
Teaching Concurrency and Parallelism Concepts with
CMRE

Laura De Giusti, Fabiana Leibovich, Franco Chichizola, Marcelo Naiouf
Institute of Research in Computer Science III-LIDI (III-LIDI) – School of Computer Science –UNLP

Argentina
{ldgiusti, fleibovich, francoch, mnaiouf}@lidi.info.unlp.edu.ar

Abstract

Possible methodologies for teaching the concepts of
processor heterogeneity and its impact on speedup
and efficiency in a parallel system are discussed, as
well as energy efficiency of parallel algorithms
based on processor power.

CMRE (Concurrent Multi Robot Environment) is
expanded to be able to consider different virtual
clocks in each robot (processor), as well as the cost –
both in relation to time and energy consumption – of
the operations carried out by the robots (Move, Put
Down / Pick Up / Message / Inform).

In this paper, we analyze some examples to show
how concepts are introduced to students.

Keywords: Concurrency, Parallelism, Parallel
Algorithms, Heterogeneous Processors, Energy
Consumption.

1. Introduction

Concurrency has been a central issue in the
development of Computer Science, and the
mechanisms used to express concurrent processes
that cooperate and compete for resources have been
in the core curriculum of Computer Science studies
since the seventies, in particular after the
foundational works of Hoare, Dijkstra and Hansen
[1,2,3]. The concepts were traditionally taught
assuming the availability of a single processor that
could partially exploit the concurrency offered by
the algorithm, based on the available physical
architecture (even with specific hardware such as co-
processors, peripheral controllers, or vector schemes
that would replicate arithmetic-logical units).

Parallelism, understood as “real concurrency” in
which multiple processors can operate
simultaneously on multiple control threads at the
same point in time, was for many years a possibility
that was limited by available hardware technology
[4]. Classic Computer Science curricula [5,6,7]
included the concepts of concurrency in various
areas (Languages, Paradigms, Operating Systems),
but parallelism was almost entirely omitted, except
to present the concepts of distributed systems.

Current processor architectures, which integrate

multiple cores within one physical processor, have
had a notorious impact, resulting in a reformulation
of a processor's “base model”. This has resulted in
the replacement of the “Von Neuman machine”
concept, which has just one control thread, with a
scheme that integrates multiple cores, each with one
or more control threads and several memory levels
that are accessible in a differentiated manner [8,9].

At the same time, changes in technology have
produced an evolution of the major topics in
Computer Science, mainly due to the new
applications being developed from having access to
more powerful and less expensive architectures and
communications networks [10]. For this reason,
international curricular recommendations mention
the need to include the topics of concurrence and
parallelism from the early stages of student
education, since all architectures and real systems
with which they will work in the future will be
essentially parallel [11]. However, parallel
programming (and the essential concepts of
concurrency) is more complex for students who are
starting their studies, and new strategies are required
to teach the topic.

Given the stimuli to which students are exposed
from an early age, be it through video games,
computers, mobile phones, tablets, or any other
electronic device, the use of interactive tools to teach
core concepts to students in a CS1 course [11,12,13]
has become essential [14]. In this sense, the
possibility to take the initial steps in the world of
programming through a graphic and interactive
environment allows reducing the gap that
traditionally existed between abstraction and the
possibility of seeing a graphic representation of how
the concepts being learned are applied in an
environment that is conceptually similar to those
used in everyday life [10,15].
CMRE is a graphic environment that has a set of
robots that move within a city, and it has allowed
teaching the basic concepts of concurrency and
parallelism in a beginners course in Computer
Science. However, there are advanced features (such
as heterogeneity, time cost, load balancing, energy
consumption, etc) whose addition is of interest to
use the environment in non-beginner courses as
well. In this paper, we present the extension of

JCS&T Vol. 16 No. 2 November 2016

95

Invited paper

CMRE to include the concepts mentioned above.
The article is structured as follows: Section 2

describes CMRE in its current version. Section 3
discusses the issue of heterogeneity, while Section 4
focuses on energy consumption. Section 5 presents
conclusions and future lines of work.

2. Current Version of CMRE

The main features of CMRE can be summarized
as follows [8,16]:
• There are multiple processors (robots) that carry

out tasks and that can co-operate and/or compete.
They represent the cores of a real multiprocessor
architecture. These virtual robots can have their
own clock, and different times for carrying out
their specific tasks.

• The environment model (“city”) where the robots
carry out their tasks supports exclusive areas,
partially shared areas and fully shared areas. An
exclusive area allows only one robot to move in
it, a partially shared area specifies the set of
robots that can move in it, and a fully shared area
allows all robots defined in the program to move
in it.

