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Abstract. Continuous power-intensive processes in air separation plant can take 
advantage of optimal production planning to reduce the consumption of elec-
tricity. In this work a solution approach is developed based on a discrete-time 
scheduling formulation that allows modeling and optimizing operating deci-
sions either in a fixed or a rolling horizon scheme. The main goal of this contri-
bution is to find an optimal hourly schedule for next week that minimizes total 
energy consumption cost while satisfying all operational constraints. The MILP 
model is tested on real-world electricity price and demand input data. The re-
sults show optimal solutions for the proposed methodology with a modest com-
putational effort considering a one-hour time grid and one-week time horizon. 

Keywords: continuous power-intensive processes, air separation plant, schedul-
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1 Introduction 

The issue of time-sensitive electricity costs and its impact on industrial competitive-
ness have become one of the most important factors for production decisions. Mainly, 
decision-making are  required  to  simultaneously deal  with  alternative  production 
modes and rates to lower power consumption [1], [2]. Consequently, the development 
of optimal production scheduling strategies has emerged as a promising alternative to 
reduce the consumption of electricity [3], [4]. 

In this study we consider air separation plant processes where the cost of energy 
changes hourly. The plant is assumed to participate in multiple energy markets for 
production: Day-ahead markets and Spot/Imbalance markets. In the day-ahead mar-
ket, blocks of energy are nominated at an hourly level for the next day and are bought 
on a daily auction. The prices of energy are known after the auction closes, sometime 
around noon on the day before delivery. For a weekly time horizon, e.g. Monday to 
Sunday, the price and amount of power at every hour is known for Monday, whereas 
from Tuesday to Sunday neither the price nor the amount of power is known. Howev-
er, forecasts are available for the day-ahead market for the next nine days. On the 
other hand, power is non-contracted in the imbalance market. It is the result of the 
imbalances in the physical power grid, and the attempt of the operators to match sup- 
ply and demand. Prices of energy are known 15 minutes after the power is consumed. 

SII 2016, 5º Simposio Argentino de Informática Industrial

45 JAIIO - SII 2016 - ISSN: 2451-7542 - Página 61



The challenge is to predict how long the price will remain profitable so the plant has 
time to react or even to forecast the spikes and valleys [4], [5]. 

Therefore, we propose an efficient predictive and reactive solution strategy for re- 
al-world industrial scale problems to optimize participation in electricity markets 
under uncertainty in the operation of power-intensive air separation processes. The 
objective is to compare both approaches defined, predictive model and the rolling 
model, in terms of computational efficiency and potential economical benefits. Ac-
cordingly, a deterministic MILP model is proposed to optimal production planning of 
continuous power-intensive air-separation processes to efficiently adjust production 
operation according to time-dependent electricity pricing. 

2 Problem statement 

The scheduling problem includes minimum and maximum production rates based on 
the plant state, storage capacity of the plant and minimum final tank level constraint, 
considering that minimum final tank levels must be fulfilled depending on the day of 
the week of last time period of the scheduling horizon. At the same time, detailed 
power consumption is taken into account for the different operating modes, which 
follows linear correlation. Expected daily demand and hourly electricity prices are 
used to generate and assess different scenarios. 

An important aspect in this problem is to consider that there is an operational con-
straint on the minimum amount of time the plant should be running in the same opera-
tion mode. When deviating from the plant, this action will affect several time periods. 
The plant has transition states to set-up and shut-down of equipment (ramp-up and 
ramp-down times) with minimum duration of 1 hour, and others states with minimum 
duration of 3 hours: uptime, standby time and downtime. The figure Fig.1 shows a 
state graph of the air-separation plant. Therefore, we proposed an explicit modeling 
formulation of feasible plant operational transitions and a systematic way of repre-
senting transition states. 

 

Fig. 1. A state graph of the plant 
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3 Model formulation 

The MILP model developed for this work contents several components to deal with 
features of the problem mentioned in previous section. In section 3.1 we proposed a 
new network to describe the scheduling problem. In following, time representation 
proposed is in section 3.2, the nomenclature of the formulation is detailed in section 
3.3 and operational constraints are described in section 3.4. 

