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Abstract. This work reports on our efforts to implement a practical
reasoner based on Dung-style argumentation semantics for potentially
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a running example, discuss implementation issues and present time com-
plexity results.
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1 Introduction and Motivations

Ontologies as agreed representations of a problem domain play an important
role in the implementation of the Semantic Web. They are defined by a knowl-
edge engineer from scratch or importing some parts of it from reputable sources,
usually in languages based on Description Logics [2]. When an ontology is incon-
sistent (a situation characterized by a logical contradiction), ontology reasoners
(e.g. Racer or Pellet) can normally pinpoint the source of inconsistency but
rely on the knowledge engineer to repair the ontology (i.e. making it consistent
again). But many times the knowledge engineer does not have the authority
to correct the inconsistencies because he cannot have the expertise or the field
being modeled can be intrinsically inconsistent.

Instead of repairing an inconsistent ontology, either manually or automati-
cally (e.g. with belief revision), we believe in using alternate approaches to rea-
soning that can cope with inconsistencies and yet entail meaningful conclusions.
In this regard, defeasible argumentation [3] is an approach to non-monotonic
reasoning that presents an elegant form of entailing conclusions from inconsis-
tent knowledge bases. Instead of relying in the notion of proof, argumentation
relies in the notion of argument (i.e. a set of reasons supporting a defeasible
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conclusion). One argument attacks another argument when the former disagrees
with some assumption, intermediate or final conclusion of the latter, thus taking
into account the internal structure of the arguments or the relative weights of
their supporting reasons.

In this paper, we report on the Java-based implementation of a system us-
ing structured argumentation that allows us to reason on possibly inconsistent
possibilistic ontologies specified in a Racer-like syntax. In our approach, the on-
tologies are interpreted as possibilistic logic programs under a Dung’s semantics.
The elements that we consider are: a language for defining ontologies whose ax-
ioms and assertions are weighted with a certainty degree, structured arguments
based on the language of logic programming with weights (viz. possibilistic logic
programming), a deductive relation that allows to build arguments, a form of
computing attacks between pairs of arguments supporting contradicting conclu-
sions, a way to compute a Dung’s argumentation framework graph, a way to
compute the extension that can be inferred from such graph that ultimately
characterizes the conclusions that can be obtained from the input ontology. Our
results are applicable to Semantic Web reasoners based on Description Logic
languages.

The rest of this paper is structured as follows. In Sect. 2 we recall Possi-
bilistic Description Logic Ontologies. In Sect. 3 we briefly explain reasoning in
argumentation frameworks. In Sect. 4 we explain how to relate inference tasks
in Possibilistic Description Logic Ontologies with reasoning in argumentation
frameworks with structured arguments. In Sect. 5 we introduce a prototype im-
plementation for the reasoning framework presented. In Sect. 6 we review related
work. Finally in Sect. 7, we conclude and discuss future work.

2 Possibilistic Description Logic Programming Ontologies

We review here possibilistic description logic ontologies [7], that are ontologies
with numeric degrees of certainty attached to both axioms and assertions. We
briefly recall reasoning in description logics along with the variations needed for
reasoning with possibilistic description logics.

2.1 A Brief Recall of Description Logics

Description Logics (DL) are a well-known family of knowledge representation
formalisms [2]. They are based on the notions of concepts (unary predicates,
classes) and roles (binary relations), and are mainly characterized by the con-
structors that allow complex concepts and roles to be built from atomic ones.
Let C and D stand for concepts and R for a role name. Concept descriptions are
built from concept names using the constructors conjunction (C uD), disjunc-
tion (CtD), negation (¬C), existential restriction (∃R.C), and value restriction
(∀R.C). To define the semantics of concept descriptions, concepts are interpreted
as subsets of a domain of interest, and roles as binary relations over this domain.
The symbol ⊥ stands for the empty concept.
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A DL ontology consists of two finite and mutually disjoint sets: a Tbox which
introduces the terminology and an Abox (assertional box) which contains facts
about particular objects in the application domain. A Tbox contains inclusion
axioms C v D, where C and D are (possibly complex) concept descriptions,
meaning that every individual of C is also a D, and equality axioms C ≡ D
meaning that C and D are equivalent concepts (i.e. every individual in C is
an individual in D and vice versa). Objects in the Abox are referred to by a
finite number of individual names and these names may be used in assertional
statements: concept assertions of two types: a : C (meaning the individual a is a
member of concept C), and role assertions of the type 〈a, b〉 : R (meaning that
a is related to b through the role R).

