolving philosophers problem: Dynamic change
management. IEEE Trans. Softw. Eng., 16(11):1293–1306, Nov. 1990.

6. V. Panzica La Manna, J. Greenyer, C. Ghezzi, and C. Brenner. Formalizing
correctness criteria of dynamic updates derived from specification changes. In
Proceedings of the 8th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pages 63–72. IEEE Press, 2013.

7. Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt. Tranquility: A low
disruptive alternative to quiescence for ensuring safe dynamic updates. Software
Engineering, IEEE Transactions on, 33(12):856–868, Dec 2007.

8. J. Zhang and B. H. C. Cheng. Specifying adaptation semantics. In Proceedings
of the 2005 Workshop on Architecting Dependable Systems, WADS ’05, pages 1–7,
New York, NY, USA, 2005. ACM.

ASSE 2016, 17º Simposio Argentino de Ingeniería en Software

45 JAIIO - ASSE 2016 - ISSN: 2451-7593 - Página 2