3.1 Process State Transition Network 

In this section we present a novel Process State Transition Network (PSTN) concept 
developed to represent specific problem features, as shown in Figure 2. States with 
minimum duration of 3 hours are decomposed in 3 sub-states of 1 hour each and are 
called initial sequential transition states, intermediate transition states, and critical 
transition states, respectively. Note that this decomposition occurs in stand-by, on and 
off operating states in which the plant can remain between 3 and undetermined 
amount hours.  

Furthermore, sequences of transitions between different states must be met, for ex-
ample to switch from off to on state the following sequence of states have to occur: 
RUCAP1, RUCAP2, and RUCB, with fixed duration of 1 hour in each state. From 
now on, each operation mode represented in scheme of Figure 2 is named states. 

 

Fig. 2. Process State Transition Network  

3.2 Time representation 

Type of procedures and the time representation used in this model are described be-
low. Note that the scheduling model type is deterministic, in which variable the input 
data are energy prices and demand forecasts.  
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Although many continuous time models have been effectively used for this type of 
plant scheduling [4], [6], for operational restrictions and time characteristics required 
in this problem, a discrete time representation is successful . This means that the 
scheduling horizon is divided into fixed intervals of equal length, such that each peri-
od represents an hour on the horizon. 

In that work two type of model are developed: rolling horizon and predictive mod-
el. The main difference of both approaches is the way the model is being resolved 
and, data and variables are being updated. Both procedures are to address the opera-
tions planning in air separation processes and are based on the forecasts previously 
mentioned and the constraints which are described below. 

Whereas that a production plan for the week is obtained when the predictive model 
is solved, in the rolling horizon procedure a schedule is obtained with information 
updated daily. In other words, after the solution model is obtained, quantity of pro-
duction, inventory levels and state transitions variables corresponding to the first day 
(24 hours) are fixed. Subsequently the forecasts (energy prices and demand) are up-
dated for the following days of the week and the model is solved again. This process 
is repeated until complete week (168 hours). 

3.3 Nomenclature 

Sets 
ܶሺindex	ݐሻ  Time periods 
ܵሺindex	ݏሻ    States 
 ݀ሻ   Days of a week	ሺindexܦ
ܵ௜௡௜௧௜௔௟     Initial sequential states of On, Off and Stand-by modes 
ܵ௜௡௧௘௥      Intermediate transition states of On, Off and Stand-by modes 
ܵ௖௥௜௧௜௖௔௟   Critical transition states of On, Off and Stand-by modes 
ܵௗ௢௪௡ି௜௡௜௧௜௔௟  Initial state to ramp-down 
ܵ௨௣ି௜௡௜௧௜௔௟ Initial state to start-up 
ܵௗ௢௪௡ି௜௡௧௘௥  Intermediate states to ramp-down 
ܵ௨௣ି௜௡௧௘௥ Intermediate states to start-up 
 Last intermediate states before critical states         ܥܫܮ
ܰܶܵ        Next to transition states 
 
Parameters  
݊݅ܯ ௦ܲ			 	 Minimum	production	per	hour	in	each	state	
ݔܽܯ ௦ܲ			 	 Maximum	production	per	hour	in	each	state	
			ௗܮܶܦܯ Minimum	final	tank	levels	at	the	end	of	the	day	
										௧ܦܧ Hourly	expected	demand	
							௦ܥܲܨ Fixed	power	consumption		
							௦ܥܸܲ Variable	power	consumption	
ܧ ሺܲ௧,ௗሻ					 Energy	prices	forecast	for	a	week	
ܳ݉݅݊						 Minimum	Tank	Level	
					ݔܽ݉ܳ Maximum	Tank	Level	
		,௧ܦܧܺܫܨ_ܲܧ Average	energy	price	of	a	week		
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 ଴            Initial tank levelܫ
 ሺ௧,ௗሻ   End time of each dayܦ_ܶ
݀1ௗ         Starting day of scheduling 
݊݀  Amount of intermediate states in the shutdown process 
 Amount of intermediate states in the startup process  ݏ݊
 
