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Abstract

Evolutionary algorithms present performance
drawbacks when applied to Many-objective Op-
timization Problems (MaOPs). In this work, a
novel approach based on Ant Colony Optimiza-
tion theory (ACO), denominated ACO λ base-p
algorithm, is proposed in order to handle Many-
objective instances of the well-known Traveling
Salesman Problem (TSP). The proposed algorithm
was applied to several Many-objective TSP ins-
tances, verifying the quality of the experimental
results using the Hypervolume metric. A compa-
rison with other state-of-the-art Multi Objective
ACO algorithms as MAS, M3AS and MOACS as
well as NSGA2 evolutionary algorithm was made,
verifying that the best experimental results were
obtained when the proposed algorithm was used,
proving a good applicability to MaOPs.
Keywords: Ant Colony Optimization, Traveling
Salesman Problem, Many-objective optimization,
Hypervolume, NSGA2

1. Introduction

Traditionally, Multi-objective Ant Colony Opti-
mization (MOACO) algorithms are used to solve
Multi-objective Optimization Problems (MOP),
and they are considered as one of the best method
for solving the well known Traveling Salesman
Problem (TSP) [1].

Related works [2, 3, 4], use MOACO algorithms
to effectively solve real life MOP’s, for instan-
ces with 2 or 3 objective functions. However, this
effectiveness is reduced when the number of objec-
tives grows, as it happens with most evolutionary
algorithms [5]. The main objective of this work
is to improve the effectiveness of MOACO algo-
rithms when applied to Many-objective Optimi-
zation Problems - MaOPs (typically, with more
than 3 objective functions). In this context, a no-
vel MOACO algorithm is proposed in this work
to handle MaOPs.

2. Many-objective TSP

The well known TSP [6] can be represented
as a fully-connected weighted graph G = (N, A),

where N represents a set of c = |N | nodes and
A a set of edges that interconnect the nodes in
N . In a mono-objective approach, each edge has
a unique cost function di,j associated, typically
representing the distance between nodes i and j.
TSP consists in finding the minimal cost Hamil-
tonian cycle, a tour that minimizes the traveled
distance from a source node, traversing each node
exactly once, and returning to the initial node
[1]. To mathematically formulate the TSP, a di-
chotomous variable xi,j for all (i, j) ∈ A can be
considered, taking the value 1 if the edge (i, j)
belongs to the Hamiltonian cycle and 0 otherwise.
Then, the TSP may be formulated as:

minimize
Ø

(i,j)∈A

di,jxi,j (1)

For the Many-objective TSP, k cost functions (k >
3) are consired, having for each edge (i, j) a set of
k cost functions or distances, d1

i,j , d2
i,j ..., dk

i,j . The
problem consists in simultaneously minimizing the
k cost functions [7], i. e.:

min y =


q

(i,j)∈A d1
i,jxi,j

.

.

.q
(i,j)∈A dk

i,jxi,j

 (2)

where y ∈ Rk.

3. MOACO algorithms

ACO algorithms [8] are inspired in the natural
behaviour of real ant colonies to solve combinato-
rial optimization problems. They use an artificial
ant colony, which can be described as a compu-
tational agent colony, working in cooperation and
indirectly communicating through artificial phe-
romone trails. The ants build solutions traveling
graph G = (N, A), from an initial node. For each
visited node, an ant selects the next city to be vi-
sit considering the visibility (ηi,j) and pheromone
(τi,j) parameters of each edge, applying a proba-
bilistic policy given by the following equation:
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pi,j =


τα

i,jηβ
i,jq

x∈Ji
τα

i,x
ηβ

i,x

if j ∈ Ji

0 otherwise
(3)

where Ji represents all unvisited and reachable
nodes from node i; while α and β are parameters
a priori defined, that weigh the relevance of the
pheromones with respect to visibilities. The rule
to update the pheromone is given by:

τi,j = (1 − ρ)τi,j + ρ∆τ (4)
where ρ represents the pheromone evaporation
coefficient (0 < ρ < 1) and ∆τ is the ammount
of pheromones to be increased at every edge that
belongs to a selected Hamiltonian tour.
A Multi-objective Optimization ACO (MOACO)
is an extension of the ACO metaheuristic used
to solve multi-objective optimization problems. In
general, the equations are modified as follows [4]:

pi,j =


τα

i,j(η1
i,j ...ηk

i,j)βq
x∈Ji

τα
i,x

(η1
i,x

...ηk
i,x

)β
if j ∈ Ji

0 otherwise
(5)

