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Abstract.This paper studies the application of genetic algorithms in helping to 
select the proper architecture and training parameters, by means of evolutionary 
simulations done on a series of real load data, for a neural network to be used in 
electric load forecasting. Particularly, we investigate the application of a novel 
fitness function to the genetic algorithms, instead of the usual ones, based on 
the sum of the squares of the errors. We compare the results of the neural 
networks thus specified with that of four benchmarks: two naive forecasters, a 
linear method, and a neural network in which the parameter values are found by 
means of a grid search. 
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1 Introduction 

Electricity is the form of energy most used throughout the world. It generates 
heat, light and power, and is directly linked to the technological and economic 
development of a country. The electricity generating system may be compared to a 
productive system in which plants, turbines and generators combined with fuel or 
water (inputs) produce electricity (output), which is then distributed to the clients. For 
proper and efficient operation of any production system, planning and production 
control is required; this requires forecasts for the long term, the middle term and the 
short term. For the electricity generating systems, long-term forecasts (for several 
years ahead) are needed for planning the expansion or reduction of production 
capacity - by the installation of new plants, for example. Medium term forecasts (for a 
few weeks or months ahead) are necessary to support decisions on the utilization of 
the existing system - the purchase of fuel, or scheduling of maintenance activities. 
Short-term forecasts (one hour to a few days ahead), are necessary to optimize the use 
of the plant and the machinery.  

The production of electricity, however, differs in some ways from other forms 
of industrial production. The differences are derived mostly from the fact that energy 
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cannot be stored in large quantities; thus the production has to meet the demand very  
accurately at all times. Energy produced in excess may be wasted, which means 
useless consumption of fuel or water, and losses for the company. On the other hand, 
if the production does not reach the demand, the system may fail, and this may lead 
blackouts. Thus, accurate short-time forecasts of the demand are essential for the 
operation of a system. 

 The privatization of utilities and the deregulation of energy systems, which 
started in several countries by the late 1980s, have also increase the importance of 
forecasting and raised the cost of the forecasting errors. Highly competitive energy 
markets have sprung up, focusing on energy production with high quality standards, 
at low costs. Particularly, one day ahead forecasts became extremely important, 
because besides being needed for the day-to-day operation of the system (scheduling 
the times for turning the generating units on and off, so as to minimize production 
costs), they are also one of the inputs needed for the definition of the price of 
electricity in the market [1]. Data on energy demand are usually obtained in the form 
of time series of electric loads. The forecasting of future values of these series has 
been tried by several different methods. Some of these are based on univariate (time-
series) models, in which the forecast is a function of the past load only. Others are 
based on multivariate techniques, in which the forecast is a function not only of the 
past loads, but also of exogenous variables related to the weather or to social events. 
Many artificial intelligence techniques have been tried for this task, because of their 
flexibility and their ability to model complex nonlinear multivariate relationships. 
Among these, the most frequently researched have been the Artificial Neural 
Networks [2]. 

 This paper describes simulations done with a method that combines artificial 
neural networks and genetic algorithm, and we propose a novel cost function to be 
minimized. Usually, the models minimize the mean square error (MSE) of the 
forecasts. Since, however, the forecasts are made in the same instant of time for 
different forecasting horizons (in this paper, for example, we consider that the 
forecasts for all the 24 hourly loads in the next day are done at today’s midnight), the 
forecasting errors tend to be highly autocorrelated. This is undesirable, since the 
existence of autocorrelation in a series of errors means that the model is not extracting 
all the information available in the data. In this paper, we propose a cost function 
which is a variation of the well know Ljung-Box statistic used to test the 
autocorrelation of the errors generated by the statistical times series models, such as 
the ARIMA models. 

2 Material and methods 

2.1 Load data from Rio de Janeiro 

For the simulations, we used a series of load (in MWh) measured in the city of 
Rio de Janeiro, by a local power company. This database contains the hourly loads for 
days 01/Jan/1996 to 30/Dec/1997, adding up to 17,472 observations. Loads on special 
days (such as holidays) are usually forecasted offline by the companies, by means of 

44 JAIIO - SIO 2015 - ISSN: 2451-7569 58



SIO 2015, 13º Simposio Argentino de Investigación Operativa.

proprietary methods that tend to be largely empirical; since these loads are not the 
focus of this paper, we opted to smooth them out of the series, replacing them by the 
average of previous observations on the day of the week and at the same time.  