Many reasoning Tbox and Abox reasoning tasks are defined for DL ontologies
(see [2]), but in this work we are only interested in instance checking that refers
to determining if an individual is a member of a certain concept.

One form of assigning semantics to a DL ontology is based on the fact that
DL is isomorphic with first-order logic restricted to two variables. Then, for
example, the inclusion axiom C v D can be interpreted as the first-order logic
formula (∀x)(c(x) → d(x)) and the assertion a : C as c(a). Description Logic
Programming (DLP) approaches [11] take advantage of this to interpret those
expressions as the Prolog rules “d(X) :- c(X).” and “c(a).”, resp.

2.2 Fundamentals of Possibilistic Description Logics

We now recall the fundamentals of possibilistic description logic ontologies.
Our presentation is based on [4, 7]. Let LDL be a DL description language, a
possibilistic DL ontology is a set of possibilistic axioms of the form (ϕ,W (ϕ))
where ϕ is an axiom expressed in LDL and W (ϕ) ∈ [0, 1] is the degree of cer-
tainty (or priority) of ϕ. Namely, a possibilistic DL ontology Σ is such that
Σ = {(ϕi,W (ϕi)) : i = 1, . . . , n}. Only somewhat certain information is explic-
itly represented in a possibilistic ontology. That is, axioms with a null weight
(W (ϕ) = 0) are not explicitly represented in the knowledge base. The weighted
axiom (ϕ,W (ϕ)) means that the certainty degree of ϕ is at least equal to W (ϕ).
A possibilistic DL ontology Σ will also be represented by a pair Σ = (T,A)
where elements in both T and A may be uncertain. Note that if we consider all
W (ϕi) = 1, then we find a classical DL ontology Σ∗ = {ϕi : (ϕi,W (ϕi)) ∈ Σ}.
We say that Σ is consistent if the classical ontology obtained from Σ by ignor-
ing the weights associated with axioms is consistent, and inconsistent otherwise.
Notice that the weights W (·) for axioms must be provided by the knowledge en-
gineer that designs the knowledge base, thus specifying the relative importance
of rules and facts.

Example 1. Let Σ1 = (T,A) be the ontology modeling a variation of the famous
Tweety example from the non-monotonic literature. It expresses that a bird
generally flies, all penguins are birds, penguins do not usually fly, birds with
broken wings normally do not fly either, and pilots can almost always fly. It is
known that Tweety is a penguin with almost certainly a broken wing and most

SAOA 2016, 2º Simposio Argentino de Ontologías y sus Aplicaciones

45 JAIIO - SAOA 2016 - ISSN: 2451-7518 - Página 3



likely a pilot. Formally:

T =

{
(Bird v Flies, 0.6), (Penguin v Bird, 1.0), (Pilot v Flies, 0.9)
(Penguin v ¬Flies, 0.8), (Bird u BrokenWing v ¬Flies, 0.7),

}
A =

{
(TWEETY : BrokenWing, 0.8), (TWEETY : Penguin, 1.0),
(TWEETY : Pilot, 0.9)

}

In Σ∗1 , because Tweety is both a bird and a penguin, he is both a member of
Flies and ¬Flies, meaning that he is a member of ⊥. Traditional reasoners are
not able to infer anything from such an inconsistent ontology, thus invalidating
even reasoning with consistent parts of the offending ontology.

3 A Brief Introduction to Argumentation

Here we recall the basic notions of non-monotonic reasoning with argumentation.

3.1 Dung-Style Abstract Argumentation

Abstract argumentation frameworks do not presuppose any internal structure of
arguments, thus considering only the interactions of arguments by means of an
attack relation between arguments (we base on [14], that in turn bases on [6]).