∆τ = 1qk
l=1

q
(i,j)∈A dl

i,jxi,j

(6)

where k is the number of objective functions.
Algorithm 1 presents the pseudocode of a generic
MOACO:

Algorithm 1. Pseudocode of a generic MOACO.

procedure MOACO()
initializeParameters()
while not stopCriteria()
generation = generation + 1
//m is the ant count
for ant = 1 to m
buildSolution()
evaluateSolution()
updateParetoSetAndPheromones() //(4)

end for
end while

return ParetoSet
end procedure

procedure buildSolution()
sol = {}
while UnvisitedStatesExist()
next = getNextState() //(5)
sol = sol U next
markAsVisited(next)
if (onlineUpdate)
updateOnlinePheromones() //(4)

end if
end while

end procedure

Today, different MOACO implementations exist
[9, 10]. Each implementation includes different
pheromone update rules, number of pheromone
values, number of ant colonies, etc. For this work,
3 state-of-the-art MOACO algorithms were selec-
ted: Multi-objective Ant System (MAS), Multi-
objective Ant Colony System (MOACS) and Multi-
objective Max-Min Ant System (M3AS), based on
previous experimental results comparing several
MOACOs, while solving different multiobjective
TSPs [4]. In a MOACO context, each ant builds
a solution using equation (5). In the specific case
of MOACS, it also uses pseudo-random selection
given by equation (7) and the transition proba-
bility given by equation (8), also used by M3AS
and MAS.

j =
;

maxj∈Ji{τα
i,j(η1λ1

i,j ...ηkλk
i,j )β} if q < q0

π otherwise
(7)

where j is the next city to be visited while variable
π is calculated as:

π =


τα

i,j(η
1λ1
i,j

...η
kλk
i,j

)βq
x∈Ji

τα
i,x

(η
1λ1
i,x

...η
kλk
i,x

)β
if j ∈ Ji

0 otherwise
(8)

The variables λ = [λ1, .., λk] are parameters that
weight the relative importance of each objective.
Typically, each algorithm can use a different set
of parameters λ to guide the search of each ant to
different regions of the objective space. This stra-
tegy was first applied successfuly by MOACS as
explained in [4]. Several experimental evaluations
using generated TSP instances of 2, 4, 8, and 10
objectives were performed in this work with all
the implemented MOACO algorithms. The evalua-
tions were executed simultaneously minimizing all
k objective functions. Based on previous analysis
of MOACO algorithms applied to the multiob-
jective TSP, it could be observed that: (1) the
Hypervolume metric [11] decreases when increa-
sing the number of objectives; and (2) MOACS
obtained a slightly better performance than the
other MOACOs. For this reason, MOACS was
selected to be adapted with the aim of improving
its performance for MaOP TSP.

4. Performance metrics

The Hypervolume [11] was used as the evalua-
tion metric for experimental results, considering
that it is a widely adopted metric by researchers of
the multi-objective optimization area [5, 12]. The
Hypervolume considers the size of the dominated
region in the objective space combining distance,
distribution, and extension metrics in one empi-
rical value. Given a set Z = {z1, z2, ..., zR} of R
solutions zi ∈ Rk, and a reference point yref ∈ Rk,
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the hypervolume H of set Z is calculated as [11]:

H(Z) = H(Z, yref ) = (
RÛ

i=1
H(zi)) (9)

where H(zi) is the hypervolumen (area in 2D,
volumen in 3D) of the hypercube defined by zi

and yref (selected as solution point worse than
any zi).

In other words, the hypervolume of a Pareto
front approximation Z is defined as the union
of the portions (hypervolumes) limited by a cho-
sen reference point yref ∈ Rk, and each points
zi ∈ Rk of the approximated Pareto front. For
example, considering a bi-objective problem with
2 known Pareto fronts Z = {a, b, c, d, e, f, g},
Z Í = {aÍ, bÍ, cÍ, dÍ} and the reference point yref

(see Figure 1 ), if the hypervolume of Z is greater
than hypervolume of Z Í, then it can be said that,
Pareto front Z is not worse than Pareto front of
Z Í [13]; therefore, in practical application Z is
prefered over Z Í .

Figure 1: Hypervolume for Pareto fronts Z, Z Í and
the reference point yref .