Load series usually have complex structures, including several superimposed 
seasonal patterns. The lineplot in Figure 1 highlights a weekly cycle: the demand is 
higher from Monday to Friday and lower on weekends.  

 
Fig. 1. Typical demand curves for summer and winter (Rio de Janeiro, Brazil) 

 
Also, daily cycles are clearly seen: in winter, all weekdays tend to exhibit the 

same profile (series of 24 hourly demands), with a peak at 19h; in summer, the profile 
is different, with a peak at 15h and another at 23h. Also, there is a yearly cycle, linked 
to the seasons, that can be noticed both in Figure 1 and Figure 2; the increase in load 
during summer is due to the intense use of air-conditioning. 

 
Fig. 2. Weekly average loads in one year (Rio de Janeiro, Brazil) 
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This load series was partitioned into three subseries. Data ranging from week 
15 to 64 were used for training the ANNs (the training sample). Data from week 65 to 
84 were used by the genetic algorithms to check the fitness of the competing models 
(the validation sample). Finally, data from weeks 85 to 104 were used to test the 
models selected by GA, against four different benchmarks (the test sample). 

2.2 Statistical model load curve 

In this paper we use a standard “load curve model” for forecasting. These 
models are frequently used in the electricity industry, mainly due to their simplicity of 
implementation and the relative ease of interpretation of their results [3]. The idea is 
to model the expected profile of a day assuming a priori a functional mathematical 
form for its shape. After a model is estimated, it is fed at the end of each day with new 
data, and then used to forecast the profile for the next 24 hours. 

In the most common univariate additive model, the demand at time h on day d, 
L(d,h), is given by the sum of a base component B(d,h), which is a function of the 
most recent previous observations, with a random error R(d,h), as in eq. (1): 

 ),(),(),( hdhdhd RBL +=  (1) 

As the statistical model above is, in principle, a single univariate model for all 
hours of the day, it is necessary to adopt some method to consider the multiple layers 
of seasonality of the data, and thus obtain better predictions. Some authors, such as 
[4] and [5], recommend splitting the data into 24 separate time series, and then 
adjusting one model for each hour of the day. Others, such as [6] and [7] advise 
splitting the data into 168 separate series, one for each of the 168 hours of a week. A 
third option figures in the recent literature: keeping a single model, but choosing one 
that can model simultaneously the triple seasonality present in load series. A more 
recent such development was the adaptation of the well-known Holt-Winters 
exponential smoothing method [8] and [9]; this method was used on the same data 
series as in the present paper, and its results are used as a benchmark. 

Instead of using a univariate model, another option is using a multivariate one, 
capable of dealing simultaneously with several inputs and 24 outputs (the forecasts). 
This has been frequently done in recent years by means of artificial neural networks; 
we discuss them below. 

2.3 Artificial neural networks (ANNs) 

The ANN models we use are Multi-Layer Perceptrons, with a single hidden 
layer. They are very adaptable, the can incorporate the several levels of seasonality in 
a single model.  

The ANNs we used had only one hidden layer, with sigmoidal activation 
functions. To estimate the neural network weights, we used a training function that 
incorporated regularization [10]. We chose this function because it led to an improved 
accuracy, as compared to a few others which were also tried out. The neural network 
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has 24 output nodes, representing the load profile of the next day. The choice of the 
input variables, the number of hidden layers and the number of training epochs were 
done by a genetic algorithm (section 2.4).  

For forecasting next day’s profile, the available input variables were the 
temperature differences (the differences between the temperature at each hour in a 
day, and the temperatures at the same hours on the previous day), the measured 
hourly loads, and seven dummies to represent the days of the week. So, we 
experimented with a total of 103 possible input variables, as follows: 

24 differences between the hourly temperatures measured today, and those    
measured yesterday 

24 differences between the hourly temperatures measured today, and those 
forecasted for tomorrow 

48 hourly loads measured today and yesterday. 
06 bits, representing the days of the week. 