Continuous Variables  
௦ܲ,௧          Production at time t for state s 
ܲ ௧ܹ        Power consumption at time t  
 ௧             Inventory available at the end of time period tܫ
 Objective function (total energy cost)       ݐݏ݋ܥ
 

Binary Variables  

௦ܹ,௧       Indicates whether plant operates in state s during time period t 

3.4 Constraints 

The PSTN model assigns states ݏ to time periods ݐ using proper binary variable ௦ܹ,௧ 
denoting that process is operating at a given state at every time and ensuring that all 
operating constraints are satisfied. Note that all the following constraints are applied 
in both models (predictive and rolling horizon). The difference lies in the way to solve 
these models, as described in the previous section. 

The model minimizes the energy total cost while satisfies the start-up and shut-
down restrictions, and also the constraints that concern the power consumption ac-
cording to time-dependent electricity pricing schemes. In the following, we will pre-
sent these constraints. 

Plant State. The plant has to operate in a single configuration each hour, so Eq. (1) 
forces the plant to be in a single production mode each period. 

෍ ௦ܹ,௧

௦

ൌ ݐ∀								1 ∈ ܶ																																																				ሺ1ሻ 

Sequential Transition States. Eq. (2)-(4) force to ௦ܹ,௧  variable that indicates the 
occurrence of a configuration change to start-up or shut-down equipment. If operating 
point of the plant in the time period ݐ is the initial state of an operating state (on, off 
and stand-by), then at time ݐ	 ൅ 1  and ݐ ൅ 2  have to operate in the corresponding 
states, intermediate and critical, respectively (see Eq.(2)). 

௦ܹ,௧ ൌ ෍ ܹ௦ᇲ,௧ାଵ

௦ᇱ∈ௌ೔೙೟೐ೝ

ݐ∀											 ∈ ܶ, ݏ ∈ ܵ௜௡௜௧௜௔௟																													ሺ2ሻ 

The following two equations reflect the pre-defined trajectories during start-up and 
shut-down, for example during start-up procedure the plant have to go through the 
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estates (initial and intermediates): RUCAP1, RUCAP2 and CUCB, staying 1 hour for 
each one to switch from off to on.  

݊݀ ∗ ௦ܹ,௧ ൌ ෍ ෍ ௦ܹᇱ,௧ᇱ

௧ᇱୀ௧ା௡ௗ

௧ᇱୀ௧ାଵ௦ᇱ∈ௌ೏೚ೢ೙ష೔೙೟೐ೝ

ݐ∀										 ∈ ܶ, ݏ ∈ ܵௗ௢௪௡ି௜௡௜௧௜௔௟										ሺ3ሻ 

ݏ݊ ∗ ௦ܹ,௧ ൌ ෍ ෍ ௦ܹᇱ,௧ᇱ

௧ᇱୀ௧ା௡௦

௧ᇱୀ௧ାଵ௦ᇱ∈ௌೠ೛ష೔೙೟೐ೝ

ݐ∀										 ∈ ܶ, ݏ ∈ ܵ௨௣ି௜௡௜௧௜௔௟													ሺ4ሻ 

To model the sequence of transition between the last state of start-up and shut-
down processes and the first state of on and off operation points, respectively, we 
present Eq. (5) and (6): 

ோܹ஽஼஻,௧ ൌ ைܹிிଵ,௧ାଵ												∀ݐ ∈ ܶ																																						ሺ5ሻ 

ோܹ௎஼஻,௧ 	൑ ைܹேଵ,௧ାଵ												∀ݐ ∈ ܶ																																							ሺ6ሻ 

Critical Transition States. In the Eq. (7)-(8) binary variable ௦ܹ,௧ is used to fulfill the 
critical transitions of the PSTN network. We formulate Eq. (7) to describe possible 
transitions that can occur from the critical states, for example the plant operates in 
"ONn" state at time ݐ, then in time period ݐ ൅ 1 it can operate in "SB1", "RDCAP1" or 
stay in "ONn". Note the plant can operate into a state every hour, so only a binary 
variable on each side of equality can be activated. 