Definition 1. An abstract argumentation framework AF is a pair (Arg,→)
where Arg is a set of arguments and → is a relation of Arg into Arg.

In this work, we will consider only finitary argumentation systems (i.e. argu-
ment systems with a finite number of arguments). For two arguments A and B
in Arg, the relation A → B means that the argument A attacks the argument
B. Abstract argumentation frameworks can be concisely represented by directed
graphs, where arguments are represented as nodes and edges model the attack
relation.

Example 2. Consider the argumentation framework AF2 = (Arg,→) where
Arg = {A1,A2,A3,A4,A5,A6,A7,A8} and →= {(A5,A8), (A6,A8), (A7,A5),
(A7,A6)}. The framework is shown graphically in Fig. 1 and, although it is not
necessary from a mathematical viewpoint, we can assign meaning to the above
arguments to provide some intuition:

– A1 : Tweety has a broken wing
– A2 : Tweety is a penguin
– A3 : Tweety is a pilot1

– A4 : Tweety is a bird
– A5 : Tweety does not fly because he is a penguin and penguins do not usually fly
– A6 : Tweety does not fly because he has a broken wing
– A7 : Tweety flies because he is also a pilot
– A8 : Tweety flies because he is a bird and birds normally fly
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A4

Fig. 1. Abstract argumentation framework presented in Ex. 2

Semantics are usually given to abstract argumentation frameworks by means
of extensions. An extension E of an argumentation framework AF = (Arg,→)
is subset of Arg that gives some coherent view on the argumentation underlying
AF . In this work, we will reason under grounded semantics despite that other
semantics have been proposed.

Definition 2. Let AF = (Arg,→) be an argumentation framework.

– An extension E ⊆ Arg is conflict-free iff there are no A,B ∈ E with A → B.
– An argument A ∈ Arg is acceptable with respect to an extension E ⊆ Arg

iff for every B ∈ Arg with B → A there is a A′ ∈ E with A′ → B.
– An extension E ⊆ Arg is admissible iff it is conflict free and all A ∈ E are

acceptable with respect to E.
– An extension E ⊆ Arg is complete iff it is admissible and there is no A ∈
Arg\E that is acceptable with respect to E.

– An extension E ⊆ Arg is grounded iff it is complete and E is minimal with
respect to set inclusion.

The intuition behind admissibility is that an argument can only be accepted
if there are no attackers that are accepted and if an argument is not accepted
then there has to be an acceptable argument attacking it. The idea underlying
the completeness property is that all acceptable arguments should be accepted.

The grounded extension is the minimal set of acceptable arguments and is
uniquely determined. It can be computed as follows: first, all arguments that
have no attackers are added to the empty extension E and those arguments and
all arguments that are attacked by one of these arguments are removed from the
framework; then the process is repeated; if one obtains a framework where there
are no unattacked arguments, the remaining arguments are also removed.

Example 3. Consider again the argumentation framework AF2 presented in
Ex. 2. The grounded extension E ofAF2 is given by E = {A1,A2,A3,A4,A7,A8}.

We will present a reasoning framework whose underlying interpretation will
coincide exactly with the behavior of the framework above, thus allowing to
reason on the contents of the ontology in Ex. 1. We will also describe a reasoning
system that implements this approach.

1 We think of the Madagascar movies to motivate this example (See
https://en.wikipedia.org/wiki/Madagascar: Escape 2 Africa).
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3.2 Possibilistic Logic Programming

The P-DeLP [1] language L is defined from a set of ground fuzzy atoms (fuzzy
propositional variables) {p, q, . . .} together with the connectives {∼,∧,←}. The
symbol ∼ stands for negation. A literal L ∈ L is a ground (fuzzy) atom ∼ q,
where q is a ground (fuzzy) propositional variable. A rule in L is a formula of
the form Q← L1 ∧ . . . ∧ Ln, where Q,L1, . . . , Ln are literals in L. When n = 0,
the formula Q ← is called a fact. The term goal will refer to any literal Q ∈ L.
Facts, rules and goals are the well-formed formulas in L.

