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Abstract. Evapotranspiration is an important component of hydrologic balance and represent 
essential information for irrigation scheduling and water resources planning. The study aimed: a) to 

evaluate the performance of artificial neural networks (ANNs) with combinations of meteorological 

inputs for estimating reference evapotranspiration and b) to discuss the knowledge learned by the 

networks during the training process. Daily evapotranspiration values computed following the 

Penman�Monteith equation (ET0PM), were used as target outputs for the implementation of the ANNs. 

Data of global radiation (Rg), net radiation (Rn) and extraterrestrial radiation (RTA) were alternated 

in combinations with air temperature (Ta), vapor pressure deficit (DPV) and wind (u) as inputs to 

networks. The ANNs with best performance for each combination of inputs were retained in order to 

evaluate the performance based on multi�criteria analysis. According to the results, it can be 

concluded that it is possible to estimate accurately daily ET0PM values. A decomposition method 

based on Garson’s algorithm was applied to quantify the relative importance for each input variable. 

It was examined how model selection in ANNs can be guided by complementary procedures. The 
application of these methods in evaluation of ANNs models is discussed, paying attention especially 

on detection of the better predicting variables and analysis of errors.  
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1   Introduction  

Artificial Neural Networks (ANNs) are mathematical models similar to biological neurons, with 

computational capacity to solve problems of approximation, prediction and optimization [1]. [2]. The 

application of neural networks in environmental problems is relatively newer than in other research areas, 

but is becoming popular because of their ability of capturing nonlinear relationships between the 

variables, and hence, providing key advantages over traditional statistical techniques.  

Specifically, the applications in water resources modeling is increasing. Estimation of reference 

evapotranspiration (ET0), the basic step toward the calculation of crop water requirements, is a case. 

Several models were developed to predict ET0 from meteorological elements and the most recommended 

model is Penman�Monteith (PM) procedure presented in [3]. Sometimes, the use of the standard method 

is restricted by the lack of input variables and, therefore, empirical methods become essential. 

Despite the reference in literature about adequate performance of ANNs to approximate reference 

evapotranspiration under different climate conditions [4], [5], [6],[7], [8],  [9], [10], [11], [12], few 

studies [8], [9], [10], [11], [12] carried out the estimation with a number of variables more reduced than 

the request for the Penman Monteith�FAO56 method [3].  

Because of need of alternative methods for dealing with missing data, some models based on 

regression have already been evaluated for climate local conditions [13] [14]. Regardless of an acceptable 

approximation to estimate mean values on 10�days period, a better approximation for daily scale is 

required. In this sense, the capacity of ANNs to solve approximation problems could be a feasible 

alternative. 
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A major drawback often associated with ANNs is to be deficient in understanding the knowledge 

learnt by the trained network. Since the assimilated knowledge from data during training is represented by 

the network topology, the activation functions and the synaptic weights, a number of methods have been 

proposed to extract knowledge based on analysis of synaptic weights or sensitivity analysis [15] [16]. 

 The objectives were: a) to evaluate the performance of models based on artificial neural networks 

(ANNs) to approximate daily values of reference evapotranspiration (ET0PM) with a limited number of 

input variables and b) to quantify the relative contribution of inputs to model based on connection weight 

analysis. 

  

2   Material and methods 

 

2.1 Study area, meteorological data and estimation of daily reference 

evapotranspiration  

The southeastern region of rolling pampas is characterized with a climate of the Cfb humid subhumid 

type, according Köppen classification. The present study is focused at Balcarce, Buenos Aires Province, 

Argentine (37٥ 45’ S, 58º 18´ W, 130 m altitude).  

Meteorological data were obtained from a conventional weather station localized at Experimental 

Station of Instituto de Tecnologia Agropecuaria INTA Balcarce. The site includes observations of daily 

maximum and minimum air temperatures, relative humidity, wind speed, and daily sunshine duration. 

Measurements were made at a height of 2 m above the soil surface.  

The reference evapotranspiration values, that are target outputs for the artificial neural networks 

(ANNs), were computed on the daily basis of Penman�Monteith method (ET0PM) for the period 1971�

2000, following the recommendations in [3]:  
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where the ET0PM is reference crop ET calculated using the PenmanMonteith�FAO56 method (mm d
−1

), 

Rn is the daily net radiation (MJ m−2d−1), G is the daily soil heat flux (MJ m−2d−1), Ta is the mean daily 

air temperature at a height of 2 m (°C), u is the daily mean wind speed at a height of 2 m (m s−1), es is the 

saturation vapor pressure (kPa), ea is the actual vapor pressure (kPa), δ is the slope of the saturation vapor 

pressure versus the air temperature curve (kPa°C
−1

 ), and γ is the psychrometric constant (kPa°C
−1

). In 

this study, the daily values of ∆, Rn, es and ea were calculated using the equations (for albedo, α=0.23 for 

green vegetation surface) given by Allen et al. (1998). The soil heat flux (G) was assumed to be zero over 

the calculation for time step of 24 h [3]. The measured RH, Tmax and Tmin values were used to calculate 

ea and es.  