• If only one robot is used in an area that
encompasses the entire city, the scheme used in
Visual Da Vinci is repeated.

• When two or more robots are in a (partially or
fully) shared area, they compete for access to the
corners on their runs, and the resources found
there. For this, they must be synchronized.

• When two or more robots (in a common area or
not) wish to exchange information (data or
control), they must use explicit messages.

• Synchronization is done through a mechanism
that is equivalent to a binary semaphore.

• Mutual exclusion can be generated by stating the
areas reached by each robot. Entering other areas
in the city, as well as exiting them, is not
allowed.

• The entire execution model is synchronous and
allows the existence of a cycle virtual clock
which, in turn, allows assigning specific times
for the operations, simulating the existence of a
heterogeneous architecture.

• The environment allows executing the program
in a traditional manner or with step-by-step
instructions, giving the user detailed control over
program execution to allow them controlling
typical concurrency situations such as conflicts
(collisions) or deadlocks.

• In the step-by-step mode, the effect of the
operations can be reflected on physical robots,
communicated through Wi-Fi. The physical
robots have Linux as operating system, which
allows running an http server implemented on
NodeJS [17]. Thus, the environment
communicates with the robots (each physical
robot corresponds to a virtual one in the
environment). These are point-to-point, two-way
communications, i.e., the environment sends
instructions to the physical robot and then the
robot sends its response to the environment
stating that the instruction given has been
fulfilled.

3. Heterogeneity in Parallel
Architectures

3.1. General Concepts

Since the early computers, there has been an ever-
present desire to increase their computational power.
However, it is currently hard increase processor
speed by increasing their clock rate. Hardware
architects face two issues: heat generation and
energy consumption. The solution to this problem
introduced by designers has been integrating two or
more computational cores within a single chip,
which is known as multicore processor. Multicore
processors improve application performance by
distributing work among the available cores [8,18].

Current general classifications identify two types
of multicores based on the features of the cores:

• Homogeneous Multicore Architectures: all cores
have the same features.

• Heterogeneous Multicores Architectures: these
have cores with different features in relation to
performance and energy consumption, and they
can use different ISAs (Instruction Set
Architecture) or not.

Currently, research is focusing on this second set
of multicores, since having different types of cores
allows optimizing performance and, when tasks are
appropriately distributed among cores, higher
performance/energy ratio efficiencies are achieved.

In this type of architectures, heterogeneity is
present in various aspects, most significantly in core
computational power (computation speed), memory
access time, and communication speed among cores.
These three aspects determine the time required to
execute the instructions in each core, and thus, the
same sentence executed by two different cores can
take different times. On the other hand, since there is
a certain degree of independence of the features that
cause heterogeneity, not all instructions are affected
in the same proportion. That is, a floating point

JCS&T Vol. 16 No. 2 November 2016

96

operation that is run in core A, may take a fourth of
the time it takes when run in core B, while a writing
operation may take half the time when run in it.

To analyze the performance achieved by parallel
applications on these architectures, traditional
metrics are used – speedup and efficiency [19].

Speedup (S) is a measure that allows quantifying
the relative benefit of solving a problem in parallel,
i.e., how “fast” the parallel algorithm carries out the
task compared to the sequential one. The speedup
function is defined as the relation between the best
sequential algorithm on a single core (TS) and the
time required to solve the same problem on a
parallel architecture (TP), as shown in Eq. 1 [20].

P

S

T
TS = (Eq. 1)

Efficiency (E) is a measure of the fraction of time
during which cores use is productive in the parallel
application. This metric is defined as the relation
between the speedup achieved and the optimal
speedup (Sopt) that can be achieved in the
architecture, as shown in Eq. 2 [20].

optS
SE = (Eq. 2)

Traditionally, in homogeneous architectures the
optimal speedup is given by the number of cores
used (p). However, in the case of heterogeneous
architectures, the computation power of the various
cores in it must be taken into account, which results
in a re-definition of the optimal speedup as is shown
in Eq. 3.

∑
−

=
=

1

0 core)powerful(most P

)
i

(CorePp

i ower

ower

opt
S (Eq. 3)

3.2. Heterogeneity in CMRE.

A core's power computation is given by the
processor's clock; in the case of heterogeneous
multicores, each core must have its own clock. This
situation is modeled in CMRE using a general
system clock for simulation (which is the fastest
one) and multiples of that clock for the robots. This
can be defined as using virtual clocks for each
robot/processor.

The Put Down and Pick Up operations can be
assimilated to Write and Read operations in real
processors. Naturally, a heterogeneous architecture
can have different times which, in the case of CMRE
will be multiples of the general clock.