Definition 3. A certainty-weighted clause, or simply weighted clause, is a pair
(ϕ, α), where ϕ is a formula in L and α ∈ [0, 1] expresses a lower bound for the
certainty of ϕ in terms of a necessity measure.

The original P-DeLP language is based on Possibilistic Gödel Logic or PGL,
which is able to model both uncertainty and fuzziness and allows for a par-
tial matching mechanism between fuzzy propositional variables. For simplicity,
Chesñevar et al. [1] restrict themselves to the fragment of P-DeLP built on
non-fuzzy propositions, and hence based on the necessity-valued classical propo-
sitional Possibilistic logic. As a consequence, possibilistic models are defined
by possibility distributions on the set of classical interpretations and the proof
method for P-DeLP formulas, written `, is defined based on the generalized
modus ponens rule, that from (L0 ← L1 ∧ . . . ∧Lk, γ) and (L1, β1), . . . , (Lk, βk)
allows to infer (L0,min(γ, β1, . . . , βk)), which is a particular instance of the pos-
sibilistic resolution rule, and which provides the non-fuzzy fragment of P-DeLP
with a complete calculus for determining the maximum degree of possibilistic
entailment for weighted literals.

In P-DeLP certain and uncertain clauses can be distinguished. A clause
(ϕ, α) is referred as certain if α = 1 and uncertain otherwise. A set of clauses Γ
is deemed as contradictory, denoted Γ ` ⊥, when Γ ` (q, α) and Γ ` (∼ q, β),
with α > 0 and β > 0, for some atom in L. A P-DeLP program is a set of
weighted rules and facts in L in which certain and uncertain information is
distinguished. As an additional requirement, certain knowledge is required to be
non-contradictory. Formally:

Definition 4. A P-DeLP program P (or just program P) is a pair (Π,∆),
where Π is a non-contradictory finite set of certain clauses, and ∆ is a finite set
of uncertain clauses.

Definition 5. Given a program P = (Π,∆), a set A ⊆ ∆ of uncertain clauses
is an argument for a goal Q with necessity degree α > 0, denoted 〈A,Q, α〉, iff:
(i) Π ∪A ` (Q,α); (ii) Π ∪A is non-contradictory, and (iii) there is no A1 ⊂ A
such that Π ∪A1 ` (Q, β), β > 0. Let 〈A, Q, α〉 and 〈S, R, β〉 be two arguments,
〈S, R, β〉 is a subargument of 〈A, Q, α〉 iff S ⊆ A.

Conflict among arguments is formalized by the notions of counterargument
and defeat.
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Definition 6. Let P be a program, and let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two
arguments in P. We say that 〈A1, Q1, α1〉 counterargues 〈A2, Q2, α2〉 iff there
exists a subargument (called disagreement subargument) 〈S, Q, β〉 of 〈A2, Q2, α2〉
such that Π ∪ {(Q1, α1), (Q, β)} is contradictory. The literal (Q, β) is called
disagreement literal.

Defeat among arguments involves the consideration of preference criteria
defined on the set of arguments. The criterion applied here will be defined on
the basis of necessity measures associated with arguments.

Definition 7. Let P be a program, and let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two
arguments in P. We will say that 〈A1, Q1, α1〉 is a defeater for 〈A2, Q2, α2〉
iff 〈A1, Q1, α1〉 counterargues argument 〈A2, Q2, α2〉 with disagreement subargu-
ment 〈A, Q, α〉, with α1 ≥ α. If α1 > α then 〈A1, Q1, α1〉 is called a proper
defeater, otherwise (α1 = α) it is called a blocking defeater.

Notice that we digress from the original P-DeLP formalism in that (i) we
include facts in the support of arguments and (ii) facts are allowed to have a
weight different than one (so allowing them to be considered as presumptions).

Example 4. Consider again the ontology Σ1 presented in Ex. 1. This ontology is
interpreted as the equivalent possibilistic program P1 where:

P1 =



(brokenWing(tweety), 0.8), (penguin(tweety), 1.0),
(pilot(tweety), 0.9),
(flies(X)← bird(X), 0.6),
(bird(X)← penguin(X), 1.0),
(∼flies(X)← penguin(X), 0.8),
(∼flies(X)← bird(X), brokenWing(X), 0.7),
(flies(X)← pilot(X), 0.9)


.