At Balcarce, the daily reference evapotranspiration (ET0PM) shows a seasonal pattern with maximum 

occurring in January (4.9 mm d
�1

) and minimum in July (0.8 mm d
�1

). Relative contribution of radiation 

term is dominant with values about 70% from October to March [18].  

The series on study was finished at 2000 due the increasing missing data in more actual series for some 

of driving variables to give ET0PM. At present and as routine procedure, multiple regression models are 

used to complete the missing data, at the local weather station. 
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2.2   Development of ANNs  

A schematic representation of neuron model is given in the Fig. 1.  

 

  

 

Figure 1. Model of artificial neuron adapted from [1].   

 

Mathematically, the artificial neuron can be described by the equation: 
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Where yk is the output neuron; φ is the activation function; X1, X2, ..., Xn are the input signals; and 

wij are the synaptic weight of k neuron and bk is the bias. The characteristics of a neural network are: 

structure or architecture, training algorithm and activation functions. The development of a model based 

in neural network consists in the definition of these characteristics.  

In order to specify a network structure, the relevant input variables and the appropriate number of 

hidden units respect to samples have chosen. It has been shown that only one hidden layer is required to 

approximate any continuous function [17]. Models with one hidden layer and one output were utilized in 

this study; therefore the size of each network was defined by the number of input and nodes in the hidden 

layer. The maximal number of neurons was defined as related to the number of training samples. 

The solar radiation (Rg), net radiation (Rn) and radiation on top of the atmosphere or extraterrestrial 

radiation (RTA) were combined in the input layer with mean air temperature (Ta), deficit of pressure 

vapor (DPV) and wind velocity (u). The criteria of mandatory input of some variable linked to available 

energy to evaporate (Rn, RG or RTA), in all ANNs, was due to the predominant contribution of radiation 

term in reference evapotranspiration, when estimated by Penman�Monteith model [18].  

The daily global radiation (Rg) values were obtained from relative sunshine hours, according a model 

adjusted for local conditions [19]. The relative sunshine was obtained as the quotient between actual 

sunshine hours and theoretical sunshine for each day of the year in the location. The radiation on top of 

the atmosphere (RTA) or extraterrestrial radiation, which only needs latitude data and day of the year, 

was also combined with maximum daily temperature (Tmax) and minimum daily temperature (Tmin), 

similar as inputs in Hargreaves method [20].  
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Activations functions for the hidden units are needed to introduce non�linear components. In this study, 

two types of transformed of sigmoid activation functions (i.e. logistic and hyperbolic tangent) were 

applied in the hidden layer and linear ones in the output layer. The sigmoid response, in general, allows a 

network to map a nonlinear process. A linear function was used in output.  

Training of a ANN with the above topology was achieved by adjusting the weights of the neurons 

through an iterative algorithm that minimizes the error between the predicted outputs and the actual data. 

The training was carried out under conjugated algorithm of errors propagation using the daily values of 

ET0PM as target output in the ANNS.  

Lack of generalization can be caused by overfitting. A very common technique to avoid this defect is 

an early stopping criterion that ends training before convergence. So each ANNs architecture was trained 

under automatic early stopping criterion associated to cross validation method.  For this reason, the data 

set was split into training, validation and test groups to apply cross�validation [21]. Training, testing, and 

validation sets were representative of the same population. In order to evaluate the hypotheses of equality 

of frequencies distributions between values of training set with test and validation ones, respectively the 

non parametrical Kolmogorov�Smirnov test was applied (p < 0,05) . 

The selection of ANNs architectures was based on the application of a selected algorithm integrated on 

the IPS (Intelligent Problem Solver) of the Neural Network module of Statistica Software [22]. The inputs 

and the outputs of data sets were automatically normalized to improve the performance of ANN models. 

Conjugate of retropropagation of errors algorithm, a second�order non linear optimization technique, was 

used in training process. The maximal number of neurons was fixed related to the number of examples 

training. The model with the lowest cross validation error was chosen and then, the ANN with best 

performance for each combination was retained and evaluated.  

The description of ANNs was carried out following: a) the variables used as input, b) the sequence n�

m�x, where n is the number of inputs, m is the number of neuron at hidden layer and x is the number of 

outputs; c) the activation function; d) number of free parameters. 