Similarly, communication times (Send and
Receive) have to be considered, and even the time

required for operations such as Report, which may
have different clock cycle numbers per
processor/robot.

Within CMRE, a processing magnitude relative to
the pattern speed can be configured for each robot:
“n times slower than.” Additionally, the number of
clock cycles consumed for each of its instructions
can also be defined, i.e., heterogeneity can be
configured based on the needs of the task at hand
and the concept that is being delivered.

It should be noted that, for introducing concepts,
simple differences can be defined for the virtual
clocks and then on the cost of each clock cycle for
robot operations. Separating these two aspects helps
students understand that times are not only related to
processing, but also to memory accesses and
communications.

3.3. Heterogeneity and Load Balancing.

The load balance in an application directly affects its
performance. This is because, if the system is
unbalanced, it means that there are cores that remain
idle while waiting the other cores to finish their
tasks; this increases the final execution time and,
therefore, decreases speedup and efficiency. It
depends on the features of the application and the
parallel architecture being used.

From the application side, in the case of CMRE,
this will be strongly dependent on the activity
carried out by each robot in their algorithms since,
depending on the instructions executed as well as the
specific configuration of the city, work may or may
not be balanced. For instance, if robots are required
to pick up pieces of paper in a private area (same
size for all robots), load balancing will depend on
the number of papers present in each area.

Taking into account the parallel architecture, core
heterogeneity is a key factor that affects load
balance. For instance, if two robots have to run
through an avenue from end to end, but they move at
different speeds, the one that moves taster will have
to wait idle until the other one completes its run,
which will affect load balance.

If we combine both aspects, the issue of balancing
loads becomes even more complex, but also more
challenging for students when they are required to
find an algorithm that is efficient, which involves
additional motivation when they implement it.

3.4. Simple Experimental Case Showing the
Impact of Heterogeneity.

There are 4 robots with relative speeds of 1 step per
block, 2 steps per block, 3 steps per block, and 4
steps per block. This means that the fastest robot
(R1) will cover, for instance, 100 blocks of an

JCS&T Vol. 16 No. 2 November 2016

97

Avenue in 100 units of time, while the slowest one
(R4) will travel the same distance in 400 units of
time.

There are 4 Avenues (Av1, Av2, Av3, and Av4)
that have to be run in their entirety (1 per robot),
each with its own distribution of objects to be picked
up, for instance, 10, 20, 40 and 80 objects,
respectively. Figure 1 shows a diagram of this
example.

The time required to pick up an object is 3T
(where T is the time each robot needs to take a
single step).

Fig. 1. Diagram of the example.

The assignment of the work to be done (in this
case, which Avenue to run) will be significant for
both total program time and load unbalancing:

a. If robots are assigned by direct association of
robot speed and Avenues, considering expected
work, we have:

R1 runs through Av4 and takes 100 + 80x3 = 340 T
R2 runs through Av3 and takes 200 + 40x3 = 320 T
R3 runs through Av2 and takes 300 + 20x3 = 360 T
R4 runs through Av1 and takes 400 + 10x3 = 430 T

The program would take 430 T and the
maximum idle time would be for R2 (110 T).
Total idle time (which is a measure of load
unbalance) would be 270 T.

b. If robots were assigned by inverse association
between robot speed and Avenues, considering
expected work, we have:

R1 runs through Av1 and takes 100 + 10x3 = 130 T
R2 runs through Av2 and takes 200 + 20x3 = 260 T
R3 runs through Av3 and takes 300 + 40x3 = 420 T
R4 runs through Av4 and takes 400 + 80x3 = 640 T

In this case, the program would take 640 T and

the maximum idle time would be for R1 (510 T).
Total idle time would increase to 1110 T → More
than 4 times the unbalance of the previous
distribution.

4. Energy Consumption in Parallel
Algorithms

Energy consumption is a key aspect of current
processors. In general, the performance of a parallel
algorithm is not measured only in its execution time,
but also in energy consumed. Thus, there will be
Flops/Watt or Flops/Joule ratios corresponding to a
relation between computation and instant power or
total energy [21,22].

It is important to teach Computer Science students
to always use consumption metrics as an indicator of
algorithm quality. Additionally, they should also
understand the automatic mechanisms developed by
processors according to the temperature reached
(which is a direct function of the energy consumed
in a period of time) [21].

4.1. Processor Clock Limitation and their
Modeling in CMRE

In general, all modern processors have a clock
automatic adjustment curve clock based on
consumption (or the internal temperature they
reach), which is represented in Figure 2.

Fig. 2. Clock automatic adjustment curve.