Exactly 8 arguments can be built from this knowledge base (notice that they
coincide with the ones presented in Ex. 2):

– 〈A1, brokenWing(tweety), 0.8〉 where A1 =
{

(brokenWing(tweety), 0.8)
}

– 〈A2, penguin(tweety), 1.0〉 where A2 =
{

(penguin(tweety), 1.0)
}

– 〈A3, pilot(tweety), 0.9〉 where A3 =
{

(pilot(tweety), 0.9)
}

– 〈A4, bird(tweety), 1.0〉 where A4 =
{

(bird(tweety)← penguin(tweety), 1.0)
}
∪ A2

– 〈A5,∼flies(tweety), 0.8〉 where

A5 =
{

(∼flies(tweety)← penguin(tweety), 0.8)
}
∪ A2

– 〈A6,∼flies(tweety), 0.7〉 where

A6 =
{

(∼flies(tweety)← bird(tweety), brokenWing(tweety), 0.7)
}
∪ A1 ∪ A4

– 〈A7,flies(tweety), 0.9〉 where A7 =
{

(flies(tweety)← pilot(tweety), 0.9)
}
∪ A3

– 〈A8,flies(tweety), 0.6〉 where A8 =
{

(flies(tweety)← bird(tweety), 0.6)
}
∪ A4

The attacks among these arguments are exactly those presented in Fig. 1. Notice
that here the attacks are made into final conclusions (thus they are direct at-
tacks). Nonetheless the reasoning framework presented here and the application
we built also allow for modeling attacks into premises (i.e. indirect attacks).
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4 Reasoning with Inconsistent Ontologies with
Argumentation

Here we discuss how to perform reasoning with inconsistent ontologies relating
the language of possibilistic description logic with P-DeLP.

4.1 Expressing Possibilistic Ontologies as Possibilistic Logic
Programs

Grosof et al. [11] provide a way of expressing a subset of Description Logic on-
tologies in logic programming, namely the description logic programming subset
of DL that can be expressed as Horn knowledge bases. The idea consists of
expressing both DL assertional statements and terminological axioms as equiv-
alent Horn clauses. We will explain only the part of the algorithm relevant to
this work.

Given an ontology Σ = (T,A), for every terminological axiom or assertional
statement (ϕ,W (φ)) we will generate a possibilistic axiom (T (ϕ),W (ϕ)), where
T (·) is the transformation function from the language of description logics to the
language of Horn clauses. The specification of the T is as follows: Assertional
statements in A of the form a : C are expressed as facts c(a). With respect to
T , notice that equivalence axioms C ≡ D can be expressed as two inclusion
axioms C v D and D v C. Then, to successfully express inclusion axioms as
Horn-clauses, they first have to be in negation normal form (NNF) (i.e. negation
has to be pushed inwards class expressions using well known transformation
rules, e.g. De Morgan and double negation laws). Once inclusion axioms are in
NNF, axioms C v D u E (i.e. with conjunctions in the right-hand side) have
to be transformed into C v D and C v E, and axioms C t D v E (i.e. with
disjunctions in the left-hand side) are written as C v E and D v E. Once
these steps are performed, we obtain an equivalent ontology composed only of
inclusion axioms of the form C1 u . . . u Cn v D which are expressed as Horn
clauses of the form d(X)← c1(X), . . . , cn(X).

Logic programming rules are not equivalent to Horn clauses as the former
do not allow to perform contrapositive reasoning. One way to overcome this
difficulty is given by computing transposes of rules. As it is usual in non-
monotonic reasoning settings, only transposes of strict information (i.e. rules
with weight equal to one) are computed because reasoning with transposes
of defeasible rules tend to generate fallacious conclusions. The set of trans-
poses of the rule d(X) ← c1(X), . . . , cn(X) is the set of rules {(∼ c1(X) ←∼
d(X), . . . , cn(X)), . . . , (∼cn(X)← c1(X), . . . ,∼d(X))}.