௦ܹ,௧ ൅ ௦ܹᇱ,௧ ൌ ෍ ௦ܹᇱᇱ,௧ାଵ

௦ᇱᇱ∈ே்ௌ

ݐ∀											 ∈ ܶ, ݏ ∈ ܵ௖௥௜௧௜௔௟, ᇱݏ ∈  ሺ7ሻ												ܥܫܮ

Eq. (8) force to air separation process switch from intermediate state to critical 
state (for example when switch from "ON2" to "ONn"). 

௦ܹ,௧ ൑ ܹ௦ᇲ,௧ାଵ											∀ݐ ∈ ܶ, ݏ ∈ ,ܥܫܮ ݏ
ᇱ ∈ ܵ௖௥௜௧௜௔௟																											ሺ8ሻ 

If the plant is in the first hour of the on state ("ON1") at time ݐ, may have been in 
"SBn" or "RUCB" state at time ݐ െ 1, this transition is represented below: 

ௌܹ஻௡,௧ ൅ ோܹ௎஼஻,௧ 	൒ ைܹேଵ,௧ାଵ											∀ݐ ∈ ܶ																																ሺ9ሻ 

Production Rates and Storage Capacity Limits. Eq. (10) and (11) capture the 
amount produced and amount in inventory at the end of each hour based on produc-
tion rates and storage capacity limits. 

௦ܹ,௧ ∗ ݊݅ܯ ௦ܲ ൑ ௦ܲ,௧ ൑ ௦ܹ,௧ ∗ ݔܽܯ ௦ܲ											∀ݐ ∈ ܶ, ݏ ∈ ܵ																							ሺ5ሻ 

ܳ݉݅݊ ൑ ௧ܫ ൑ ݐ∀											ݔܽ݉ܳ ∈ ܶ																																																			ሺ6ሻ 

Tank Level Constraints. The tank level, each hour and at the end of a week, are 
captured by Eq. (12)-(14). Note that the Eq. (12) and (13)  calculate the inventory of 
the first hour of the horizon and the remaining hours, respectively, since the first time 
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period (ݐ ൌ 1) has initial inventory as data. Furthermore, the plant must meet a mini-
mum level of inventory at the end of the planning horizon (see Eq.(14)), correspond-
ing to the last day of the week under review (ݐ ൌ 168). 

௧ܫ ൌ ଴ܫ ൅෍ ௦ܲ,௧

௦

െ ݐ∀											௧ܦܧ ∈ ݐ	:ܶ ൌ 1																													ሺ7ሻ 

௧ܫ ൌ ௧ିଵܫ ൅෍ ௦ܲ,௧

௦

െ ݐ∀											௧ܦܧ ∈ ܶ, 1 ൏  ሺ8ሻ																										ݐ

௧ܫ ൒ ݐ∀											ௗܮܶܦܯ ∈ ܶ, ݀ ∈ ,ܦ ሺݐ, ݀ሻ ∈ ,ሺ௧,ௗሻܦ_ܶ ݀ ∈ ݀1ௗ																ሺ9ሻ 

Power Consumption. Amount of power consumed (fixed and variable) each hour is 
captured by Eq. (15). 

ܲ ௧ܹ ൌ෍ሺ ௦ܹ,௧

௦

∗ ௦ܥܲܨ ൅ ௦ܥܸܲ ∗ ௦ܲ,௧ሻ												∀ݐ ∈ ܶ																							ሺ10ሻ 

Objective Function. Eq. (16) minimizes the total cost that consists of power con-
sumption for each hour. 