At a given point, clock speed decreases to reduce
the amount of work that the processor can do in each
unit of time and thus reach an equilibrium at a lower
temperature. In some cases, processor task
reassignment can be managed (for instance, by
controlling hardware controller information or
through direct monitoring), to avoid the change in
clock frequency or to adapt it to the change in
frequency [21].

To model this in CMRE, the energy consumed in
the operations (Move / Pick Up / Put Down /

JCS&T Vol. 16 No. 2 November 2016

98

Communicate / Report) has to be known, and the
energy accumulated in each robot/processor has to
be taken into account to adjust their “speed” based
on a previously defined model.

This scheme is represented in Figure 2, which
shows a discrete modelization of the curve
represented for real processors.

Fig. 3. Robot "speed" automatic adjustment curve.

Basically, in CMRE this means “changing” the
robot's virtual clock by adjusting the robot's
movement speed (and therefore, the robot's work
capacity per unit of time) based on a measurement of
the energy consumed in the last K units of time.

With didactic purposes, examples with K=10 have
been developed simply to consider a work
accumulation period that generates changes in
processor internal temperature.

Based on this, the energy consumption per
operation is defined, considering that MOVE
requires1 Joule, and an energy cost is assigned to
PUT DOWN, PICK UP, SEND, RECEIVE and
REPORT. With this, calculating the total energy
consumed by each robot/processor for a given
algorithm is simple, and algorithms can also be
compared from the point of use of energy
consumption.

The adoption of a “clock change” strategy based
on consumption in the simulator is more complex.
So far, we have defined that, if the energy la
consumed in the last 10 T of any robot is above M
Joules (where M is a parameter set based on the
curve shown in Figure 3), that robot's speed (clock)
is decreased in one step for a minimum of R cycles
(we are currently using R=3), and then calculations
are re-started. If the robot is below M Joules in the
last 10 T, it recovers its previous clock.

Naturally, this means that speedup, efficiency and
maximum consumption vary in each 10 T interval,
depending on the parallel algorithm that is being run.
Additionally, there us a (virtual) measurement of the
total consumption of a given algorithm.

4.2. Experimental Example

The example used for heterogeneity (section 3.4)

can be relatively easily extended to the case of
energy consumption y and consider clock change
based on it. To the example that has already been
discussed, information regarding the amount of
energy consumed by the operations is added: any
PICK UP operation consumes 5 Joules, and any
MOVE operation consumes 1 Joule.

a. Using the first work assignment described in the
example in section 3.4 (a), we have:

R1 runs through Av4 in 100+80x3 = 340 T and
consumes 100+80x5 = 500 Joules.
R2 runs through Av3 in 200+40x3 = 320 T and
consumes 200+40x5 = 400 Joules.
R3 runs through Av2 in 300+20x3 = 360 T and
consumes 300+20x5 = 400 Joules.
R4 runs through Av1 in 400+10x3 = 430 T and
consumes 400+10x5 = 450 Joules.

The program takes 430 T and consumes a total of
1750 Joules.
It is possible that, if the clock restriction
discussed above is applied, possibly to R1 or R2,
some of the robots would HAVE TO decrease its
speed (based on load distribution), and, in that
case, total consumption would be constant, but
the program would take longer and load
unbalance could change.

b. Using the inverse assignment used in section 3.4
(b), consumption would be:

R1 runs through Av1 in 100+10x3 = 130 T and
consumes 100+10x5 = 150 Joules.
R2 runs through Av2 in 200+20x3 = 260 T and
consumes 200+20x5 = 300 Joules.
R3 runs through Av3 in 300+40x3 = 420 T and
consumes 300+40x5 = 500 Joules.
R4 runs through Av4 in 400+80x3 = 640 T and
consumes 400+80x5 = 800 Joules.

In this case, the program would take 640 T and it
would consume the same total energy (1750 T).
This is expected, because the total work to be
done in MOVE and PUT DOWN operations is
the same in both cases.
However, it is less likely that any of the robot
clocks will have to be decreased.

5. Conclusions and Future Lines of
Work

Heterogeneity and energy consumption in parallel
architectures are highly relevant issues, and they
have been modeled on an environment called
CMRE.

CMRE appears to be a very useful tool for
introducing these concepts, based on its use since
2013 with homogeneous robots/processors.

Even though there are changes that should be
implemented in the environment, these are
transparent to the student and the development of

JCS&T Vol. 16 No. 2 November 2016

99

experimental work oriented to learning these topics
is very natural.