Example 5 (Continues Ex. 4). Consider again the program P1 obtained from the
ontology Σ1. In this case, computing the set of transposes of the rule (bird(X)←
penguin(X), 1.0) allows to add a new rule (∼ penguin(X) ←∼ bird(X), 1.0) to
the program. This new added rule would allow to infer that individuals that are
known to be non-birds would also be known to be non-penguins.
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4.2 Inference Tasks in Ontologies as Argumentation

Given an possibilistic DL ontology Σ, Σ will be expressed as an equivalent P-
DeLP program P. With this program, a grounded extension E will be computed.
If (c(a), α) belongs to E then we will say that the individual A is a member of
the concept C with a certainty degree α.

Example 6. Recall from Ex. 3 that E = {A1,A2,A3,A4,A7,A8}. Therefore we
can affirm that, from A1, TWEETY is a member of BrokenWing with certainty
level 0.8; fromA2, TWEETY is a member of Penguin with certainty level 1.0; from
A3, TWEETY is a member of Pilot with certainty level 0.9; from A4, TWEETY
is a member of Bird with certainty level 1.0; from A7, TWEETY is a member of
Flies with certainty level 0.9, and from A8, TWEETY is a member of Flies with
certainty level 0.6.

From A7 and A8, as Tweety is both a member of Flies with both degrees 0.6
and 0.9, we take a credulous approach considering that TWEETY is a member
with degree 0.9.

5 A Prototype Implementation for an Ontology Reasoner
Using Dung-Style Argumentation

Here we explain the Java-based implementation we developed to enact the rea-
soning framework presented above.

5.1 Scripting Languages for Possibilistic Ontologies and Programs

In order to give a text representation for possibilistic DL ontologies, we propose
a LISP-like syntax based on the representation language for ontologies of the
RACER reasoner. Our proposal permits a knowledge engineer to add labels
for specifying the weight of each axiom. Notice as the system presented in this
work is a running prototype, we have only implemented the constructors for
declaring the signature of the ontology (viz. the (signature :atomic-concepts

lst1 :individuals lst2) element expressing the list lst1 of atomic concepts and
the list lst2 of names of individuals), the assertional class statements (viz. the
(instance a C α) element asserting that an individual a is a member of a
class C with a certain degree α), and the inclusion axioms (viz. the (implies C
D α) element expressing that a concept C is a subconcept of another concept
D with a certain degree α). Besides, only the operators for the complement of
a concept (viz. not) and conjunction of concepts (viz. and) are supported. In
Fig. 2.(a), we present the Racer-like script for the ontology of Ex. 1.

Our approach to provide a text representation for possibilistic programs is
very straightforward and follows the path marked by DeLP and ASPIC. Facts of
the form (p(a), α) are represented as “p(a) <- true α” and rules of the form
(p(X) ← q1(X), . . . , qn(X), α) are codified as “p(X) <- q1(X), ..., qn(X)

α”. Besides, the strong negation of p(X) is represented with ~p(X). In Fig. 2.(b),
we present the PDeLP-like script for the program of Ex. 4.
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(signature
:atomic-concepts (bird penguin flies

broken wing pilot)
:individuals (tweety)
)

(instance tweety bird 1.0)
(instance tweety broken wing 0.8)
(instance tweety penguin 1.0)
(instance tweety pilot 0.9)

(implies bird flies 0.6)
(implies penguin bird 1.0)
(implies penguin (not flies) 0.8)
(implies (and bird broken wing) (not flies) 0.7)
(implies pilot flies 0.9)

broken wing(tweety) <- true 0.8
penguin(tweety) <- true 1.0
pilot(tweety) <- true 0.9
flies(X) <- bird(X) 0.6
bird(X) <- penguin(X) 1.0
~flies(X) <- penguin(X) 0.8
~flies(X) <- bird(X), broken wing(X) 0.7
flies(X) <- pilot(X) 0.9

(a) (b)

Fig. 2. Scripts for the Tweety ontology and program

5.2 Computing Grounded Extensions for Possibilistic Ontologies

We now give a holistic view of the process to reason with possibly inconsis-
tent possibilistic ontologies. We have implemented a Java-based reasoning en-
gine that allows via a form-based graphical user interface to enter a Racer-
like ontology, to see its translation as a P-DeLP program and to see the set
of arguments belonging to its uniquely determined grounded extension (see
Fig. 3). An executable JAR-file can be downloaded to test the prototype at
http://cs.uns.edu.ar/~sag/engine-v1/. We discuss the algorithmic details
of our implementation here.