         

2. 3   Evaluation of ANN models 

The evaluation of ANNs performance to estimate daily values of reference evapotranspiration was 

based on comparison of their performance estimates from FAO�56 (EToPM). Multi�criteria analysis were 

used on the basis of root mean of squared error (RMSE), mean absolute error (MAE), mean bias error 

(MBE) and regression coefficients (a, b, R2) between estimates from ANNs and measured values. The 

Student test was used to statistically evaluate the value of either the intercept (H0: a=0) or slope of the 

straight line (H0: b=1) at the 5% probability level. To assess the capacity of generalization of the ANNs, 

descriptions of performance are given over both validation and test sets. 

2.4   Extraction of knowledge from ANN models 

Once the ANNs were trained on a specific network topology, then the modeling of attributes process 

using ANN involved the extracting knowledge from each network. The embedded knowledge is in the 

form of connection weights. Garson’s method [34] was performed from adjusted synaptic weights of each 

ANNs. The contribution of each input neuron to the output (cijo) was computed via each hidden neuron as 

the product of the input�hidden connection (wij) and the hidden�output connection (wjo): 

 

c���=���  x 	��	       (2) 

 

The relative contribution of each input k to hidden neuron j can be expressed as: 

 

	
��	 =	 �����
∑�
���	������

      (3) 
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The total contribution of input i is: 

 

�� = ∑ 
��	�
���              (4) 

 

Finally, the relative contribution of each input is: 

�� = �� ∑ � !
"��⁄          (5) 

 

 

3   Results and discussion 

Frequencies distribution of ET0PM values from training set did not differ from respective test and 

validation sets. Therefore, the requirement of series to be part of to same population was attended. This 

fact is relevant because cross�validation was applied during training process, and this method is sensitive 

to the way that available data are divided [21].   

 

The descriptions of structure and function of the ANNs trained to estimate daily values of ET0PM are 

summarized in Table 1. A more reduced number of free parameters were needed to approximate the 

process if radiation (RN, RTA or RG) was combined with some driving variable of the aerodynamic 

component of evapotranspiration (DPV or u), whereas than the input of another variable of radiation 

component (Tar) resulted in ANNs with more parameters, except for RG. 

 

Table 1. Description of artificial neural networks (ANNs) trained to estimate daily values of reference 

evapotranspiration (ET0PM) at Balcarce. 

 

ANN Inputs Estructure Activation in hidden layer Number of free 

parameters 

1 Rn Tar            MLP 2�7�1 Logistic 29 

2 Rn DPV            MLP 2�3�1 Hyperbolic Tangent  13 

3 Rn Tar DPV     MLP 3�6�1 Hyperbolic Tangent 31 
4 Rn u     MLP 2�3�1 Hyperbolic Tangent 13 

5 Rn Tar u            MLP 3�4�1 Hyperbolic Tangent 21 

6 Rg Tar            MLP 2�3�1 Hyperbolic Tangent 13 

7 Rg DPV            MLP 2�3�1 Logistic 13 

8 Rg Tar DPV     MLP 3�8�1 Hyperbolic Tangent 41 

9 Rg u     MLP 2�3�1 Logistic 13 

10 Rg Tar u            MLP 3�6�1 Logistic 31 

11 RTA Tar            MLP 2�7�1 Logistic 29 

12 RTA DPV            MLP 2�4�1 Logitic 17 

13 RTA Tar DPV     MLP 3�3�1 Logistic 16 

14 RTA u     MLP 2�5�1 Logistic 21 
15 RTA Tar u            MLP 3�3�1 Hyperbolic Tangent  16 

16 RTA Tmax Tmin           MLP 3�10�1 Logistic 51 

 

 

The 2 input models that combined Tar and radiation exhibited a bigger number of nodes in hidden 

layer than those with DPV or u, inside of each group, except for Rg. This can be explained due 

multicollineal variables require more sized structure in the network due the presence of mutual 

information.  

From regression analysis and errors of estimation between outputs of the ANNs and ET0PM values was 

possible to distinguish some combinations of variables with better performance. The analyses were 

carried out on both data sets (validation and test). In Table 2 are reported the results on validation set. In 

general, the input of DPV improved the performance, whichever the radiation used. The MAE values 
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ranged from 0.2 to 0.6 mm d
�1

 were equivalent to 9 and 22% of observed mean values of validation series. 

Furthermore, the ANNs with DPV did not imply structures with high number in hidden layer. The 

combination of RTA with Tmax and Tmin did not improve the performance respect model with DPV.  