ݐݏ݋ܥ ൌ෍ሺܲ ௧ܹ ∗ ܧ ௧ܲሻ
௧

																																																ሺ11ሻ 

4 Results 

The proposed model was tested for an air separation plant with real-world electricity 
price and demand input data for a week (168 hours). Scenarios were defined to assess 
how the model faces different situations and study the impact of the optimization for 
different types of forecast.  

The scenarios tested with the new formulation combines the input data (hourly and 
shift demand, and fixed, shift and hourly energy cost). In some cases the results are 
fixed to evaluate them with other data and to make a fair comparison (rolling-horizon 
model). Note that due to confidentiality, only input data corresponding to the storage 
capacity in the plant and daily average of demand and energy prices forecasts are 
shown in Table 1 and Table 2, respectively. 

Table 1. The initial storage capacity in the plant  

Max Tank Level [kL] 2170 

Min Tank Level  [kL] 850 
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Table 2. Daily demand and energy price forecasts 

Day 
Daily demand 

[kL/day] 
Energy Cost 

1 12 39.41625 

2 15 50.5875 

3 15 47.5075 

4 14 46.57375 

5 12 47.62 

6 6 47.83208 

7 7 38.76875 

 
Due to confidentiality reasons, information about production levels and power con-

sumption for the different operating modes are not disclose, only average min/max 
production rates are contained in Table 3. Note power consumption follows linear 
correlation: ܽ	 ൅ 	ܾ ∗   .݊݋݅ݐܿݑ݀݋ݎܲ

Table 3. Daily demand and energy price forecasts 

 
Mode On Mode Off 

Mode 
Standby 

Start-up Shut-down 

Min Production 
[kL/hour] 

20 0 0 20 0 

Max Production 
[kL/hour] 

25 0 0 25 0 

 
In the following, soluttions baseb on flat energy cost (45.472) and time of day 

prices can be visualized with graphs  as shown in the Figure 3 and Figure 4. When an 
overall average energy price is used to optimally schedule, a production plan with the 
minimum number of stops is obtained. Note that this plan meets inventory levels and 
production required by the plant while minimizing costs associated (see Figure 3). 

 

Fig. 3. Solution based on flat energy cost 
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Furthermore, we can see in the Figure 4 that due to the hourly changing electricity 
prices, plant the plant operates dynamically in which transitions play an important 
role in the optimality of the problem. In such a way, it is economically desirable to 
stop producing during certain time periods to produce in others with less energy costs. 

 

Fig. 4. Solution based on time of day prices 

In Figure 5, we can compare both approaches based on on time of day prices: pre-
dictive and rolling model. In rolling-horizon scheme, due to information updates (en-
ergy price and demand) along the scheduling horizon the schedule changes in the last 
days of the week. 

 
Fig. 5. Solution schedules considering both approaches (predictive and rolling-horizon) 

The results in Table 4, show optimal quality solutions for the proposed methodolo-
gy with a modest computational effort considering a one-hour time grid and one-week 
time horizon. We calculated the real total cost with the configuration of scenario 2 
and real-world electricity price, to compare with result of scenario 3. The real total 
obtained is 41214.15. Solutions generated by using CPLEX in a PC Intel Xeon X5650 
2,6 GHz. 

Table 4. Results of the main scenarios 

Scenario Energy total cost CPU time 

1. Predictive model based on flat energy cost 40131.82 5.454 sec. 

2. Predictive model based on time of day prices 35524.16 0.093 sec. 

3. Rolling-horizon model 39240.04 0.109 sec 
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5 Conclusions 

Based on the preliminary results achieved, it can be concluded that the predictive 
MILP-based scheduling approach looks very efficient and robust. The model is able 
to consider all problem features and easy to adapt to reactive scheduling (a rolling 
horizon approach). Therefore, the developed model is promising for solution schedul-
ing for the application to real-world air separation industrial plants. 

The PSTN model is easy adapted to other plant configurations, including the iden-
tified additional features. It allows evaluation of daily and hourly reactive decisions 
based on energy price changes (day-ahead market and imbalance market).  
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