Translation of a Racer-like ontology into a possibilistic program: Given a possi-
bilistic ontology Σ, an equivalent possibilistic program P is obtained using the
technique explained in Sect. 4.1.

Propositionalization of the possibilistic program: Given a program P, another
program Pt that contains every rule in P plus all the transposes of every strict
rule in P. As every rule in Pt is intended as rule-scheme for ground rules (i.e. rules
without variables), the next step comprises computing the propositionalization
of Pt called Pp.

Computation of arguments: Once a propositional program Pp is obtained, the
reasoning engine computes the set of arguments that can be derived from Pp. The
set of arguments is built inductively. For every fact (or presumption if its weight
is less than 1.0), there is a trivial argument whose support is the fact itself and its
weight is given by the weight of the fact. For every rule r = (H ← B1, . . . , Bn, α),
if there are n arguments A1, . . . , An for B1, . . . , Bn with weights α1, . . . , αn,
respectively, then a new argument for H is added with the n subarguments and
the rule r as support and whose weight is the minimum among α, α1, . . . , αn.
This process continues until a fix-point is reached. Notice that for simplicity,
our current implementation does not check for internal consistency in argument
construction.
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Computing attacks between arguments: The next step involves creating the ar-
gumentation framework. In practice, this step requires to create a directed graph
G = (V,E) whose vertices V are arguments and the directed edges E represent
an attack between a pair of arguments (see Sect. 3.1). Discovering the edges
requires iterating over every pair (A,B) of arguments in V . Whenever the con-
clusion of A contradicts the conclusion of B or some subargument C of B and
the weight of A is greater or equal than the weight of B, then an attack has been
found and C is the point of attack.

Computing the grounded extension: Once the argumentation framework is com-
puted as a directed graph G, the algorithm explained in Sect. 3.1 is run. In
practice, this algorithm is a variation of a topological sort. This requires finding
all the roots of the graph (i.e. vertices with indegree equal to 0), printing these
vertices, deleting them and its successors, and then repeating the process until
all of the vertices have been processed.

Fig. 3. User interface of the engine for reasoning with possibly inconsistent possibilistic
ontologies

5.3 Analysis of Time Complexity

We now present an analysis of the complexity of the algorithms discussed. Let us
suppose that the ontology has n inclusion axioms and m assertional statements.
Each one of these will generate exactly one rule during the translation into
possibilistic logic programming unless contraposition of rules is preferred. In such
a case, each strict rule with a distinct atoms will exactly generate a transposed
rules, thus increasing the size of the resulting knowledge base.
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For simplicity, we will restrict the discussion to logic programming rules with
exactly one variable that result from the interpretation of weighted ontologies
(even when the system presented is capable of handling reasoning with rules hav-
ing atoms with several variables). So if there are n rules, k names of constants and
if each rule has exactly one variable, then for each rule the propositionalization
generates k ground rules and thus the size of the propositionalized knowledge
base is O(nk). Instead if each rule scheme has at most v variables, then the
propositionalization process generates kv ground rules for each rule scheme. If
the original kwowledge base has n rules, then the propositionalization generates
O(nkv) ground rules.