The RTA was not input in the six best ANNs of the group when ranked in function of minor RSME. 

The difference in RSME between the best ranked ANN with RTA (ANN12) was about 19% and 49% and 

RTA in comparison to their analogue models with Rg (ANN8) and Rn (ANN3), respectively. The last 

ANN ranked in function of minor RSME (ANN14) increased 62% the RSME respect their analogue 

combination with Rn (ANN4).  

The RSME increased 20% when RTA was combined with Tar instead Tmax and Tmin (ANN11 vs 

ANN16). A better explanation from this combination can be associated with the humidity description 

from difference in maximum and minimum temperatures. Following [20] The a and b parameters 

obtained by regression analyses between the target output and estimates from ANNs did not differ 

significantly from 0 and 1, respectively, being possible to infer that ET estimated from ANNs did not 

differ from reference evapotranspiration (ET0PM), except for the ANNs 

 

Table 2.  Errors of estimation of the ANNs trained to approximate daily reference evapotranspiration (ET0PM) for the 

validation set (pairs of data=2121)  

 

ANN Model MLP a 

mm d�1 

b R2 RSME 

mm d�1 

MAE 

mm d�1 

MBE 

mm d�1 

1 ET0PM (Rn Tar)            �0.0402 0.9333 0.93 0.4790 0.3848 0.2205 

2 ET0PM (Rn DPV)            0.0168 0.9734 0.96 0.3155 0.2231 0.0506 

3 E T0PM  (Rn Tar DPV)     �0.0115 0.9782 0.96 0.3045 0.2164 0.0669 
4 ET0PM  (Rn u)     �0.0302 0.9750 0.91 0.4825 0.3620 0.0939 

5 ET0PM (Rn Tar u)            0.0115 0.9549 0.93 0.4303 0.3205 0.1051 

6 ET0PM (Rg Tar)            �0.0318 0.9425 0.93 0.4571 0.3600 0.1849 

7 ET0PM (Rg DPV)            0.0230 0.9863 0.93 0.4280 0.3292 0.0111 

8 ET0PM  (Rg Tar DPV)     0.0052 0.9757 0.94 0.3819 0.2866 0.0564 

9 ET0PM  (Rg u)     �0.0033 1.0031 0.88 0.5413 0.4138 �0.0043 

10 ET0PM (Rg Tar u)            0.0002 0.9717 0.94 0.3923 0.2960 0.0719 

11 ET0PM (RTA Tar)            �0.0403 0.9239 0.83 0.7191 0.5287 0.2479 

12 ET0PM (RTA DPV)            �0.0657 0.9955 0.92 0.4596 0.3311 0.0772 

13 ET0PM  (RTA Tar DPV)     �0.0854 1.0088 0.92 0.4544 0.3312 0.0629 

14 ET0PM  (RTA u)     �0.0351 0.9506 0.76 0.7826 0.5540 0.1657 

15 ET0PM (RTA Tar u)            0.0132 0.9408 0.82 0.6858 0.4977 0.1421 

16 ET0PM (RTA Tmax Tmin)            0.0061 0.9303 0.87 0.5983 0.4505 0.1794 

RMSE: root mean square error; MAE: mean absolute error; MBE: mean bias error. 

 

 

In Table 3 the results on test set to are reported. The accuracy of the model on the test data gives a 

realistic estimate of the performance of the model on completely unseen data and in order to confirm the 

actual predictive power of the network. The same ANNs ranking according RSME values was maintained 

for test evaluation. The losses on generalization (RSME of test set – RSME of validation test) varied 

between 0 and 6.4%. The ANN 9 was the model that showed more decline in predictive power.    

In general, the input of DPV improved the performance, whichever the radiation used. The MAE 

values ranged from 0.2 to 0.6 mm d�1 were equivalent to 9 and 22% of observed mean values of validation 

series. Furthermore, the ANNs with DPV did not imply structures with high number in hidden layer. The 

combination of RTA with Tmax and Tmin did not improve the performance respect model with DPV.  

The RTA was not input in the six best ANNs of the group when ranked in function of minor RSME. 

The difference in RSME between the best ranked ANN with RTA (ANN12) was about 19% and 49% and 

RTA in comparison to their analogues with Rg (ANN8) and Rn (ANN3), respectively. The last ANN 

ranked in function of minor RSME (ANN14) increased 62% the RSME respect their analogue 

combination with Rn (ANN4).  