We are currently working on the implementation
of these extensions in 2016, considering that, when
different clocks are enabled for the different robots,
there will be runs with potential concurrency
conflicts not only on city corners, but also at
intermediate points between two corners. Thus, the
complexity level of possible scenarios is increased,
which poses a much more ambitious challenge that
matches the technological reality of current
processors.

References

[1] Hoare C. “Communicating Sequential
Processes”. Prentice Hall, 1985.

[2] Dijkstra E. W. “Finding the Correctness Proof of
a Concurrent Program”. In Program Construction,
International Summer Schoo, Friedrich L. Bauer and
Manfred Broy (Eds.). Springer-Verlag, 24-34, 1978.

[3] Hansen P. B. “The Architecture of Concurrent
Processes”. Prentice Hall, 1977.

[4] Dasgupta S. “Computer Architecture. A Moder
Synthesis. Volume 2: Advanced Topics”. Jhon Wilet
& Sons. 1989.

[5] ACM Curriculum Committee on Computer
Science. “Curriculum ‘68: Recommendations for the
undergraduate program in computer science”.
Communications of the ACM, 11(3):151-197. 1968.

[6] ACM Curriculum Committee on Computer
Science. “Curriculum ‘78: Recommendations for the
undergraduate program in computer science”.
Communications of the ACM, 22(3):147-166. 1979.

[7] ACM Two-Year College Education Committee.
“Guidelines for associate-degree and certificate
programs to support computing in a networked
environment”. New York: The Association for
Computing Machinery. 1999.

[8] Gepner P., Kowalik M.F. “Multi-Core
Processors: New Way to Achieve High System
Performance”. In: Proceeding of International
Symposium on Parallel Computing in Electrical
Engineering 2006 (PAR ELEC 2006). Pp. 9-13.
2006.

[9] McCool M. “Scalable Programming Models for
Massively Parallel Multicores”. Proceedings of the
IEEE, 96(5): 816, -831, 2008, 17, 21.

[10] Hoonlor A., Szymanski B. K., Zaki M. J.,
Thompson J. “An Evolution of Computer Science
Research”. Communications of the ACM. 2013.

[11] ACM/IEEE-CS Joint Task Force on Computing
Curricula. “Computer Science Curricula 2013”.
Report from the Task Force. 2013.

[12] ACM/IEEE-CS Joint Task Force on Computing
Curricula. “Computer Engineering 2004: Curriculum
Guidelines for Undergraduate Degree Programs in
Computer Engineering”. Report in the Computing
Curricula Series. 2004.

[13] ACM/IEEE-CS Joint Interim Review Task
Force. “Computer Science Curriculum 2008: An
Interim Revision of CS 2001”. Report from the
Interim Review Task Force. 2008.

[14] De Giusti, L., Leibovich, F., Sanchez, M.,
Chichizola, F., Naiouf, M., De Giusti, A. “Desafíos
y herramientas para la enseñanza temprana de
Concurrencia y Paralelismo”. Congreso Argentino
de Ciencias de la Computación (CACIC), 2014.

[15] AMD. “Evolución de la tecnología de múltiple
núcleo”. http://multicore.amd.com/es-ES/AMD-
Multi-Core/resources/Technology-Evolution. 2009.

[16] De Giusti, A., De Giusti L., Leibovich, F.,
Sanchez, M., Rodriguez Eguren, S. “Entorno
interactivo multirrobot para el aprendizaje de
conceptos de Concurrencia y Paralelismo”.
Congreso Tecnología en Educación, Educación en
Tecnología. 2014.

[17] NodeJs API. https://nodejs.org/api/http.html

[18] Mc Cool M, “Programming models for scalable
multicore programming”, 2007,
http://www.hpcwire.com/features/17902939.html.

[19] Dongarra J. , Foster I., Fox G., Gropp W.,
Kennedy K., Torzcon L., White A. “Sourcebook of
Parallel computing”. Morgan Kaufmann Publishers
2002. ISBN 1558608710.

[20] Grama A., Gupta A., Karpyis G., Kumar V.
“Introduction to Parallel Computing”. Pearson –
Addison Wesley 2003. ISBN: 0201648652. Second
Edition (Chapter 3).

[21] Balladini J., Rucci E., De Giusti A., Naiouf M.,
Suppi R., Rexachs D., Luque E. “Power
Characterisation of Shared-Memory HPC Systems”.
Computer Science & Technology Series – XVIII
Argentine Congress of Computer Science Selected
Papers. Pp. 53-65. 2013.

[22] Brown D. J., “Toward Energy-Efficient
Computing”, Magazine Communications of the
ACM Volume 53 Issue 3, March 2010

JCS&T Vol. 16 No. 2 November 2016

100

https://nodejs.org/api/http.html