Once the knowledge base is propositionalized, the argument base has to be
computed by finding the fix-point of the derivation function. Suppose that A is
the total number of arguments computed. For computing the attack relation,
we need to find all the (Ai,Aj) with i, j = 1, . . . , A such that Ai attacks Aj .
The argument Ai attacks the argument Aj if there is a subargument B of Aj

such that the conclusions of Ai and B are complementary and the weight of Ai

is greater than or equal to the weight of B. If each argument is considered as
a tree, this process requires to look at each node of the argument. If the tree
of an argument has a degree of ramification s (i.e. the maximum number of
children/subarguments that a certain node/argument can have) and the height
of the tree coincides with the maximum number h of rules forward-chained,
then the number of nodes of an argument can be bounded by O(sh). Besides,
determining if an argument Ai attacks another argument Aj when h is the height
of Aj and s is the ramification degree of Aj requires checking O(sh) literals L
to see if the conclusion of Aj is complementary to L and the weight of Ai is
greater than or equal to the weight of the subargument supporting L.

Building the argumentation framework requires computing a directed graph
whose vertices are comprised by the set of arguments in the propositionalized
knowledge base and the directed edges are given by the attack relation between
arguments. If there are a arguments, each argument has at most s subarguments
and h is the maximum number of chained rules, then computing the attack
relationship takes O(a2sh).

Computing the grounded extension from the directed graph induced by an ar-
gumentation framework requires executing the algorithm presented in Sect. 3.1.
This algorithm visits each node of the graph once and also each edge of the graph
once, then if the graph has n nodes and e edges, then executing the algorithm
takes O(n+ e) (i.e. its time complexity is linear in the size of the graph).

6 Related Work

In [8, 10], Gómez et al. reviewed related work concerning the topic of reasoning
with inconsistent ontologies. Because of this, we concentrate our efforts on re-
viewing implementations of argumentation systems based on Dung’s semantics.

During the last years, some approaches based on interpreting ontologies as
logic programs have arisen [11]. Gómez et al. [8, 9] have exploited this to reason
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on possibly inconsistent ontologies into Defeasible Logic Programming (DeLP).
This work differs from those works in that we now propose reasoning with argu-
ments comparable by their relative weight via a grounded semantics approach
instead of relying on the DeLP semantics.

Bryant et al. [5] discuss their current work on a prototype light-weight Java-
based argumentation engine that can be used to implement a non-monotonic
reasoning component in Internet or agent-based applications. Likewise, our sys-
tem is a Java-based implementation of an argumentation engine based on the
representation language of the P-DeLP but interpreting P-DeLP with a Dung-
style semantics. However, our engine is not based on the Prolog engine even
when the knowledge representation language is somewhat similar.

Snaith and Reed [12] present TOAST, a system that implements the AS-
PIC+ framework. TOAST accepts a knowledge base and rule set with asso-
ciated preference and contrariness information, and returns both textual and
visual commentaries on the acceptability of arguments in the derived abstract
framework. The system can be used as both a web front-end and a web service
(See http://toast.arg-tech.org/). At the present time, our implementation
only provides a graphical user interface that can be run a stand-alone JAR file
requiring only to have installed a suitable Java run-time environment. TOAST
can compute grounded, preferred and complete extensions but our system only
computes grounded extensions.

Tamani and Croitoru [13] introduce a quantitative preference based argumen-
tation system relying on ASPIC argumentation framework and fuzzy set theory.
The knowledge base is fuzzified to allow the experts to express their expertise
(premises and rules) attached with grades of importance in the unit interval.
Arguments are attached with a score aggregating the importance expressed on
their premises and rules. Extensions are then computed and the strength of each
of which can also be obtained based on its strong arguments. The strengths are
used to rank fuzzy extensions from the strongest to the weakest one, upon which
decisions can be made. Likewise, our approach allows to express the importance
of rules using numbers in the unit interval following the path marked by P-DeLP.

7 Conclusions and Future Work

We have presented a framework for reasoning with possibly inconsistent possi-
bilistic description logic ontologies in the description logic programming frag-
ment by interpreting them in possibilistic defeasible logic programming with a
Dung’s grounded semantics approach to reasoning, which we enacted with a
downloadable Java-based implementation. Our current implementation system
computes only grounded extensions, computing other kind of extensions is part
of our future work. Our implementation is currently able to process a very limited
subset of the description logic programming fragment, adding other constructors
to the representation language is part of our current research efforts. Besides, the
possibility of reasoning with timed representations and integrating our proposal
with Semantic Web reasoners are also interesting directions for future research.
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