The RSME increased 20% when RTA was combined with Tar instead Tmax and Tmin (ANN11 vs 

ANN16). A better explanation from this combination can be associated with humidity description from 

difference in maximum and minimum temperatures. Following [20], the temperature difference is linearly 

related to relative humidity. The a and b parameters obtained by regression analyses between the target 
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output and estimates from ANNs did not differ significantly from 0 and 1, respectively, being possible to 

infer that ET estimated from ANNs did not differ from reference evapotranspiration (ET0PM), except for 

two ANNs. 

 

Table 3. Errors of estimation of the ANNs trained to approximate daily reference evapotranspiration 

(ET0PM) for the test set (pairs of data=2159) 

 

ANN Model MLP    RSME 

mm d�1 

MAE 

mm d�1 

MBE 

mm d�1 

1 ET0PM (Rn Tar)               0.4798 0.3814 �0.1323 

2 ET0PM (Rn DPV)               0.4798 0.3814 �0.1323 

3 E T0PM  (Rn Tar DPV)        0.3075 0.2318 �0.0539 
4 ET0PM  (Rn u)        0.2973 0.2237 �0.0697 

5 ET0PM (Rn Tar u)               0.5243 0.3999 �0.0146 

6 ET0PM (Rg Tar)               0.4396 0.3404 �0.0509 

7 ET0PM (Rg DPV)               0.4728 0.3728 �0.1042 

8 ET0PM  (Rg Tar DPV)        0.4325 0.3388 �0.0229 

9 ET0PM  (Rg u)        0.3872 0.2962 �0.0520 

10 ET0PM (Rg Tar u)               0.6057 0.4635 0.0709 

11 ET0PM (RTA Tar)               0.4197 0.3192 �0.0237 

12 ET0PM (RTA DPV)               0.7136 0.5205 �0.1725 

13 ET0PM  (RTA Tar DPV)        0.4653 0.3377 �0.1050 

14 ET0PM  (RTA u)        0.4634 0.3390 �0.0925 

15 ET0PM (RTA Tar u)               0.7939 0.5858 �0.0971 
16 ET0PM (RTA Tmax Tmin)               0.6917 0.5086 �0.0974 

RMSE: root mean square error; MAE: mean absolute error; MBE: mean bias error. 

 

Despite the importance of radiation component in reference evapotranspiration values from Penman 

Monteith method [18], the contribution of  Rn was not predominant in the models tested with reduced 

number of variables (ANN1 to ANN5). The relative contribution of aerodynamic components (DPV and 

u) was similar when Rn was regarded in input (ANN2 and ANN4), but did not for models with Rg (ANN 

7 vs ANN9) or RTA (ANN12 vs ANN14).  

When Tar was input with DPV or u, the RI values of Rn decreased (ANN3 and ANN5). In general, the 

contribution relative of Rg tended to increase in each model (ANN6 to ANN10) respect the same 

combination with Rn and other variables (ANN1 to ANN5). It was conspicuous the contribution the one 

variable to model in ANN12 (RTA) and ANN15 (u). The Ri of RTA was minor when air temperature was 

input as maximum and minimum daily values than the average value (ANN16 vs ANN11). 

 

Table 4. Relative contribution of inputs (RI) to neural network to approximate daily reference 

evapotranspiration (ET0PM). 

  RI 
ANN  Inputs Rn Rg RTA Ta Tmax Tmin DPV U  

1 Rn Ta            0.36   0.64      

2 Rn DPV            0.41      0.59   

3 Rn Ta DPV     0.16   0.47   0.37   

4 Rn u     0.45       0.55  
5 Rn Ta u            0.21   0.41    0.38  

6 Rg Ta             0.39  0.61      

7 Rg DPV             0.46     0.54   

8 Rg Ta DPV      0.41  0.20   0.39   

9 Rg u      0.61      0.39  

10 Rg Ta u             0.42  0.38    0.20  

11 RTA Ta              0.55 0.45      

12 RTA DPV              0.80    0.20   

13 RTA Ta DPV              

14 RTA u      0.33     0.67  

15 RTA Ta u              0.11 0.06    0.83  

16 RTA Tmax Tmin              0.24  0.48 0.28    
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4   Conclusions  

A description of the knowledge that was learned by the ANNs during their training was obtained by 

applying a simple knowledge extraction method. An advantage of this method is that additional 

information about the model performance is obtained, including the relative contribution of inputs via 

analysis of connection weights in the ANNs.  

In addition, techniques of knowledge extraction could be carried out in further studies in order to 

determine the types of problems where artificial neural networks would yield better results than other 

methods. The results reported here also contribute to coping with problems of scarce or missing data and 

thus can be used to guide priorities for data acquisition. 

An application example is analyzed to illustrate the use of the model and demonstrate its capabilities of 

effectively analyzing and predicting the reference evapotranspiration.  
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