2.4 Genetic Algorithms (GAs) 

One of the difficulties in the implementation of ANNs is the lack of straight-
forward criteria to help the researcher in defining the parameters of the model or of 
the training process. Just as there is still no generally accepted methodology for the 
selection of input variables, there are also no rules for selecting the number of layers 
and of hidden neurons, etc. For the definition of these parameters, GAs have been 
tried by several authors [11], and we used them in this paper. 

The GA we used was of a binary generational type. The stopping criterion was 
the stabilization of the best genes, for 200 generations, and the existence of 50 
individuals in the population without crossover operator, and with mutation operator 
with probability 0.2. The selection was made through one tournament, and “elitism” 
was implemented (i.e., 49 individuals are passed on to the next generation; only the 
worst individual is discarded).  

Each individual (i.e., each ANN model) was represented by a vector of bits. 
The first 103 bits were used to represent the candidate input variables; the variables 
eventually included are listed in Table 1. The next five bits are used to represent the 
number of hidden neurons (01 to 32); the final bits represent the number of epochs 
(01 to 32) for ANN training; since we used a training function based on 
regularization, we did not use cross-validation for control early stopping. 

A GA minimizes a chosen cost function or criterion. Usually, this is the mean 
square error (MSE) of the fitted model; in this paper, however, we experimented with 
the function defined below. 

2.5 The cost function 

As explained in the introduction, profile forecasting methods frequently result 
in forecasting errors that exhibit marked autocorrelation, instead of being white noise, 
as would be ideally expected. In order to reduce this autocorrelation, we experimented 
using a GA for minimizing a cost function Q defined by: 
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In this equation, each product e(t) x e(t-i) may be considered as an 
approximation to the autocovariance of the series, for lag = i. This sum of the squares 
of autocovariances Q is analogous to the statistics used in the “port-manteau” tests 
(commonly employed in ARIMA modeling), which are based on the sum of the 
squares of the autocorrelations of the errors for all lags in a given interval - if the error 
is a white noise, all the autocorrelations are equal to zero, and the sum tends to zero. 
By minimizing Q, therefore, we expect to minimize the autocovariances present in the 
error series. We used this cost function in two ways. 

First, we run the GAs three times, searching to minimize the cost function as 
defined in eqs. (2) and (3), with et representing the forecasting error at each hour. The 
models that resulted of these three runs are listed below as GA01, GA02, GA03. 
Second, we did another three runs of the GAs, this time using et to represent the total 
daily forecasting error (the sum of the hourly errors); the models that resulted are 
listed below as G04, GA05 and GA06.  

2.6 Other details 

Benchmarks  
 
The different models we experimented with were compared among 

themselves, and also against four benchmarks, in terms of their forecasting accuracy. 
The benchmarks were two naïve forecasters (Naive1, Naive2), a modification of the 
well-known Holt-Winters exponential smoothing method (HWT), and an artificial 
neural network (ANN). These benchmarks are detailed below.  

Naive1: this method forecasts the load at the hour h of day d, by using the load 
at the same hour on the previous day; that is: 

 hdhd zz ,1,ˆ −=  

This is a naïve method takes into account the daily seasonality (the daily load profiles 
tend to repeat themselves from day to day). However, this daily seasonality is broken 
at the weekends: since this method predicts Monday loads with basis on Sunday 
loads, its accuracy is expected to be poor. 

Naive2: this method forecasts the load at the hour h of day d, by using the 
load at the same hour on day with the same denomination on the week before; that is: 

 hdhd zz ,7,ˆ −=  
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This method takes into account the weekly seasonality (Monday loads, for example, 
are predicted with basis on the previous Monday loads), but it does not take into 
account the variation in average level caused by the yearly seasonality. 

HWT: Taylor [8] and [9] adapted the Holt-Winters exponential smoothing 
method, adding two new equations, to allow it to deal with series which show three 
levels of seasonality. We experimented with this method on the same load series on a 
previous study [12], and the results are here used as benchmarks. 

ANN2001: In a previous study [13], we used a large neural network to 
forecast the same load series as in this paper. This ANN was a MLP, and its 
architecture and training parameters were chosen with basis of empirical validations, 
instead of by a genetic algorithm. These early results are here used as benchmarks. 