5. Proposed implementation

It can be seen in equations (7) and (8) that the
parameters λ are used for weighting the relative
importance of each objective visibility. Typically,
the sum of all parameters λ is a constant. With
this strategy, each ant may specialize into a specific
region of the search space. For example, for bi-
objective problems [2], values for λ1 and λ2 can
be chosen using the following equation:

λ2 = m − λ1 + 1 (10)

where m represents the number of ants while λ1
may take values between 1 and m. For a problem
with k objective functions f1, f2, ..., fk, each ant
uses a set of parameters λ in such a way that for
each fi there is a λi. In general, each λi takes one
of m possible values; therefore, km ants are needed

to cover all possible permutations, resulting in a
non-viable strategy when the number of objecti-
ves k is large. To avoid this problem, this work
proposes a new strategy denominated λ base-p
assignment.

5.1. λ base-p assignment
This strategy applies a restriction to the possible

values that λi can take, restricted by a parameter
p ∈ N. The basic idea is that each ant chooses a
random number ñ ∈ [0, (pk −1)], that is converted
to base p, obtaining a number with up to k digits,
where each digit corresponds to a value of λ =
[λ1, λ2, ..., λk], with λi ∈ N, in the range [0, (p−1)].

This work uses a value p = 3 for experimental
porposes, so each λi takes values: 0 (null weight), 1
(medium weight) or 2 (height weight). As an exam-
ple, considering a problem with k = 8 objectives
and p = 3; an ant may choose a random integer
value ñ between 0 and (38 − 1). Let’s suppose that
ñ = 4589, a conversion of ñ to a representation
in base 3 gives the value 20021222; so, each digit
represents the value of each λi, in this example,
λ1 = 2, λ2 = 0, λ3 = 0, λ4 = 2, λ5 = 1, λ6 =
2, λ7 = 2 y λ8 = 2. It can be seen that the stra-
tegy of λ base-p assignment is able to scale to a
large number of objectives, as needed for MaOP,
maintaining its simplicity and understandability.

6. Experimental Results

This section presents experimental results obtai-
ned after comparing the proposed MOACS base-p
with the 3 already mentioned state-of-the-art algo-
rithms (MOACS, M3AS, MAS) using the hyper-
volume as comparison metric. All the experiments
were executed in a computer with the following
characteristics: processor Genuine Intel 2.3 GHz,
64 bits architechture, 15 GB of RAM memory, and
Ubuntu 12.04.2 LTS operating system.

Given that there is no Many-objective instances
of the TSP already published in the specialized
literature, random instances were generated for
k = 2, 4, 8 and 10 objectives, taking care that no
correlation between each pair of elements of cost
matrices exceeds 0,1 using the Pearson correlation
coefficient. Thus, the k objectives are maintained
reasonable contradictories or at least with a small
correlation.

For the execution of the experiments, the origi-
nal MOACS was updated to include the λ base-p
assignment, thus creating a new MOACO algo-
rithm denominated in what follows MOACS base-
p, representing the main contribution of this work.
This variant was compared to the best MOACO
algorithms that represent the state-of-the-art ac-
cording to [4] (MOACS, M3AS and MAS), and
also with respect to the NSGA2, considered as the
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referential algorithm for multi-objective optimiza-
tion problems [5, 12, 14].

In order to analyze the evolution of the hy-
pervolume, 10,000 generations was used as stop
criterion, and the hypervolume was calculated for
the generations 2.500, 5.000, 7.500 and 10.000.

Considering the parameters proposed in [4], the
following values were used: m = 10 ants, α = 1,
β = 2, ρ = 0,3, τ0 = 0,1, τmax = 0,9, τmin = 0,1
and q0 = 0,5. For the NSGA2, the following para-
meter were also used, based on [14]: a population
size of 10, mutation probability of 0,8 and crosso-
ver probability of 0,98.

The presented results correspond to the avera-
ge of 4 executions of each above mentioned al-
gorithms, using TSP instances of 2, 4, 8 and 10
objectives, with 3 different problem size: 50, 75
and 100 nodes (cities).

Figure 2 shows the evolution of the hypervo-
lume for the calculated Pareto fronts for each
compared algorithm, when resolving an instance
of 75 nodes, with 2 objectives (this instance is
not considered as many-objective). It can be seen
that MOACS base-p obtains a slightly larger hy-
pervolume than the other alternatives along all
generations, although MAS obtains a close result.

Figure 2: Obtained hypervolume solving instance
with 2 objectives and 75 nodes

Figure 3 shows the evolution of the hypervo-
lume for each compared algorithm, when solving
an instance of 75 nodes, considering 4 objectives
(considered already as a many-objective problem).
It can be seen that the proposed algorithm is
clearly better than the other algorithms along all
generations, thus verifying the benefit of using the
proposed λ base-p assignment.