 
Error measure 

 
The forecasting accuracy of the different methods were compared by means 

of the the mean absolute percent error (MAPE) defined as: 

 ∑
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We chose this error measure because it has proved to be the most commonly used in 
the load forecasting literature, due to its easy interpretation.  

3 Results 

 Table 1 shows the details of the three ANNs selected in the three GA runs we 
did using the cost function in (3) as the fitness function (GA01 to GA03). Table 1 also 
shows the details of the ANNs selected by the GA runs using the second cost function 
defined in Sect. 2.6.2, the one based on the daily sum of errors, instead of on the 
hourly errors (GA04 to GA06). 
 

Method # neurons Training 
epochs 

Temperature 
differences: 

today-
yesterday 

Temperature 
differences: 
yesterday- 
day before 

Loads on 
last two 

days 

Dummies 

GA01 29 11 11 17 19 4 

GA02 18 15 10 14 23 6 

GA03 29 13 10 13 29 5 

GA04 31 13 14 23 31 5 

GA05 17 10 11 15 21 6 

GA06 18 11 10 17 23 5 

Table 1. ANNs selected by each run of a GA 
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We run every one of these six models 30 times each on the training samples, 
to train their weights, and then simulated their forecasts over the test sample, and 
computed their MAPEs. These are described summarily on Table 2: the minimum 
MAPE obtained on the 30 runs (i.e., the best forecasts), the maximum MAPE (the 
worst forecasts), and the average MAPE.   

 
 

ANNs 
Maximum 

MAPE 
Minimum 

MAPE 
Average 
MAPE 

Median 
MAPE 

GA01 2.49 2.01 2.24 2.27 

GA02 2.51 2.07 2.23 2.22 

GA03 2.81 2.15 2.34 2.32 

GA04 2.26 1.99 2.10 2.09 

GA05 2.82 2.23 2.39 2.38 

GA06 2.69 2.14 2.25 2.23 

ANN2001 2.75 2.26 2.44 - 
Naive1 3.35  
Naive2 6.12 

HWT 2.47 

Table 2. – Results: MAPEs on weeks 85-104 

These same results are shown by means of boxplots on Figure 3. The MAPE 
produced by HWT, and the average MAPE produced by ANN2001, are shown by the 
blue and red vertical lines across the boxplots, respectively. 

 

 
Fig. 3. MAPEs on weeks 85-104 
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4 Discussion and conclusion 

As can be seen in Figure 3 and in Table 2, the GA-based method we used 
produced in general much better results than the four benchmarks. The MAPEs in all 
GA runs were much lower than the ones of the two naive forecasters (Naive1, 
Naive2). As compared to the other two benchmarks, we notice, first, that the mean 
and the median MAPEs we obtained in the six GA runs were always lower than the 
MAPE of the HWT, or the mean and median MAPEs of the ANN2001. Actually, in 
half of the GAs we tried (three out of six), the median MAPEs we obtained were even 
better than the best result obtained by the ANN2001. The median MAPE in all 6 GA 
runs was 2.24% which was about 0.20% below the ANN2001 median. 

However, one of the difficulties in applying ANNs is the wide variation of the 
results. Since there are a great many design parameters to be specified, and the 
network weights have to be found by optimization processes, the results of the GAs 
are always unpredictable. Models with very different structures may be found at the 
end of each run. Usually, these models result in more or less the same performance in 
forecasting (since ANNs are such large models, a single ‘perfect’ model is never 
found); it occasionally happens, however, that some models are found that perform 
very poorly when applied to test data; such are for instance the ones whose MAPEs 
are shown as outliers in the boxplots in Figure 3. 

Because of that, one should always consider, when analyzing the results of 
ANN forecasters, not only the mean or median error measures, but also the worst 
cases – the very large prediction errors, the ones that, had they occurred in real life, 
would have resulted in serious losses for the electricity companies. In this respect, we 
find that the models selected by the GA runs performed comparatively well. Out of 
180 runs (30 of each GA), only six values were considered as outliers (see Figure 3); 
but even these were well below the limits set by the Naive1 and Naive2 forecasters. 

We think, therefore, that the results of the GA-based method we tried were 
very promising. For future research, we believe it would be interesting to experiment 
with the use of ANN committees, instead of individual ANNs, since this might lead to 
a further reduction in the variation of the MAPEs. 
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