Figures 4 and 5 show the evolution of the hy-
pervolume for each compared algorithm, when
solving an instance of 75 nodes, considering 8 and
10 objectives respectively. Again, it can be seen
that the proposed algorithm clearly outperforms
to other algorithms along all generations, thus rein-
forcing the benefit of using the proposed λ base-p
assignment with increasing number of objectives.

Figure 3: Obtained hypervolume solving instance
with 4 objectives and 75 nodes

Figure 4: Obtained hypervolume solving instance
with 8 objectives and 75 nodes

The same behaviour was observed when solving
instances with 50 and 100 nodes. For instances
with more than 2 objectives, MOACS base-p ob-
tains a significantly better hypervolume than the
other studied algorithms for all generations. Below,
the experimental results for 50 nodes are presen-
ted in tables 1 to 4, summarizing the experimental
results.

Table 1: Obtained hypervolume solving instance
with 2 objectives and 50 nodes

Generations
MOACO 2.500 5.000 7.500 10.000

M3AS 0,893 0,895 0,896 0,897
MAS 0,903 0,911 0,912 0,912
MOACS 0,898 0,899 0,9 0,901
MOACS base p 0,915 0,916 0,917 0,917
NSGA2 0,743 0,78 0,796 0,806

7. Conclusions and future works

This work presented a comparative analysis of
MOACO algorithms applied to Many-objective
Optimization Problems, for the first time in the
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Figure 5: Obtained hypervolume solving instance
with 10 objectives and 75 nodes

Table 2: Obtained hypervolume solving instance
with 4 objectives and 50 nodes

Generations
MOACO 2.500 5.000 7.500 10.000

M3AS 0,643 0,648 0,65 0,651
MAS 0,633 0,638 0,645 0,656
MOACS 0,653 0,656 0,658 0,66
MOACS base p 0,743 0,748 0,751 0,753
NSGA2 0,201 0,215 0,225 0,233

literature to the best of our knowledge. A new and
simple variant of MOACS was proposed, denomi-
nated MOACS base-p, obtaining a better empi-
rical performance when solving the MaOP TSP
than other MOACO’s (MOACS, M3AS, MAS)
and the NSGA2, considered as the referential al-
gorithm for multi-objective optimization in the
specialized literature [5, 12]. All the results we-
re compared considering the hypervolume as the
performance evaluation metric.

The main contribution of this work consists in
a new strategy for assigning the parameter λ of
MOACO algorithms for handling Many-objective
Optimization Problems, denominated λ base-p as-
signment. Experimental results confirm a superior
performance of MOACS base-p when compared to
other MOACO algorithms and the NSGA2, when
solving instances from 2 to 10 objectives. As the
number of objectives grows, the advantage of the
MOACO base-p seems to increase.

As future work, experiments with a larger num-
ber of objectives can be performed, although the
use of the Hypervolume metric should be recon-
sidered, given its asymptotical complexity that
grows exponentially with the number of objecti-
ves [12]. Other extensions of this work can be: to
apply the λ base-p assignment strategy to other
MOACO algorithms and to compare the proposed
algorithm against other metaheuristics as Par-
ticle Swarm Optimization (PSO), solving other

Table 3: Obtained hypervolume solving instance
with 8 objectives and 50 nodes

Generations
MOACO 2.500 5.000 7.500 10.000

M3AS 0,289 0,293 0,295 0,296
MAS 0,284 0,288 0,292 0,294
MOACS 0,292 0,295 0,297 0,298
MOACS base p 0,411 0,421 0,426 0,431
NSGA2 0,009 0,011 0,012 0,013

Table 4: Obtained hypervolume solving instance
with 10 objectives and 50 nodes

Generations
MOACO 2.500 5.000 7.500 10.000

M3AS 0,178 0,181 0,182 0,183
MAS 0,181 0,186 0,188 0,19
MOACS 0,178 0,182 0,184 0,186
MOACS base p 0,279 0,289 0,294 0,298
NSGA2 0,002 0,002 0,002 0,003

many-objective problems like the Quadratic As-
signment Problem (QAP) or the Vehicle Routing
Problem with Time Windows (VRPTW) to ve-
rify the performance of the proposed algorithm
in other scenarios. Finally, other parameters of
MOACO algorithms can also be adapted for a
better performance in many-objective scenarios,
for example, the use of groups of pheromones ta-
bles corresponding to groups of relatively similar
objectives.
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